Genetic recombination is targeted towards gene promoter
regions in dogs - Supplementary Material

Sample collection

Dogs were sampled between 2007 and 2010 at multiple locations throughout the
world (Table S1). We selected approximately 6 samples from various regions for
sequencing, focusing mainly on ‘free-ranging’ village dogs which are generally more
genetically diverse due to the absence of breed founder effects and artificial
selection [17]. Dogs from China were selected for sequencing in an effort to
maximize the geographical spread of the samples (1-2 for most provinces), and
some of these are associated with breeds.

DNA was collected from 3-5 ml blood samples under Cornell IACUC #2005-0151,
2007-0076 and 2011-0061. DNA was extracted from a captive female culpeo fox
(Lycalopex culpaeus culpaeus) from the Cusco region of Peru using a similar
procedure.

Sequencing

Paired end libraries were prepared from genomic DNA using the standard Illumina
protocols. Briefly, genomic DNA was sheared in a Covaris E210. Sheared DNA was
end-repaired, A-tailed, gel-purified and ligated with Illumina's paired end adapters.
Libraries were amplified for 8 cycles. Libraries were run for 2 x 101 bp reads on one
lane each on a HiSeq 2000. This procedure resulted in between 8X and 12X coverage
for each sample.

Mapping and variant calling

The CanFam3.1/canFam3 reference assembly was downloaded from the Broad FTP
site [36] in October 2010 and converted to FASTA format. We note that this
reference differs from the final CanFam3.1/canFam3 reference released by UCSC
due to differences in choices regarding padding between contigs. Sequence reads
from 57 dogs were mapped to reference using bwa [31]. PCR duplicates were
excluded using Picard [37], and empirical quality recalibration and realignment
around candidate indels was performed using GATK [32]. SNP genotype likelihoods
were generated by GATK and passed to BEAGLE [33] for genotype calling and
phasing.

The Andean fox sequence was processed in a similar manner, with reads also
aligned to the canine reference genome. GATK was also used to generate genotype
calls at dog variant sites, yielding a 95% call rate with approximately 1%
heterozygous genotype calls. These variant calls were used to polarize the ancestral
allele for polymorphisms discovered in dog, with 3,296,170 sites being assigned an



ancestral allele with high confidence. In addition, GATK was also used to perform
SNP discovery in the fox, allowing discovery of 1,287,138 heterozygote
polymorphisms in the fox with a SNP quality > 100 and a genotype quality >= 99.

Calculation of variant detection power and genotype accuracy

A total of 48 of the 51 sequenced dogs were genotyped on Illumina CanineHD
microarrays [18]. After filter out sites with low call rates (<90%), low duplicate
concordance rates across genotyping platforms, or sites at positions which did not
uniquely map from canFam2 to canFam3 with liftOver, we estimate that we have
>98% power to detect variants with minor allele frequency of 5%, and a nearly 95%
power to detect rarer variants. For these variants detected by both genotyping and
sequencing approaches, the overall concordance of the genotype calls is 99.1%.

Construction of a genetic map

Prior to estimating the genetic map, we conducted extensive filtering of the variants
called in the filtering. In part, this was because past experience has indicated that
estimating recombination rates from patterns of LD can be moderately sensitive
false-positive variant calls [10]. Specifically, we filtered variants to exclude all indels,
and non-biallelic variants. In addition we filtered SNPs with unusual depth of
coverage (average coverage across individuals <6X or >12X), or highly diverged
from Hardy Weinberg Equilibrium (the number of heterozygote genotypes was <
60% or > 100% than the expectation under HWE). In order to focus on only very
high quality variants, we excluded any variant in a homopolymer of length > 3.

The resulting callset consisted of 3,560,506 polymorphic SNPs on the autosomes,
145,431 SNPs on the non-pseudoautosomal X chromosome, and 18,285 SNPs in the
pseudoautosome.

The genetic map was estimated using the LDhat [15,38] software package, which
uses a coalescent-based model to infer historical recombination rates from
population genetic data. To estimate the genetic map, we followed a procedure
similar to that used previously [10,14,15,22]. Specifically, we split the dataset into
4000 SNP windows with a 200 SNP overlap between windows. Recombination rates
were estimated by LDhat for each window independently using a block penalty of 5
with 60 million MCMC iterations. A sample was taken from the chain every 40,000
iterations, and the first 500 samples (corresponding to 20 million iterations) were
discarded as burn-in.

