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Abstract

Recent studies in population of European ancestry have shown that 30%,50% of heritability for human complex traits such
as height and body mass index, and common diseases such as schizophrenia and rheumatoid arthritis, can be captured by
common SNPs and that genetic variation attributed to chromosomes are in proportion to their length. Using genome-wide
estimation and partitioning approaches, we analysed 49 human quantitative traits, many of which are relevant to human
diseases, in 7,170 unrelated Korean individuals genotyped on 326,262 SNPs. For 43 of the 49 traits, we estimated a nominally
significant (P,0.05) proportion of variance explained by all SNPs on the Affymetrix 5.0 genotyping array (h2

G). On average
across 47 of the 49 traits for which the estimate of h2

G is non-zero, common SNPs explain approximately one-third (range of

7.8% to 76.8%) of narrow sense heritability. The estimate of h2
G is highly correlated with the proportion of SNPs with

association P,0.031 (r2 = 0.92). Longer genomic segments tend to explain more phenotypic variation, with a correlation of
0.78 between the estimate of variance explained by individual chromosomes and their physical length, and 1% of the
genome explains approximately 1% of the genetic variance. Despite the fact that there are a few SNPs with large effects for
some traits, these results suggest that polygenicity is ubiquitous for most human complex traits and that a substantial
proportion of the ‘‘missing heritability’’ is captured by common SNPs.
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Introduction

The five years wave of genome-wide association studies (GWAS)

has uncovered thousands of single nucleotide polymorphisms

(SNPs) to be associated with hundreds of human complex traits

including common diseases [1,2]. Yet, for most complex traits, the

gap between the proportion of phenotypic variance accounted for

by the top SNPs that reached genome-wide significance level in

GWAS and the heritability estimated from pedigree analyses

remains unexplained [3]. This was called the ‘‘missing heritability’’

problem [4], explanations to which have been debated in the field

[3]. Taking height and BMI for example, well-powered studies

with a discovery sample of over 100,000 individuals have identified

180 and 32 loci to be associated with height [5] and BMI [6],

which explain ,10% and ,1.5% of variance for height and BMI,

respectively, while the heritability was estimated to be ,80% for

height [7] and 40,60% for BMI [8,9]. On the other hand,

however, recent studies using whole-genome estimation approach-

es have demonstrated that a large proportion of heritability for

height [10,11], body mass index (BMI) [11], schizophrenia [12]

and rheumatoid arthritis (RA) [13] can be captured by all the

common SNPs on the current genotyping arrays, which implies

that there are a large number of variants each with an effect too

small to pass the stringent genome-wide significance level. It could

be argued that the evidence from these whole-genome estimation

analyses are for the traits that are known to be highly polygenic

and therefore are not representative for most human complex

traits. Therefore, it remains unclear whether polygenic inheritance

is a general phenomenon for most human complex traits or a

unique feature for a particular group of traits such as height and

BMI. There has been evidence from a review of a number of

GWAS that more variants have been identified with increased

sample size [2], consistent with a pattern of polygenic inheritance

for most common diseases and complex traits. In this study, using

the whole-genome estimation and partitioning approaches

[10,11,14], we directly estimated the proportion of phenotypic

variance explained by the common SNPs all together on a

genotyping array for a range of quantitative traits in a large
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homogenous sample of Koreans. We demonstrated by a number

of different analyses that polygenic inheritance is likely to be

ubiquitous for most human complex traits.

Results

We used the data from the Korea Association Resource (KARE)

project [15]. The KARE cohort consists of 10,038 individuals

recruited from two different sites in South Korea, genotyped at

500,568 SNPs on Affymetrix Human SNP array 5.0. There were

7,170 unrelated individuals and 326,262 autosomal SNPs after

quality controls (Materials & Methods). We show by principal

component analysis that all the individuals are of eastern Asian

ancestry (Figure S1). All the individuals were measured for 49

quantitative traits, which are related to obesity, blood pressure,

hyperglycemia, diabetes, liver functions, lung functions, and

kidney functions (Table S1). The phenotypic correlations between

pairwise traits are visualized in Figure S2, with traits within the

same classification groups being more correlated than between

groups.

