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Abstract

Neither genetic nor environmental factors fully account for variability in individual longevity: genetically identical
invertebrates in homogenous environments often experience no less variability in lifespan than outbred human
populations. Such variability is often assumed to result from stochasticity in damage accumulation over time; however, the
identification of early-life gene expression states that predict future longevity would suggest that lifespan is least in part
epigenetically determined. Such ‘‘biomarkers of aging,’’ genetic or otherwise, nevertheless remain rare. In this work, we
sought early-life differences in organismal robustness in unperturbed individuals and examined the utility of microRNAs,
known regulators of lifespan, development, and robustness, as aging biomarkers. We quantitatively examined
Caenorhabditis elegans reared individually in a novel apparatus and observed throughout their lives. Early-to-mid–
adulthood measures of homeostatic ability jointly predict 62% of longevity variability. Though correlated, markers of
growth/muscle maintenance and of metabolic by-products (‘‘age pigments’’) report independently on lifespan, suggesting
that graceful aging is not a single process. We further identified three microRNAs in which early-adulthood expression
patterns individually predict up to 47% of lifespan differences. Though expression of each increases throughout this time,
mir-71 and mir-246 correlate with lifespan, while mir-239 anti-correlates. Two of these three microRNA ‘‘biomarkers of aging’’
act upstream in insulin/IGF-1–like signaling (IIS) and other known longevity pathways, thus we infer that these microRNAs
not only report on but also likely determine longevity. Thus, fluctuations in early-life IIS, due to variation in these microRNAs
and from other causes, may determine individual lifespan.
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Introduction

Inter-individual variation in human longevity has not been

found to be under substantial genetic control, with heritability

generally between 15% and 30% [1,2]. At the same time, shared

environmental factors contribute little in these human studies, and

can be completely controlled in large-scale experiments on inbred

invertebrates without abrogating lifespan variability [3–5]. Indeed,

rearing Caenorhabditis elegans in a homogenous, chemically defined

liquid medium more than doubles the coefficient of variability in

lifespan compared to feeding the animals live bacteria on solid

agar (a less-homogenous environment) [6]. As the external

environment of C. elegans can be easily controlled, the genetics of

its lifespan are well understood [7], and its developmental plan is

famously invariant, this nematode is an ideal organism in which to

investigate how and when individuality arises, and how these

differences produce a phenotype as variable as lifespan [8].

The identification of ‘‘biomarkers of longevity’’ – measurable

parameters that predict individual longevity better than chrono-

logical age [9] – will help pinpoint genetic and physiological

processes that promote or defer senescent decline. Further, such

biomarkers may help clarify whether lifespan differences are

simply the result of variable accumulation of damage over time, or

whether they may also result from gene-regulatory states,

potentially set early in life, that determine individual robustness

[10]. To date, most identified and proposed biomarkers in C.

elegans have largely been phenomenological, downstream indica-

tors of homeostatic maintenance. One important class of such

markers is locomotory function. Herndon and colleagues showed

that a qualitative evaluation of individual locomotory ability

correlates with remaining lifespan of same-aged animals, and,

moreover, that these movement classes correlate with the degree of

sarcopenia (decline in muscle mass and function) in those

individuals [11]. Later work showed quantitative correlations

between the rate of decrease in body movement and lifespan [12],

as well as between the span of functional pharyngeal pumping or

body movement and lifespan [13,14]. In addition to muscle

decline, general decreases in macromolecular homeostasis have

long been observed in aging C. elegans via increases in non-

hydrolysable, autofluorescent ‘‘age pigments’’ such as lipofuscin

[15] in intestinal lysosomes [16–18]. Lipofuscin accumulation

correlates with the qualitative movement classes defined in

Herndon et al. [19], though such accumulation has not been

directly shown to predict an individual’s future longevity, and in

one recent work was specifically not found be predictive of

longevity [20]. (This last observation was made of green-

wavelength autofluorescence, which is more specific for flavin

compounds, while lipofuscin per se fluoresces most strongly in blue

wavelengths [19,21].) Lastly, animals that reach their final adult

size more rapidly have shorter lifespans [14]. As part of this work,
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we systematically validated adult growth and movement rates,

tissue homeostasis, and age pigment accumulation as phenome-

nological biomarkers of longevity in nematodes, and further, by

measuring multiple biomarkers per individual, deduced the

relationships among these markers.

While they may suggest clinically relevant markers of human

aging, such measurements do little to elucidate the genetic

mechanisms underlying lifespan variability. Transcriptional pro-

filing of aging C. elegans has suggested sets of genes that change

expression during aging and may thus report an animal’s

‘‘physiological age’’ [22–24]. The definitive test remains demon-

strating that a particular gene’s expression level predicts future

longevity on an individual basis. The first genetic predictor of

individual lifespan was identified by Rea and colleagues, who

demonstrated that the ability to upregulate a reporter for

expression of the heat-shock protein hsp-16.2 after a mild heat

stress correlates with post-stress longevity [25]. However, such

stress also induces a protective effect [26]. Thus it is not clear

whether the measured effect reflects innate differences in ‘‘heat-

shock response capacity’’, which in un-stressed animals might also

correlate with future longevity, or whether the degree of heat-

shock response is determined stochastically at the time of the stress.

Recently, mid-life expression variation in several additional genes

in C. elegans, including daf-16 and its well-known target sod-3, have

been shown to predict future longevity in un-perturbed individuals

[20]. Therefore, we sought regulatory factors further upstream

that might have constitutive activities that determine robustness to

damage and/or longevity in unperturbed animals.

MicroRNAs (miRNAs) – short non-coding RNAs that bind to

and regulate the expression of target mRNAs – have been

proposed as determinants of organismal robustness to environ-

mental variation [27], a prediction that has been borne out

experimentally [28,29]. Similarly, miRNAs may regulate longevity

by determining individual capacities to respond to damage [30].

lin-4 was the first miRNA to be shown to regulate lifespan and

stress-resistance, through its action on the insulin/IGF-1-like

signaling (IIS) pathway [31], which is well known for its role in

longevity determination [32–34]. Many miRNAs change expres-

sion levels during aging in C. elegans [35], and recently mir-71, mir-

239, and mir-246, all of which increase in expression over time,

have been shown to promote (mir-71, mir-246) and antagonize (mir-

239) longevity and stress-resistance, through IIS (mir-71, mir-239)

and the DNA damage response pathway (mir-71) [36]. Further,

miRNAs in other contexts have proven to be able biomarkers of

various human pathologies [37–40] and perhaps also aging [41].

Here we report that mir-71, mir-239, and mir-246 expression

profiles, measured by promoter::GFP reporter constructs, predict

individual longevity in C. elegans.

Results

Lifelong Observation of Individual C. elegans
To determine early-life correlates of eventual longevity, we

developed a minimally invasive individual-nematode culture

system (Figure 1A) that allows in situ imaging of freely moving,

unanesthetized animals. Briefly, single eggs at the pre-hatch

‘‘pretzel’’ stage and a bacterial food source are deposited atop

PEG-1000-methacrylate hydrogel pads embedded in and cross-

linked to a glass slide (see Materials and Methods). The top of the

slide is covered with liquid polydimethylsiloxane (PDMS), which

polymerizes in approximately 12 hours at 23uC to yield a thin,

transparent, and gas-permeable membrane that reduces desicca-

tion and prevents contamination. (All ages reported in this work

refer to time after slide preparation; as approximately 98% of

viable eggs hatched within 5 hours, we simply report this as ‘‘age

post-hatch.’’) All strains were crossed into the temperature-

sensitive fertility-defective strain spe-9(hc88) and all assays were

conducted at 23uC to prevent reproduction [42]. We obtained

good developmental synchrony with this method; after 40 hours,

most animals are near the middle of the 4th-larval stage, based on

vulval morphology (not shown). The mean lifespan of 10.7 days at

23uC in this apparatus is similar to that in standard culture

conditions, according to previous reports and our own controls

(see Materials and Methods).

At each timepoint, brightfield/fluorescence image pairs were

acquired for each animal, and movement rates and health status

evaluated by examining motion after stimulation with 0.25

seconds of green light; animals that did not respond were deemed

to have perished (Figure S1). Figure 1B illustrates the distribution

of lifespans of 463 individuals cultured in this apparatus and the

corresponding survival curve.

In this fashion, measurements can be made on individual

animals throughout their lives and correlated with eventual

longevity. In particular, the position of each animal was identified

in brightfield images via custom semi-automated software,

allowing quantification of various morphological and image-based

features. As an example, Figure 1C illustrates the length of one

particular animal measured at daily intervals from hatching until

death. In attempting to determine correlates of future longevity,

we focused on measurements made during days 3–7 post-hatch,

stretching from the attainment of adulthood (beginning of the

reproductive period) to the onset of mortality. Less than 3% of the

animals die before day 7; while measurements made later often

correlate better with remaining longevity, they are of more limited

utility as more of the study population has died before the

measurements could be made. The day 3–7 range is illustrated in

Figure 1C along with the two measures we employed to

summarize data in this range: the mean level of a particular

measurement over that span, and the slope of a least-squares linear

fit of the data in that span.

