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Abstract

Synthetic lethality has been proposed as a way to leverage the genetic differences found in tumor cells to affect their
selective killing. Cohesins, which tether sister chromatids together until anaphase onset, are mutated in a variety of tumor
types. The elucidation of synthetic lethal interactions with cohesin mutants therefore identifies potential therapeutic
targets. We used a cross-species approach to identify robust negative genetic interactions with cohesin mutants. Utilizing
essential and non-essential mutant synthetic genetic arrays in Saccharomyces cerevisiae, we screened genome-wide for
genetic interactions with hypomorphic mutations in cohesin genes. A somatic cell proliferation assay in Caenorhabditis
elegans demonstrated that the majority of interactions were conserved. Analysis of the interactions found that cohesin
mutants require the function of genes that mediate replication fork progression. Conservation of these interactions
between replication fork mediators and cohesin in both yeast and C. elegans prompted us to test whether other replication
fork mediators not found in the yeast were required for viability in cohesin mutants. PARP1 has roles in the DNA damage
response but also in the restart of stalled replication forks. We found that a hypomorphic allele of the C. elegans SMC1
orthologue, him-1(e879), genetically interacted with mutations in the orthologues of PAR metabolism genes resulting in a
reduced brood size and somatic cell defects. We then demonstrated that this interaction is conserved in human cells by
showing that PARP inhibitors reduce the viability of cultured human cells depleted for cohesin components. This work
demonstrates that large-scale genetic interaction screening in yeast can identify clinically relevant genetic interactions and
suggests that PARP inhibitors, which are currently undergoing clinical trials as a treatment of homologous recombination-
deficient cancers, may be effective in treating cancers that harbor cohesin mutations.
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Introduction

Defects in cohesin-associated genes are emerging as potential

drivers of tumor genomic instability and progression. Mutations in

cohesin genes have been identified in several tumor types (Reviewed

in [1]). Sequencing of over 200 human orthologs of yeast

chromosome instability (CIN) genes from 130 colon tumors found

that cohesin genes are mutated in 8% of tumor samples [2]. In a

recent study, Solomon et al. found the cohesin gene STAG2 mutated

in 21% of Ewing’s sarcomas and in 19% of both melanoma and

glioblastoma tumors [3]. Furthermore, altered cohesin gene

expression, either overexpression or underexpression is character-

istic of many tumors [4–7]. It has been shown that loss of cohesin

subunits induces genomic instability in human cancers and the

associated aneuploidy, as is observed in many cell lines with

mutations in cohesin, can itself lead to further genomic instability

[2,3,8]. These observations and the elevated mutational frequency

of cohesin in diverse tumor types suggest that cohesin dysfunction

may contribute to tumor development and progression.

Cohesins maintain sister chromatid cohesion and screens for

defects in sister chromatid cohesion have identified the core

cohesin complex, composed of Smc1, Smc3, Scc1 and Scc3, and

additional accessory and regulatory proteins [9]. Cohesins form a

ring structure that is thought to encircle sister chromatids and

physically tether them together until it is cleaved by separase

during anaphase [10,11]. Cohesin proteins contribute to DNA

repair and the regulation of gene expression in addition to

chromosome segregation (Reviewed in [12]). Although much is

known about the function of cohesin in regulating sister chromatid

cohesion and DNA damage repair, it is not as yet clear which

aspects of cohesin biology might contribute to tumor progression.

One approach to understanding the functional spectrum

associated with a gene of interest relies on the identification of

genetic interactions with other gene mutations. Negative genetic

interactions occur when the double mutant shows a synthetic

growth defect manifested as severe slow growth or lethality

(synthetic sickness/lethality) when compared to both single

mutants. Synthetic sick or lethal interactions with genes mutated
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in cancer can identify potential therapeutic targets [13,14]. A

clinically relevant example of a synthetic lethal (SL) genetic

interaction is the SL interaction between mutations in breast

cancer susceptibility genes BRCA1 or BRCA2 and loss of function

of the Poly-ADP Ribose Polymerases (PARP). Two groups found

that BRCA1- and BRCA2-defective cells are sensitive to knockdown

of PARP or chemical inhibition of PARP activity [15,16]. This has

lead to the development of PARP inhibitors as chemotherapeutics.

PARP inhibitors are being evaluated in Phase II clinical trials for

use in homologous recombination (HR) deficient breast and

ovarian tumors [17–20].

In addition to identifying synthetic lethal interactions that could

represent potential drug targets, comprehensive genetic interaction

networks can also lead to new functional insights [21]. Mapping

global genetic interactions in human cells is feasible but techniques

lag behind those currently available in budding yeast. Synthetic

genetic array (SGA) is a large-scale genetic interaction screening

approach in yeast that facilitates the collection and analysis of

positive and negative genetic interaction data [22–24]. The use of

yeast as a model organism to identify conserved genetic

interactions with potential cancer therapeutic value has proven

effective [14]. The inclusion of the metazoan animal model, C.

elegans, in the genetic interaction testing pipeline can also

contribute new insights as nematodes have a gene complement

more akin to humans and contain several cancer-relevant genes

not found in yeast, such as BRCA1, BRCA2, TP53 and the family of

poly(ADP)-ribose polymerases (PARPs) [25–28]. Furthermore, C.

elegans mutants and double mutants also present informative

phenotypes, such as apoptotic defects, cell cycle checkpoint

dysfunction, and chromosome loss, in the context of a multicellular

animal model, which can lead to a better understanding of the

biological processes affected by specific genetic interactions [29].

The large number of genetic interactions that can be identified by

comprehensive genetic interaction screens such as SGA can

identify key processes or pathways that when disrupted result in

synthetic lethality. These pathways could be targeted for SL

therapeutic intervention even if the specific genes are not well

conserved from the yeast to humans.

In this study, we performed digenic SGA screens in S. cerevisiae

using three hypomorphic cohesin mutations to identify common

processes required for survival when cohesin is mutated.