We then estimated the proportion of variance explained by

fitting all the SNPs in a mixed linear model for each of the 49 traits

(Materials & Methods). In general, there was a substantial amount

of variance explained by all SNPs on the Affymetrix 5.0

genotyping array (h2
G) for most traits with a mean of 12.8% (a

range from 0 to 31.6%) across all the 49 traits (Table 1). For 47 of

the 49 traits, the estimate of h2
G was non-zero, 43 of which reached

the nominal significance level (likelihood ratio test P,0.05) and 26

of which reached experimental-wise significance level after

Bonferroni correction for multiple traits (likelihood ratio test

P,0.001) [14]. We compared the estimates of h2
G with the narrow-

sense heritability (h2) estimated from pedigree analyses in the

literature (Table S2), and observed a significant trend (P = 0.017)

that traits with a higher estimate of h2 were more likely to have a

larger estimate of h2
G (Figure S3) and that all the common SNPs

explain approximately 33.3% (a range from 7.8% to 76.8%) of the

narrow-sense heritability, despite that the estimates of h2 were

from various different studies, usually with large standard errors

and mostly in samples of European ancestry. In contrast, when we

performed a genome-wide association (GWA) analysis in the same

sample, we identified genome-wide significant (P,561028) SNPs

for 25 of the 49 traits. On average across the 25 traits, the top

associated SNPs from GWA analyses explained only 1.5% (range

of 0.5% to 3.8%) of phenotypic variance (Table S2), nearly 10-fold

smaller than the estimate of h2
G, suggesting there are many SNPs

remaining undetected because of the lack of statistical power. In

addition, we estimated the variance explained by all the SNPs

imputed to HapMap2 CHB and JPT panels (Materials & Methods

and Table S2). The estimate of h2
G averaged across all the traits

using imputed data (13.8%) was slightly higher than that using

genotyped data (12.8%).

We calculated the proportion of SNPs with p-values that passed

a threshold p-value in a GWA analysis (hP) for each trait. We

calculated hP for a range of threshold p-values and plotted them

against the expected values under the null hypothesis of no

association (i.e. the threshold p-values) (Figure S4). This plot is an

analogue to the QQ plot. The averaged hP over all the traits

started deviating from the expected value when the threshold p-

value became small (Figure S4A) and such deviation varied across

traits (Figure S4B). The question is whether a trait that shows a

larger value of hP will also tend to have a larger estimate of h2
G. We

then correlated hP with the estimates of h2
G across all the traits for a

threshold p-value and calculated such correlations for a range of

threshold p-values, from 0.001 to 0.201 by 0.05. We found a

maximum of squared correlation of 0.923 at the threshold p-value

of 0.031 (Figure 1), meaning that traits that have more proportion

of SNPs passed a significance level in GWAS also have more

proportion of phenotypic variance explained by all SNPs. It should

be noted that the threshold p-value at which the maximum

correlation between the estimate of h2
G and hP was found depends

on sample size. This analysis is an alternative way to demonstrate

the equivalence between GWAS and the whole-genome estima-

tion analysis as implemented in GCTA. Although the whole-

genome estimation approach estimates the variance explained by

all SNPs regardless of individual SNP-trait associations, the

estimate of h2
G is actually mainly attributed to SNPs that show

stronger evidence for association with the trait, e.g. ,92% of the

estimate of h2
G could be determined by SNPs with association p-

values,0.031 given the sample size of ,7,000 in this study. These

results also suggest that there are many common variants

associated with the traits at nominally significant level (P,0.05)

but their effect sizes are too small to be genome-wide significant

(P,561028).

Using the same method as above but allowing to fit multiple

genetic components simultaneously in the model (Materials &

Methods), we then partitioned h2
G into the contributions of

individual chromosomes for all the 49 traits (Table S3) except

HOMA and INS0 for which the estimates of h2
G were zero

(Table 1), and plotted the estimate of variance explained by each

chromosome (h2
C) against chromosome length (LC) for each trait.