In addition, preliminary analysis revealed a strong association with CpG-rich
regions of the genome. Therefore, all recombination analyses have been repeated
having excluded all putative CpG sites (i.e. either SNP allele would result in a CpG
site), as well as any SNP within 1kb of a putative CpG island, from the call set to
ensure that the resulting observations were robust to any CpG-associated artifacts.
We also investigated stronger filters that those described above, including filtering



out sites with low minor allele frequencies or mapping to repetitive elements in the
genome, but found them to have a minimal qualitative impact on the final estimates.
Likewise, we conducted investigations regarding which dogs to include in the
dataset when generating the genetic map. We found that using population subsets of
dogs did not qualitatively alter patterns observed in final estimates, and hence we
chose to include dogs that are not strictly village dogs as long as their inbreeding
was not too severe (F > 50%). Three purebred dogs (a basenji, a Mongolia shepherd,
and Perdiguero) were excluded, as were three New Guinea Singing dogs, either due
to high inbreeding or due to being outliers in PC1 and PC2 when the genotype data
was analyzed using principal component analysis. We have replicated the results
described in this paper using more conservative call sets with more selective dog
and SNP selection procedures, and have found them to be robust.

LDhat provides estimates of the population recombination rate, p = 4N,r. As LDhat
estimates recombination rates from patterns of linkage disequilibrium (LD),
artifactual breakdowns in LD can result in artificially large, and biologically
implausible, estimates of recombination [10]. To this end, we set the recombination
rate to zero within a region if the estimate of 4N.r between a pair of adjacent SNPs
was greater than 100, or if there was a gap in the reference of greater than 100kb in
size. Whenever such a region was identified, the recombination rates for the
surrounding 100 SNPs (50 SNPs in both directions) were also zeroed out, as these
estimates are also likely to unreliable. In total, these filters zeroed out
recombination rates in 0.12% of SNP intervals (arising from 2 gaps > 100kb, and 40
distinct regions with a SNP interval 4N.r estimates > 100).

In order to convert the population estimate into a per-generation recombination
rate estimate (measured in units of cM/Mb), it is necessary to obtain an estimate of
the effective population size, Ne. In order to do this, we used a robust linear
regression (without intercept) between the LDhat estimates and the experimental
estimates obtained from Wong et al. [19] in 5 Mb bins. The gradient of the fitted line
can be used to obtain an estimate of N.. The use of robust regression ensures that
local deviations in the correlation between human and dog do not overly influence
the N. estimate. Using this method, we estimated of N. as 31034.71, which we used
to scale the LDhat estimates accordingly.

Calling hotspots

Recombination hotspots in the dog genome were called in a similar manner as used
previously for chimps [10]. Briefly, to assess if observed peaks in the estimated
recombination rate estimates represent significant variation over and above the
noise in the estimator we used coalescent simulations to assess the significance of
recombination peaks detected in the data. The method detects regions of localized
elevated recombination rate by comparing a model in which the recombination rate
within a small region at the center of a window is equal to the surrounding
background recombination rate (the null model) to a model in which the



recombination rate is allowed to take any value (the alternative model). The
algorithm uses coalescent simulations to determine the null distribution of a test
statistic in the absence of a recombination hotspot, and compares this distribution
to the test statistic obtained from the true data. A hotspot is called if the true data
test statistic lies in the extreme tail of the empirical null distribution. The test
statistic in this case is the composite likelihood used by LDhat [15,38].

The hotspot-detection method processes the data in windows of 100kb, testing the
central 3kb for the presence of a recombination hotspot. The window is moved 1kb
at each iteration. For each window, a maximum likelihood constant background
recombination rate is calculated across the 100kb window. Subsequently, a
maximum likelihood estimate of the recombination rate was obtained allowing the
central 3kb to take vary from the background. The test statistic is taken as
(composite) likelihood ratio between the two models. In order to obtain the null
distribution of the test statistic, we performed coalescent simulations using a
constant recombination rate drawn from an exponential distribution with mean
equal to the background rate measured in the real data. We performed 5,000
simulations for each putative hotspot, although the simulations were cut short if
there is no evidence of significance after 50 simulations (p > 0.01). Simulations were
conducted using the neutral, equilibrium coalescent with recombination and
assuming the infinite sites model. The number of mutations was conditioned to
match the number of SNPs in the real data, and mutations were placed at SNP
locations.

Having tested all 3kb windows in the genome, hotspots were called using the
following steps. First, all 3kb windows with p<0.01 were selected. Adjacent or
overlapping windows were merged to provide a list of putative hotspot regions.
After merging, we discarded regions that did not contain at least one window with a
p-value < 0.001. At this stage, we called 7,677 putative hotspots with mean width of
21,954 bp (10,000 bootstrap 95% C.1. 21,696 - 22,225 bp).