As noted previously [14], we observed that adult C. elegans

tend to shrink over time (Figure 1D). This shortening is not

observed in the length distributions of heat-killed animals of

different ages [43]; we also anecdotally observed that animals

often ‘‘relax’’ and lengthen after death. Thus, the shortening

appears to reflect a physiological process and not an actual

change in the size of the cuticle. As such, we wished, as an

Author Summary

Why do some individuals live longer than others?
Unexpectedly, genetic differences contribute surprisingly
little to lifespan variation in humans. The situation is
thrown into relief in studies of C. elegans, in which
genetically identical siblings reared in identical environ-
ments usually experience different lifespans. In this work,
we show that physiological differences between identical
animals begin to appear relatively early in life and that
markers of ill health in young adulthood presage shorter
lifespans. Using fluorescent markers to examine the level
of activation of several genes, we found three regulatory
microRNA genes that vary in activity between individuals
in a manner that predicts future lifespan. Moreover, two of
these regulate insulin signaling, which is well known to
alter lifespan in diverse species when experimentally
manipulated. This indicates that different levels of insulin
signaling in otherwise identical individuals may determine
differences in lifespan.

MicroRNA Predictors of Longevity in C. elegans
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illustrative test case, to examine whether size and/or size

maintenance over time had any relevance for eventual lifespan.

Figure 1E illustrates a retrospective analysis: the average length-

versus-time profile is shown for animals grouped according to

the number of days lived. Quite clearly, longer-lived animals are

both markedly larger than their short-lived siblings and better

able to maintain their length over time. This analysis can be

made prospectively as well: the slope of the length vs. time curve

between days 3 and 7 (as per Figure 1C) correlates well with

each animal’s future longevity (Figure 1F). Specifically, 27% of

overall lifespan variability is accounted for by the days 3–7

length slope alone. (This correlation, and all others shown, is the

aggregate of several trials, described in Table S1; per-trial

results are given in Figure S3.) The mean length over that time

range also correlates positively with lifespan; including both in

the regression analysis increases the R2 measure of lifespan-

predictive ability to 32%. We found similar correlations with

volume and surface area; however, length is the most robust.

Note that the R2 value is often an over-optimistic estimate of

how well a model will predict values from future data, due to

‘‘over-fitting’’ of particular features of the original dataset,

particularly with least-squares models, small or outlier-prone

datasets, and/or multiple independent parameters. We therefore

also estimated future predictive ability via leave-one-out (l.o.o.)

cross-validation, in which the prediction for each data point is

generated from a model constructed using all other data points.

For the length measurements the l.o.o. R2 is 31%.

Finally, regression models predict lifespan quantitatively; we can

simplify this to a categorical measure to ask how well above- or

below-average predicted longevity translates to actual longevity.

Figure S2A shows the distributions of observed lifespans for

animals with above-average and below-average predicted longev-

ity based the two length measurements (days 3–7 slope and mean);

Figure S2B illustrates the corresponding survival curves. We find

that above-average length-predicted lifespan is 71% sensitive and

specific for above-average longevity. (Defining the test about the

average predicted and measured values yields balanced sensitivity

and specificity; other thresholds trade off between the two.) The

above-average-predicted-lifespan cohort has a 17% increase in

mean lifespan compared to the below-average cohort.

Phenomenological Predictors of Longevity
It had been previously speculated that that age pigments, known

to correlate with the current health state, will be predictive of

future longevity [19], though this was not borne out in a recent

study [20]. We therefore tested accumulation of autofluorescent

age pigments (imaged through a red filter set and apparent in gut

granules and in aged gonads; see Materials and Methods and

Figure S4). Figure 2A shows the patterns in autofluorescent age

pigment accumulation in two individuals, computationally

straightened and fit to the average day-5 shape and size for

visualization, between days 3 and 7 post-hatch; Figure 2B shows

the pigment accumulation trends for cohorts with different

lifespans. (These measurements are of the 95th percentile of pixel

Figure 1. Single-animal vermiculture and measurement. (A) Individual C. elegans and their bacterial food source live atop a gel pad, sealed
with a gas-permeable polydimethylsiloxane (PDMS) membrane. (B) Variability in individual lifespans is clear from the distribution of lifespans of 463
animals reared in this apparatus, reconstructed via kernel density estimation. The corresponding survival curve is shown below the lifespan
distribution, and represents precisely the same data. We prefer the distribution, as features such as bimodality and differences in variance are easier
to identify. (C) Time-course of measured length for a single individual throughout its life. Early-to-mid-adulthood patterns in this (and other)
measurements are summarized as the average level between days 3 and 7, and the slope of a least-squares fit line to the data in that range. (D) Kernel
density estimates of the distribution of lengths of animals at different ages post-hatch, colored by age on a blue-red-yellow spectrum, demonstrate a
general shrinkage with aging. (E) The average length over time is shown for cohorts of animals, grouped according to the number of days lived.
Shorter-lived animals are in general smaller and shrink in size more quickly. (F) Size maintenance during adulthood (measured as the slope of the
least-squares fit of age vs. length, days 3–7 post-hatch) correlates with eventual lifespan; R2 = 0.27 (p,10233); the leave-one-out (l.o.o.) estimate of
future predictive ability is also 0.27. The point corresponding to the individual in panel B is shown in red and marked with an arrowhead. Multivariate
regression of lifespan against both length slope and days 3–7 mean length yields an R2 of 0.32 (p,10238; l.o.o. 0.31).
doi:10.1371/journal.pgen.1002306.g001
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intensity within the defined ‘‘worm region’’ of the original images;

here and in all subsequent cases, other measures such as mean or

median yield similar results.) Clearly, the longer-lived animals

have lower absolute levels of pigmentation, even early in life, and

also lower rates of increase in pigment levels. Prospectively,

animals with higher levels of autofluorescence, and also those with

higher rates of autofluorescence accumulation, in days 3–7 post

hatch are likely to experience shorter lifespans (Figure 2C).

Various measures of movement rates have been shown to

predict future longevity [11–14]; we attempted to replicate this

finding by calculating a daily movement score from pixel intensity

differences in sequential images (see Materials and Methods);

higher scores indicate more movement (Figure 2D). We found that

the mean and slope of the motion score, days 3–7, positively

correlate with eventual longevity (Figure 2E). That is, high

movement rates and maintenance of these rates through mid-

adulthood are markers of longer lifespan, strengthening the

conclusions from previous studies. Finally, aged C. elegans have a

very typical ‘‘decrepit’’ appearance in brightfield images [11,18].

As quantitative measurements of image texture have previously

been used as proxies of age-related tissue deterioration (in

particular, sarcopenia) in nematodes [44,45], we defined a daily

measure of whole-animal textural decrepitude (see Materials and

Methods and Figure 2F) which, examined between days 3 and 7,

predicts a sizable fraction of longevity variation (Figure 2G): more

deteriorated-appearing animals (high mean decrepitude days 3–7)

and those that more rapidly become so (positive slope) are shorter-

lived.

Overall, each of the individual measurements shown in Figure 1

and Figure 2 consists of a phenomenological evaluation of one or

more aspects of nematode health states, encompassing sarcopenia

(motion, image texture, size), tissue maintenance (image texture,

Figure 2. Phenomenological predictors of nematode longevity. (A) Autofluorescence images of two individual nematodes with different
rates of age pigment accumulation at days 3–7 (top–bottom). Images were warped to the average day-5 shape and size for simple comparison and
pseudocolored on a black-blue-red-yellow spectrum to provide sufficient dynamic range. (B) The average level of age pigment accumulation
(measured as the 95th percentile of whole-body autofluorescent intensity) over time is shown for cohorts grouped by lifespan. Shorter-lived animals
in general have higher and faster-rising autofluorescence. (C) Average levels of age pigment, measured between days 3 and 7, anti-correlate with
longevity; R2 = 0.27 (p,10215; l.o.o. 0.25); the slope of autofluorescence accumulation, days 3–7 (as in B) correlates similarly well. Both parameters
jointly regressed against lifespan yield an R2 of 0.31 (p,10216; l.o.o. 0.28). Points corresponding to the individuals in panel A are red and marked with
arrowheads. (D) Movement rates of a long-lived and a short-lived animal throughout their lives are illustrated at each day of life by showing,
superimposed, the animal’s position in two images acquired 0.5 seconds apart. From day 3 onward, these animals are colored according to the
movement score (see text) on a black-blue-red-yellow spectrum. The longer-lived animal moves more, both qualitatively and quantitatively. (E)
Regressing both the mean motion score between days 3 and 7 and the slope in that time range against each animal’s lifespan yields an R2 of 0.20
(p,10222; l.o.o. 0.19). The data points corresponding to the individuals in panel D in red and marked with arrowheads. (F) Straightened brightfield
images of a texturally decrepit (bottom) and non-decrepit (top) individual, both 7 days post-hatch. (G) A ‘‘texture decrepitude’’ score is calculated
daily (see text); the mean score between days 3 and 7 and over the slope in that time range jointly predict each individual’s longevity with an R2 of
0.26 (p,10228; l.o.o. 0.25). The data points corresponding to the individuals in panel F in red and marked with arrowheads.
doi:10.1371/journal.pgen.1002306.g002
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size), and autophagocytic ability (autofluorescence accumulation).