We did not observe a linear correlation between h2
C and LC for any

particular traits (Figure S5) as strong as that shown in the previous

studies for height [11] and schizophrenia [12]. The squared

correlation between h2
C and LC was from 0.00 to 0.48 with a mean

of 0.15 and a standard deviation of 0.12. This result is not

unexpected because the sample size of this study is smaller than

that of the previous analysis so that h2
C in our analysis were

estimated with larger sampling errors. We then averaged the

estimates of h2
C over all the traits to reduce the sampling error

variance and found that the averaged estimate of h2
C was strongly

Author Summary

The ‘‘missing heritability’’ problem has been intensely
debated for the last few years. Possible explanations
include the existence of many genetic variants each with a
small effect, rare variants with large effects, and heritability
being over-estimated. Previous studies using whole-
genome estimation have demonstrated that for human
complex traits such as height, body mass index, and
intelligence, a large portion of the heritability can be
captured by all the common SNPs on the current
genotyping arrays. These studies, however, were all
concentrated only on a few traits. In this study, we
analysed 49 quantitative traits in a sample of ,7,000
unrelated Korean individuals. We found that, on average
over all the traits, common SNPs on the Affymetrix 5.0
genotyping array explain approximately a third of the
heritability, that genetic variants are widely distributed
across the whole genome with longer chromosomes
explaining more phenotypic variation, and that approxi-
mately any 1% of the genome explains 1% of the
heritability. Despite examples where a few variants explain
a substantial amount of variation, all these results are
consistent with polygenicity being ubiquitous for most
complex traits.

Ubiquitous Polygenicity of Human Complex Traits
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correlated with LC with a correlation of 0.78 (Figure 2A). We show

by hierarchical cluster analysis that the correlation between

averaged h2
C and LC was not driven by a few traits (Figure 3)

and by randomly sampling the same number of SNPs from each

chromosome that it was also not due to longer chromosomes

having more SNPs (Figure S6). We also demonstrate that the

estimates of h2
C on longer chromosomes were more variable than

those on shorter chromosomes (Figure S7). We further took the

weighted average of the estimates of h2
C across traits by 1=h2

G,

which is defined as the proportion of genetic variance attributed to

each chromosome, and plotted it against the proportion of the

genome represented by each chromosome (LC/L, with L being the

total length of the genome) (Figure 2B). The regression slope of the

proportion of the genetic variance attributed to each chromosome

on the proportion of the genome represented by each chromosome

was 0.875 with a standard error (SE) of 0.150 which was not

significantly different from 1 (P = 0.413), and the intercept was

0.008 (SE = 0.007) which was not significantly different from zero

(P = 0.289), suggesting that on average 1% of the genome

approximately explains 1% of the genetic variance. Despite that

there are SNPs with large effects for some traits (Figure S8), all

these results are consistent with that many genetic variants each

with a small effect widely spread across the whole genome.

In addition, we partitioned h2
G into the contributions of genic

(h2
Gg

) and intergenic (h2
Gi

) regions of the whole genome (Materials

& Methods) and averaged the estimates of h2
Gg

and h2
Gi

across all

the traits. The result shows that SNPs in genic regions explain

disproportionally more variation than those in intergenic regions

(Table S4). We further estimated the variance explained by the

genic (h2
Cg

) and intergenic (h2
Ci

) regions of each chromosome and

again averaged the estimates of h2
Cg

and h2
Ci

across all traits. The

numbers of genic and intergenic SNPs on each chromosome are

presented in Table S5. We show that the variance explained by

the genic (intergenic) regions on each chromosome is also

proportional to the total length of the genic (intergenic) regions

(Figure 4).

Discussion

Previous studies using the whole-genome estimation approach

[10,14] have shown that common SNPs explain a large proportion

of heritability for traits and diseases such as height [10,11], BMI

Table 1. Estimates of variance explained by all SNPs for the
49 traits.

