
HIF- and Non-HIF-Regulated Hypoxic Responses Require
the Estrogen-Related Receptor in Drosophila
melanogaster
Yan Li1, Divya Padmanabha1, Luciana B. Gentile1¤, Catherine I. Dumur2, Robert B. Beckstead3,

Keith D. Baker1*

1 Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United

States of America, 2 Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America, 3 Department of

Poultry Science, University of Georgia, Athens, Georgia, United States of America

Abstract

Low-oxygen tolerance is supported by an adaptive response that includes a coordinate shift in metabolism and the
activation of a transcriptional program that is driven by the hypoxia-inducible factor (HIF) pathway. The precise contribution
of HIF-1a in the adaptive response, however, has not been determined. Here, we investigate how HIF influences hypoxic
adaptation throughout Drosophila melanogaster development. We find that hypoxic-induced transcriptional changes are
comprised of HIF-dependent and HIF-independent pathways that are distinct and separable. We show that normoxic set-
points of carbohydrate metabolites are significantly altered in sima mutants and that these animals are unable to mobilize
glycogen in hypoxia. Furthermore, we find that the estrogen-related receptor (dERR), which is a global regulator of aerobic
glycolysis in larvae, is required for a competent hypoxic response. dERR binds to dHIFa and participates in the HIF-
dependent transcriptional program in hypoxia. In addition, dERR acts in the absence of dHIFa in hypoxia and a significant
portion of HIF-independent transcriptional responses can be attributed to dERR actions, including upregulation of glycolytic
transcripts. These results indicate that competent hypoxic responses arise from complex interactions between HIF-
dependent and -independent mechanisms, and that dERR plays a central role in both of these programs.
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Introduction

The ability to adapt to limiting oxygen requires metabolic

versatility, with cells transitioning toward glycolytic lactate

production for energy production. Complementing this strategic

change of metabolism are complex shifts in the transcriptome,

which add durability to the initial hypoxic response. At the

vanguard of the transcriptional reply to hypoxia is the HIF

transcriptional complex, which is comprised of the oxygen-labile

hypoxia-inducible factor-1a (HIF-1a) and its stable partner HIF-

1b. This ancient pathway is central to the hypoxic response and is

highly conserved from worms to human [1]. The actions of the

HIF complex exert considerable influence in the etiologies of

many diseases, including cancers and heart disease [2–4]; these

conditions have a hypoxic component – and therefore an altered

metabolic component – that is critical to disease progression.

In normoxia (N), HIF-1a is marked by a set of 2-oxoglutarate-

utililizing prolyl hydroxylases (PHDs) that recognize specific

proline residues within the oxygen-dependent degradation

(ODD) domain [5,6]. Prolyl modification of HIF-1a allows it to

associate with the von Hippel-Lindau (VHL) tumor-suppressor

and it is subsequently degraded [7–10]. Hypoxia disrupts the

degradative cascade, allowing HIF-1a accumulation and activa-

tion of the HIF transcription pathway [11,12].

The number of transcripts impacted by HIF-1a is large and

ontologically diverse. Despite this, a few affected pathways

generally characterize HIF-mediated adaptation responses, in-

cluding upregulation of angiogenic [13,14], erythropoietic [15],

and glycolytic transcripts [16,17]. The total hypoxic response,

however, is not entirely dependent on the HIF pathway. For

example, Shen et al. found 110 hypoxia response genes in C.

elegans, 47 of which were induced in the absence of HIF [18].

Although HIF-independent hypoxia-induced activities have also

been identified in other organisms, these pathways remain poorly

understood, though even in mammalian cells, HIF-1a is dispens-

able for hypoxic upregulation of a host of transcripts [19–21].

These results suggest that HIF-independent hypoxic signaling

mechanisms may act in concert with, or even supplant, the HIF

response pathway in a context-dependent manner.

Drosophila melanogaster deal with no/low oxygen conditions well

when compared to mammals, and can survive anoxic challenge for

hours at a time [22,23]. Flies maintain the three fundamental
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components of the HIF pathway: 1) the HIF prolyl hydroxylase

(Fatiga); 2) dVHL; and 3) both components the HIF complex –

dHIFa (encoded by sima) and Tango (dHIFb) [24]. As in

mammals, dHIFa has an ODD domain that is sufficient to direct

oxygen-sensitive degradation when hydroxylated [25]. While

previous studies have examined hypoxic responses in adult flies

[26,27], the precise input that dHIFa has in this process has not

been examined. In contrast, detailed studies have shown that

dHIFa plays a vital role in directing hypoxia-driven terminal

branching of the tracheal system during development [28,29]. The

Drosophila tracheal network serves as the fly respiratory system, and

it is noteworthy that its developmental branching bears a striking

resemblance to processes controlling mammalian angiogenesis

[30]. In addition, similar hypoxia-induced metabolic transitions

have been reported in flies and mammals [31], although these

remain poorly defined.

The highly conserved dERR nuclear receptor directs a

developmentally-regulated transcriptional switch towards glyco-

lytic metabolism that supports developmental growth [32]. This

function is akin to that described for ERRa in vertebrates, which is

associated with glycolytic metabolism and breast cancer [33–38].

Importantly, mammalian ERRs are also active participants in

HIF-mediated hypoxic responses. They are directly recruited by

HIF-1a to HREs and are required for a complete transcriptional

response at specific promoters [39], suggesting that ERRs play a

critical role in hypoxic responses.

We set out to interrogate hypoxic responses in Drosophila and

wanted to assess the influence of dHIFa on transcriptional and

metabolic adaptation. We report here that the hypoxic transcrip-

tional response segregates into distinct HIF-dependent and HIF-

independent pathways. These pathways are differentially sensitive

to hypoxic challenge in a temporal fashion during development,

but both pathways are most sensitive prior to metamorphic onset

and least active in the immediate hours following pupariation.

Contrary to expectations, we find that upregulation of glycolytic

transcripts is non-HIF-dependent. Our metabolic analysis suggests

that loss of dHIFa has a profound and wide-ranging affect on all

aspects of carbohydrate catabolism when unchallenged in

normoxia. In hypoxia, however, sima mutants remain unable to

mobilize glycogen, which is preferentially depleted under hypoxic

conditions. We additionally show that dERR is required during

hypoxia, in that it controls a unique set of hypoxia-regulated

dERR-dependent transcripts that include HIF-independent gly-

colytic genes. Altogether, our studies raise important questions

regarding the breadth of HIF involvement in hypoxic transitions

and identify dERR as an essential factor that complements HIF-

dependent and -independent responses.

Results

Robust transcriptional response to hypoxia in late third
instar larvae

To better understand the contribution of in the hypoxic

adaptation response, we wanted to determine the developmental

time point when dHIFa was most active. To start, we examined

the wild-type expression of two known hypoxia-responsive

transcripts in Drosophila, lactate dehydrogenase (LDH, known also as:

ImpL3, CG10160), and the HIF prolyl hydroxylase, fatiga

(CG31543) [40,41]. We also examined the rate-limiting enzyme

of glycolysis, phosphofructokinase, encoded by Pfk (CG4001) as a

potential hypoxia-responsive gene. We surveyed three times

points, late embryo, mid-second instar (mid-L2) larvae, and late-

L3 larvae by qRT-PCR to examine transcriptional responses of

whole animals that were allowed to develop in normoxia and then

challenged with a 4% O2 treatment for 6 hours – hereafter

referred to as H-treatment (Figure 1A). This level of oxygen, and

this time course, has previously been shown to mobilize the fly HIF

pathway [42]. As seen in Figure 1D, the late-L3 time point of

wandering larvae [210 to 24 hours relative to the onset of

pupariation (RTP)] is a period where each of the three genes is

significantly induced by H-treatment. This expression profile is

different from responses observed in embryos 18–24 hr after egg

laying (AEL) (Figure 1B) and mid-L2 larvae (Figure 1C), when

LDH and Pfk were unresponsive to treatment, indicating that

hypoxic responses are developmentally tempered.