Interactions were tested for conservation in C. elegans using an

assay for defects in somatic cell proliferation [30]. We found that

proteins mediating replication fork progression and stability are

required in cohesin mutants of both S. cerevisiae and C. elegans.

Based on these findings we predicted that other mediators of

replication fork stability not conserved in yeast, such as PARP,

would be required for viability in higher eukaryotic cells with

mutations in cohesin. To test this prediction, we expanded the

screen in C. elegans to include PAR metabolism (pme) mutations and

found that pme mutants genetically interact with him-1/SMC1 in C.

elegans. We found that this genetic interaction was conserved in

cultured human cells and small molecule PARP inhibitors,

currently being evaluated in clinical trials, were effective in

inhibiting growth in cohesin depleted cultured human cells.

Beginning with systematic screens in a simple model eukaryote this

study identifies conserved and clinically relevant genetic interac-

tions between cohesin and replication fork modulators including

the chemotherapeutic target PARP.

Results

Systematic quantitative analysis of cohesin genetic
interactions

Synthetic genetic array (SGA) technology was used to screen

temperature sensitive (ts) alleles of two cohesin components (smc1-

259, scc1-73) and one cohesin loader (scc2-4) against ,95% of

genes in S. cerevisiae as represented by non-essential gene deletions

[31], ts [32] or decreased abundance by mRNA perturbation

(DAmP) [33] alleles. All three cohesin alleles have mutations in

similar regions as those identified in colon tumors (SMC1, SCC2) or

in the Catalogue of Somatic Mutations in Cancer (COSMIC)

(SCC1) (Table 1, Figure S1).

The interaction data was sequentially filtered using several

criteria to increase quality and focus. Only negative genetic

interactions with a p-value less than 0.05 and a large interaction

magnitude (E-C value less than 20.3, see Methods) were

considered. Filtering based on magnitude enriched for interactions

that cause a severe fitness defect when compared to the single

mutant. To reduce false positives and increase the potential of

identifying drug targets that interact with mutations in multiple

cohesin subunits, we eliminated genes that interacted with only a

single cohesin query gene, leaving 55 genes (Figure S2). Finally, to

focus on interactions that may have relevance to the biology of

cohesins and cancer, we eliminated genes that did not have an

obvious human homolog (see Figure 1A, Table S1). Using these

criteria, 39 of 55 genes (71%), defining 90 putative negative

genetic interactions, had an identifiable homolog in humans

(Table S1). Six genes were removed from further analysis for

technical reasons, leaving 33 genes comprising 78 genetic

interactions.

To validate this subset of interactions identified in the primary

screen, 99 double heterozygous diploids (33 genetic interaction

genes by 3 cohesin query genes) were reconstructed, the specific

gene deletions confirmed by DNA analysis, and double mutant

phenotypes retested by random spore analysis. To assess whether

growth defects were greater than additive, growth curve analysis

was performed on all viable double mutants (Figure 1B; Figures

S3, S4, S5, S6, S7; Tables S2, S3, S4). Random spore and growth

curve analyses achieved several goals; 1) Reduced the false positive

rate by removing genes with an incorrect well address in the high

throughput arrays (8% of hits), 2) Eliminated condition artifacts by

Author Summary

Synthetic lethality has been proposed as a way to leverage
the genetic differences found in tumor cells to affect their
selective killing. Many tumor types contain mutations in
the cohesin genes. Identifying synthetic lethal genetic
interactions with cohesin mutations therefore identifies
potential therapeutic targets for these tumors. We have
used the simple model organisms yeast and C. elegans to
screen for synthetic lethal genetic interactions with
cohesin mutations. We found that cohesin mutants require
the function of proteins that regulate the replication fork
for viability. In human cells, Poly-ADP Ribose Polymerases
(PARPs) have been shown to repair stalled replication forks
and are the target of a class of anti-tumor chemothera-
peutics called PARP inhibitors. Based on our finding that
cohesin mutants required replication fork regulators and
the role of PARP at the replication fork, we tested the
effect of PARP inhibitors in human cells with reduced
cohesin. We found that PARP inhibitors reduced the
viability of cohesin-depleted cells suggesting that PARP
inhibitors may be effective for the treatment of tumors
containing cohesin mutations. Together our data demon-
strate the utility of comprehensive interaction screens in
simple organisms to identify clinically relevant genetic
interactions.

Cohesins Interact with Replication Fork Mediators
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ensuring that genetic interactions were reproducible under the

same drug selective conditions as SGA (random spore) and in rich

medium (growth curve), 3) Yielded an additional quantitative

measure of each synthetic sick interaction, and 4) Identified

additional true positives not identified under SGA conditions.

During subsequent testing 4 out of 78 (5%) interactions

identified by SGA did not result in a negative genetic interaction

and an additional 20 interactions not observed by SGA were

identified for a total of 94 negative genetic interactions with the

three cohesin query genes (Figure 1C). 29 (31%) of these

interactions involve essential genes, highlighting the importance

of screening against essential gene collections.

Negative genetic interactions with cohesin are conserved
in C. elegans

One of our goals is to identify interactions that are conserved in

mammalian cells and thus relevant to the development of

therapeutics. We hypothesized that interactions that are conserved

among eukaryotes are more likely to be conserved in higher

animals and therefore we tested the validated S. cerevisiae

interactions in the model metazoan, C. elegans. We used a visual

screen that monitors defects in development of the C. elegans vulva

to identify synthetic genetic interactions that resulted in defects in

somatic cell proliferation [30]. These vulval cell divisions occur

late in nematode development [34], so perturbations do not affect

organismal viability, which allows us to screen for interactions

using gene mutations or RNA interference (RNAi) knockdowns

that are potentially embryonic lethal. We tested the C. elegans

homolog of all genes that had a verified genetic interaction with

one of the cohesin genes in S. cerevisiae and for which there was an

RNAi construct available (Table S1). Cohesins are essential genes,

so we used a viable hypomorphic mutation in the C. elegans SMC1

ortholog, him-1(e879), and treated these worms with RNAi by

feeding. Adult worms were bleached to obtain embryos that

hatched into onto plates seeded with bacteria expressing different

dsRNA constructs. When the embryos hatch into L1 larva they eat

the dsRNA-expressing bacteria, which initiates systemic RNAi

knockdown. An increased frequency of defects in the mutant

treated with RNAi, compared to the predicted additive effect for

the mutant and RNAi separately, is indicative of a genetic

interaction. We observed a clear increase over the predicted

additive frequency of Pvl in 23/28 (82%) interactions tested

(Figure 2) demonstrating that most interactions are conserved

between S. cerevisiae and C. elegans.