Because these measurements of tissue and cellular homeostasis are

integrative and relatively ‘‘downstream’’, they provide powerful

mid-life predictors of eventual longevity; however, they yield few

clues regarding the origin of individual differences in longevity.

mir-71 Expression Levels and Spatial Patterns Predict
Lifespan

The miRNA mir-71 increases rapidly in expression during larval

development, peaks at early to mid-adulthood, and then gradually

declines (Figure 3A, 3B and [36]). Beyond differences in lifespan

and stress-resistance [36], mir-71 mutant animals appear pheno-

typically wild-type [46]. Further, mir-71 genetically interacts with

IIS downstream of the insulin receptor homolog daf-2 but

upstream of daf-16, the FOXO transcription factor that is a major

IIS effector [36]. miR-71 is predicted to target several genes in the

IIS pathway; of these, pdk-1 levels are greatly increased in aged

animals lacking mir-71 [36]. Additionally, mir-71 appears to be

both a downstream target of and a regulator of DNA damage

responses via CDC-25.1 [36]. A transgenic reporter, mir-71::GFP,

containing the promoter of mir-71 driving GFP expression, was

previously characterized [36,47]. Though ubiquitously expressed

during adulthood, mir-71::GFP expression is most prominent in

the hypodermis, pharynx, vulva, intestinal, and tail cells

[36,47,48].

Longer-lived cohorts have distinctly different temporal patterns

of mir-71::GFP expression compared to shorter-lived siblings

(Figure 3B). Expression levels are here quantified as the 95th

percentile of pixel intensities in the worm’s head region; other

measurements (mean, median, etc.), and/or aggregating across the

whole body, produce similar results though we find this to be the

most robust. Specifically, retention of ‘‘youthful’’ mir-71 states,

both in terms of high levels of mir-71::GFP expression and of

maintenance of these levels through mid-adulthood, correlates

with longevity. Prospectively, both the mean mir-71::GFP

expression levels and the change in these levels between days 3

and 7 both correlate with future lifespan variability (Figure 3C and

3D); together these two parameters predict 35% of lifespan

variation (the l.o.o. value is 32%). Animals with higher or longer-

lasting mir-71::GFP expression tend to live longer, consistent with

the known role of miR-71 in promoting lifespan [36].

To further examine and quantify trends in mir-71::GFP

expression patterns, we used principal components analysis

(PCA). This procedure is conceptually similar to one described

recently [49], which employed hierarchical clustering instead of

PCA. We used 979 fluorescent images from 146 individual

animals, controlled for individual differences in size, shape,

internal compression due to locomotion, and overall mir-71::GFP

expression level (see Materials and Methods) so that the analysis

captured trends only in the spatial pattern of expression. The first

principal component, which by definition explains the single

largest correlated trend in the dataset (18% of total expression-

pattern variability in this case), captures a transition from a highly

specific head/vulva/tail expression pattern to more diffuse whole-

body expression (Figure 3E). As the individuals shown in Figure 3A

illustrate, there is both low-level whole-body background expres-

sion of mir-71::GFP that remains relatively constant over time, and

strong head/vulva/tail-specific expression that peaks and declines.

The position of the mir-71::GFP expression pattern along this

principal component (‘‘PC score’’), in terms of standard deviations

above or below the mean expression pattern (Figure 3E), therefore

quantifies the degree of strong, tissue-specific expression at a given

day. Figure 3F clearly shows that longer-lived cohorts have more

positive and increasing scores, corresponding to high (and

increasing) degrees tissue-specificity of expression, while short-

lived cohorts have more negative and decreasing scores.

Quantitatively, maintenance of head/vulva/tail expression (mea-

sured here by the slope of days 3–7 PC scores, though in general

other approaches could be employed), and the average overall

degree of head/vulva/tail expression (mean PC score day 3–7), are

highly correlated with longevity (R2 = 29% for slope and 39% for

mean); jointly they predict 47% of individual longevity variation

(Figure 3G; l.o.o. 45%). Animals with above-average predicted

longevities based on these two measurements have substantially

different observed lifespans than those with below-average

predictions, illustrating the utility of these measures as a diagnostic

test of longevity (Figure S2D; the difference in mean lifespan

between these two cohorts is 20%).

We confirmed that GFP expression alone does not predict

lifespan by examining animals bearing the mIs10 transgene, which

contains a myo-2 promoter driving GFP expression in the larval

and adult head, a gut enhancer driving intestinal GFP expression

in the adult, and pes-10::GFP, which is expressed embryonically.

We found no whole-body or head-only summary of GFP (mean/

median/95th percentile/etc.) that, measured in terms of mean or

slope over days 3–7 (or various other ranges), predicts longevity to

any significant or substantial degree in this dataset (not shown). In

addition, other miRNA promoter::GFP fusions correlate (and anti-

correlate) with longevity to different degrees (below).

If the primary lifespan-determining target of miR-71 regulation

is IIS, then mir-71::GFP expression patterns should no longer

correlate with lifespan absent IIS. We tested this by examining mir-

71::GFP fluorescence in a daf-16(mu86) background, which lacks

this primary IIS effector. Because daf-16 lies extremely close to the

spe-9 genomic locus, it was impractical to construct a mir-71::GFP;

daf-16; spe-9 strain. Thus, we modified our experimental protocol

to use and to allow for the placement of synchronized young-adult

animals onto gel pads treated with the drug 5-fluoro-29-

deoxyuridine (FUDR) to prevent reproduction in the culture

apparatus (see Materials and Methods). In this regime, lifespan

was somewhat extended, along with a concomitant ‘‘stretching

out’’ of the rise-peak-fall temporal expression pattern of mir-

71::GFP intensity (Figure S5). This may be at least partially due to

the FUDR, which has been shown to extend lifespan in an

environment-dependent fashion [50]. Nevertheless, mir-71::GFP

levels remain predictive of longevity after the day 3–7 measure-

ment window is adjusted to account for the lifespan extension

(Figure S5A and Figure 4B).

However, in the daf-16(mu86) background, mir-71::GFP expres-

sion differences were no longer apparent between cohorts with

different lifespans (Figure 4A). Because daf-16(mu86) animals are

short-lived, we adjusted the ‘‘early adulthood’’ window in which

measurements of GFP expression were made to match (Figure

S5A); in this window, neither the increase in (Figure 4B), nor the

mean level of (not shown), mir-71::GFP positively correlated with

lifespan. If no accounting for shortened lifespan is made (and,

indeed, we observe no compression of the rise-peak-fall temporal

expression pattern of mir-71::GFP in the daf-16 background;

Figure S5B), we found that GFP expression changes anti-correlate

with lifespan (Figure 4B). This anti-correlation appears to be

driven by a small subpopulation of the most short-lived animals

which have very high mir-71::GFP expression levels. Thus, in a daf-

16 null background, the predictive power of mir-71::GFP

expression is either suppressed, or, potentially, reversed.

Finally, we note that compared to matched mir-71::GFP

controls, mir-71::GFP; daf-16(mu86) animals had approximately

double the peak GFP expression levels (Figure S5B), though the

shape of the temporal pattern (Figure S5B) and spatial distribution

MicroRNA Predictors of Longevity in C. elegans
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(Figure S5C) of expression remained extremely similar. This may

suggest negative-feedback regulation of miR-71 by DAF-16 or one

of its targets.

Rates of mir-246/mir-239 Increase Promote/Antagonize
Individual Longevity

Much like mir-71, mir-246 mutants appear phenotypically wild-

type except for decreased longevity and stress-resistance [36,46].

The expression of miR-246 increases over time, and a mir-

246::GFP construct shows that the gene is expressed in the

gonadal sheath [36,47]. Our detailed analysis of mir-246::GFP in

individual animals shows a gradual plateauing of mir-246

expression in late adulthood (Figure 5A and 5B), but, unlike mir-

71, no concomitant loss of tissue specificity. We find that animals

in which mir-246::GFP levels plateau more slowly (measured by

the slope of mir-246::GFP 95th-percentile fluorescence intensity

between days 3 and 7) are relatively longer-lived: change in mir-

246 expression in this time range predicts 20% of total longevity

variation (l.o.o. 18%; Figure 5B and 5C). The mean level of mir-

246::GFP between days 3 and 7, however, does not clearly predict

longevity. Additionally, we observed that while the distributions of

lifespans for animals with slow- vs. fast-increasing mir-246::GFP

expression are significantly different (Figure S2E), they have nearly

identical modal values; however, a subset with particularly early

mortality appears to be associated with low mir-246::GFP slopes.

