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Abstract

SKN-1, the Caenorhabditis elegans Nrf1/2/3 ortholog, promotes both oxidative stress resistance and longevity. SKN-1
responds to oxidative stress by upregulating genes that detoxify and defend against free radicals and other reactive
molecules, a SKN-1/Nrf function that is both well-known and conserved. Here we show that SKN-1 has a broader and more
complex role in maintaining cellular stress defenses. SKN-1 sustains expression and activity of the ubiquitin-proteasome
system (UPS) and coordinates specific protective responses to perturbations in protein synthesis or degradation through
the UPS. If translation initiation or elongation is impaired, SKN-1 upregulates overlapping sets of cytoprotective genes and
increases stress resistance. When proteasome gene expression and activity are blocked, SKN-1 activates multiple classes of
proteasome subunit genes in a compensatory response. SKN-1 thereby maintains UPS activity in the intestine in vivo under
normal conditions and promotes survival when the proteasome is inhibited. In contrast, when translation elongation is
impaired, SKN-1 does not upregulate proteasome genes, and UPS activity is then reduced. This indicates that UPS activity
depends upon presence of an intact translation elongation apparatus; and it supports a model, suggested by genetic and
biochemical studies in yeast, that protein synthesis and degradation may be coupled processes. SKN-1 therefore has a
critical tissue-specific function in increasing proteasome gene expression and UPS activity under normal conditions, as well
as when the UPS system is stressed, but mounts distinct responses when protein synthesis is perturbed. The specificity of
these SKN-1–mediated stress responses, along with the apparent coordination between UPS and translation elongation
activity, may promote protein homeostasis under stress or disease conditions. The data suggest that SKN-1 may increase
longevity, not only through its well-documented role in boosting stress resistance, but also through contributing to protein
homeostasis.
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Introduction

Maintenance of protein homeostasis is critical for organismal

health, and protection against environmental challenges. Protein

homeostasis depends upon the balance among the processes of

protein synthesis, folding, and degradation. Disruptions in this

balance result in accumulation of abnormal proteins, which over

time leads to deterioration of cellular functions, and ultimately to cell

death [1,2]. Imbalances in proteostasis are central to progression of

numerous disorders, including some cancers, neurodegenerative and

alcoholic liver disease, and type 2 diabetes [3,4].

Most intracellular proteolysis is mediated by the 26S proteasome,

a multicatalytic protease that degrades polyubiquitinated proteins

[5]. The ubiquitin-proteasome system (UPS) regulates the stability

of proteins involved in a wide range of cellular processes [6]. The

26S proteasome is composed of two subcomplexes: a barrel-shaped

20S catalytic core structure, and a 19S regulatory particle that caps

it at either or both ends. The 19S regulatory particle facilitates the

entry of polyubiquitinated proteins, and is composed of base and lid

subcomplexes [6,7]. It is a major challenge to understand how the

levels and activity of the proteasome are regulated to maintain the

balance of protein synthesis and degradation.

Several lines of evidence indicate that the proteasome associates

with the mRNA translation machinery, and that the processes of

protein synthesis and degradation may be linked. Proteins are

synthesized through the steps of translation initiation, elongation,

and termination. The elongation cycle adds amino acids to a

growing polypeptide chain, and requires a set of translation

elongation factors (TEFs) (Figure S1; Table S1). The elongation

process is regulated through phosphorylation of TEFs in response

to growth and nutrient availability signals [8]. In addition, some

TEFs are involved in functions besides translation. The elongation

factor eEF1A binds to proteasome subunits and ubiquitinated

proteins, and thereby seems to promote degradation of damaged

nascent proteins [7,9–11]. Given that up to 30% of nascent

polypeptides may be degraded cotranslationally [12,13], this
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interaction could be important for protein quality control and

homeostasis. Consistent with this idea, in S. pombe translation

initiation factors (TIFs), TEFs, and the proteasome associate

together within a ‘‘translasome’’ supercomplex that is proposed to

facilitate degradation of defective newly-synthesized proteins [14].

Nrf1/2/3 (NF-E2-related factor) proteins defend against

oxidative and xenobiotic stress by regulating transcription of

numerous cytoprotective genes [15]. Recent evidence indicates

that Nrf proteins also promote proteasome gene expression in

some cellular contexts. Proteasome activity is increased in many

cancers, and it has been shown that in colon cancer cells Nrf2

upregulates proteasome expression and activity, and thereby seems

to protect against apoptosis [16]. In cultured cell lines, Nrf1 and

possibly Nrf2 mobilize a compensatory ‘‘bounce-back’’ response in

which proteasome subunit genes are upregulated when the

proteasome is inhibited [17–19]. These findings have important

implications for development of cancer therapeutics that target the

proteasome, because concomitant inhibition of Nrf proteins might

enhance their effectiveness [18]. Nrf1 seems to have a relatively

minor role in steady state proteasome gene expression, however,

raising the question of how proteasome activity might normally be

fine-tuned by Nrf proteins or other mechanisms in vivo.