Analysis of cohesin network sub-groups
Each gene in the network was assigned to one of several broad

functional groups based on gene descriptions reported in the

Saccharomyces Genome Database (SGD). These groups were the

spindle, microtubules and kinetochore (39%), mRNA processing

(12%), replication factors (24%), and a group that contains genes

involved in general cell metabolism (24%).

One hypothesis for a genetic interaction is that two mutations

that cause the same phenotype, when combined cause a

cumulative phenotype that breaches the tolerance level of the

cell. One phenotype of cohesin mutants is increased CIN and we

therefore investigated whether the interactors also cause CIN

when mutated. For this analysis we used information collected

from SGD and a recently performed screen for CIN in essential

genes [35] (Table S5). We found most of the genes, except those in

the metabolism group, cause CIN as measured by a variety of

assays such as chromosome transmission fidelity (CTF) and gross

chromosomal rearrangements (GCR) in yeast [35].

Cohesin mutations are synthetic lethal with mutations in
replication fork mediators

To probe the identified interactions further, we profiled the

interactions based on strength by filtering the network to include

only SL interactions. We hypothesized that these interactions

would indicate the most critical processes when cohesin genes are

disrupted (Figure 3A). This analysis revealed five genes specifically

involved in replication fork progression and stability that were SL

with all three cohesin alleles tested. Ctf8p and Dcc1p are

components of the alternative replication factor C Ctf18 clamp

loader (altRFCCTF18) that controls the speed and restart activity of

the replication fork [36]. Rad61p acts with Pds5p to bind cohesin

and regulates its association with chromatin [37,38]. Chl1p is a

DNA helicase that interacts with CTF18 and physically with

Eco1p [39]. Ctf4p (human AND1) has a role in coupling the

Mmc2-7p helicase replication progression complex to DNA

polymerase a [40]. Csm3p functions in a complex with Tof1p

and Mrc1p to control stable pausing of the replication fork

[41,42]. We collectively call these genes replication fork mediators.

The SL interaction of replication fork mediators with multiple

Table 1. Mutations in cohesin genes seen in tumors.

Human Gene
(Yeast Gene) Mutations reported in CIN colon tumors Cancer mutations reported in COSMIC*; cancer type

SMC1L1 (SMC1) F369L (1186C.T)
R434W (1300C.T)
I560M (1680 C.G)
I1186V (3556G.A)

CSPG6 (SMC3) R879X (2635C.T) A44V (131C.T); CNS

RAD21 (SCC1) Q474stop (1420C.T); lung
E498K (1492G.A); skin

STAG3 (SCC3) I795T (24117T.C) F660L (1980C.A); lung

NIPBL (SCC2) R479STOP (1435C.T)
Frameshift after aa 992
Q554STOP (1660C.T)
M1793K (5378T.A)

E1674K (4939G.A); breast
S349C (1045A.T); lung
Deletion, Frameshift after aa 2241; lung

*Silent mutations not reported in this table. Amino acid: aa.
doi:10.1371/journal.pgen.1002574.t001

Cohesins Interact with Replication Fork Mediators
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cohesin mutants suggests that cohesin mutations sensitize cells to

perturbations of the replication fork.

To investigate the biology underlying the interaction between

cohesin and replication fork mediator mutations the frequency of

apoptosis in the C. elegans germline was analyzed. In the C. elegans

germ line, nuclei with DNA damage are removed by apoptosis and

increased germline apoptosis can be indicative of increased DNA

damage [43]. Apoptosis levels were quantified in the germline of

the him-1(e879) mutant and were found to be elevated above that

of wild type (Figure S8). When him-1 mutant animals were treated

with RNAi against csm-3, rad-61, ctf-8, ctf-4 and dcc-1 an increase in

apoptosis was detected. Apoptotic bodies in these cases were

typically found in large clusters, rather than being distributed

throughout the pachytene region, reminiscent of irradiated

animals (Figure S8). These results suggested that the defects in

both HIM-1 and replication fork mediator function leads to DNA

damage that results in increased apoptosis.

We have shown that cohesin mutations are synthetic lethal with

mutations in genes that mediate replication fork progression

(Figure 1, Figure 2, Figure S8) but are not synthetic lethal with any

DNA repair mutants (Table S6). These results suggest that the

cohesin mutations lead to replication fork progression defects but

not directly to DNA damage. This is further supported by the

observation that the yeast cohesin mutations do not result in

Rad52p foci accumulation, which are indicative of HR repair

intermediates [44]. Additionally, elimination of the HR repair

pathway by deletion of RAD51 in replication fork mediator-

cohesin double mutants did not rescue lethality, suggesting that

toxic recombination intermediates are not the cause for lethality in

a cohesin mutant background (Figure S9). These data suggest that

Figure 1. S. cerevisiae cohesin genetic interaction network. A) Venn diagrams depicting how SGA data was filtered. i. Interactions that had a
negative interaction value and were statistically significant (p-value,0.05). ii. Interactions that had a relatively weak interaction score (Experimental
value – Control value.2.3) were eliminated to enrich for biologically significant interactions. iii. Genes were eliminated if they failed to interact with
$2 of the cohesin query genes and if they did not have a human homolog (Table S3). iv. Summary of the final network after random spore and
growth curve retesting and validation. The total number of interactions in a given Venn diagram is underlined. The total number of genes is shown in
red. The numbers in brackets indicate interacting genes remaining after removal of 6 genes for technical reasons. B) Representative subset of growth
curve data. The T-stat, which takes into account the interaction magnitude and statistical significance, is shown in blue. All growth curve data can be
found in Figures S3, S4, S5, S6 and Tables S1, S2, S3. C) Expanded view of the final network summarized in A iv. Red lines indicate SL interactions and
black lines represent SS interactions. The black line thickness represents interaction strength.
doi:10.1371/journal.pgen.1002574.g001