None of the principal components of spatial expression variability

correlate with longevity: mir-246::GFP expression is highly tissue-

specific, and so the principal components predominantly capture

uninteresting variations in the internal position of the gonad

sheath.

Unlike mir-71 and mir-246, mir-239 antagonizes longevity:

mutants lacking the identical mir-239a and mir-239b sequences

have increased lifespan and stress-resistance (though, again, no

other clear phenotypes) [36,46]. Genetic experiments suggest that

mir-239 is downstream of daf-2 and upstream of daf-16; miR-239

may promote IIS (which is anti-longevity) via indirectly increasing

levels of the cytoplasmic IIS transduction components AGE-1 (the

Figure 3. mir-71::GFP levels and expression patterns predict
longevity. (A) Daily images of mir-71::GFP expression patterns for two
individuals, from day 3 to the last day of life are shown (top–bottom),
straightened and pseudocolored as in Figure 2A. (B) Average mir-
71::GFP expression (measured as the 95th percentile of head-region
intensity) versus time is shown for cohorts with different longevities.
Shorter-lived animals have, in general, lower and more rapidly declining
levels of mir-71::GFP expression. (C,D) The mean of (C) and slope of a fit
line to (D) days 3–7 mir-71::GFP expression correlates with each animal’s
future longevity. Regressing both jointly against longevity yields an R2

of 0.35 (p,10213; l.o.o. 0.32). (E) The mean of 979 warped and aligned
images of mir-71::GFP expression is shown, along with synthetic images
illustrating two-standard-deviation offsets from that mean along the
first principle component (PC1; the set of correlated changes in pixel
intensities that together explain the maximal variance in the data set).
In this case, PC1 spans 18% of the variability in the image data. This
component reflects changes in the tissue-specificity of mir-71::GFP
expression. An image can be scored in terms of standard deviations
from the mean along this component (PC score); more positive scores
indicate head/vulva/tail specificity and more negative scores indicate
diffuse background expression. (F) Trends in PC scores (calculated only
between days 3 and 7) are shown for the different-longevity cohorts in
panel B. Higher scores and slowly falling scores are clearly associated
with longer life. (G) The mean and fit slope of the PC scores of days 3–7
mir-71::GFP expression jointly predict future longevity; R2 = 0.47
(p,10219; l.o.o. 0.45). The use of this prediction as a test for actual
above-average longevity (including sensitivity and specificity figures) is
shown in Figure S2D.
doi:10.1371/journal.pgen.1002306.g003
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catalytic subunit of phosphatidylinositol 3-kinase) and PDK-1. mir-

239::GFP expression is predominantly in several head and tail

neurons, with lower levels in pharyngeal and gut tissues [36].

While mir-71 and mir-246 levels peak or plateau, respectively, at

mid-life (Figure 3A, 3B and Figure 5A, 5B), we observe that mir-

239::GFP expression levels drift upward over time (Figure 5D and

5E). Consistent with its role as a lifespan antagonist, higher mir-

239::GFP levels correlate with shorter lifespans. As there is

relatively little variability in mir-239::GFP expression at post-hatch

day 3, the days 3–7 increase and the day-7 magnitude of

expression capture similar information, and both predict approx-

imately 10% of longevity variability. For the slope measure, the

l.o.o. R2 is 7% (Figure 5F). Though this value is somewhat low

compared to the others reported, the lifespans of high and low mir-

239-expressing animals remain significantly and substantially

different, with a difference in means of approximately one day

(Figure S2F), or ,10% of the average lifespan; moreover, as a

diagnostic test for above-average longevity, above-average mir-

239::GFP slope performs nearly as well as mir-246::GFP or the

motion- or texture-based measures (Figure S2). As with mir-

246::GFP, PCA applied to mir-239::GFP images did not yield any

expression-pattern trends predictive of future longevity.

Relationships among Longevity Biomarkers
We measured many of the reported biomarkers in the same

animals, enabling us to construct a multivariate predictor of

nematode longevity, which we term the ‘‘survival prediction

index’’. This model, incorporating the length, motion, texture, and

autofluorescence-accumulation measurements described in

Figure 1 and Figure 2, predicts 62% of all lifespan variability

across all datasets for which these parameters were measured

(l.o.o. 57%; Figure 6A), and above-average ‘‘survival prediction

indices’’ divide the animals into well-delineated long-lived and

short-lived subgroups (Figure S2G; mean lifespan is 22% increased

in the high-survival-index cohort compared to the low-index

cohort). The relative importance of each biomarker can be

inferred by examination of the relative regression weights:

autofluorescence (slope): 20.302; length (slope): 0.266; length

(mean): 0.174; motion (mean): 0.149; motion (slope): 0.137; texture

(mean): 0.121; texture (slope): 0.077. (To render regression weights

directly comparable, all input parameter values were expressed in

unit-free terms of standard deviations from their mean; including

mean autofluorescence values did not improve lifespan-predictive

ability.) Overall, the measures of size and age pigments dominate

(for these measures alone, lifespan-prediction R2 = 55%, l.o.o.

53%).

Further, we find that adding mir-71 or mir-239 measurements to

those above do not improve the lifespan predictions of the model

(not shown), indicating that these measurements provide informa-

tion that is also captured by the downstream, phenomenological

markers (see also below). However, adding mir-246 slope

measurements adds at least 5% to the R2 value attained from

the phenomenological markers, which suggests that miR-246

promotes longevity via more than just the mechanisms reported on

by length, texture, motion, and autofluorescence.

We formalized this analysis by inferring the conditional

independencies of various parameters from partial correlations.

That is, while all of the biomarkers correlate with one another, it is

possible to statistically infer whether these relationships are direct

or indirect. For example: mir-71 levels correlate with longevity, but

this correlation is largely abrogated when length maintenance is

controlled for; conversely, controlling for mir-71 reduces the

correlation between length and lifespan to a much lesser degree

(see Table S2, which lists the correlation of each marker with

longevity after various controls). Therefore either mir-71 influences

length, which then influences longevity, or length variability is an

upstream cause of both mir-71 variability and lifespan variability.

To systematically evaluate these interactions, we constructed a

partial correlation network (also known as a graphical Gaussian

model) from our data (Figure 6B; see Materials and Methods) [51].

We have not yet directly evaluated the relationship between the

different miRNAs, which requires measuring the promoter activity

of these genes in the same animals. We can, however, indirectly

infer the relationship between these miRNAs via intervening

factors measured in all datasets: the network in Figure 6B reflects

the consensus of networks calculated from each dataset (Figure

Figure 4. mir-71::GFP levels do not positively correlate with
longevity absent DAF-16. (A) Average mir-71::GFP expression
(measured as the 95th percentile of head-region intensity) versus time
is shown for cohorts of mir-71::GFP; daf-16(mu86) animals with different
longevities. In contrast to Figure 3B, without DAF-16, longer-lived
cohorts are not clearly distinct from shorter-lived cohorts in terms of
temporal trends in mir-71::GFP expression. (B) The relationship between
the slope of mir-71::GFP expression in the head in a defined time
window and ultimate lifespan is shown for various strains and time
windows. Blue circles mark mir-71::GFP animals, measured days 5–13
(which corresponds to the day 3–7 window after adjusting for the
different lifespan induced by the culture conditions; see Materials and
Methods and Figure S5A). Closed red circles mark mir-71::GFP; daf-
16(mu86) animals measured days 4–9 (an adjustment accounting for the
shortened lifespan of the strain), while open red circles mark the same
strain measured days 5–15. In all cases, the reported correlation values
do not strongly depend on the starting day.
doi:10.1371/journal.pgen.1002306.g004
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S6). While the relatively weak relationship between mir-239 and

lifespan prevents its accurate placement into the network, other

trends are clear. Age-pigment accumulation, motion, and texture/

mir-71/length provide relatively independent information about

lifespan from one another, though there may be some relation

between the motion and texture scores (Figure S6). Including mir-

246 decreases the link between length and lifespan (Figure S6 and

Table S2), suggesting that, while its precise position is indetermi-

nate, mir-246 is either an upstream cause of both length and

lifespan variation, or mir-246 levels are determined by physiolog-

ical processes that regulate length maintenance, and these levels

more directly control lifespan.

Finally, we examined the timing of each measure’s lifespan-

predictive ability: do some measurements provide earlier hints at

longevity than others? The accuracy of lifespan prediction for each

measure (measured as the R2 value) is plotted versus time in

Figure 6C. For this analysis, we did not manually determine one or

two summaries of the time-course of biomarker measurements

(e.g. ‘‘mean length between days 3 and 7’’), but instead predicted

longevity using all of the raw time-course data up to a given age

(e.g. to evaluate the predictive ability of length up to day 4, we

regressed lifespan against the lengths measured at days 2, 3, and 4).