Identification of HIF-dependent and HIF-independent
hypoxic transcripts

To establish the identity of the full complement of H-regulated

transcripts, RNA samples were prepared from N- and H-treated

pools of control w1118 animals and sima mutants at the late-L3

time. The sima mutant line (sima07607) contains a lethal P-element

insertion in the first intron in the sima locus, which eliminates

detectable expression of the transcript, rendering the animals

incapable of directing expression of an oxygen-sensitive murine

LDH-reporter and, importantly, unable to respond competently to

hypoxic challenge [42,43].

As expected, H-treatment resulted in a pronounced change in

the transcriptome. Using the microarray scheme outlined in

Figure S1, we extracted a series of significantly altered gene sets

(Table S1). We were primarily concerned with identifying two

mutually exclusive H-regulated gene sets – HIF-independent (HI)

and HIF-dependent (HD). Transcripts that did not exhibit at least

a 1.5-fold change in expression, and which did not have a false

discovery rate (FDR, q-value) of less than 1%, were not included in

any set. This high stringency means that we have likely excluded

genuinely H-regulated transcripts from our final sets, be they HD

or HI. Despite this, we classified 254 transcripts as HI and 171 as

HD. It is important to note that the HI and HD categorizations

reflect the hypoxic responsiveness of individual transcripts at the

late-L3 time alone. The top 20 affected transcripts from the HIF-

dependent and -independent categories are listed in Table 1.

Gene ontology (GO) analysis [44] was performed on the

hypoxia genes sets (Figure 2A and 2B). Notably, the HI genes set,

and not the HD genes set, contain glycolytic transcripts that are

Author Summary

When oxygen levels fall below normal, cells are said to be
in a hypoxic state. Once in hypoxia, dramatic changes are
induced that allow for adaptation. In particular, energetic
metabolism and transcription are highly affected. HIF
(hypoxia inducible factor) is a highly conserved factor that
is the driving force behind many hypoxia-induced chang-
es—it is inactive in normal conditions and becomes active
in hypoxia. Using the fruit fly as a model system, we show
that hypoxic responses consist of HIF and non-HIF-
dependent pathways. These response programs counter-
act the impacts of low oxygen by broadly influencing
different cellular processes such as the breakdown of
sugars, but only at appropriate developmental times. We
provide evidence that HIF- and non-HIF-dependent path-
ways are complemented by the actions of the steroid
hormone receptor estrogen-related receptor (ERR), which
we show is also essential in hypoxia. Our results place new
emphasis on the actions of HIF and suggest that
alternative HIF-independent pathways play a more prom-
inent role than previously thought.

ERR in the Hypoxic Response
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upregulated in hypoxia, which was the single most statistically-

impacted process in either the HD or the HI sets (Figure 2A).

Instead of glycolytic genes, significant GO categories were

identified for HD genes involved in translational control and

RNA processing (Figure 2B). However, among the HD H-

regulated transcripts are fatiga and dVHL. This suggests that dHIFa

participates in a feedback regulatory loop that attenuates its own

activity.

Ontology-focused heat maps were generated to compare

hypoxic transcriptional responsiveness. In addition to glycolytic

genes, comparisons were made for other metabolic categories

where GO significance was identified, including oxidoreductase

activity, lipid metabolism, vitamin binding, and amino acid

metabolism (Figure 2C). With the exception of lipid metabolic

genes, when hypoxic responsiveness is seen (up- or downregulated)

in the control background, the majority of genes also respond in-

kind in the sima background, and usually with a similar fold-

change increase. These results suggest that HIF-independent, H-

sensitive mechanisms account for a large percentage of the

hypoxic response.

Temporal-dependent hypoxic responses
The unexpected breadth of contribution of the HI pathway in

the hypoxic response led us to reconsider our initial observations

made in Figure 1, where fatiga displayed a similar response profile

across each of the times assayed, and LDH and Pfk displayed a

hypoxic response at only the late-larval time. Indeed, fatiga is a HD

gene, whereas LDH and Pfk are HI genes (Table S1). Were LDH

and Pfk unresponsive at earlier developmental times because the

HI pathway was not active until just prior to metamorphic onset?

To address this question, we collected RNA from control animals

and sima mutants staged at times that spanned development. In all,

twelve samples were gathered: 4 embryonic times (0–6 hrs AEL

[w1118 background only], 6–12 hrs AEL, 12–18 hrs AEL, and 18–

24 hrs AEL); 4 larval times (mid-L1, mid-L2, mid-L3, and 24 hr

RTP); 3 metamorphic times (0 hr RTP, +12 hr RTP, +72 hr

RTP); and 1 adult time (1 day-old males). qRT-PCR was used to

assess H responses of 13 select genes that displayed varying levels

of H-sensitive expression. Of those genes analyzed: five were

classified as HD genes – fatiga, spermine oxidase (CG7737), sequoia

(CG17724), branchless (CG4608), and Peroxiredoxin 2540-2 (Prx2540,

Figure 1. Temporal-dependent hypoxic responses. (A) Hypoxic treatment regimen of w1118 animals that were allowed to develop in normoxia
(N) until they reached one of three developmental stages, at which point they were treated for 6 hours in N or hypoxia (H) (4% O2). (B–D) qRT-PCR
analysis was performed to assess the expression of fatiga, LDH, and Pfk at 18–24 hr AEL, mid-L2, or partial clear-gut larvae in late-L3. All experiments
were performed in triplicate from pools of biological replicates. Values are normalized to rp49 expression and are reported as the relative fold-change
of H/N. Error bars are the SEM. * = p-value,0.05.
doi:10.1371/journal.pgen.1003230.g001
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Table 1. List of 20 top transcripts whose expression changes in response to hypoxic challenge in a dHIF-dependent or -
independent fashion.