To further localize the called hotspots, we compared the hotspot regions to the
recombination rate estimates obtained from LDhat. Specifically, the peak rate was
taken as the maximum rate within the significant region, and the boundaries of the
peak were taken as the Full Width at Half Maximum (FWHM) if this was smaller
than the original significant region boundaries. This procedure resulted in a mean
hotspot width of 8,259 bp (10,000 bootstrap 95% C.1. 8,066 - 8,467 bp).

For each hotspot, we considered the GC, CpG, and N (missing) base composition of
the reference sequence contained with the hotspot. We discarded hotspots if more
than 1% of the reference sequence was missing within the full width region, leaving
5,467 hotspots. The mean FWHM width of these hotspots was 7,540 bp, with 4,255
hotspots (78%) localized to within 10kb, and 2,927 (54%) localized to within 5kb.



Identifying hotspot-associated motifs

For each hotspot, we attempted to identify a nearby region showing no evidence
for recombination rate elevation (a ‘coldspot’), matched for GC content and SNP
density. We first identified all 3kb windows of the genome for which there was no
evidence of a recombination hotspot (p>0.05). We removed all putative coldspots
containing more than 1% missing sequence.

To match each hotspot with a corresponding coldspot, we first estimated the GC and
CpG content of each hotspot in a 3kb window centered on the hotspot peak center.
For each hotspot, we then identified all coldspots on the same chromosome with a
GC content within 0.5% of the hotspot GC content and CpG content within 0.1%. If
more than one coldspot met these criteria, the coldspot matching the hotspot closest
in terms of SNP density was chosen, as measured within a 20kb windows centered
on the hotspots and coldspots. Using this method, we were able to identify a
matched coldspot for 4,759 hotspots.

We extracted the DNA sequences associated with the 3kb windows around the
center of the hotspots and coldspots. We tested all motifs with lengths between 3
and 10 base pairs inclusive. For each motif, we calculated the number of hotspots
and coldspots having at least one copy of the motif, and calculated the significance of
the difference using Fisher’s Exact Test. Reported p-values were Bonferroni
corrected within in each motif length class. We repeated the procedure twice: once
having masked out repeat sequence (as defined by RepeatMasker), and once having
masked out repeat sequence. The motifs reported in Table 1 show significance of p <
0.01 after Bonferroni correction in both repeat and non-repeat sequence.

Comparison of the distribution of recombination in dogs to human

Our recombination rate estimates suggest that dogs have a more uniform
distribution through the genome than that observed in human (Figure S5A).
However, we note that the estimated effective population size in dogs is higher than
has been reported in human. In order to investigate if the observed distribution in
dogs could be driven by this difference in effective population size, we conducted a
simulation study. Using coalescent simulations, we simulated data under 3 different
effective population sizes; 10,000, 20,000, and 30,000. The simulated dataset consisted of a
250kb region with a central 0.2cM hotspot, and a background rate of 0.0125 cM / Mb.
Simulations for each effective population size were repeated 250 times. The results are
shown in Figure S5B. As is clear, the effective population size can have a significant effect
on the distribution of recombination, and hence it cannot be concluded that observed
differences in the distribution of recombination between dog and human represent true
differences in the underlying distribution of recombination.



H3K4me3 Chromatin Immunoprecipitation and sequencing (ChlIP-seq)

Canine testes were obtained from routine neutering procedures from either the
Cornell University Hospital for Animals, or the Tompkins County SPCA, and were
stored for less than 12 hours in 1x PBS buffer in 4°C. The surrounding capsule and
epididymis were removed and the testis cut up into 1 cm pieces with a scalpel blade,
minced, collagenase treated, and added to Krebs buffer. The cell types were purified
using gravity sedimentation, as a single cell suspension, according to the protocol
described previously [39]. Briefly, the testis slurry was digested in collagenase and
then trypsin to generate a single cell suspension, which was then run through a
gravity sedimentation chamber at 4°C for several hours. The resulting sediment was
fractionated and fractions examined for cellular content using a light microscope.
The spermatocytes of specific prophase I stages were determined by their sizes and
morphology. Cells were cross-linked in 1% formaldehyde and flash frozen.

Chromatin immunoprecipitation (ChIP) of histone H3 lysine 4 trimethylation
(H3K4me3, using antibody ab8580 from Abcam) was performed using chromatin
from approximately 2 million canine spermatogenic cells (pachytene and
leptotene/zygotene spermatocytes were handled separately). ChIP was carried out
according to the Myers laboratory protocol [40]. Prior to the incubation of
chromatin with the antibody-coupled beads, one-tenth of the chromatin sample was
removed to use as input for ChIP-seq. During the overnight incubation at 65°C to
reverse cross-linking, 5 M NaCl and Proteinase K were added to the reaction. ChIP
was validated through qPCR, with primers as described in Table Sé6.