We used ridge-regression with an automatically-determined

penalty in order to prevent over-fitting due to the increased

number of parameters at later time-points (see Materials and

Methods); note however that the R2 values are in some cases more

optimistic compared to the simpler measurements defined earlier.

Based on this analysis, we observe that the various predictors of

longevity differ markedly in their timing: the mir-71 PCA scores

provide the earliest, and best, predictors of lifespan, while mir-246

and motion provide the latest-onset information about future

lifespan.

Discussion

We used a novel culture system that allowed us to quantitatively

examine individual nematodes throughout time and directly

correlate inter-individual variability in early life with variability

in eventual lifespan. Through this observational study, we

identified phenotypic markers that, measured while .97% of

the population remains alive, predict over 60% of future individual

longevity variability. In addition to confirming markers that

previously had been shown to correlate with lifespan (movement

rates [12–14]) and widely suspected to do so (visual decrepitude

[11,18,45], age pigment accumulation [17–19,43]) we have also

found a novel biomarker of longevity in maintenance of adult size

Figure 5. Changes in mir-246::GFP and mir-239::GFP expression over time predict longevity. (A,D) Daily images of mir-246::GFP (A) or mir-
239::GFP (D) expression patterns for two individuals, from day 3 to the last day of life are shown (top-to-bottom), straightened and pseudocolored as
in Figure 2A. (B,E) Average mir-246::GFP (B) or mir-239::GFP (E) expression (measured as the 95th percentile of whole-body intensity) versus time is
shown for cohorts with different longevities. Shorter-lived animals have, in general, more rapidly declining levels of mir-246::GFP expression and
slightly more rapidly increasing levels of mir-239::GFP. (C) The slope of a fit line to mir-246::GFP intensity between days 3 and 7 correlates with each
animal’s future longevity; R2 = 0.20 (p,1026; l.o.o. 0.18). Points corresponding to the individuals shown in panel A are in red and marked with
arrowheads. (F) The slope of mir-239::GFP, days 3–7, anti-correlates with future longevity; R2 = 0.10 (p,1024; l.o.o. 0.070). Individuals from panel D are
in red and marked with arrowheads. The use of the predictions from panels C and F as tests for actual above-average longevity (including sensitivity
and specificity figures) are shown in Figure S2E and S2F.
doi:10.1371/journal.pgen.1002306.g005
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through mid-life (Figure 1E and 1F). This dovetails with the recent

finding that juvenile ‘‘growth span’’ (time to reach adult size) also

predicts lifespan [14].

Our results regarding age pigmentation are inconsistent with

others recently reported [20], an observation which may be

explained by the fact that we measured age pigmentation in the

red spectral range (see Materials and Methods), while Sánchez-

Blanco and Kim examined green autofluorescence. Note that

lipofuscin, per se (as opposed to other autofluorescent ‘‘age

pigments’’), fluoresces most strongly in blue ranges [21]. This

indicates the potential heterogeneity of age pigmentation across

the color spectrum.

Seeking a more detailed understanding of the genetics of

individual longevity determination, we found that fluctuations in

the levels of miR-71, 239, and 246 (imputed via promoter::GFP

reporters) predict a substantial portion of longevity. To date, only

one other group has reported any genes, in any species, in which

endogenous, un-perturbed fluctuations in expression level have

been reported to be predictive of future longevity [20]. The ability

of expression states to predict later longevity quite early in life

further suggests that some fraction of longevity variance is indeed

the result of developmentally determined epigenetic states of

‘‘robustness’’ or ‘‘frailty’’. This hypothesis has been raised

theoretically [52], and the degree of post-heat-shock longevity-

extension (correlated with HSP-16.2 expression [25]) has been

shown to fit this model well [53,54].

In particular, the degree of strong, tissue-specific mir-71

expression in the head, vulva, and tail is the single most powerful

biomarker identified, explaining 47% of future longevity (Figure 3F

and 3G), and also the earliest indicator of future longevity

(Figure 6C). Combining these findings, which are based on

observation of essentially unperturbed individuals, with earlier

knockout studies that demonstrate that abrogation of these

miRNAs alters mean lifespan [36], we infer that individual,

wild-type variability in the expression of these regulators not only

reports on longevity but may likely determine it as well. (In all

cases, the correlation or anti-correlation of miRNA levels with

longevity is in the same direction as suggested by previous

knockout and overexpression studies [36].) Note that it is not

necessarily the case that genes that alter lifespan when removed or

artificially overexpressed will determine individual lifespan in wild-

type conditions: core health-determining genes may be tightly

regulated to have low inter-individual variation, or that variability

may be buffered downstream and not translate into altered

longevity.

In the case of mir-71 and mir-239, the mechanism of individual

lifespan determination may be via the well-known insulin/IGF-1-

like signaling pathway (IIS) [36], the absence of which promotes

longevity via stress-response and macromolecular homeostatic

mechanisms, among others [55–57]. In particular, mir-71

knockout led to increased expression of components of the IIS

transduction machinery [36], and we here found that daf-16 null

animals have increased levels of mir-71::GFP expression. These

observations suggest that DAF-16 and miR-71 levels are held in

homeostatic balance via a mutually regulatory feedback loop.

Thus, it is possible that inter-individual fluctuations in miR-71

levels may directly determine inter-individual levels of tonic IIS

activity, and hence, individual lifespan. This conclusion is

strengthened by our finding that, absent DAF-16, mir-71::GFP is

no longer predictive of longevity. One final piece of evidence for

the role of IIS in lifespan determination comes in the work of

Sánchez-Blanco and Kim [20], which identifies daf-16 and sod-3, a

canonical DAF-16 target, as among the best predictors of

individual longevity. (In fact, sod-3 reporter expression is their

strongest predictor reported, with an R2-value of 0.32.)

Further, mir-71 may also act by downregulating cell-cycle

checkpoint proteins [36], the absence of which also promotes

stress-response factors, even in postmitotic cells [58]. The early

predictive ability of mir-71::GFP suggests that mir-71, and thus

either or both of the signaling pathways it regulates, may play an

early-life role in determining organismal robustness and longevity.

According to our network analysis, image texture, mir-71::GFP

expression, and size are all closely related, with size as the most

downstream measure of what we take to be the age-regulated

tissue disorganization and sarcopenia reported previously [11,18].

Overall, and especially given mir-71’s role in regulating pathways

that determine levels of stress responses, we suspect that this nexus

of predictors reflects processes of somatic growth and mainte-

nance. However, while both mir-71 and mir-246 levels are

correlated with length maintenance, mir-246, unlike mir-71,

provides additional information about longevity not captured by

length or other ‘‘somatic maintenance’’ features. Given this, the

relatively late (i.e. post-reproductive) timing of its predictive ability,

the sharp upregulation of mir-246::GFP expression at reproductive

maturity (Figure 5A, 5B and [47]), and its localization literally at

the interface between the gonad and other somatic tissues, it is

tempting to speculate that mir-246 is involved in balancing

reproduction and somatic maintenance [32,59]. Further, we find

that age pigment accumulation also provides a degree of

information about lifespan not captured by the ‘‘somatic

Figure 6. Multivariate lifespan predictions and relationships
between biomarkers. (A) Multivariate regression of length (days 3–7
mean and slope of fit line), motion (mean and slope), texture
decrepitude (mean and slope), and autofluorescence accumulation
(slope) against lifespan yields a predicted lifespan or ‘‘survival index’’
that explains 62% of variability in future longevity. (p,10232; l.o.o.
estimate 57%; see also Figure S2G). (B) A partial correlation network
illustrates the pattern of conditional independences between measured
parameters, which are directly connected if and only if they correlate
with one another after controlling for all subsets of other parameters.
The network shown is a consensus from several datasets (see Figure S6);
dashed lines indicate relations that are not fully consistent, and mir-239
cannot be placed into the network at all. (C) Lifespan-predictive ability
of each biomarker as a function of age. R2 values from regressing
lifespan against biomarker measurements up to a given age are plotted
versus that age. (Texture, motion, and mir-71::GFP PCA measures were
calculated only from day 3 onward.)
doi:10.1371/journal.pgen.1002306.g006
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maintenance’’ nexus, suggesting that it, too, reflects an inter-

related but parallel lifespan-determining process.