Group Trait n ah2
G (SE) P

Height 7170 0.316 (0.042) 2.1e-15

Obesity BMI 7168 0.147 (0.041) 1.1e-04

Waist 7163 0.105 (0.040) 4.1e-03

Hip 7160 0.126 (0.040) 7.0e-04

WHR 7160 0.082 (0.040) 2.0e-02

Weight 7168 0.161 (0.040) 1.8e-05

SUB 7138 0.203 (0.041) 1.0e-07

SUP 6570 0.089 (0.043) 1.7e-02

Blood
Pressure

SBP0 7170 0.221 (0.041) 1.1e-08

SBP 7169 0.250 (0.041) 5.8e-11

DBP0 7169 0.217 (0.041) 3.7e-08

DBP 7170 0.171 (0.041) 6.7e-06

Pulse 7162 0.119 (0.041) 1.6e-03

BMD DS 6753 0.135 (0.043) 6.0e-04

MS 6771 0.107 (0.042) 4.3e-03

Lipids HDL 7169 0.172 (0.041) 8.5e-06

TCHL 7169 0.156 (0.040) 2.3e-05

TG 7169 0.216 (0.041) 1.5e-08

LDL 6963 0.134 (0.041) 3.8e-04

NONHDL 7169 0.157 (0.040) 1.9e-05

THDL 7169 0.162 (0.040) 1.4e-05

Diabetes GLU0 7006 0.112 (0.041) 2.9e-03

GLU60 6824 0.104 (0.043) 7.2e-03

GLU120 6830 0.118 (0.042) 1.5e-03

INS0 7007 0.000 (0.040) 5.0e-01

INS60 6823 0.074 (0.042) 3.9e-02

INS120 6824 0.144 (0.043) 3.8e-04

HBA1C 7168 0.126 (0.040) 5.8e-04

HOMA 7006 0.000 (0.040) 5.0e-01

Blood Cell
Count

WBC 7169 0.162 (0.041) 2.3e-05

RBC 7169 0.186 (0.041) 1.1e-06

PLAT 7169 0.196 (0.041) 3.5e-07

HCT 7169 0.091 (0.040) 9.6e-03

Blood
Ions

SONA 7169 0.063 (0.039) 4.7e-02

POTA 7169 0.047 (0.039) 1.2e-01

CHL 7169 0.113 (0.039) 9.1e-04

Liver
Functions

CRP 7168 0.109 (0.039) 1.1e-03

HB 7169 0.064 (0.039) 4.9e-02

AST 7169 0.072 (0.040) 3.0e-02

ALT 7169 0.146 (0.040) 7.4e-05

RGTP 7169 0.109 (0.040) 2.9e-03

Table 1. Cont.

Group Trait n ah2
G (SE) P

Lung
Functions

SP1 7009 0.226 (0.043) 2.1e-08

SP2 7007 0.134 (0.041) 4.2e-04

SP3 7011 0.148 (0.041) 1.0e-04

Kidney
Functions

RENIN 7169 0.076 (0.039) 2.3e-02

Bun 7169 0.102 (0.040) 4.7e-03

Creatine 7169 0.048 (0.040) 1.1e-01

SG 7147 0.034 (0.039) 1.9e-01

pH 7147 0.039 (0.040) 1.7e-01

aEstimate of variance explained by all SNPs with its standard error given in the
parentheses. A full version of this table can be found in Table S2.
doi:10.1371/journal.pgen.1003355.t001
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[11], cognition ability [16,17], rheumatoid arthritis [13] and

schizophrenia [12]. The reason why GWAS have not yet

identified all the common SNPs that explain this amount of

variation is mainly because there are many of them each with an

effect too small to pass the stringent genome-wide significance

level. However, each of these studies focused only on one or a few

diseases or traits. We estimated and partitioned the genetic

variance that tagged by all common SNPs for 49 traits in an

eastern Asian population and showed by a number of analyses that

polygenic inheritance is ubiquitous for most human complex traits.

The estimates of h2
G for 6 traits, however, were not different

from zero at the nominal significance level (0.05) and the estimates

for two insulin related traits INS0 (fasting blood insulin level) and

HOMA (homoeostasis model assessment for insulin resistance)

were constrained at zero in the analysis because the estimates were

converged at small negative values during the estimation process.

Figure 1. Estimate of variance explained by all SNPs (h2
G) versus proportion of GWAS significant SNPs. The proportion of GWAS

significant SNPs (hP) is defined as the proportion of SNPs that passed a threshold P value (e.g. 0.01) in GWAS. Panel A): correlations (r) between hP and
h2

G across 47 traits (all traits except INS0 and HOMA) for a range of threshold p-values. The maximum r value (rmax = 0.960) is at a threshold p-value of

0.031. Panel B): estimates of h2
G against hP at p-value of 0.031 for the 47 traits.

doi:10.1371/journal.pgen.1003355.g001

Figure 2. Proportion of variance attributed to each chromosome averaged across 47 traits against chromosome length. In panel A),
shown on the y-axis is the averaged estimate of variance explained by each chromosome (h2

C) across all the traits, except INS0 and HOMA, for which
the estimates of variance explained by all SNPs (h2

G) are zero. In panel B), the estimate of h2
C is weighted by for each trait, i.e.

P
(h2

C=h2
G)=47, and the

length of each chromosome is divided by the total length of the genome, where the intercept (0.008, SE = 0.007) is not significantly different from
zero (P = 0.289) and the slope (0.875, SE = 0.150) is not significantly different from 1, which is not significantly different from 1 (P = 0.413).
doi:10.1371/journal.pgen.1003355.g002
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It does not necessarily mean that common SNPs do not explain

any genetic variance for INS0 and HOMA. It could mean that h2
G

for the two traits are small and their estimates approached zero

just because of random sampling. For example, if the true

parameter of h2
G for a trait is 0.05, given a SE of 0.04 (similar

magnitude as those presented in Table 1), the probability of

getting a zero estimate of h2
G is approximately 0.11, meaning that

it is not surprising to observe a few zero estimates from an analysis

of 49 estimates if the true parameters of h2
G for these traits have a

spectrum from moderate to small values.