Top 20 HIF-Dependent Hypoxia Response Genes

Probe Set ID CG Gene Title Process/Function
w1118 hypoxia vs.
sima hypoxia

w1118 normoxia vs.
w1118 hypoxia

1639737_at CG34330 — — 267.60 4.82

AFFX-Dm-U46493-1_s_at — — — 222.19 2.47

1625173_s_at CG11652 dDPH1 diphthamide synthesis 216.82 10.91

1626857_at CG4408 — carboxypeptidase 211.90 22.93

1627135_at CG4608 branchless FGF receptor 29.51 10.87

1637758_at CG7737 — spermine oxidase 27.93 8.56

1638797_a_at CG31543 Fatiga HIF prolyl hydroxylase 27.91 7.70

1637182_at CG9503 — choline dehydrogenase 26.85 2.51

1624497_at CG2676 — — 26.44 4.28

1634786_at CG7106 lectin-28C mannose receptor 26.01 1.80

1628705_at CG31022 PH4alphaEB prolyl hydroxylase 25.62 3.08

1636482_at CG14005 — — 25.34 5.69

1639555_at CG17724 — — 24.66 4.23

1629753_at CG3340 Kruppel transcriptional repression 24.47 21.76

1632203_at CG31706 — — 24.26 6.16

1628428_at CG12389 dFPP geranyltranstransferase 24.25 3.79

1635558_s_at CG17724//
CG32904

—//sequoia — 24.19 4.31

1627525_a_at CG1333 Ero1L protein disulfide isomerase 23.79 5.91

1636145_at CG7219 Serpin 28D serine-type endopeptidase
inhibitor

23.78 3.87

1626844_at CG5748 HSF1 transcriptional activator 23.54 2.98

Top 20 HIF-Independent Hypoxia Response Genes
sima normoxia vs.
sima hypoxia

w1118 normoxia vs.
w1118 hypoxia

1631533_at CG10240 Cyp6a22 E-class cytochrome P450 7.82 5.38

1638182_at CG5999 — UDP-glucuronosyltransferase 7.49 5.89

1635227_at CG10160 ImpL3 lactate dehydrogenase 7.38 14.16

1626324_at CG9964 Cyp309a1 E-class cytochrome P450 6.48 3.57

1628758_at CG1774 dACOT acyl-CoA thioesterase 6.36 4.39

1632021_at CG10245 Cyp6a20 E-class cytochrome P450 6.30 2.79

1629061_s_at CG32041 Hsp22//
Hsp67Bb

response to stress 5.83 6.01

1628052_at CG10241 Cyp6a17 E-class cytochrome P450 5.20 5.67

1632343_at CG3017 Alas 5-aminolevulinate synthase 5.07 3.82

1631637_a_at CG11567 Cpr NADPH-cytochrome P450
reductase

4.91 4.36

1639495_at CG4485 Cyp9b1 E-class cytochrome P450 4.80 5.44

1628660_at CG7130 Hsp40 dnaJ homolog 4.18 3.05

1624156_at CG18578 Ugt86Da UDP-glucuronosyltransferase 4.02 3.06

1632639_at CG13941 Arc2 synaptic plasticity 3.94 3.44

1631611_at CG33983 obstructor-H chitin-binding 3.94 2.39

1641169_s_at CG11050 — phosphoric diester hydrolase 3.71 3.68

1634072_s_at CG4311 Hmgs HMG-CoA synthase 3.68 2.53

1625134_at CG10873 p53 tumor suppressor 3.57 2.36

1630885_at CG12534 Alr flavin-linked sulfhydryl oxidase 3.52 1.97

1628657_at CG17534 GstE9 glutathione S transferase 3.38 3.89

For HIF-dependent genes (taken from the top 20 down-regulated transcripts in the HD H-genes set), transcripts are sorted according to normalized microarray values
obtained when comparing w1118 hypoxia samples with sima hypoxia samples. For the HIF-independent genes (taken from the top 20 up-regulated HI H-genes set),
transcripts are sorted according to the normalized microarray values obtained when comparing sima normoxia with sima hypoxia samples. For comparative purposes,
the respective hypoxic changes observed in w1118 control animals are reported in the last column. Additionally, the first four columns show the Affymetrix probe set ID,
CG number, gene title, and the putative process/function of the encoded protein.
doi:10.1371/journal.pgen.1003230.t001
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CG11765); seven were classified as HI genes – LDH, Pfk, NMNAT

(CG13645), Alas (CG3017), Cyp9b1 (CG4485), Cyp6a17 (CG10241),

and Cyp6a22 (CG10240); and one was highly affected by H, but did

not meet the stringency requirements for H set inclusion –

CG31769, which had a largely HIF-dependent expression profile

in late-L3.

Several patterns emerged from the developmental analysis.

First, hypoxic transcriptional induction is most evident at the late-

L3 time for each gene assayed. Second, without exception, HD

and HI genes display marked drops in H responsiveness just after

metamorphic onset. In most cases, H responsiveness is eliminated

during the hours surrounding head eversion, which is the initiation

of the pupal phase. Among the transcripts examined, HD genes

were not induced in hypoxia in a sima background at any

developmental time, with the notable exception of a single point in

mid-L3 for branchless (Figure 3D). Finally, in the absence of dHIFa,

HI genes tend to be hyper-responsive to H challenge throughout

development – this was true for all genes examined except LDH

(Figure 4A). The LDH profile was unique amongst those assayed,

in that late-L3 expression was HI, while pupal expression appears

to be dominated by HD expression. The super-activation of LDH

during the pupal phase in the w1118 background (vs. sima) suggests

that both the HD and HI pathways are capable of converging

simultaneously at the same locus to contribute to its overall

expression. Collectively, these developmental expression data

indicate that hypoxic responses are comprised of a patchwork of

HD and HI activities throughout life-stage progression.

sima mutants are metabolically deranged in normoxia
and are unable to mobilize glycogen in hypoxia

The observation that glycolytic transcripts are effectively

upregulated in sima mutants challenged with hypoxia raised the

question of how metabolism was affected under these conditions.

As before, we concentrated on the late-L3 time because of its

particularly robust transcriptional response to H-treatment. We

found that glycogen was significantly depleted by control w1118

animals in H, in addition to a near 50% reduction in the level of

ATP (Figure 5A and 5B).

We tested for additional HIF-dependent metabolic defects in

carbohydrate catabolism using mass spectrometry tied to gas and/

or liquid chromatography (GC/MS, LC/MS). Extracts were

prepared from animals subjected to N- and H-treatments and 32

carbohydrate metabolites were measured (Table S2). The metab-

olites correspond to four broad categories: 1) aminosugar

metabolism; 2) fructose, mannose, galactose, starch, and sucrose

metabolism; 3) glycolysis, gluconeogenesis, and pyruvate metab-

olism; and 4) nucleotide sugars and pentose metabolism

(Figure 5C).

We found that the control response to hypoxia is characterized

by a remarkable level of metabolic stability for carbohydrate

catabolites (third column in Figure 5C). Among those compounds

that do display significant H-induced depletions are oligomeric

forms of glucose (maltose, maltotriose, maltotetraose, and mal-

topentaose), which are catabolic products from glycogen and

starch breakdown (Figure 5C and 5E). These sugars feed into the

glycolytic cascade by replenishing glucose. They are successively

depleted in H the larger they are, and their reductions are

consistent with a depletion of total glycogen seen in the w1118

response (Figure 5A), as well as the HIF-dependent upregulation of

amylase in H in the same background (Figure 5D).

In contrast to the effects that H-treatment has on w1118 animals,

sima mutants cannot deplete glycogen in H (Figure 5A). Instead,

they adopt a profile for the maltose oligomers in normoxia that

resembles the hypoxia-mobilized profile in control animals

(Figure 5C and 5E). This is likely a combination of two factors –

the sima mutant’s inability to effectively upregulate amylase in H

and its constitutively elevated expression profile for amylase in

normoxia that is greater than w1118 expression in hypoxia

(Figure 5D, Table S1).

Curiously, despite the clear transcriptional switch toward

glycolytic energy production at late-L3, lactate levels remained

unchanged for either genotype in H (Figure 5C). This failure to

generate lactate in hypoxia is a stage-specific block. We

independently performed lactate measurements by an enzymatic

assay to confirm the late-L3 findings made by GC/MS. Indeed,

we find that mid-L1 larvae and young adults from either the w1118

or sima backgrounds produce lactate in hypoxia, but not late-L3

larvae (Figure S5A–S5C). Notably, early larval and young adult

sima mutants exhibit an exacerbated hyperlactatemic phenotype

when subject to hypoxia (Figure S5A, S5C) – this does not happen

to late-L3 animals.

Additionally, though the transcriptional H response profile was

largely normal for glycolytic genes in the sima mutant, profound

depletions were still observed for glucose-6-phosphate and

fructose-6-phosphate in H (Figure 5C and 5E). This is because

the normoxic levels for these compounds, rather than H-induced

changes, dominate their metabolism. We also observed a HIF-

dependent increase for pyruvate in N and H. This is consistent

with findings in HIF-1a2/2 MEFs, which maintain higher levels of

ATP in hypoxia than WT MEFs do in normoxia [45]. Finally, the

elevated level of Ru5P:Xu5P and ribulose, coupled with the

depleted levels of S7P, reveal that sima mutants display a clear split

in the oxidative (NADPH-generating) and non-oxidative phases of

the pentose phosphate pathway in normoxia, which is exacerbated

by H-treatment.

dERR binds to dHIFa
The only factor known to transcriptionally regulate glycolytic

transcripts in Drosophila is dERR [32]. Our lab identified this

orphan nuclear receptor as a potential factor that may participate

in hypoxic signaling when the dERR ligand-binding domain

(LBD) was used to repeatedly isolate sima clones in a large-scale

yeast two-hybrid screen. Of the 20 positive clones recovered in the

screen, seven encoded different C-terminal fragments of dHIFa.