It is also worth examining these results in light of those of our

previous work, which compared miRNA expression over time in

wild-type and long-lived daf-2 IIS mutant animals [36]. Often, daf-

2 animals are taken as a paradigm case of ‘‘long-lived’’ animals,

and the presence or absence of a physiological feature in these

mutants assumed indicative of a role as a biomarker of successful

aging. While in many cases this is undoubtedly so (for example,

decreases in rates of lipofuscin accumulation in these animals

[19]), our results yield the unsurprising finding that the

relationship between physiological events in daf-2 mutants and

long-lived wild-type animals are inexact. Specifically, we here find

clear evidence that elevated levels of mir-71 and mir-246 expression

are associated with extended longevity, yet in daf-2 animals these

miRNAs are not upregulated, likely reflecting their upstream,

negative-regulatory roles in insulin signaling [36]. Similarly, we

find that daf-16 animals are physiologically quite dissimilar from

short-lived wild-type individuals in terms of mir-71::GFP expres-

sion. Intact individuals which are short-lived typically have low

mir-71::GFP levels, while daf-16 animals show a dramatic elevation

in mir-71::GFP. Mechanistically, this may be due to disrupted

negative feedback from DAF-16 (or a target) on mir-71;

pragmatically it suggests the limitations of inference about the

physiology of intact animals based on findings in particular

mutants. In this case, based only on the average difference in mir-

71::GFP in daf-16 vs. wild-type, one might incorrectly conclude

that high miR-71 levels are a marker of short lifespan. We thus

believe there is great utility to the quantitative observation of

individual wild-type (or nearly so) animals.

Lastly, in all cases observed, it is the retention of young-adult-

like trends (high and/or increasing length, mir-71 and 246

expression; low or slowly-increasing autofluorescence and mir-

239) into mid- and late-adulthood that predicts longer lifespan.

Classic antagonistic pleiotropy theories of aging posit that some

age-related degeneration may be due to alleles which are beneficial

in early life but become damaging over time (‘‘live fast, die young’’

effects) [60]; however, in the examples here presented we find that

the loss of youthful biometrics, not their continuation, proves most

harmful.

Thus, from this and previous studies [36], these miRNAs appear

to be relatively upstream regulators of lifespan-determining

pathways that are relevant to the determination of inter-individual

variation in nematode lifespans. The miRNAs we have identified

are not well conserved in higher animals so these particular

mechanisms of lifespan determination are likely nematode-specific.

However, given the conserved nature of aging pathways across

phylogeny, our work does suggest that fluctuations in other

regulators of these pathways (including other miRNAs) may

predict or determine individual aging rates in more complex

organisms, perhaps foreshadowing or even controlling the timing

of age-related decline in humans.

Materials and Methods

Single-Animal Vermiculture
Waterjet-cut borosilicate glass slides were obtained from

Advanced Waterjet and Engraving (Anaheim, CA). Before and

after use, slides were soaked in a base bath (2:5 isopropanol:H2O,

1.5M KOH) to remove all organic material. Prior to use, the slides

were treated to functionalize the glass surface with reactive

methacryl groups as follows: slides were rinsed in distilled H2O

(dH2O) and submerged in 5% HCl (aq.) for 10 min to protonate

surface hydroxyls, rinsed again in dH2O and then submerged with

agitation for 2 min. in methacryl silane solution (2% v/v 3-

methacryloxypropyltrimethoxysilane [Z-6030, Dow-Corning;

Midland MI] in 95% ethanol with 0.02% v/v glacial acetic acid,

made fresh and stirred vigorously for 10 min. immediately prior to

use). The slides were then rinsed in 95% ethanol, heated at 110uC
to effect the condensation of the silane reagent to the glass surface,

and stored with desiccant. Prior to use, one side of each slide was

sealed with Scotch Premium Performance packing tape (3M; St.

Paul, MN).

We use a methacryl-difunctional polyethylene glycol to create a

crosslinked hydrogel [61] that, when polymerized in the

methacryl-derivatized glass wells, crosslinks also to the sides of

the wells. This prevents the high rate of escape down the sides of

the wells that we observe when using agar gels. Agar-free but

otherwise standard nematode growth media [62] was supplement-

ed with 4% w/v dimethacryl PEG-1000 (Polysciences; Warrington,

PA), 4% w/v monomethacryl PEG-1100 (Sigma-Aldrich; St. Louis,

MO) as a plasticizer, and 0.1% w/v 1-[4-(2-hydroxyethoxy)-

phenyl]-2-hydroxy-2-methyl-1-propane-1-one (Irgacure 2959,

BASF; Ludwigshafen, Germany), a water-soluble, photo-activa-

table crosslinking initiator. This PEG-NGM was filter-sterilized

and pipetted to fill the wells in the glass slides level to the top. The

slides were then placed in a sealed chamber with a UV-transparent

borosilicate glass lid, which was purged with nitrogen and exposed

to 1.5 J of shortwave UV (lmax = 350nm) radiation to initiate

crosslinking.

1 mL 12.5% w/v E. coli OP50 (resuspended in M9) was pipetted

onto each NGM-PEG pad, and individual eggs at the pre-hatch

‘‘pretzel’’ stage of development were transferred with an eyelash

pick. Liquid polydimethylsiloxane (PDMS; Sylgard 184, Dow-

Corning; Midland MI) was mixed 1:10 with its crosslinking agent,

de-gassed for 20 min. under vacuum, and pipetted atop the slide

assemblies, which were then placed in 10 cm diameter polystyrene

Petri dishes alongside small dH2O-saturated cotton strips (to

prevent desiccation), sealed with parafilm, and stored at 23uC.

PDMS polymerizes after approximately 12 hours in these

conditions.

Most eggs hatch within 5 hours of slide preparation and reach

their full adult size approximately 50 hours later. Ages reported

are hours and days post slide preparation. These values are within

the described range for this temperature [63], suggesting that our

culture apparatus is substantially similar to standard conditions.

Further, our observed mean lifespan of 10.7 days at 23uC
(Figure 1B) is similar to our own measurements of spe-9(hc88)

animals picked as pretzel-stage eggs onto standard NGM plates

seeded with OP50 (mean lifespan = 9.5 days at 24uC, n = 350), and

measurements of wild-type animals on solid media reported by

others [6,17]. However, we observe a somewhat smaller standard

deviation in lifespan of <1.9 days vs. the 3–4 in those previous

studies, suggesting that this culture apparatus provides an

extremely uniform environment.

For the daf-16 epistasis analysis, we modified the above protocol

to allow for chemical sterilization of young adult animals by 5-

fluoro-29-deoxyuridine (FUDR; Sigma-Aldrich; St. Louis, MO).

Specifically, FUDR from a 10 mg/mL aqueous stock was added at

1:100 to PEG-NGM prior to filter-sterilization, which was

polymerized in the glass slides as above. FUDR causes growth

arrest of animals prior to the 4th larval stage, so synchronized

young adult animals were produced by hypochlorite treatment of

gravid adults to isolate eggs [42] followed by overnight starvation

in M9 buffer to synchronize animals as L1s, which were then

plated on standard NGM-agar plates with OP50 food and allowed

to grow to young adulthood at 23uC. These animals were

transferred individually to PEG-NGM-FUDR slides supplemented
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with concentrated OP50 as above. Moving animals crawl into

polymerizing PDMS, so the slides were sealed with 0.5mm-thick

strips of PDMS that had been pre-cured on a glass plate at 100uC
for one hour and cut to size. We observed an increase in longevity

under these conditions relative to non-FUDR treated animals

plated as embryos (Figure S5A).

Strains
The following C. elegans strains provided by Caenorhabditis

Genetics Center (CGC) were used in our studies: VT2084 (mir-

71::GFP), VT1607 (mir-246::GFP), and PD4793 (mIs10: myo-

2::GFP; pes-10::GFP; F22B7.9::GFP). mir-239::GFP was generated

previously [36]. All strains were crossed into BA671, a spe-9(hc88)

temperature-sensitive fertilization-deficient mutant, and assays

were conducted at the restrictive temperature of 23uC. This strain

has normal longevity at this temperature [42]. The small fraction

of animals that reproduced in the culture apparatus and could not

be clearly distinguished from their offspring was excluded from

further analysis.

We determined that VT2084 actually contains the complete

precursor miRNA sequence for miR-71 inside the ‘‘promoter’’

region driving transgenic GFP expression; therefore we wished to

determine whether this strain overexpresses miR-71, which was

previously shown to increase longevity [36]. Overexpression of

miR-71 was not likely because the transgene in strain VT2084 was

integrated via low-copy bombardment; however we confirmed via

quantitative RT-PCR analysis (as performed previously [36]) that

mature miR-71 levels in mir-71::GFP; spe-9(hc88) animals reared at

23uC (as similar as possible to our own culture conditions) showed

minimal overexpression. Specifically, synchronized populations of

spe-9(hc88) animals and mir-71::GFP; spe-9(hc88) animals were

prepared by hypochlorite treatment and overnight starvation in

M9, reared on NGM plates seeded with OP50 at 23uC, and

harvested at 5 days post-plating, corresponding to the time of peak

mir-71::GFP expression at young adulthood. Levels of miR-71 in

mir-71::GFP; spe-9(hc88) animals were 102% or 115% that of spe-

9(hc88) animals, depending on whether the U18 RNA or miR-66

(which are not temporally regulated), respectively, was used as a

loading control. Mature miR-71 levels were also measured in

homozygotic mir-71 null (n4115); mir-71::GFP animals prepared

similarly; here, miR-71 expression was approximately 58% or

25% that of wild-type (using the U18 or miR-66 control,

respectively). (The n4115 strain without the mir-71::GFP transgene

had undetectable miR-71 expression.) Further, we see no

phenotypic consequence of the extra copies of the miR-71

sequence in VT2084: the lifespan of mir-71::GFP; spe-9 animals

in our apparatus is approximately 1.05 times that of the mean

lifespan of the other strains analyzed, which is well within the

range of inter-replicate variability. Thus, we conclude that for the

purposes of this work, mir-71::GFP acts as a phenotypically wild-

type reporter of miR-71 expression.