Figure 3. Heatmap of the proportions of variance explained attributed to individual chromosomes for 47 traits. On the y-axis is the
variance explained by each chromosome (h2

C) weighted by the total variance explained by all SNPs (h2
G) and averaged across all traits, except INS0 and

HOMA, for which the estimates of are zero. The estimates of h2
C and the traits were clustered by the hierarchical clustering approach and the heatmap

plot was generated by the gplots package in R.
doi:10.1371/journal.pgen.1003355.g003
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The estimate of h2
G for height was 31.6% (SE = 4.6%), which

was smaller than the estimate from a study in Australians

(h2
G = 44.9%, SE = 8.3%) [10] but not statistically significant

(P = 0.161), and was significantly (P = 0.015) smaller than the

estimate from another study in European Americans (h2
G = 44.8%,

SE = 2.9%) [11]. There could be two possible reasons: 1) there is a

difference in heritability for height between Koreans and

Europeans and 2) the tagging of Affymetrix 5.0 array is not as

good as the later version Affymetrix 6.0 and the Illumina

HumanCNV370 arrays used in the previous studies in Europeans.

The estimate for BMI (h2
G = 14.7%, SE = 4.1%) was also slightly

smaller than that in European Americans (h2
G = 16.5%,

SE = 2.9%) [11] but the difference was not significant

(P = 0.741). We estimated the narrow-sense heritability for 11

traits by from a family study in Koreans (Text S1 and Table S6).

The estimate of heritability either for height (h2 = 0.744,

SE = 0.048) or for BMI (h2 = 0.478, SE = 0.057) in Koreans was

comparable to that estimated in Europeans. We then estimated the

variance explained by all SNPs on Affymetrix 5.0 array in the

sample of 11,586 unrelated European Americans as used in [11]

(Text S1). The estimate of variance explained by all SNPs on

Affymetrix 5.0 array in European Americans was 0.394

(SE = 0.027) for height, which was not significantly different from

that estimated in this study (P = 0.118). Therefore, the difference

between the estimate of h2
G in this study and in previous studies is

partly due to the use of different types of SNP genotyping arrays

and partly due to sampling error.

It is demonstrated by the genome partitioning analysis that

there was a strong linear relationship between the estimates of

variance explained by individual chromosomes and chromosome

length (Figure 2). The correlation between variance explained and

DNA length was stronger in the intergenic regions than that in the

genic regions if we define the genic region as 60 Kb or 620 Kb

of UTRs, while it was stronger in the genic regions than that in the

intergenic regions if we define the genic region as 650 Kb of

UTRs (Figure 4). We show by a number of analyses that the result

was driven neither by the difference between the number of SNPs

in genic regions and in intergenic regions nor by the difference in

MAF distribution between genic and intergeinc SNPs (Text S2). If

trait-associated genetic variants are enriched in functional

elements such as introns and UTRs and diluted in exons, the

relationship between the variance explain and DNA length will be

attenuated in the genic region. However, this could also be just

due to sampling. The sampling variance of a regression R2 is

approximately 4r2(12r2)/N where E(R2) = r2 and N is number of

observations (number of chromosomes in this case). Given r2 = 0.5

and N = 22, the SE of the regression R2 is ,0.2. Therefore, the

difference between the correlation (between the variance ex-

plained and DNA length) in genic regions and that in intergenic

regions is unlikely to be significant. In addition, in the partitioning

analysis of intergenic regions, chromosome 2 seems to be an

outlier (Figure 4). For example, for the definition of genic region of

650 Kb, the variance explained by the intergenic regions on

chromosome 2 averaged across 47 traits was 0.68%

(SE = ,0.16%), which was 0.25% larger than the expected value

from the fitted line. Given the SE of ,0.16%, the difference was,

however, not greater than what we would expect by chance

(P = 0.118).