These findings are consistent with a previous report that

demonstrated HIF/ERR interactions between the Drosophila

proteins and their mammalian homologs [39]; however, there

are two important aspects about HIF/ERR complexes that we

note differentiate the fly and mammalian complexes. First, we find

Figure 2. HIF-dependent and HIF-independent hypoxic response genes. (A–B) Gene ontology (GO) analysis was performed on HIF-
independent (HI) and HIF-dependent (HD) gene sets that were derived from microarray analysis of H- or N-treated control (w1118) animals or sima
mutants collected at the partial clear-gut late-L3 time. See Figure S1 for the analysis scheme. GO categories are listed in order of statistical
significance. The numbers of H-regulated genes affected are shown along with the total number of genes in each category. All transcripts are up- or
downregulated at least 1.5-fold and have a false discovery rate (FDR) of ,1%. (C) A heat map was created to illustrate the similarity or dissimilarity of
hypoxic responses for major GO categories impacted by H-treatment in control animals and sima mutants. Red (upregulated), green
(downregulated), or white (no significant change) values represent hypoxic responses observed in the backgrounds indicated. For this analysis,
FDR stringency was ,1%, unless otherwise noted with * for a particular genotype, where a relaxed gate was used (1–5%).
doi:10.1371/journal.pgen.1003230.g002
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that the dERR DBD is dispensable for interaction with dHIFa,

whereas the Ao report showed that interaction occurs between the

mammalian ERR DBD and the HIF-1a/b heterodimer. Second,

unlike in mammals [39], HIF-1b (tango) is not required for dERR

association with dHIFa in Drosophila – tango was not present in the

screen. On this aspect, our findings are consistent with the findings

made by Ao et al. Their two-hybrid screen of Drosophila

components also did not have a HIF-1b [39].

We validated our two-hybrid screen findings by performing a

GST-pulldown with GST-fused dERR LBD protein with full-

length dHIFa, which confirmed a robust interaction (Figure 6A).

The C-terminal AF-2 helix of nuclear receptors often mediates

interaction with transcriptional coregulators through an LXXLL

motif that is found on the interacting protein [46]. A single such

sequence resides within dHIFa, at amino acids 1289–1293

(LKNLL). When the last two leucines of this sequence were

mutated to alanine and/or when the last 12 amino acids of the

dERR LBD were deleted, spanning the AF-2 helix (479–491), the

interaction between the proteins was severely reduced, but not

eliminated (Figure 6A). These data indicate that the dERR AF-2

helix mediates a docking point with the dHIFa LXXLL motif, but

that at least one additional point of contact is maintained between

dERR and dHIFa.

dERR mutants are hypoxia-sensitive
We have recently shown that the orphan nuclear receptor

dERR is essential for triggering the pro-growth glycolytic program

during Drosophila development [32]. Without the dERR-initiated

Figure 3. Temporal expression of HIF-dependent hypoxic response genes. (A–E) Developmental hypoxic response profiles from qRT-PCR
analyses are shown for transcripts that display HIF-dependent (A – fatiga, B – spermine oxidase, C – sequoia, D – branchless) or largely HIF-dependent
expression (E – CG31769). Control (w1118) animals or sima mutants were challenged for 6-hrs with 4% O2. Animals were challenged at: 0–6 hr after egg
laying (AEL) (not for mutant), 6–12 hr AEL, 12–18 hr AEL, 18–24 hr AEL, mid-L1, mid-L2, mid-L3, 210–24 hr relative to pupariation (RTP) L3, 0 hr RTP,
+12 hr RTP, +72 hr RTP, and 1-day old males. All values are from experiments performed in triplicate from pools of biological replicates. Values are
normalized to rp49 expression and are reported as the relative fold-change of H/N. The dotted line represents no net change in response, or a value
of 1.0. The vertical black line in late-L3 is when microarray analysis was performed. Error bars are the SEM. Separate normoxic and hypoxic traces for
each transcript surveyed are shown in Figure S3.
doi:10.1371/journal.pgen.1003230.g003

ERR in the Hypoxic Response

PLOS Genetics | www.plosgenetics.org 7 January 2013 | Volume 9 | Issue 1 | e1003230



Figure 4. Temporal expression of HIF-independent hypoxic response genes. (A–H) Developmental hypoxic response profiles from qRT-PCR
analyses are shown for transcripts that display HIF-independent (A – LDH, B – phosphofructokinase, C – NMNAT, D – Alas, E – Cyp9b1, F – Cyp6a17, G –
Cyp6a22) or largely HIF-independent expression (H – Peroxiredoxin 2540-2 – we note that Prx2540-2 displays HD expression for probe set
1631628_s_at in the microarray and is thus classified as such; however, a second, non-overlapping probe set, 1633471_at, which is much more
robustly induced in H appears to be from HI action, although its variability is too great to classify in this manner (Table S1). Our qPCR primer set favors
HI expression.) Control (w1118) animals or sima mutants were challenged for 6-hrs with 4% O2. Developmental challenge times are identical to those
from Figure 3. All values are from experiments performed in triplicate from pools of biological replicates. Values are normalized to rp49 expression
and are reported as the relative fold-change of H/N. The dotted line represents no net change in response, or a value of 1.0. The vertical black line in
late-L3 is when microarray analysis was performed. Error bars are the SEM. Separate normoxic and hypoxic traces for each transcript surveyed is
shown in Figure S4.
doi:10.1371/journal.pgen.1003230.g004
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Figure 5. HIF-dependent effects on carbohydrate catabolism. (A) Unlike the w1118 response, sima mutants are not able to mobilize glycogen
stores in response to 6-hr H-treatment in late-L3. (B) ATP levels are significantly depleted upon H-challenge by w1118 animals. Although sima animals
showed a similar trend, the decrease observed was not significant. Levels of glycogen and ATP are normalized to total protein. (C) Shown is a
metabolic heat map of individual metabolites measured by GC/MS or LC/MS from late-L3 w1118 animals or sima mutants subject to N (left two
columns) or H (right two columns). Six replicates were measured for each treatment group. Each replicate has ,250 independently collected and
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metabolic switch, development cannot successfully proceed. Many

of the same metabolic genes that exhibit H-sensitive regulation are

also misregulated in the dERR mutant. If dERR is important in the

hypoxic response, as suggested by its association with dHIFa, then

the mutants should be sensitive to H-treatment. To test this, we

challenged dERR mutants and compared their H-sensitivity with

sima mutants and control animals. Indeed, 24–30 hr AEL L1

larvae challenged with constant hypoxia resulted in sima mutant

lethality (Figure 6B). The dERR mutants were also H-sensitive, but

not to the same extent as sima embryos. Nevertheless, dERR is

pooled animals. Metabolite levels are expressed as log2 transformations of the average values, which are plotted relative to the normoxic level
obtained in the WT background. The data are normalized to total protein content. Red indicates an elevated metabolite level, green indicates a
diminished level, and black no/little change. See Table S2 for further information and statistics. (D) qRT-PCR analysis showing amylase expression
increases in hypoxia in control animals. Although sima mutants have an elevated constitutive level of amylase expression, they do not induce
expression in hypoxia. (E) Integrated snapshot of the transcriptional and metabolic response to hypoxia at 6-hr. Shown, are the metabolites and
enzymes of stored sugar and circulating sugar as they feed into glycolysis. When significant H-induced changes were noted (fold-change .1.5, FDR
,1%) for transcripts in microarray experiments, those changes are noted in brackets next to the enzyme names. HD or HI status, as classified in Table
S1 is also noted. Metabolite levels from mass spec analysis are additionally shown as box and whisker plots. The upper and lower boundaries of the
box note the upper and lower quartile values, while the ends of the vertical line indicate the maximum and minimum values. The average value is the
noted by the horizontal line within the box. Error bars are the SEM. * = p-value,0.05.
doi:10.1371/journal.pgen.1003230.g005