In C. elegans, the Nrf1/2/3 ortholog SKN-1 defends against

various stresses, and upregulates expression of a wide range of

cellular defense, metabolism, and repair genes under either normal

or stress conditions [20,21]. Several proteasome subunit genes are

among those that appear to be regulated by SKN-1 [20,21], and a

recent genome-scale chromatin immunoprecipitation (ChIP)

analysis detected SKN-1 at the promoters of most proteasome

genes under non-stressed conditions during the L1 larval stage

[22]. Taken together, these findings raise the possibility that SKN-

1/Nrf proteins might have a conserved and essential function in

regulating proteasome synthesis in vivo, even under normal

conditions. Furthermore, in a recent screen our lab identified

genes for which RNA interference (RNAi) resulted in constitutive

expression of stress-inducible SKN-1 targets [23]. These genes

include several involved in protein folding or degradation, the

TEF eef-1B.1, and some TIFs. RNAi against multiple TIFs resulted

in a SKN-1-dependent transcriptional response that increased

stress resistance and lifespan [23]. Together, these results suggest

that SKN-1 might defend against perturbations in either protein

synthesis or degradation.

In this study, we have investigated how impairment of translation

elongation influences the activity of SKN-1 and the proteasome,

and how SKN-1 and the translation machinery affect the

proteasome. We show that distinct but overlapping sets of SKN-1

target genes are induced when translation initiation or elongation is

inhibited. In the intestine, which is the C. elegans counterpart to the

gut, liver, and adipose tissue, SKN-1 mediates a bounce-back

response to proteasome gene inhibition, and also maintains UPS

activity in vivo under normal conditions. Importantly, impairment of

translation elongation does not induce this bounce-back response,

and instead reduces intestinal UPS activity. The data reveal a

remarkable degree of complexity in how SKN-1/Nrf proteins

respond to different stresses, and suggest that the func-

tional relationships between the translation elongation apparatus,

SKN-1/Nrf proteins, and the proteasome are important for protein

homeostasis.

Results

Induction of distinct SKN-1–mediated stress responses by
inhibition of translation initiation or elongation

To investigate whether SKN-1 activity is generally influenced

by translation elongation, we performed RNAi against 5 of the 7

predicted C. elegans TEFs (Table S1). We first monitored

expression of a transgene in which the promoter for the SKN-1

target gene gcs-1 (c-glutamyl cysteine synthetase) is fused to green

fluorescent protein (GFP) (Figure S2A) [24]. RNAi against each

TEF upregulated gcs-1p::GFP in the anterior intestine (Figure 1A)

and increased expression of endogenous gcs-1 mRNA (Figure 1B).

Mutation of an important SKN-1 binding site (Figure S2A) [24]

diminished gcs-1 promoter induction (Figure S2B), and upregula-

tion of endogenous gcs-1 mRNA was eliminated in a skn-1 mutant

(Figure 1C), indicating that SKN-1 was required for gcs-1

induction in response to TEF RNAi.

We next investigated how TEF knockdown influences expres-

sion of other SKN-1 target genes. The SKN-1-dependent genes

atf-5 and haf-7 [20,23] were upregulated in a manner that was

either partially or completely dependent upon skn-1 (Figure 1B and

Figure S2C). In contrast, the SKN-1 targets gst-4, gst-10 and

F20D6.11 were generally not induced in response to TEF RNAi

(Figure 1D and Figure S2D). This was surprising, because gst-4 is

upregulated by SKN-1 under normal conditions, in response to

various stresses, and after inhibition of insulin-like signaling (IIS) or

translation initiation [20,23,25–27]. Similarly, gst-10 and

F20D6.11 are induced by SKN-1 in response to reduced IIS and

TIF RNAi, respectively [23,25]. We further compared effects of

translation initiation and elongation by analyzing animals

subjected to RNAi against the TIFs ifg-1 (eIF4G), eif-1 (eIF-1)

and eif-1.A (eIF-1A). In contrast to the effects of TEF RNAi, RNAi

against these TIFs consistently upregulated endogenous gst-4 and

gst-10, along with gcs-1 and atf-5 (Figure 1E and Figure S2D).

Taken together, our data indicate that SKN-1 upregulates

overlapping but distinct sets of target genes in response to

inhibition of translation initiation or elongation.

Cycloheximide (CHX) blocks translation elongation by compet-

ing with the binding of ATP to the 60S ribosomal subunit, and

inhibiting eEF2-mediated translocation (Figure S1) [28]. Treatment

with CHX generally mimicked the effects of TEF RNAi on SKN-1

target gene expression, except that F20D6.11 was also upregulated

(Figure 1B and 1D). This suggests that a SKN-1-dependent stress

Author Summary

The mechanisms through which organisms defend against
environmental stresses are critical during diverse disease
processes and are likely to be important for longevity. The
nematode C. elegans is advantageous for genetic analysis
of how stress defenses function and contribute to survival.
The evolutionarily conserved C. elegans protein SKN-1
promotes stress resistance and longevity, and it defends
against toxic small molecules. We now report that in
certain tissues SKN-1 also maintains production of the
proteasome, a structure that degrades proteins in a
regulated fashion. SKN-1 mounts distinct stress responses
to perturbations in protein synthesis and degradation, in
which it boosts proteasome levels only in response to
proteasome impairment. Remarkably, proteasome activity
also depends upon the proper functioning of the protein
synthesis apparatus. The specificity of SKN-1 stress
responses may be important for protein homeostasis,
allowing SKN-1 to maintain levels and activity of the
proteasomal degradation apparatus, but not increase
degradation when protein synthesis is impaired. This role
of SKN-1 in regulating protein turnover may be important
for many of its stress defense functions and for protection
against disease and aging.