Moreover, we attempted to investigate the enrichment of

genetic variants in genes involved in biological pathways. For any

particular trait, there are a number of biological pathways that are

important to the trait development. We chose the well-known

insulin signal transduction pathway as an example to demonstrate

the use of GCTA to partition the genetic variance based on

functional annotations. We took SNPs that are 620 kb away from

103 genes that are involved in insulin signaling pathway. There

were 955 SNPs which covered ,0.45% of the genome. We then

performed the genome partitioning analysis to decompose h2
G into

two components, i.e. the contribution of the genes involved in

insulin pathway and that of the rest of the genome for 11 lipids and

diabetes related traits. As shown in Table S7, we did not find any

evidence that genes involved in insulin pathway explained

disproportionally more proportion of variance. This is not

surprising because these gene regions cover ,0.45% of the

genome and the SE of the estimate was ,0.3% so that even if

there is an enrichment of genetic variants in these gene regions, it

is unable to be detected due to the lack of power. Larger sample

size is required for such kind of analysis in the future.

In conclusion, we showed by whole genome estimation and

partitioning analyses that, most human complex traits, if not all,

appear to be highly polygenic, i.e. there are a large number of

genetic variants segregating in the population with a small effect

widely distributed across the whole genome. All the common SNPs

on the Affymetrix 5.0 array explain approximately a third of

heritability on average over all the 49 traits analysed in this study.

The remaining unexplained two thirds of heritability could be due

to causal variants including the common and rare ones that are

not well tagged by SNPs on the array or possibly due to the

heritability was over-estimated in the family/twin studies. The

conclusion drawn from previous studies that heritability is not

missing but due to many variants with small effects is not specific

for human height in European populations but likely to be in

common for most human complex traits and populations. Taken

all together, it implies that although whole genome sequencing

data will provide much denser genomic coverage than the current

genotyping array and will therefore identify more associated

variants and explain more genetic variance, large sample size is

still essential.

Materials and Methods

The KARE cohort
This study used the data from the Korea Association Resource

(KARE) project, which has been described elsewhere [15]. In

brief, there were 10,038 individuals recruited from two commu-

nity-based cohorts, 5,018 from Ansung and 5,020 from Ansan, in

Gyeonggi Province, South Korea. The individuals were aged from

40 to 69 years old and born in 1931 to 1963. All the individuals

were measured for a range of quantitative traits through

epidemiological surveys, physical examinations and laboratory

tests, including traits related to obesity, blood condition, pulse,

bone mineral density, lipids, diabetes index, liver functions, lung

functions and kidney functions. A description of the 49 traits used

in this study is summarized in Table S1. We adjusted the

phenotypes of each trait for age by simple regression and then

standardized the residuals to z-scores, in each of the two cohorts

(Ansung and Ansan) and in each gender group separately.

Figure 4. Estimates of the variance explained by all SNPs in genic (intergenic) regions averaged across 47 traits (all traits except
INS0 and HOMA) against length of genic (intergenic) DNA. Shown on panels A), C) and E) are the results for the genic SNPs, and shown on
panels B), D) and F) are the results for intergenic SNPs, under the three definitions of genic regions, 60 Kb, 620 Kb and 650 Kb of UTRs, respectively.
doi:10.1371/journal.pgen.1003355.g004
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Genotyped and imputed data
The genomic DNAs were isolated from peripheral blood drawn

from the participants and were genotyped with 500,568 SNPs on

the Affymetrix 5.0 genotyping array [15]. We excluded the SNPs

with missingness rate .5%, minor allele frequency (MAF),0.01,

and Hardy-Weinberg equilibrium (HWE) test P value,1026 using

PLINK [18], and retained 326,262 autosomal SNPs for further

analysis. The KARE GWAS data had been imputed to HapMap2

CHB and JPT panels [19]. After removing SNPs with MAF,0.01

and SNP missing rate .0.05, there were 2,153,258 genotyped/

imputed SNPs [15].

Estimating and partitioning genetic variance using SNP
data

We estimated the genetic relationship matrix (GRM) between

all pairs of individuals from all the genotyped SNPs and excluded

one of each pair of individuals with estimated relationship .0.025

retaining 7,170 unrelated individuals. For each trait, we then

estimated the variance that can be captured by all SNPs using the

restricted maximum likelihood (REML) approach in mixed linear

model y~XbzgGze, where y is a vector of phenotypes, b is a

vector of fixed effects with its incidence matrix X, gG is a vector of

aggregate effects of all SNPs, and var(gG)~AGs2
G with AG being

the SNP-derived GRM and s2
G being the additive genetic

variance. The proportion of variance explained by all SNPs is

defined as h2
G~s2

G=s2
P with s2

P being the phenotypic variance.