Figure 6. dERR binds to dHIFa and is essential for hypoxic survival. (A) GST-pulldown experiment showing GST-fused dERR LBD association
with full-length dHIFa, which is diminished when the final 11 amino acids of the LBD are deleted (DAF-2). Similarly, when the LXXLL motif in dHIFa is
mutated, binding with the ERR LBD and DAF-2 proteins is lessened, but not eliminated when compared to GST alone. (B) dERR mutant animals are
sensitive to H exposure and fail to successfully progress to the molt when challenged with 4% O2. Shown also are the results of w1118 animals and
sima mutants. The L1 stage takes ,24 hrs to progress through in N at 25uC, but the allotted time was extended to 48 hrs to account for
developmental delays that are caused by H treatment. For more details and additional data, see Table S3.
doi:10.1371/journal.pgen.1003230.g006
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critical, less than 25% of animals survived as compared to 97%

survival for the w1118 background. These data indicate that dERR

is essential for hypoxic adaptation.

dERR is essential for HIF- and non-HIF-dependent
responses

Using the same analytic framework that was used to assess sima

involvement in the late-L3 larval hypoxic response, we collected

RNA samples from dERR mutants and dERR,sima double-mutants

for microarray analysis to determine how loss of ERR alone or

ERR and dHIFa together would affect hypoxic responses (Figure

S2). Through these analyses, we identified 282 dERR-dependent

(ED) transcripts and 207 double-mutant-dependent (DM) tran-

scripts whose expression changed in hypoxia (Figure 7A, Table

S1). The ED and DM H-genes sets encompass a variety of highly

significant GO categories, including H-induced kinases and

transferases that specifically require dERR, and a host of nucleolar

and RNA processing transcripts that are coordinately upregulated

in hypoxia due to the lack of both dERR and dHIFa (Figure S6A,

S6B, Table S1).

Venn analysis was used to assess the similarity of the

independently derived H-gene sets (HI, HD, ED, DM). The

overlapping pattern of the ED genes set with the mutually

exclusive HI and HD sets demonstrates that dERR significantly

affects both HIF-dependent H-genes (71 transcripts) and HIF-

independent genes (54 transcripts) (Figure 7B). Interestingly,

among the overlap between the HI and ED genes sets are all

the glycolytic transcripts that are upregulated in hypoxia. These

data reinforce our earlier findings that demonstrate that at

metamorphic onset, dHIF is not part of the hypoxic-induced

glycolytic shift. They also suggest that a portion of the HI response

it attributable to dERR.

Given that dERR can interact with dHIFa, and that it can

impact hypoxic transcription independent of HIF, we anticipated

that the DM H-genes set would significantly overlap the ED and

HD genes sets. Indeed, this is the case – as shown by Venn

analysis, the DM set has more overlap with the HD and ED sets

than not (Figure 7C). A listing of the top hypoxia-sensitive

transcripts in the various Venn overlapping regions can be found

in Figure 7D.

To verify that loss of dERR and/or dHIFa selectively

eliminates/diminishes hypoxic induction, RNA samples were

independently collected from control animals, sima mutants, dERR

mutants, and double-mutants (Figure 7D). Six genes were chosen

for further analysis by qRT-PCR. The results demonstrate that the

factor-dependent classification we employed for hypoxic respon-

siveness is accurate. For example, Pfk is classified as HI, ED, and

DM, indicating that hypoxic regulation should be affected in the

double-mutant and the dERR mutant backgrounds, but unaffected

in the sima mutant – this is the pattern that is observed (Figure 7E).

Similar trends also held true for fatiga and spermine oxidase, which

were expected, respectively, to only respond in the dERR mutant

background, or not in any of the three mutant lines. With the

exception of a modest H-induction in the dERR mutant for spermine

oxidase the responses were true. Hypoxic responses for NMNAT,

LDH, and ALAS were all expected to display the same pattern;

which is that only in the dERR background will H-responsiveness

be significantly reduced/eliminated. Responses were, by-and-

large, as expected, except for the significant H-induction of LDH

in the in dERR mutants.

These data indicate that dERR and dHIFa have a different

activity profile when in the presence of the other, than either

protein has by itself, and suggest that promoter-specific actions of

different HIF and/or ERR complexes drive a large percent of

hypoxic responses at metamorphic onset. In certain cases, loss of

one factor does not influence the other’s response, as with loss of

dHIFa for the dERR-mediated Pfk response (Figure 7E). In other

cases, loss of either dHIFa or dERR renders the H-response

incomplete, such as occurs with spermine oxidase. And, still in other

cases, loss of one factor is more detrimental for H-induction than is

loss of both, as with ALAS. Responses of this type appear to suggest

that, at certain loci, dHIFa acts as a negative regulator of hypoxic

transcription in the absence of dERR but not in its presence.

Discussion

Our results underscore the complexities of adaptive responses in

hypoxia, which are life-stage specific and controlled by multiple H-

sensitive pathways. Although our data confirm that HIF is a major

transcriptional driver of hypoxic responses, we also define distinct

HIF-independent responses. These data raise new questions about

dHIFa collaboration and challenge the notion that the HIF

complex has little or no normoxic role. In addition, we show that a

significant fraction of HIF-independent pathways can be attribut-

ed to the ERR nuclear receptor.

Among the HIF-independent genes were numerous glycolytic

transcripts that are well-known responders to hypoxia [26,31,40].

The fact that these genes are as effectively upregulated in sima

mutants as they are in a control response was surprising,

particularly considering the known role of HIF-1a in this process

[47]. We find that dERR is the overriding factor that mediates

hypoxic upregulation of glycolytic genes (Pgi, Pfk, GAPDH2, enolase)

just prior to metamorphic onset.

Our findings, however, do not exclude dHIFa contribution in

hypoxic expression of HI genes at other developmental times. The

super-induction of LDH during metamorphosis in w1118 animals

versus sima mutants is consistent with this scenario (Figure 4A).

These temporal- and context-specific differences may explain the

wide variability in hypoxic responses that have been seen between

cell-types [16,48], despite the ubiquitous presence of the HIF

pathway. Furthermore, they may account for discrepancies

between our data collected on Drosophila and reports on

mammalian systems. For example, LDH is a HIF-independent

hypoxia-regulated gene in late-L3 animals. However, loss of

dERR has a greater effect on the diminution of hypoxic induction

at this developmental time than does loss of dHIFa (Figure 7C).