Image Acquisition
We calibrated our microscope daily to control for spatial and

temporal variation in light-source intensity, as described previously

[36]. At the desired sample interval (typically daily), each slide was

briefly removed from its humid chamber and placed in an upright

microscope (Axioplan 2i; Carl Zeiss; Oberkochen, Germany),

driven by custom software, for acquisition of brightfield and

fluorescent images at 106magnification. Per-slide acquisition time

was typically under 20 minutes. Each animal was manually located

and brought into focus, and a series of 10ms-exposure brightfield

images were acquired, interleaved with fluorescence exposures of

1, 10, and 100 ms, in order to ensure that a properly exposed

image was obtained. This sequence was performed for each filter-

set of interest; in this case a GFP-bandpass filter to measure

transgene expression (41017; Chroma; Bellows Falls, VT) and a

TRITC filter to measure autofluorescence (41002c; Chroma).

While the peak autofluorescence of lipofuscin, a chief age

pigment, is in the blue range [19], blue light evokes a strong escape

response [64], which is problematic as the animals typically leave

the field of view rapidly thereafter. As the green range was used for

GFP measurements, we compromised and measured age pigment

species that autofluoresce in the red range. Like lipofuscin, we

observed these species in gut granules [16] and also in larger

gonadal inclusions (Figure S4). Further, we established that our

measurements of GFP intensity were not biased by light emitted

from the autofluorescent species that also fluoresce in the same

wavelengths. We found that the relative degree of autofluorescence

was quite low (,10% relative intensity) compared to the GFP

signals measured, even in aged animals; correcting for this bleed-

through did not alter any findings. Further, the 95th-percentile

measurements of image intensity we used are less sensitive to low-

intensity autofluorescence signals as compared to measures of

mean image intensity (for example).

After fluorescence image acquisition, each animal was further

stimulated with an 0.25-second pulse of green light, which

stimulates a robust escape response in healthy animals and causes

head and/or tail retraction in more decrepit individuals. After a 1-

second delay, three images were subsequently recorded at 1-

second intervals to measure post-stimulation movement.

Image Analysis
Post-stimulation motion image sequences were visually scruti-

nized to determine if voluntary ‘‘twitching’’ occurred. Animals

with no detectable motion were determined to have died in the

interval between the current and previous image acquisition.

(Assuming a Bayesian null hypothesis of a uniform prior

distribution over time-of-death within the sample interval, the

expectation value for the actual, unknown, time of death is halfway

between the current and previous acquisition time. We took the

number of hours between slide preparation and this time-of-death

estimate as the lifespan.) For each timepoint, the non-overexposed

fluorescent image with the longest exposure time was selected,

subject to manual review to ensure that the animal’s locomotion

did not cause unacceptable blur. As each fluorescent image was

acquired with flanking brightfield images, the brightfield image in

which the animal’s position is closest to that in the fluorescent

image was selected automatically as that with maximum mutual

information with the fluorescent image [65], again subject to

manual review.

Once the best brightfield/fluorescence image pairs were

defined, the outline of the animal in each brightfield image was

determined using custom semi-automated software; the position

was assumed to be the same in the fluorescent image. The

nematode-finding procedure was as follows: based on a training set

of labeled nematode/non-nematode regions of brightfield images,

a logistic regression classifier was trained to estimate the

probability that a given patch of pixels is inside of an animal

[66]. The classifier was applied to each brightfield image to create

a rough mask, which was distance-transformed to produce

‘‘valleys’’ of low values along the midlines of masked regions.

Based on user-input head and tail points, a least-cost path through

this distance-transformed mask was calculated using Dijkstra’s

algorithm. This centerline was manually modified as necessary,

and the left and right flanks of each animal determined based on

average size for its age, with manual modifications.
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Given each animal’s centerline and outline, it is trivial to

straighten the image and to warp the size and shape of any given

animal to a standardized ‘‘unit worm’’ defined by the average size

and shape of all animals of a given age. The PCA fluorescence

measurements described below were made on standardized,

warped images; all other measurements were made from the

original images, within the animal’s boundaries as defined.

Further, given the head-to-tail centerline, we defined the ‘‘head’’

region as the initial 20% of the animal.

Image Measurements
Fluorescence measurements were made on images corrected for

background camera noise (dark field), spatial illumination

inhomogeneities (flat field) and temporal variation in illumination

via reference fluorescent beads [36]; after correction, intensity

values were divided by the exposure time to render all images

comparable. Pixel values within the defined whole-animal or head

regions were extracted and summary statistics (such as 95th

percentile of intensity) made. These raw measurements are

available as Table S3, while per-animal summary statistics (days

3–7 slope and mean, etc.) are provided in Table S4.

Four measures of motion were made within the defined animal

region: the fraction of pixels changing relative intensity by more

than 18% between the different brightfield images acquired, and

the average pixel-wise coefficient of variation across these images,

both before and after green-light stimulation. n-support-vector

regression (SVR) [67] using an RBF kernel was then used to map

these four parameters to the number of days of life remaining,

using LIBSVM [68]. Parameters were selected using 10-fold cross-

validation on a subset of the input data: C = 10, n= 0.8, c= 0.3,

though performance was roughly equivalent across several decades

of C and c values, 0.2,n,0.9. Thereafter we used 100-fold cross-

validation on our dataset of 4318 motion-statistics/days-remaining

data points and made predictions for each data point without

‘‘peeking’’ by training the SVR on the days-remaining figure for

that data point. The predicted ‘‘days of life remaining’’ based on

the four measures of motion was used as our aggregate motion

score.

For simplicity, image texture features were calculated directly

from pixel intensity patterns [69], though ‘‘filter-bank’’ methods

have also been employed on nematode images [44,45]. First, age-

specific texture patterns (‘‘textons’’) were determined. Brightfield

images (acquired through the GFP filterset only) were grouped by

age: 3- and 4-day-old, 5- and 6-day-old, up to 15- and 16-day-old.

For each group of images, 500000 17617-pixel patches (within the

defined animal outlines) were randomly sampled, after which k-

means classification was performed to yield 30 representative

textons for each age group (210 overall). Next, the texture of each

animal was characterized as follows: for each 17617-pixel patch

falling within the defined brightfield image region, the closest

texton (in terms of Euclidian distance) of the 210 overall was

determined. The ‘‘texture signature’’ of a given image was defined

as the 210-element histogram containing the number of closest-

matching 17617-pixel patches for each texton, divided by the total

number of patches in that image. These signatures were then used

as input to a support vector regression procedure precisely as

described above (best parameters: C = 5, n= 0.6, c= 0.004; again

performance was relatively insensitive to parameter setting).

Texture-based predictions of ‘‘days of life remaining’’ were used

as texture-decrepitude scores.

Principal components analysis was performed on fluorescent

images, from day 3 onward, warped to unit size and shape.

However, as C. elegans stretch and compress as they move, and due

to inter-individual anatomical variation as well as variation in

animal-outline-finding, warping images based on the outline alone

does not cause anatomical features to come into precise register

across every animal. We therefore manually defined the position of

the vulva on each brightfield image and used that position to

initialize a mild nonlinear warping procedure, which longitudi-

nally stretches and compresses the image using five evenly spaced

control points. Given an image and a reference, hill-climbing

optimization was then used to find the position of the control

points that maximized the correlation coefficient between the

image and reference pixels, with a penalty for large deformations.

The mir-71::GFP images were mutually aligned using the

expectation-maximization algorithm as follows: the mean image

across the population was calculated (expectation step), then each

image was warped to match the mean (maximization step). These

steps were alternated until convergence; typically three iterations

sufficed. Results were then manually inspected to ensure face

validity. Finally, the mean pixel intensity of each image was

subtracted away so that inter-image variability was due only to the

distribution of pixel intensities, and not to overall changes in mean

brightness. After this procedure, the principal components analysis

was performed on the images, and PCA scores along each

component were calculated for each animal at each timepoint.