Details of the model and parameter estimation have been

described elsewhere [10,14]. In addition, using the same method

as above but allowing to fit multiple genetic components

simultaneously in the model, we partitioned h2
G into the

contributions of genic (h2
Gg

) and intergenic (h2
Gi

) regions of the

whole genome [11] and averaged the estimates of h2
Gg

and h2
Gi

across all the traits. The genic regions were defined as 60 kb,

620 kb and 650 kb of the 39 and 59 UTRs. A total of 135,491,

175,637 and 205,901 SNPs were located within the boundaries of

12,310, 15,140 and 15,274 protein-coding genes for the three

definitions (60 kb, 620 kb and 650 kb), respectively, which

covered 36.1%, 49.2% and 58.9% of the genome.

Supporting Information

Figure S1 Principal component analysis (PCA). The genotype

data of the KARE cohort (8,842 individuals) was combined with

the data from the HapMap3 project [20]. There are 1,397

individuals from 11 populations in the HapMap3 data. PCA was

performed on the combined set of 10,239 individuals with ,296K

SNPs in common between KARE and HapMap3. Population

codes shown in the figure are as follows: KOR-Korean in Ansan

and Ansung, Korea; ASW-African ancestry from Southwest USA;

CEU-Utah residents with Northern and Western European

ancestry from the CEPH collection; CHB-Han Chinese in Beijing,

China; CHD-Chinese in Metropolitan Denver, Colorado; GIH-

Gujarati Indians in Houston, USA; JPT-Japanese in Tokyo,

Japan; LWK-Luhya in Webuye, Kenya; MEX-Mexican ancestry

in Los Angeles, USA; MKK-Massai in Kinyawa, Kenya; TSI-

Tuscans, Italy; YRI-Yoruba in Ibadan, Nigeria. Plotted are

eigenvector 1 against eigenvector 2 from PCA. The KARE cohort

is overlapped with the three Eastern Asian samples in HapMap3

(CHB, CHD and JPT).

(PDF)

Figure S2 Pairwise phenotypic correlations between the 49

traits. The traits are classified into 10 groups: obesity, blood

pressure & pulse, BMD, lipids, diabetes index, blood cell count,

blood ions, liver function, lung function, and kidney function. The

phenotypic correlations between traits in the same groups are

stronger than those in different groups. From a principal

component analysis of the phenotypic correlation matrix, the first

33 eigenvectors explain .95% of variance.

(PDF)

Figure S3 Variance explained by all SNPs estimated in the

present study against the heritability estimates from pedigree

analyses in literatures for the 49 traits. The regression slope is

0.137 (P = 0.017) and the regression R2 is 0.131. Detailed

information can be found in Table S1.

(PDF)

Figure S4 The observed proportion of SNPs with p-values

passed a threshold p-value from genome-wide association analysis

vs. the expected value (i.e. the threshold p-value). Shown on both

axes are on the 2log10 scale. A) 2log10(hP) value averaged across

47 traits (all traits except INS0 and HOMA) are plotted. B)

2log10(hP) of all the 47 traits are plotted.

(PDF)

Figure S5 Estimate of variance explained by each chromosome

against chromosome length for each of the 47 traits (all traits

except INS0 and HOMA).

(PDF)

Figure S6 Proportion of variance attributed to each chromo-

some averaged across traits against chromosome length when the

number of SNPs on each chromosome is equal. There are 3500

SNPs randomly sampled from each chromosome. The estimate of

variance explained by each chromosome is an average across all

traits.

(PDF)

Figure S7 The estimates of variance explained by individual

chromosomes against chromosome length for the 47 traits (all

traits except INS0 and HOMA).

(PDF)

Figure S8 Manhattan plot of GWAS results for the traits with

single variants of large effects. Panels A), B), C) and D) are for traits

GLU60, HBA1C, RBC and RGTP, respectively.

(PDF)

Table S1 Summary description of the 49 traits in the KARE

cohort.

(PDF)

Table S2 Estimates of variance explained by all SNPs for the 49

traits.

(PDF)

Table S3 Variance explained by all the SNPs on individual

chromosomes for the 49 traits but HOMA and INS0.

(PDF)

Table S4 Estimates of the variance explained by all the genic

and intergenic SNPs averaged across the 47 traits (all traits except

INS0 and HOMA). A genic region is defined as 60 kb, 620 kb

and 650 kb of the 39 and 59 UTRs of a gene.