Cohesins Interact with Replication Fork Mediators
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the interaction between cohesin mutants and fork mediators is

intimately tied to the regulation of replication progression and led

us to further investigate this relationship.

him-1 genetically interacts with the PARP pathway in C.
elegans

The finding that replication fork mediator mutations are

synthetic lethal with hypomorphic mutations in cohesin led us to

hypothesize that inhibitors of replication fork stability could result

in specific killing of tumors containing cohesin mutations. At

present there are no small molecule inhibitors of the replication

fork mediators identified in our SGA screen. However, in higher

eukaryotes there are additional factors that protect and regulate

the replication fork. An early mediator of replication fork stability

is the family of Poly (ADP-ribose) polymerases (PARPs). PARPs

have been shown to localize to stalled forks and mediate restart

[45]. Furthermore, there are effective small molecule inhibitors of

PARP and although PARPs are not present in yeast they are

present in C. elegans. To assess whether PARP metabolism plays a

role in maintaining viability in a cohesin mutant, we made double

mutants with him-1(e879) and the five PAR metabolism enzyme

(pme) genes in C. elegans. pme-1 and pme-2 are the C. elegans orthologs

of PARP1 and PARP2, respectively [28]. pme-3 and pme-4 are

homologs of Poly (ADP-ribose) glycohydrolase (PARG), which

depolymerizes ADP-ribose polymers into monomeric ADP-ribose

units [46]. pme-5 is the C. elegans ortholog of PARP5, which is also

known as TANKYRASE [47]. All him-1; pme double mutants exhibit

decreased brood sizes and an increase in the frequency of arrested

embryos, suggesting that him-1 interacts with all identified

members of the PAR metabolism family in C. elegans (Figure 3B).

Strikingly, him-1; pme-2(ok344) double mutants had a very high

frequency of protruding vulva phenotype (Figure 3C) indicative of

somatic cell proliferation defects.

PARP inhibition reduces the viability of SMC1 depleted
HCT116 cells

The strong negative genetic interactions in C. elegans between a

hypomorphic cohesin mutation and the pme mutations prompted

us to test whether this interaction is conserved in human cells using

the colon cancer-derived, near diploid cell line, HCT116 [48]. We

used an early generation PARP inhibitor, benzamide [49], to

inhibit PARP function in a panel of HCT116 cells treated

individually with siRNA against several cohesin genes (SMC1,

SMC3, SCC2/NIPBL, SCC1/RAD21, SCC3/STAG1 and SCC3/

STAG3). High content digital imaging microscopy (HC-DIM) was

used to count Hoescht stained nuclei. Although HC-DIM is not

necessary to count nuclei it allows more nuclei to be counted and

more technical replicates to be performed in a timely manner.

This preliminary assay suggested that HCT116 cells depleted of

cohesin were sensitive to PARP inhibition (Figure S10). We further

investigated this interaction using a more specific, third generation

PARP inhibitor, olaparib, which has been evaluated in phase II

clinical trials in the treatment of HR deficient breast and ovarian

cancers [17,19,20]. BRCA1 siRNA treated cells were used as a

Figure 2. C. elegans genetic interactions. Graph depicting the frequency of worms with a protruding vulva (Pvl) when VC2010 (WT) and SMC1/
him-1(e879) strains are treated with various RNAi constructs. The RNAis tested targeted the C. elegans homologs of genes that interact with one of the
cohesin query genes in the S. cerevisiae validated network (Figure 1C). Homologs with associated e-value BLAST scores can be found in Table S1.
Interactions are ranked by the difference between the frequency of Pvl in VC2010 and him-1 strains. The predicted value is the sum of both the him-1
and N2 background Pvl frequencies and the effect of the RNAi on WT. unc-22 and 6 randomly chosen RNAi clones from chromosome 1 are included
as negative controls. Error bars represent SEM.
doi:10.1371/journal.pgen.1002574.g002

Cohesins Interact with Replication Fork Mediators
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positive control for PARP inhibition as BRCA1-deficient cells are

highly sensitive to PARP inhibitors [15,16]. Accordingly, we found

BRCA1 siRNA treated cells were very sensitive to olaparib

(Figure 4). We also found by visual inspection that SMC1 siRNA

treated cells exhibited reduced cell proliferation in response to a

range of olaparib concentrations using a 24 well plate survival

assay whereas untreated and GAPDH siRNA treated cells

appeared only mildly affected (Figure 4A). We quantified the

specific sensitivity using an expanded 10 cm dish survival assay

where cells treated with siRNAs were continuously exposed to

0.6 mM olaparib and colonies were stained and counted after a 10

day period (Figure 4B, 4C, 4E). We also saw evidence that

HCT116 SMC1 knockdown cells exposed to olaparib exhibited

proliferation defects using HC-DIM. Overall, we observed a

significant dose dependent decrease in cell number in the BRCA1

and SMC1 treated cells as compared to GAPDH (Figure 4D).