But, this effect is short-lived, because just hours later, when the

larva transitions into a pupa, dHIFa appears to work in

combination with a non-HIF pathway to elicit hypoxic respon-

siveness (Figure 4A). This combinatorial response during Drosophila

metamorphosis is consistent with vertebrate studies that show LDH

expression is the product of HIF-1 action that also requires the

presence a cAMP response element for full hypoxic induction

[47,49]. Thus, in addition to different pools of potential

coregulatory molecules that may significantly alter HIF-dependent

transcription, entirely different transcriptional pathways, with their

own triggers of hypoxic induction, refine the H response. Given

the right spatiotemporal setting, HIF-independent pathways may

displace (or substitute for) the HIF pathway altogether, a result

that is consistent with our data. Further support of this idea is

evident in the expression of Alas2, the rate-limiting enzyme for

heme production. Alas2 has been identified as a HIF-dependent

and a HIF-independent hypoxia-regulated gene in mammals [50–

52]. In our hands, ALAS is H-responsive, and displays HIF-

independent and ERR-dependent upregulation, which may be

subject to dHIFa negative regulation in dERR’s absence

(Figure 7E).
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Figure 7. The influence of dERR and dHIFa on hypoxic transcripts. (A) HIF-independent (HI), HIF-dependent (HD), ERR-dependent (ED), and
ERR&HIF-dependent (DM) gene sets identified by microarray schemes outlined in Figures S1 and S2. Circles are scaled to size by number of transcripts
in each set. (B) A Venn diagram demonstrating the overlap of the HI/HD/ED H-genes sets. Note, HI and HD genes sets are, by definition, mutually
exclusive. The asterisks indicate that the overlap is significant (p-value,0.05), as determined by hypergeometric probability. (C) A Venn diagram
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The dynamic patterns of temporal expression of HI and HD

genes raise the fundamental question of how hypoxic responses are

regulated through development and into the adult. Low-oxygen

responses are not one-size-fits-all programs that mitigate oxidative

damage and metabolic imbalance; they must be coordinated with

developmental progression and metabolic state. In particular, late-

L3 wandering larvae exhibit a hypersensitive transcriptional

response to hypoxia for HIF-independent/ERR-dependent glyco-

lytic genes. This includes a robust LDH induction (Figure 4A).

Paradoxically, however, late-L3 larvae do not produce lactate in

the 6-hr hypoxic challenge (Figure 5C, 5E, and Figure S5). In

contrast, at other developmental times (L1, adult), animals

correspondingly produce lactate in hypoxia, even though they

remain transcriptionally incompetent to induce LDH transcript

(Figure S5 and Figure 4A). We speculate that the atypical

transcriptional and metabolic hypoxic profiles of the late-L3 larva

are a product of its developmentally programmed energetic state,

which at this time is transitioning from low to high efficiency (see

the dramatic decrease of Pfk expression in late larvae in Figure S4).

Just prior to the wandering L3 time, larvae are prolifically

growing, and in a state of metabolism that is fueled by aerobic

glycolysis – this metabolic program is ERR-dependent [32]. Just

after this developmental time, larvae initiate metamorphosis,

which will impose 5 days of developmentally forced starvation.

During this lipid-driven phase [53], metabolism is characterized

by high efficiency OXPHOS.

In contrast to the switch-like hypoxic expression of HIF-

independent glycolytic transcripts, the HIF prolyl hydroxylase

fatiga displays relatively uniform expression throughout develop-

ment (Figure 3A and Figure S3), suggesting that regulation of the

HIF pathway, by HIF itself, is equally important at all times for the

animal. Such disparities in induction are only understood in

context. While our studies here provide a framework with which to

view H responses, they indicate that further developmental

analysis is needed to more fully appreciate hypoxic response

pathways and the mechanisms that specifically support their

activities.

Although we have emphasized the transcriptional and meta-

bolic impacts of hypoxia on carbohydrate catabolism, the breadth

of our data sets indicate that many important hypoxia-induced

changes are thus far unappreciated and await further investigation.

What is the significance, for instance, of the greater than 10-fold

increase of HIF-dependent expression of dDPH-1 (CG11652) in

hypoxia (Table 1)? DPH-1 is a tumor suppressor that is responsible

for the first step of the unique protein modification that occurs on

elongation factor 2 (eEF2), which converts a histidine residue to

diphthamide. This residue is the target of diphtheria toxin that can

shut down protein synthesis through ADP-ribosylation. Although

diphthamide formation is conserved from archaea to human, its

significance on cellular function is not clear, as it is dispensable for

protein elongation [54]. However, it has been implicated in

translational fidelity [55] and is likely an asset under stress [56].

GO analysis performed on HD H-regulated genes indicate that

dHIFa is important in replenishing select protein translation/RNA

processing transcripts. From this perspective, DPH-1 induction by

dHIFa may be indicative of a regulatory role of hypoxic

translation for HIFs. Such a role would be consistent with a

recent report from mammals that demonstrates a HIF-2a-

dependent association with ribosomal/translational control pro-

teins and the selective hypoxic translation of transcripts containing

an RNA hypoxic response element in the 39UTR via a mechanism

involving eIF4E2 [57].

Our analysis of carbohydrate catabolism identifies amylase-

mediated breakdown of glycogen as the fuel of first resort in

hypoxia (Figure 5). This catabolic pathway feeds into glycolysis

and supplies needed glucose for increased glycolytic flux, obviating

the need to draw on circulating sugar in the form of trehalose,

which did not change in the 6-hr challenge. The strategy of

glycogen mobilization allows animals to maintain a remarkably

stable profile for a wide variety of carbohydrate catabolites.

Trehalose levels are substantially elevated in sima mutants,

regardless of oxygen status (Figure 5C and 5E). These data may

indicate a role for dHIFa in the insulin receptor pathway.

Numerous studies demonstrate that trehalose levels are altered by

genetic disruptions of the insulin-signaling components [58–61].

Alternatively, elevated trehalose levels may be the result of

constitutively high expression of amylase (Figure 5D). Although the

increased amylase expression does not translate into a depleted level

of glycogen in the sima mutant (Figure 5A), it is conceivable that

increased glycogen deposition compensates for increased glyco-

genolysis.

It is important to note that post-transcriptional control

mechanisms are well known to impact glycolytic enzymes.

Although we did not document them, we consider such influences

on hypoxic glycolytic flux likely to have genotype-specific effects.

sima mutants do not mobilize glycogen in hypoxia, but they are

able to initiate H-induced changes for other carbohydrates. This is

the case for the glycolytic intermediate DHAP, which more than

doubles in a control hypoxic response and significantly accumu-

lates in mutants (Figure 5C, 5E). These findings are consistent with

appropriate transcriptional responses we noted for glycolytic

transcripts in sima animals, which are upregulated in hypoxia by

dERR, not dHIFa. The results for glycogen notwithstanding, it is

the widespread derangement of normoxic set points for metabo-

lites that characterizes the metabolic incompetency of the sima

mutant. Our data indicate that dHIFa has it greatest impact on

metabolism in the unchallenged normoxic state, rather than in

hypoxia.

The mechanism whereby dERR participates in hypoxic

responses needs to be explored further. We identified dERR as

a potential player in hypoxic responses through its association with

dHIFa (Figure 6A), suggesting that it acts in a collaborative role

with the HIF complex through direct recruitment to HREs. This

model was favored by the Ao et al. report for ERR participation in

hypoxic responses in vertebrates [39]. Additionally, dERR may

recruit dHIFa to ERR-specific response elements to facilitate H

responses. Another possibility is that dERR actively regulates

hypoxic transcription without dHIFa at all; or, in parallel to the

actions of dHIFa, which may occur independently, yet simulta-

neously. Each of these scenarios is consistent with hypoxic

expression analysis that we performed to generate HD, HI, ED,

and DM gene sets. Moreover, in the presence of dERR, dHIFa

demonstrating the overlap of the HD/ED/DM H-genes sets. qRT-PCR analysis of hypoxia-regulated genes falling into specific Venn overlaps, as
indicated by arrows. (D) The top ten affected transcripts, as assessed by the H-responses measured in the control background, for each of the seven
Venn categories shown in Figure 7C. Hypoxic expression for each transcript in the different mutant backgrounds (compared to w1118) is reported as
fold-change difference. Additionally shown is the N/H ratio obtained for w1118 animals. (E) Normoxic and hypoxic expression of each of the six genes
(Pfk, fatiga, spermine oxidase, NMNAT, LDH, ALAS) was determined using RNA collected from animals of the indicated genotypes at late-L3. Samples
were collected in triplicate and are independent from those used in the microarrays. Values are normalized to rp49 expression and are reported
relative to the value obtained for w1118 in normoxia.
doi:10.1371/journal.pgen.1003230.g007
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may act as a negative regulator of hypoxic responses at select

hypoxia-regulated sites (Figure 7E, NMNAT, ALAS). Of further

interest also, will be the identification of the triggers for ERR

participation in hypoxic-induced responses.