(PDF)

Table S5 Numbers of genic and intergenic SNPs on each

chromosome.

(PDF)

Table S6 Estimate of heritability from a pedigree analysis for 11

traits. Data and analysis are described in Text S1.

(PDF)
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Table S7 Estimates of variance explained by SNPs at the gene

regions that are involved in insulin signaling pathway for 11 lipids

and diabetes related traits.

(PDF)

Text S1 Difference between the estimates of variance explained

by all SNPs in Europeans and in Koreans.

(PDF)

Text S2 Difference in number of SNPs and MAF distribution

between genic and intergenic SNPs.

(PDF)

Acknowledgments

We thank Peter Visscher for constructive suggestions on the study and for

helpful comments on the manuscript and William Hill, Naomi Wray, Enda

Byrne, Gibran Hemani and Joseph Powell for discussion.

Author Contributions

Conceived and designed the experiments: HK JY. Analyzed the data: TL

JK SC HK JY. Contributed reagents/materials/analysis tools: M-CC

B-GH J-YL. Wrote the paper: JY HK H-JL SC TL JK.

References

1. Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, Mehta JP, et al. (2009)

Potential etiologic and functional implications of genome-wide association loci

for human diseases and traits. Proc Natl Acad Sci USA 106: 9362–9367.

2. Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS

discovery. Am J Hum Genet 90: 7–24.

3. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, et al. (2009)

Finding the missing heritability of complex diseases. Nature 461: 747–753.

4. Maher B (2008) Personal genomes: The case of the missing heritability. Nature

456: 18–21.

5. Lango Allen H, Estrada K, Lettre G, Berndt SI, Weedon MN, et al. (2010)

Hundreds of variants clustered in genomic loci and biological pathways affect

human height. Nature 467: 832–838.

6. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, et al. (2010)

Association analyses of 249,796 individuals reveal 18 new loci associated with

body mass index. Nat Genet 42: 937–948.

7. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era–

concepts and misconceptions. Nat Rev Genet 9: 255–266.

8. Magnusson PK, Rasmussen F (2002) Familial resemblance of body mass index

and familial risk of high and low body mass index. A study of young men in

Sweden. Int J Obes Relat Metab Disord 26: 1225–1231.

9. Schousboe K, Willemsen G, Kyvik KO, Mortensen J, Boomsma DI, et al. (2003)

Sex differences in heritability of BMI: a comparative study of results from twin

studies in eight countries. Twin Res 6: 409–421.

10. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, et al. (2010)

Common SNPs explain a large proportion of the heritability for human height.

Nat Genet 42: 565–569.

11. Yang J, Manolio TA, Pasquale LR, Boerwinkle E, Caporaso N, et al. (2011)

Genome partitioning of genetic variation for complex traits using common
SNPs. Nat Genet 43: 519–525.

12. Lee SH, Decandia TR, Ripke S, Yang J, Sullivan PF, et al. (2012) Estimating the
proportion of variation in susceptibility to schizophrenia captured by common

SNPs. Nat Genet 44: 247–250.

13. Stahl EA, Wegmann D, Trynka G, Gutierrez-Achury J, Do R, et al. (2012)
Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis.

Nat Genet 44: 483–489.
14. Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-

wide complex trait analysis. Am J Hum Genet 88: 76–82.

15. Cho YS, Go MJ, Kim YJ, Heo JY, Oh JH, et al. (2009) A large-scale genome-
wide association study of Asian populations uncovers genetic factors influencing

eight quantitative traits. Nat Genet 41: 527–534.
16. Davies G, Tenesa A, Payton A, Yang J, Harris SE, et al. (2011) Genome-wide

association studies establish that human intelligence is highly heritable and

polygenic. Mol Psychiatry 16: 996–1005.
17. Deary IJ, Yang J, Davies G, Harris SE, Tenesa A, et al. (2012) Genetic

contributions to stability and change in intelligence from childhood to old age.
Nature 482: 212–215.

18. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)
PLINK: a tool set for whole-genome association and population-based linkage

analyses. Am J Hum Genet 81: 559–575.

19. The International HapMap Consortium (2007) A second generation human
haplotype map of over 3.1 million SNPs. Nature 449: 851–861.

20. Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. (2010)
Integrating common and rare genetic variation in diverse human populations.

Nature 467: 52–58.

Ubiquitous Polygenicity of Human Complex Traits

PLOS Genetics | www.plosgenetics.org 9 March 2013 | Volume 9 | Issue 3 | e1003355