PARP inhibition reduces viability in HTB-38, a human cell
line with low parylation levels

We were concerned that the effect of PARP inhibition was

complicated by the fact that HCT116 cells have a high level of

endogenous PARP activity due to deficiencies in mismatch repair

(MMR) [50,51]. Consistent with previous reports, we observed

relatively high PAR levels, which are indicative of PARP activity,

in untreated HCT116 cells (Figure 5A). We also found that

HCT116 cells treated with 0.6 mM olaparib showed a 54%

Figure 3. Sub-optimal cohesin requires replication fork mediators. A) The validated S. cerevisiae cohesion network was filtered to include
only SL interactions. Gene nodes are colored according to the legend in Figure 1C. B) Brood size (total number of eggs laid), embryonic lethality, and
percentage of male progeny and C) Frequency of Pvl in the indicated single and double mutants. Error bars represent SEM.
doi:10.1371/journal.pgen.1002574.g003

Cohesins Interact with Replication Fork Mediators
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decrease in viability as measured by a colony forming assay. To

rule out the confounding effects of elevated PAR in the HCT116

cell line, we repeated the colony forming assay, with and without

olaparib treatment, on a second colon cancer-derived cell line that

was MMR-proficient, HTB-38. First, we confirmed that, as

previously reported, HTB-38 cell lines did not exhibit increased

PAR levels (Figure 5A). We found that GAPDH and untransfected

HTB-38 cells were insensitive to olaparib (Figure 5B, 5C) unlike

the HCT116 cells that showed mild sensitivity to olaparib

(Figure 4B). However, olaparib treatment decreased viability in

the HTB-38 cells treated with siRNA targeting either BRCA1 or

SMC1, confirming the sensitivity to PARP inhibitors of SMC1-

depleted cells. To determine whether the sensitivity to PARP

inhibition was limited to SMC1 or was more general, extending to

defects in other cohesin components, we treated cells with siRNA

targeting the cohesin components SMC3 or RAD21/SCC1. We

observed growth defects of similar strengths among all cohesin

subunits tested. These experiments demonstrate that cells with

cohesin defects are sensitive to PARP inhibition.

Discussion

Cohesin dysfunction appears to have a significant role in the

formation and progression of tumors (Reviewed in [1]). Here we

show that replication fork stability genes are required for viability

in cohesin mutants across species. Using data from yeast SGA

analyses we were able to predict synthetic lethal interactions in

human cells between cohesin mutations and PARP inhibitors,

even though PARP is not present in yeast, demonstrating the

power of large-scale genetic interaction screens for synthetic

lethality with genes mutated in tumors.

Figure 4. SMC1 siRNA treated human cells are sensitive to the PARP inhibitor olaparib. All experiments were performed with HCT116, a
near diploid, colon cancer derived cell line that is MMR deficient. In all panels HCT116 cells are treated with siRNA targeting GAPDH, BRCA1 or SMC1 or
untreated (in indicated). A) 24 well plate clonagenic survival assay with HCT116 siRNA treated cells exposed to olaparib concentrations up to 1.5 mM.
B) 10 cm dish clonagenic survival assay looking at the number of colonies after 10 days in the presence of 0.6 mM olaparib. C) Normalized colony
numbers from the clonagenic assay. D) HC-DIM counting Hoescht positive nuclei of siRNA treated cells after 3 days of olaparib exposure. E) Western
blot of samples collected from the 10 cm survival assay (B). Error bars represent SEM.
doi:10.1371/journal.pgen.1002574.g004

Cohesins Interact with Replication Fork Mediators
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The spectrum of cohesin genetic interactions
SL interactions in model organisms can identify candidate genes

or pathways that can be targeted for inhibition leading to specific

killing of tumor cells with specific mutations [13]. We used SGA

technology in yeast to generate a network of negative genetic

interactions, using hypomorphic mutations in cohesin as query

genes, with the aim of elucidating the genetic pathways needed for

survival when cohesin function is compromised. By overlaying the

results from three separate SGA screens, using two cohesin core

components (SMC1 and SCC1) and one cohesin loader (SCC2) as

queries, we identified common interactions with compromised

cohesin rather than those that were allele or component-specific.

While the screens found scores of single negative interactions with

each of the three query mutants (Figure 1A), the goal of this study

was to identify interactions that are more likely to be SL with the

wide-range of cohesin-associated mutations observed in human

tumors. Negative genetic interactions specific to only one of the

three cohesin mutants may reveal specific aspects of cohesin

components and these interactions warrant further investigation.

The filtered S. cerevisiae interaction set identifies many processes

that would be predicted to interact with cohesin dysfunction. For

example, mutations affecting the mitotic spindle, kinetochore and

microtubules, including prefoldin, were found to result in synthetic

growth defects with at least two of the three query mutants. Given

the role of cohesin in regulating chromosome segregation leading

to the anaphase transition [9], mutations affecting the spindle or

kinetochore would be predicted to interact with cohesin mutations.

Other interactions that do not appear to be related to cohesin

Figure 5. SMC1 and PARP genetically interact in HTB-38 human cells. All experiments were performed with HTB-38, a near triploid colon
cancer derived cell line that is MMR proficient. A) Western blot stained with anti-PAR. BV80 is MLH12/2 and is the matched line to BV79 which is
MLH1+/2. RPE-1 was used as a control cell line for measuring PAR levels. RPE-1 is an hTERT immortalized retina epithelial cell line. B) Normalized
colony numbers for HTB-38 cells treated with the indicated siRNA and exposed to 0.6 mM olaparib. C) Raw colony numbers for the clonagenic assay
shown in B. Error bars represent SEM.
doi:10.1371/journal.pgen.1002574.g005
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function may represent more general effects on cell viability; for

example ten interactions were identified with components of

mRNA processing and the translation machinery. In these cases,

further work will be needed to ascertain whether this is a general

synergistic effect on viability or whether the interaction results in a

specific defect.

When interactions were filtered based on strength, keeping only

those interactions that were SL, the predominant genes were those

involved in mediating replication fork progression. These included

two of the three genes in the alternative RFCCTF18, the replisome

components CSM3 and CTF4, the replication and cohesion-

associated helicase CHL1, and the cohesin regulator RAD61. All of

these interactors are known to mediate replication fork stability

and progression [36–42,52–54]. Furthermore, mutations affecting

these genes also result in chromosome cohesion defects [55],

thereby linking replication fork stability and sister chromatid

cohesion. The SL interactions are not specific to mutations that

accelerate or impair replication fork progression. In fact, the Alt-

RFCCTF18, which promotes replication fork progression, does so

by regulating the acetylation of Smc3p [36], which in turn inhibits

the association of Smc3p and Rad61p [52,53]. In contrast to the

Alt-RFCCTF18, Rad61p binding to Smc3p slows replication fork

progression [36]. Rad61p is known to destabilize the association

between cohesin and chromosomes [38]. The requirement for

RAD61 in the cohesin mutants is particularly interesting given the

correlation of elevated expression of the human RAD61 ortholog,

WAPL, with certain cancers. Its importance in maintaining the

viability of tumor cells was demonstrated by the fact that

knockdown of WAPL in cervical cancer cell lines resulted in cell

death [4]. Similarly, we observe synthetic lethality when we

knockout RAD61 in the cohesin mutants, thereby demonstrating

that Rad61p function is needed when cohesin function is

compromised.