Apart from dERR and dHIFa, our data indicate that at least

one more hypoxic-sensitive pathway is active and important for

mediating hypoxic adaptation, as we found many H-sensitive

transcripts that fall outside the regulation of either factor. The

nature of the alternate pathway(s) is unknown. The results shown

here suggest that identifying the sensors and effectors that regulate

these HIF- & ERR-independent hypoxic response pathways will

have profound impacts on our understanding of hypoxic signaling,

and will undoubtedly provide new avenues with which to

approach the complex problem of metabolic transition.

Materials and Methods

Fly strains and hypoxic treatments
Flies were maintained on regular cornmeal-molasses-yeast

media at 25uC. sima mutants (sima07607) [43] were obtained from

Bloomington Stock Center. w1118 animals were treated as controls.

dERR mutants (dERR1/dERR2) are described elsewhere [32].

dERR,sima double-mutants were generated by recombination of

the sima07607 allele with each of the individual dERR1 and dERR2

mutations. Embryos were collected at 25uC for 14 hrs onto egg

caps (molasses-agar media in 35 mm610 mm dishes) with yeast

paste. Mid-L2 larvae were transferred to a fresh egg cap with blue

yeast paste (0.3% bromophenol blue), and allowed to develop until

achieving the partial clear-gut L3 stage (210 to 24 hrs RTP).

Staged animals were moved to fresh agar plates and allowed to age

an additional 6 hours at 25uC (normoxic treatment); or, animals

were placed in an airtight Modular Incubator Chamber (Billups-

Rothenberg, Inc., Del Mar, CA) for 6 hours at 25uC after a gas

mixture containing 4% oxygen balanced with nitrogen was flashed

into the chamber (hypoxic treatment). The sima07607 chromosome

was carried over a TM3, twi-GFP (green fluorescent protein)

balancer chromosome. Homozygous mutant larvae were sorted

for the absence of GFP expression using a Zeiss Discovery V.8

dissecting stereoscope with fluorescence at mid-L2. For lethal

phase analysis in Figure 6B, 0–4 hr post-hatch L1 larvae were

sorted for fluorescence to assign genotype. Larvae were placed in

vials containing fresh yeast paste and were then exposed to 21%

(normal air) or 4% oxygen for 48 hrs and scored for lethality or

completion of L1.

Microarray analysis
Microarray analyses were performed on at least three biological

replicates of w1118 animals, sima mutants, dERR mutants, and

sima,dERR double-mutants at the partial clear-gut L3 stage and

treated for 6 hrs in normoxia or 4% O2. For each biological

replicate, at least 10 larvae were collected and washed with 16PBS

before homogenization in TRIzol (Invitrogen, Carlsbad, CA)

using a VWR disposable pellet mixer. Total RNA was isolated

using a TRIzol/RQ1 DNase hybrid extraction protocol (Promega,

Madison, WI). Template labeling was done using the GeneChip 39

IVT Express Kit according to the manufacturer’s specifications

(Affymetrix, Santa Clara, CA). Hybridizations to Affymetrix

GeneChip Drosophila Genome 2.0 arrays were performed using

the manufacturers recommendations. Every chip was scanned at a

high resolution by the Affymetrix GeneChip Scanner 3000

according to the GeneChip Expression Analysis Technical

Manual procedures (Affymetrix, Santa Clara, CA). Raw data

were normalized with RMA [62] and analyzed with the

significance analysis of microarray (SAM) program [63]. No

changes below 1.5-fold were considered significant. Additionally,

the following false discovery rate percentages were imposed:

0.733% for w1118 normoxia vs. w1118 hypoxia; 0.414% for sima

normoxia vs. sima hypoxia; 0.721% for w1118 hypoxia vs. sima

hypoxia; 7.84% dERR normoxia vs. dERR hypoxia; 0.619% for

w1118 hypoxia vs. dERR hypoxia; 0.662% dERR,sima double-mutant

normoxia vs. dERR,sima double-mutant hypoxia; 0.703% for w1118

hypoxia vs. dERR,sima double-mutant hypoxia. Microsoft Access was

used to compare data sets. Microarray data from this study can be

accessed at the Omnibus website (http://www.ncbi.nlm.nih.gov/

geo) with the accession number GSE33100.

Quantitative RT–PCR
Total RNA samples were isolated as described above. RNA was

reverse transcribed with the High Capacity cDNA Reverse

Transcription Kit (Applied Biosystems, Carlsbad, CA) using the

manufacturer’s specifications. For real-time PCR, premixed

primer-probe sets were purchased from Applied Biosystems, with

the exception of the primer set used for amylase. For amylase, a

standard SYBR Green (Bioline, Taunton, MA) protocol was used

with the primer sets: 59 AACTACAACGACGCCAACGAG 39

and 59 TGGTCGGTGTTCAGGTTCTTG 39. All amplifications

were carried out on a CFX96 real-time PCR system (Bio-Rad,

Hercules, CA). Experimental values were normalized to values

obtained for the Rp49 probe set. Data are reported as the

mean6SEM. All values reported represent experiments per-

formed on at least three biological replicates.

Metabolic analyses
Analyses were performed on partial clear-gut L3 larvae treated

for 6 hours in normoxia or 4% O2. After treatment, animals were

washed twice in PBS pH 8.0 and immediately frozen at 280uC.

For glycogen measurements, 45 animals were split into three pools

and the assay was performed essentially as described [64]. Color

intensity was measured using a Bio-Tek Elx800 absorbance micro-

plate reader at 540 nm. Glucose and glucose+glycogen amounts

were determined using a standard curve. The amount of glycogen

was determined by subtracting the glucose from the glucose+gly-

cogen total. Glycogen amounts were normalized to protein

content in each homogenate using a Bradford assay (Bio-Rad).

For ATP measurements, larvae were homogenized in 300 ml of

6M guanidine-HCl extraction buffer (100 mM Tris and 4 mM

EDTA, pH 7.5). The homogenate was heated at 70uC for 5 min

and centrifuged in at 30006g for 1 min. The supernatant was

diluted 1:750 in dilution buffer (25 mM Tris and 100 mM EDTA,

pH 7.5) and spun at 140006g for 3 min, after which 10 ll

supernatant was transferred to a 96-well white opaque plate and

mixed with 100 ll of luminescent solution (Invitrogen, Molecular

probes). Luminescence was immediately measured by a Bio-Tek

Synergy 2 SL luminometer. The amount of ATP was determined

using a standard curve. Amounts were normalized to total protein.

For lactate measurements, 300 first instar larva, 60 third instar

larva or 30 1-day-old males were split into three pools and

measured as described Monserrate et al. (2012) using Lactate

Assay Kit (Biovision Milpitas, CA,) [65]. For metabolomics,

analyses were performed by Metabolon, Inc. (Durham, NC).

Replicates were normalized by protein content (Bradford analysis).

Recovery standards were added to samples prior to extraction

using a proprietary series of organic and aqueous solutions.

Extracts were divided into two fractions, one for GC and one for

LC. Organic solvent was removed using a TurboVap (Zymark).

Briefly, for LC/MS, split samples were dried and reconstituted in

acidic or basic LC-compatible solvents containing standards.