Statistical Analysis
Estimates of the underlying distribution of sampled data (length,

lifespans) were performed with Gaussian kernel density estimation,

using the Scott’s rule-of-thumb to choose the kernel variance (i.e.

bandwidth): s2n20.2 where s2 is the sample variance and n is the

sample size [70]. Pairs of lifespan distributions were tested for

equality using the two-tailed Kolmogorov–Smirnov test.

Single and multivariate regression of biomarkers versus lifespan

was conducted with ordinary least-squares regression, with the

coefficient of determination (R2) calculated according to the

standard formula. Note that in the univariate case, this is

equivalent to the squared Pearson product-moment correlation

coefficient (r) between the biomarker and lifespan. Significance of

correlations was measured with an F-test of the R2 value: the

statistic s2
model/s

2
error has an F distribution with (dfmodel, dferror)

degrees of freedom, where s2
model and s2

error are the model and

error components of the overall variance, respectively, dfmodel = p,

dferror = n-p-1, p is the number of fit parameters, and n is the

number of observations. As s2
model is the sum of squared distances

between the predicted values and the mean value, divided by

dfmodel, and s2
error is the sum of squared residuals divided by

dferror, simple algebra on the definition of the R2 value yields

F = R2 dferror/([1-R2] dfmodel).

Leave-one-out R2 values were calculated as follows: given one

or more biomarker values for a set of individuals, an ordinary

least-squares regression model to predict lifespan from these values

was estimated based on the data from each individual save one;

then the lifespan of that individual was predicted using that model.

This was repeated for each individual. The R2 value was

calculated from the residuals of the leave-one-out predictions

according to the standard formula.

Partial correlation networks (Figure 6B and Figure S6) were

computed using TETRAD IV [71], using the ‘‘PC’’ search

algorithm with the multiple-regression independence test and the

a threshold for the test set to 0.001. Arrows of direction of the

influences were discarded, as these inferences were not robust

across independence tests or a values; however the basic network

structure was robust.

Lifespan-predictive values versus age (Figure 6C) were calcu-

lated as follows. For each age n, from 2–7 days, all levels measured

for a particular marker from day 2 to n were considered. (That is,
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for n = 2, only the day-2 value was used; for n = 4, the values at

days 2, 3, and 4 were used.) The values under consideration, and

all of their pairwise multiples (‘‘interaction terms’’, so that rates of

change can be incorporated) were then used to construct a

multivariate regression model to measure how well eventual

longevity can be predicted using only data up to age n. In order to

prevent the changing number of parameters over time from

affecting the R2 values, and in particular to avoid over-fitting later

timepoints due to large number of parameters and interaction

terms, we used ridge regression, with a penalty term automatically

chosen to minimize the generalized cross-validation error [72].

Supporting Information

Figure S1 Schematic of image acquisition, processing, and

analysis. See Materials and Methods for full details; in brief, image

series of brightfield and fluorescence images are acquired for each

animal, followed by a bright-light stimulus and three follow-up

images to assay response. Animals that do not move post-stimulus

are deemed dead. Next, the best fluorescence/brightfield image

pairs for each filterset are chosen automatically according to the

specified criteria, and the position of the animal is determined in

the brightfield image (a procedure known as ‘‘image segmenta-

tion’’) using a custom semi-automated tool. Finally, measurements

are made on the images, as described in the text and Materials and

Methods.

(PDF)

Figure S2 Comparison of lifespan distributions and survival

curves. (A,B) Bivariate regression of each animal’s mean length

(days 3–7) and the slope of a least-squares fit to the lengths in that

time range against eventual longevity yields a ‘‘predicted

longevity’’ for each animal that correlates with the actual longevity

with an R2 of 0.32. Individual animals can be grouped into cohorts

with above-average and below-average ‘‘predicted longevities’’

and followed prospectively, as shown by the lifespan distributions

(A) and survival curves (B). The lifespan distribution of animals

with above-average and below-average predicted longevity based

on length slope and mean are significantly different (p,10219;

Kolmogorov–Smirnov test). Above-average predicted longevity is

a 70% sensitive and specific predictor of above-average actual

longevity. (C) Lifespan distribution of animals with above-average

and below-average predicted longevity based on autofluorescence

slope and mean (Figure 2C) differ significantly (p,10211). A test

for above-average longevity based on whether this prediction is

above or below average is 74% sensitive and specific. (D) Lifespan

distributions of animals with above-average and below-average

predicted longevity, based on slope and mean of the mir-71::GFP

PC score (Figure 3G), are significantly different (p,10212). A test

for above-average longevity based on whether this prediction is

above or below average is 81% sensitive and specific. (E) Lifespan

distributions of animals with high and low mir-246::GFP slopes

(Figure 5C) are significantly different (p = 0.0075). Note that the

low- mir-246::GFP-slope cohort has a bimodal lifespan distribu-

tion: some are nearly as long-lived as the high-slope cohort, while

others have a markedly shortened lifespan. A diagnostic test for

long lifespan based on these values is 62% sensitive and specific. (F)

Lifespan distributions of animals with high and low mir-239::GFP

slopes (Figure 5F) differ significantly (p = 0.016). A diagnostic test is

60% sensitive and specific. (G) Distribution of observed lifespans

for animals with above-average and below-average survival indices

(Figure 6A) differ significantly (p,10216). An above-average

survival index is an 79% sensitive and specific indicator of

above-average lifespan.

(PDF)

Figure S3 Consistency between trials. (A) Lifespan distributions

per trial (see Table S1); distributions each integrate to one so

narrower distributions appear higher. (B) Lifepsan distributions

per trial, scaled according to the number of animals included in

each trial. The overall distribution is shown shaded in grey (for

visual reference and on a separate scale). (C) All scatterplots from

Figure 1, Figure 2, Figure 3, and Figure 5 are shown with the data

points colored according to trial. (The data plotted in Figure 4 was

from a single trial.) At right the overall R2 and Pearson’s

correlation coefficient r are shown for the (x, y) data shown, as well

as the r values for each individual trial (r values are shown so that

the direction of the correlation or anti-correlation can be seen

directly).

(PDF)

Figure S4 TRITC-channel autofluorescence images. Brightfield

and TRITC-channel fluorescence images (see Materials and

Methods; excitation = 530–560nm, emission = 590–650nm) of

the low- (left) and high-autofluorescence (right) individuals shown

in Figure 2A, at 7 days of age. Fluorescent images were corrected

according to microscope calibration data (see Materials and

Methods) and individually rescaled for easy visualization of

relevant structures. The darkest black indicates the same intensity

in both images; the brightest white reflects 2.36 higher actual

intensities in the right image than the left.

(PDF)

Figure S5 Characterization of mir-71::GFP; daf-16(mu86). (A)

Lifespan distribution of mir-71::GFP; spe-9(hc88) reared according

to the basic culture protocol (top; data are those shown in Figure 3);

mir-71::GFP reared according to the FUDR protocol (middle), and

mir-71::GFP; daf-16(mu86) reared according to the FUDR protocol

(bottom). The day 3–7 time window for mir-71::GFP; spe-9(hc88)

(shaded) ends after approximately 3% of the animals in that

population have died. The shaded windows for the other curves

end at approximately the same position on the lifespan

distribution; the beginning of the window was adjusted to maintain

the same 3:7 (<0.4:0.6) ratio: this is days 5–13 (middle) and 4–9

(bottom). (B) Population mean 6 one standard deviation over time

in GFP fluorescence in the head region is shown for mir-71::GFP

and mir-71::GFP; daf-16(mu86). Data were analyzed only between

approximately the second and fourteenth day post L1 synchroni-

zation. (C) Representative GFP fluorescence images of mir-

71::GFP and mir-71::GFP; daf-16(mu86) individuals at day 7.

The five individuals with head GFP intensity closest to their

population mean were chosen and warped to standard shape and

size. Image intensities are shown on the same black-to-white scale

for quantitative comparison.

(PDF)

Figure S6 Partial correlation networks for each dataset. Only

variables measured for all animals in a given dataset (see Table S1)

are shown in each of the above networks, which were generated as

specified in the Materials and Methods.

(PDF)

Table S1 Descriptions of each dataset. The number of animals

examined and whether texture and age-pigment measurements

were made is shown for each individual data-set (which are

aggregated in the main text figures and plotted individually in

Figure S3).

(PDF)

Table S2 Correlations of biomarkers with lifespan controlling

for other markers. The leftmost column shows the correlation R2-

value of the given measurements versus lifespan, while the other

MicroRNA Predictors of Longevity in C. elegans

PLoS Genetics | www.plosgenetics.org 13 September 2011 | Volume 7 | Issue 9 | e1002306



columns show the R2 (as a percentage of the original value) after

controlling for other variables.

(PDF)

Table S3 Raw timecourse data for datasets.

(CSV)

Table S4 Per-animal summary data for all datasets.

(CSV)
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