[llumina ChIPseq libraries were prepared using Tru-Seq adaptors. Sequencing was
performed on input and ChIP samples for both cell types using 150 bp paired-end
sequencing from an Illumina HiSeq 2500 sequencer in Rapid Run Mode.

Reads were subsequently mapped to the canine reference genome using bwa [31]
(0.6.2-r126). H3K4me3 peaks were called using MACS [34] assuming a reference
genome size of 2.2e9 and a bandwidth of 150.

Analysis of biased gene conversion

Biased gene conversion is a proposed mechanism by which transmission of G/C
alleles can occur preferentially over A/T alleles in the vicinity of double strand
breaks associated with recombination (Figure S13A). To observe the effect of biased
gene conversion, it was necessary to polarize SNP polymorphisms by the ancestral
allele. This is complicated by the lack of reference genome for the fox. Therefore to
assign ancestral alleles, we used an ad hoc approach.

To assign ancestral alleles in dog, we called genotypes in the fox at all sites called in
the dog. We assigned the reference allele as ancestral if the fox was called as



homozygous for the reference allele, and assigned the alternative allele as ancestral
if the fox was called as homozygous for the (dog) alternative allele. We required at
least 5 reads and a genotype quality of at least 10 in the fox, and did not assign
ancestral alleles at other sites.

For the converse process of assigning an ancestral allele for fox SNP polymorphisms,
we extracted all positions in which the fox was heterozygotic with one of the alleles
being the dog reference base. In this case, we took the ancestral allele as the dog
reference base. We did not assign ancestral alleles when the fox was homozygotic
for either the reference or alternative alleles.

Having defined ancestral alleles, we were able to investigate patterns of biased gene
conversion. We define the ‘skew’ of AT->GC mutations relative to GC->AT mutations

as the ratio of the number of observed polymorphisms observed in each class.

#(AT - GC polymorphisms)

Skew =
ew #(GC — AT polymorphisms)

To investigate the properties of the ‘skew’ statistic, we performed a simulation
study to investigate the effect of biased gene conversion. We used the SFS_CODE
software package [41], which provides a highly flexible forward simulator that can
model the effects of biased gene conversion. We simulated polymorphism data in 50
individuals within 5000 10kb regions, each containing a central hotspot with a 1kb
with and a 4N.r across the hotspot of 17. We repeated the simulations both with and
without biased gene conversion. In the biased gene conversion case, parameters
were selected to match estimates regarding BGC obtained in the literature, such that
90% of recombination events result in a gene conversion with a mean tract length of
150bp. The allele bias was taken as 0.83, matching experimental sperm typing
estimates [8]. We then estimated the #AT->GC / #GC->AT ratio averaged across the
hotspots, using only sites segregating within the samples.

The results are shown in Figure S13B. In the absence of biased gene conversion,
there is no change in the skew statistic in the vicinity of the hotspot. However, in the
presence of biased gene conversion, a clear peak can be seen, qualitatively similar to
the pattern observed around canine hotspots.

Our simulations therefore support the interpretation that pattern observed in
Figure 3 could be the result of biased gene conversion. However, it is worth noting
that the statistic we use can have a base-composition dependency. For example, a
region containing few AT nucleotides will necessarily have fewer AT->GC mutations,
which would depress the skew statistic. This is relevant for our simulations as over
long periods of time the cumulative effect of biased gene conversion around
evolutionarily stable hotspots would be to increase the local GC content. As such,
this would ultimately influence our skew statistic via changes to the local base
composition. Over moderate time spans, there is insufficient accumulation of GC to



alter the simulation result, and this in confirmed by simulations with longer burn-in
periods (not shown). However, due to this base-composition dependency, the peak
in the skew statistic observed in our simulations is not expected to represent the
ultimate distribution under stationarity.

Genome annotations

Gene annotations and were downloaded from Ensemble in canFam?2 coordinates.
DNA repeat and CpG island were downloaded from the UCSC genome browser, also
in canFam2 coordinates. These annotations were lifted to the coordinates of our
reference build using the UCSC liftover tool (having generated the appropriate
‘chain’ files). Annotations that uniquely lifted over to our reference were kept
(30,173 genes).

Sanger Sequencing of PRDM9 in foxes

We sequenced the zinc-finger encoding exon 7 of PRDM9 in an Island Fox, Urocyon
littoralis, and a Culpeo (or Andean Fox), Lycalopex culpaeus. PCR sequencing was
performed using the same procedure described in Axelsson et al. [13].
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