Positive and negative ion-optimized sample conditions were
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analyzed in separate injections. For acidic reconstitutions a

gradient of water and methanol containing 0.1% formic acid

was used, and for basic extracts a water/methanol gradient with

6.5 mM NH4HCO3. Analysis was performed on a Thermo-

Finnigan LTQ mass spectrometer with an electrospray ionization

source and linear ion-trap mass analyzer. For GC, samples were

re-dried under vacuum prior to derivatization under nitrogen

using bistrimethyl-silyl-trifluoroacetamide. The column was 5%

phenyl with a temperature ramp of 40u to 300uC over 16 minutes.

Samples were analyzed using a Thermo-Finnigan Trace DSQ

fast-scanning single-quadrapole mass spectrometer with electron

impact ionization. Refer to Table S2 for normalized data of each

replicate and p- and q-values. Extensive quality control care was

applied to minimize variability between days. The Metabolon

platform has been described elsewhere [66,67]. Data values were

imputed in the following way when values fell below the threshold

level of detection: when all six replicates were undetectable, each

was assigned the minimum detectable value of across all

compounds tested; when five or less replicates were undetectable,

sample values were assigned the minimum value obtained among

those that were detected for a given compound.

Yeast two-hybrid screen and GST-pulldown
A yeast two-hybrid screen was conducted using the Invitrogen

ProQuest Two-Hybrid System. For this purpose, three cDNA prey

libraries were simultaneously prepared using the CloneMiner

cDNA Library Construction Kit (Invitrogen). All the libraries (a,

b, c) were made from poly-A-selected RNA that was extracted from

w1118 animals at 24, +0, or +4 RTP, which was reverse transcribed

and pooled in equal proportions before library construction. Each

library differs by only a single base pair in the adapter sequence to

facilitate expression of clones in all three frames. Extensive

procedures, provided by the manufacturer, were followed to

capture clones into the pDONR222 vector. Clones in the donor

vector were subsequently recombined into the pDEST22 vector.

Libraries were titered (a = 7.18E6 CFU, b = 4.44E6 CFU,

c = 14.28E6 CFU) and sampled for average insert size

(a = 1.64 kb, b = 1.25 kb, c = 1.6 kb) before transformation into

ElectoMax cells (Invitrogen). Transformed cells for each library

were pooled (total of 6.4E6 CFU) and grown for 22 hrs at 30uC for

preparation of library DNA by standard techniques. 22lg of library

DNA was transformed into the yeast bait strain containing the LBD

of dERR (L193-R496) that had been recombined into the

pDEST32 vector. A total of 5.28E5 clones were screened by

auxotrophic selection. All positive hits were sequenced. GST-

pulldown experiments and the expression of GST-fused ERR

constructs in pGEX-4T1 were performed as described [68].

Statistical analysis
A one-way ANOVA F-test was applied to test for the differences

in glycogen levels, followed by Tukey’s HSD method. For

developmental qRT-PCR analysis, delta CT values were used to

perform statistical analysis, whereby a two-tailed unpaired

student’s t-test was applied for the differences in gene expression

using a Bonferroni correction. Following log transformation and

imputation, a one-way ANVOA with contrasts was used to

identify significance for metabolites in the mass spec analysis (See

Table S2). Cumulative hypergeometric probability was used to

determine significance between overlapping gene sets.

Supporting Information

Figure S1 Scheme to identity HIF-independent (HI) and HIF-

dependent (HD) hypoxia-regulated genes. The HIF-independent

set (640 genes), represents the direct comparison of N- or H-

treated samples from sima mutants. The Total H-genes set (1127

genes) represents the direct comparison of N- or H-treated samples

from w1118 animals. The HI H-genes set (black circle), represents

the overlap of the Total H-genes set with the dHIF-independent

set. The dHIF-dependent set2 (873 genes), represents the

subtraction of the dHIF-independent H-genes set from the Total

H-genes set. The dHIF-dependent set1 (801 genes) represents the

direct comparison of H-treated samples from w1118 animals and

sima mutants. The HD H-genes set (green circle), represents the

overlap between the dHIF-dependent sets1 and 2. All genes in any

of the sets are up- or downregulated at least 1.5-fold and have a

FDR of less than 1%. See Table S1 for gene set lists.

(EPS)

Figure S2 Scheme to identity ERR-dependent (ED) and

ERR&HIF-dependent (DM) hypoxia-regulated genes. The HD

H-genes (green circle) were determined as outlined in Figure S1.

The dERR-independent set (blue outlined oval) represents the

direct comparison of N- or H-treated samples from dERR mutants.

The Total H-genes set (black outlined oval) represents the direct

comparison of N- or H-treated samples from w1118 animals. The

dERR-dependent set2, represents the subtraction of the dERR-

independent set from the Total H-genes set. The dERR-

dependent set1 represents the direct comparison of H-treated

samples from w1118 animals and dERR mutants. The ED H-genes

set (blue circle), represents the overlap between the dERR-

dependent sets1 and 2. The ERR&HIF-dependent H-genes set

(red circle) was determined using the same scheme as above,

except that the dERR,sima double-mutant was used instead of the

dERR mutant. All genes in any of the sets are up- or

downregulated at least 1.5-fold and have a FDR of less than

1%, except for the dERR-independent set (noted with *). FDR

constraints were relaxed for this set alone. It includes FDR scores

that are elevated to ,7%. See Table S1 for gene set lists.

(EPS)

Figure S3 Normoxic expression versus hypoxic induction of

HIF-dependent transcripts. qRT-PCR analysis of transcripts

shown in Figure 3. Traces are the temporal expression profiles

for each transcript in normoxia or hypoxia (treated for 6-hr in 4%

O2) from w1118 animals or sima mutants. Values were arbitrarily

scaled to the value obtained for 6–12 hr embryonic time-point for

the w1118 control in normoxia, which was assigned a value of 1.0.

All values are normalized to rp49 expression. Error bars are the

SEM.

(EPS)

Figure S4 Normoxic expression versus hypoxic induction of

HIF-independent transcripts. qRT-PCR analysis of transcripts

shown in Figure 4. Traces are the temporal expression profiles for

each transcript in normoxia or hypoxia (treated for 6-hr in 4% O2)

from w1118 animals or sima mutants. Values were arbitrarily scaled

to the value obtained for 6–12 hr embryonic time-point for the

w1118 control in normoxia, which was assigned a value of 1.0. All

values are normalized to rp49 expression. Error bars are the SEM.

(EPS)

Figure S5 Lactate production in hypoxia is life-stage-dependent.

Lactate measurements from mid-L1 (A), late-L3 (B), and day-old

males (C) from w1118 animals and sima mutants treated for 0, 4, or

6 hrs in 4% O2. All measurements were determined in triplicate.

Values are normalized to protein content. Error bars are the SEM.

(EPS)

Figure S6 Gene ontology analysis of ERR-dependent and

ERR&HIF-dependent hypoxic genes. GO analysis was performed

ERR in the Hypoxic Response
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on the dERR-dependent (ED) genes set (A) and on the

dERR&dHIF (DM) genes set (B) that that were derived from

microarray analysis of H- or N-treated control (w1118) animals,

ERR mutants or dERR,sima double-mutants collected at the partial

clear-gut late-L3 time. See Figure S2 for the analysis scheme. The

numbers of H-regulated genes affected are shown along with the

total number of genes in each category. All transcripts are up- or

downregulated at least 1.5-fold and have a false discovery rate

(FDR) of ,1%.

(EPS)

Table S1 Hypoxia-regulated gene sets identified by microarray

analysis.

(XLS)

Table S2 Metabolic analysis of carbohydrates by GC/MS and

LC/MS.

(XLS)

Table S3 Lethal phase analysis of embryos and L1 larvae subject

to different oxygen concentrations.

(XLS)
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