The synthetic lethality of the cohesin mutations with replication

fork mediator mutations suggested that the replisome must be

stabilized when cohesin is mutated to ensure proper progression.

Interestingly, cohesin mutants did not show negative genetic

interactions with DNA repair genes such as the RAD52-

complementation group of HR genes, the RecQ helicase SGS1,

or the structure-specific endonuclease MUS81. In addition, the

cohesin mutants do not accumulate Rad52p foci [44], which is

indicative of increased DNA damage or DNA repair intermedi-

ates. These data suggested that cohesin mutations on their own do

not lead to DNA double strand breaks or fork collapse, both of

which require HR for resolution. Cohesin dysfunction may impact

replication fork dynamics, but these events are tolerable in the

presence of fork stabilizing proteins. Cohesin may also have a role

in modulating fork progression. As vertebrate replicons span

between approximately 60 and 140 kb [56,57] and cohesin is

associated, on average, with DNA every 10–20 kb [58–61], each

fork must theoretically pass several cohesin complexes [36]. One

mechanism to prevent fork collapse is to minimize the distance

between the leading strand helicase and the polymerase. If the

polymerase stalls and the helicase continues to advance, single

stranded DNA is exposed and the fork becomes more fragile.

Rad61p association with cohesin is thought to induce a closed

cohesin conformation that limits fork progression [36]. When the

cohesin ring changes to a more restrictive conformation it may

prevent helicase and polymerase separation. Support for cohesin

moderating fork progression comes from the finding that human

SMC1 is phosphorylated by ATR in response to S phase stress

[62] and that this modification is required for activation of the

replication checkpoint.

PARP inhibition reduces the viability of cohesin-depleted
cells

In higher eukaryotes, additional factors regulate replication fork

stability and progression, one example being the family of

poly(ADP-ribose) polymerases (PARPs). PARPs play a major role

in DNA metabolism including aspects of repair and replication

(reviewed in [63]). PARP was recently found to be activated by

stalled replication forks and promoted replication fork restart [45].

We found that loss of PARP and PARG orthologs synergized with

a mutation in him-1/SMC1 in C. elegans resulting in a decrease in

cell and organismal viability. In human cells, depletion of SMC1,

SMC3 or SCC1 by siRNA caused sensitivity to the PARP-inhibitor

olaparib. Interestingly, this sensitivity was comparable to that

observed when we depleted BRCA1 by siRNA and then treated

cells with olaparib. The interaction between multiple cohesin

subunits and PARP was found to be cell line independent,

suggesting a robust interaction. Recent emerging hypotheses have

proposed alternate fork restart pathways where one branch is HR

mediated and the other requires PARP [63]. It has been suggested

that BRCA1/2 are synthetic lethal with PARP1/2 because of an

inability to restart stalled or collapsed forks. This hypothesis is

interesting given the connection we observe between cohesin and

fork progression mediators.

Given our findings regarding the importance of replication fork

mediators in the presence of cohesin mutations, it is possible that

PARP activity is needed for replication fork stability or lesion

bypass in the cohesin mutants or knockdown cell lines. However,

while synthetic lethal interactions between cohesin mutations and

replication fork mediators led to testing PARP inhibitors, the

mechanism of the PARP-cohesin interaction is not known because

PARP and cohesin each have multiple functions that could be co-

dependent. For example, it is possible that the synthetic lethality of

cohesin knockdown with PARP inhibition is related to the role of

cohesin in HR [64] PARP inhibition is known to be effective in

killing cells with defective HR, such as BRCA1, BRCA2 and ATM-

deficient cells [15,16]. It is possible that the synthetic lethality of

cohesin knockdown and PARP inhibition is due to either or both

mechanisms. Although further investigation is needed to identify

the specific mechanism of lethality, our data indicate PARP

inhibition is a potential treatment for tumors with cohesin or

cohesin-related mutations, which represent a significant propor-

tion of colorectal, ovarian, breast and other tumors [1–3].

Materials and Methods

S. cerevisiae strain construction and SGA screens
Temperature sensitive (ts) cohesin alleles were marked with

URA3 as described previously [65,66] and were used as query

genes in SGA screens. Query genes were screened against the non-

essential deletion collection [31] and a collection of DAmP [33]

and ts [32] alleles representing essential genes. SGA screens were

performed in biological triplicate, each with three technical

replicates using a Singer RoToR essentially as described [67].

SCC1 and SCC2 were screened at 30uC while SMC1 was screened

at 25uC due to slow growth at higher temperatures. See Tables S7

and S8 for a full list of S. cerevisiae strains used in this study.

Double mutant reconstruction and random spore
analysis

Double heterozygous mutants were recreated by mating each of

the single mutants and selecting on 2ura, +G418 plates. The

cohesin mutant parent strains were the same query genes used for

SGA screens and the other parent was pulled directly from the

array plates. Heterozygotes were confirmed by PCR analysis to
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confirm the identity of the array strain. External primers, unique

to the upstream and downstream sequences of each gene locus

assayed, were used in PCR reactions in most cases. Random spore

was performed at 25uC as previously described [30]. Tetrad

analysis would have been a true independent measure of a genetic

interaction but the cohesin mutants, singly, exhibit relatively high

rates of random spore death, making tetrad analysis infeasible on

this scale. Briefly, spores were plated onto haploid selection plates

containing canavanine and thialysine. Single selection plates were

additionally either 2ura or +G418. Double mutants that did not

grow on the double selection plates (2ura, +G418) were

considered SL. Several isolates of viable double mutants were

isolated from random spore analysis for growth curve analysis.

S. cerevisiae growth curves
All viable double mutants were analyzed by growth curve

analysis as previously described [30] with slight modifications.

Briefly, strains were grown overnight in YPD, diluted to an optical

density600 nm (OD) of 0.2 and incubated for 4 hours at 25uC.

Strains were then diluted to an OD of 0.3 and 100 ul was added to

each well of a 96 well plate. 100 ul of fresh YPD was added to

each well for a final OD of 0.15. For each plate, fifteen replicates

were performed for wild type (WT), while three replicates were

performed for each of the other strains analyzed. OD readings

were made every 30 min, after 3 min of shaking, over a period of

24 hrs at 26uC (5 plates) or 30uC (6 plates) on a Tecan M1000.

Growth curves for each strain can be found in Figure S3.

Growth curve analysis
Strain fitness was defined as the logarithm of the area under the

curve (AUC) and was calculated using Simpson’s rule in R [68].

Separate, parallel analyses were performed for plates grown at

26uC and 30uC. Measurements were normalized for plate effects

such that the average estimated strain fitness for the wild type

curves was constant across each set. Interaction effects were

assessed with a linear model of the form:

Fq,g~Fwtztqztgztq,g

Fq,g is the fitness for a double-knockout of query gene q and non-

essential gene g, Fwt is the fitness for the wild type growth curves,

tq is the single-knockout effect for each of the three query genes

(scc1-73, smc1-259, scc2-4), tg is the single-knockout effect for each

of the other non-essential genes assessed, and tq,g is the double-

knockout interaction effect associated with genes q and g. Under

additive neutrality, non-interacting gene pairs will have an

interaction term tq,g of zero:

Fneut
q,g ~Fwtztqztg tq,g~0

� �

Values of tq,gv0 indicate SS interactions, while values of tq,gw0

indicate alleviating interactions. After fitting this model, the

significance of the estimated interaction effects tq,g was assessed.

See Text S1 and Tables S2, S3, S4 and Figures S4, S5, S6, S7 for

additional details and statistical analysis.

Homolog identification
Homology was determined using protein BLAST to query the S.

cerevisiae protein sequence against the non-redundant protein

sequences database using default parameters. S. cerevisiae ORF

translation sequences were obtained from the Saccharomyces

Genome Database (SGD) and Homo sapiens (taxid:9606) and

Caenorhabditis elegans (taxid:6239) organisms were queried for

sequence matches. The algorithm used was blastp (protein-protein

BLAST) and all other parameters were set as default settings.

Homology was considered to exist if an identified match had an

expect value less than 1e-05. In cases where no homologous match

was identified in either C. elegans or H. sapiens, ‘No human, C. elegans

match’ was entered into Table S1. In some cases, such as with the

S. cerevisiae gene DCC1, no direct C. elegans sequence match could

be found. However, if the identified H. sapiens protein sequence

match was used as a BLAST query against the C. elegans database a

match, K09H9.2, could be obtained. In analogous situations, such

as with the S. cerevisiae gene MDM20, the C. elegans sequence

obtained through BLASTp was used to query the human database

for homologous sequences. In these cases if the identified match

had an expect value greater than 1e-05 the literature was

consulted to determine whether the identified protein was

considered homologous by other independent groups. An example

where the literature was consulted was to identify the human

homolog of S. cerevisiae RAD61, WPL-1.

C. elegans genetic interactions and SYTO12 staining
The Pvl somatic cell proliferation assay was performed as

previously described [30]. SYTO12 staining was performed on

young adult worms that had been pre-treated with RNAi by

feeding by bleaching gravid adults onto RNAi plates. Worms were

incubated in the dark with 33 mM SYTO12 in M9 buffer for 3 hrs

and then destained for 1 hour on fresh RNAi plates. Images were

captured immediately after destaining on a Zeiss Axioplan 2

microscope using a 406 lens.

C. elegans double mutant strain construction and brood
analysis

See Table S9 for strains used. him-1(e879) males were mated to

either pme-1(ok988), pme-2(ok344), pme-2(tm3401), pme-3(gk120),

pme-4(ok980) or pme-5(ok446) hermaphrodites. Homozygous him-1

mutants were followed by the high frequency of males (,10%) and

all other mutations were followed by PCR. pme-1 him-1 animals

were balanced by hT2 and homozygous him-1; pme-2(ok344)

animals were balanced by mIn1.

Cell culture and siRNA
Cells were cultured as previously described [14]. siRNAs and

transfection reagents were purchased from Dharmacon. For

siRNA transfection experiments 300,000 and 550,000 cells were

seeded into 6-well dishes for HCT116 and HTB-38 cell lines,

respectively. Transfection occurred 24 hours after seeding using

ON-TARGETplus 25 nM siRNA pools. Transfection reagent was

removed 12 hours post-transfection and following an additional 6–

8 hours of recovery cells were transferred to fresh culture dishes

and allowed to expand for 3–10 days, depending on the assay. For

the clonogenic survival assays 1000 and 500 cells were seeded per

well in 24 well dishes and 10 cm plates, respectively. Cells were

allowed to attach for 10 hours and then olaparib was added at the

indicated concentration. Cells were fixed with 4% paraformalde-

hyde (PFA) in phosphate buffered saline (PBS) and stained using

0.1% crystal violet in 95% ethanol after 7 and 10 days for the 24

well plate and 10 cm dishes, respectively for HCT116. HTB-38

cells are slower growing and were stained with crystal violet at day

12. Drug exposure was continuous during this time and the 10 cm

dishes were supplemented with fresh media containing 0.6 mM

olaparib at day 5. High content digital imaging microscopy (HC-

DIM) assays were performed by plating 1000 cells per well in 96

well plates. Cells were allowed to settle for 10 hours and then

either benzamide or olaparib was added at the indicated
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concentration. Cells were fixed with PFA after 3 days of drug

exposure and stained with Hoescht dye #33258 (Molecular

Probes). Plates were subjected to HC-DIM using a Cellomics

ArrayScan with a 206 (81 images/well) or 106 (16 images/well)

dry lens. The total number of Hoescht-positive nuclei was

determined using a Cellomics Target Activation algorithm and

normalized to each siRNA treatment (GAPDH, BRCA1 or SMC1).

Western blots were performed on protein extracts collected from

asynchronous, sub-confluent cells harvested 3 days post-transfec-

tion as detailed previously [2]. Olaparib was purchased from

Selleck and Benzamide was purchased from Aldrich. Antibodies

were purchased from Millipore (BRCA1 07-434), Abcam (SMC1

ab9262, alpha Tubulin ab56476) and Trevigen (PAR 4336-BPC-

100). HTB-38 and RPE-1 cells were purchased from ATCC and

BV79 and BV80 were kindly provided by B. Vogelstein.

Supporting Information

Figure S1 Cohesin mutations found in colon tumors. Compar-

ison of SMC1 orthologs in H. sapiens, C. elegans, and S. cerevisiae.

Mutations identified in colon tumors are indicated on the human

gene and protein domains are shown on the S. cerevisiae gene. The

number of amino acids (aa) are shown on the right hand side. B)

SCC2 mutations. C) SCC1 mutations. D) Schematic of cohesin and

loaders (adapted from [12]).

(TIF)

Figure S2 SGA network. Negative genetic interactions from

three screens were overlaid to find common interactions. Green

circles indicate genes conserved in humans and purple circles

represent genes with no identifiable sequence orthologs. Circles

outlined in black represent essential S. cerevisiae genes. 55 genes, not

including the cohesin query genes, are represented in this figure.

(TIF)

Figure S3 Growth curve replicates at A) 26uC and B) 30uC. scc2-

4 growth curves were only run at 30uC and smc1-259 curves were

only assayed at 26uC. scc1-73 curves were run at both

temperatures because unlike the other two alleles, scc1-73 shows

a phenotype at both temperatures. In most cases if an interaction

with scc1-73 was present, it was more pronounced at 30uC. Some

interactions were tested with multiple alleles of the same gene. If

an interaction was identified the second allele was not always

assayed (denoted by black circles). Double mutants that were SL

according to random spore could not be analyzed by growth curve

analysis and are marked with ‘SL’. Gene A mutations refer to

cohesin alleles and gene B mutations refer to genes identified in the

SGA screens.

(TIF)

Figure S4 Strain fitness at 26uC ranked by interaction

magnitude. Each growth curve is assigned an individual estimate

of strain fitness reflecting the area under the curve (AUC) and

these are averaged for each strain. A neutral strain fitness estimate

is computed for each interaction and represents the theoretical

strain fitness of the double mutant under conditions of an additive,

non-synergistic genetic interaction. Synergistic interactions occur

when the experimental double mutant strain fitness deviates from

the neutral estimate. Interactions are ranked according to the

difference between the experimental and neutral strain fitness

estimates with stronger negative interactions occurring at the top

of the figure.

(TIF)

Figure S5 Strain fitness at 30uC ranked by interaction

magnitude. See Figure S4 legend for additional details.

(TIF)

Figure S6 Interaction T-statistics (26uC). T-statistics are ranked

according to magnitude. Dotted lines indicate a p-value cut off of

.05, and dashed lines indicate a Bonferroni corrected p-value of

.05.

(TIF)

Figure S7 Interaction T-statistics (30uC). T-statistics are ranked

according to magnitude. Dotted lines indicate a p-value cut off of

.05, and dashed lines indicate a Bonferroni corrected p-value of .05.

(TIF)

Figure S8 Replicative stress and increased apoptosis is seen in

him-1 mutants when treated with RNAi against genes that

mediate replication fork progression. A) Graph showing the

average number of apoptotic corpses per gonad arm. Predicted

bars represent the sum of the background levels of apoptotic

corpses in WT and him-1 and the effect of the RNAi on WT. B)

Representative images showing apoptotic corpses in untreated WT

and him-1 worms and worms treated with RAD61, CSM3, and

CTF8 RNAi. Error bars represent SEM.

(TIF)

Figure S9 Knockout of RAD51 does not rescue the lethality of

cohesion, fork mediator double mutants. RAD51 was replaced with

the resistance gene for hygromycin in double heterozygous smc1-

259 and fork mediator (CSM3, CTF4, CTF8, DCC1, RAD61)

mutants. The same was done for scc1-73, fork mediator double

mutants. Random spore was performed on all 10 triple mutants

and no rescue of lethality was seen in any cases. Random spore

results are shown for A) scc1-73, csm3D, rad51D and B) smc1-259,

ctf8D, rad51D triple heterozygotes.

(TIF)

Figure S10 HCT116 cells treated with siRNAs targeting various

cohesion genes are sensitive to the PARP inhibitor Benzamide.

HCT116 cells were transfected with the siRNA indicated and

exposed to 5 mM Benzamide for 3 days before fixing, staining

with Hoescht, and counting cell number using HC-DIM. Error

bars represent SEM.

(TIF)

Table S1 S. cerevisiae, C. elegans and human orthologs.

(DOCX)

Table S2 Double mutant interactions ranked by T-statistic at

26uC.

(DOCX)

Table S3 Double mutant interactions ranked T-statistic at 30uC.

(DOCX)

Table S4 Summary of interactions identified by Growth Curve

Analysis.

(DOCX)

Table S5 Reported CIN Phenotypes of cohesin interacting

genes.

(DOCX)

Table S6 SGA scores for the major genes involved in

homologous recombination.

(DOCX)

Table S7 Diploid S. cerevisiae strains used in this study.

(DOCX)

Table S8 Haploid S. cerevisiae strains used in this study.

(DOCX)

Table S9 C. elegans strains.

(DOCX)
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