SKN-1 Monitors Protein Synthesis and Degradation
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response is induced by inhibition of the translation elongation

process per se, not simply by a lack of TEFs.

We next investigated how TEF knockdown influences the levels

of SKN-1 in intestinal nuclei. A transgenic protein that includes

two SKN-1 isoforms fused to GFP (SKN-1 B/C::GFP) readily

accumulates in intestinal nuclei in response to various stresses, or

reductions in IIS [24–26]. TEF knockdown also dramatically

increased SKN-1 accumulation in intestinal nuclei, without

upregulating endogenous skn-1 transcripts, indicating that elonga-

tion inhibition increases SKN-1 nuclear accumulation post-

transcriptionally (Figure 1F, Figure S2E and S2F). In striking

contrast, TIF RNAi does not detectably increase the overall levels

of nuclear SKN-1 [23]. TIF inhibition therefore appears to

upregulate SKN-1 target genes through a different mechanism,

and may act on processes that cooperate with SKN-1 but do not

influence its nuclear accumulation.

The evolutionarily conserved p38 mitogen-activated protein

kinase (MAPK) signaling pathway is required for oxidative stress to

induce SKN-1 nuclear accumulation and target gene activation

[29]. The activity of this pathway can be assessed in C. elegans by

Western blotting for the dually phosphorylated, active form of p38

kinase [29,30]. We observed that both TEF RNAi and CHX

Figure 1. Induction of a SKN-1–mediated stress response by interference with translation elongation. (A) The SKN-1-regulated reporter
gcs-1p::GFP is activated by TEF RNAi. GFP levels were scored in the anterior intestine by a system similar to that we have described previously [24],
with unambiguously bright levels defined as ‘‘High’’, barely-detectable GFP levels scored as ‘‘Low’’, and medium expression being intermediate
between ‘‘Low’’ and ‘‘High’’. Here and in (F), P values were derived from a chi2 test, *** P,0.0001. (B) Induction of endogenous SKN-1 target genes by
interference with translation elongation. mRNA levels relative to control are shown, detected by quantitative Real Time PCR (qRT-PCR) after TEF RNAi
or CHX treatment (for 7 or 16 hours (hs)). Here and in (E), P,0.05 compared to control except where not significant is indicated by N. Error bars
indicate SEM. (C) SKN-1-dependence of target gene induction. Endogenous gcs-1 mRNA was detected by qRT-PCR in wild-type (N2) or skn-1(zu135)
animals that had been fed with TEF RNAi bacteria, or treated with CHX for 18 hr at 15uC. Differences between wild-type (N2) and skn-1(zu135) animals
were analyzed by paired t test (two-tailed). In all qRT-PCR experiments where asterisks are shown, ***P,0.001, **P,0.01, *P,0.05. An unpaired t test
(two-tailed) was used to compare effects of TEF RNAi or CHX treatment with the corresponding N2 control. For each comparison to N2, P,0.001. (D)
Interference with translation elongation does not upregulate all SKN-1 target genes. Endogenous SKN-1 target mRNA levels were assayed by qRT-PCR
after TEF RNAi or CHX treatment. (E) Induction of SKN-1 target genes by TIF RNAi, assayed by qRT-PCR. (F) SKN-1 accumulates in intestinal nuclei in
response to TEF RNAi. Examples of nuclear SKN-1 B/C::GFP scoring are shown in Figure S2E. (G) Activation of p38 MAPK signaling in response to
inhibition of translation elongation. Lysates from worms that were exposed to TEF RNAi or CHX (13 hs) were analyzed by Western blotting for
phosphorylated (active) p38 kinase.
doi:10.1371/journal.pgen.1002119.g001

SKN-1 Monitors Protein Synthesis and Degradation
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treatment dramatically elevated the levels of phospho-p38

(Figure 1G). This signal and gcs-1 promoter induction were

markedly reduced in the MAPKK and MAPKKK null mutants

sek-1(km4) and nsy-1(ok593) respectively, indicating that the

canonical p38 pathway was required (Figure S2G and S2B,

respectively). With the exception of ifg-1, RNAi against TIFs did

not robustly activate sek-1-dependent p38 MAPK activity, further

supporting the idea that TIFs and TEFs influence SKN-1 activity

largely through distinct mechanisms (Figure S2H).

Impaired translation elongation does not induce stress
defenses non-specifically

It is an important question whether the SKN-1-mediated

response to reduced translation elongation might derive simply

from a non-specific activation of multiple stress defenses. To test

this idea, we investigated how other stress responses involved in

protein homeostasis are influenced by TEF RNAi. An accumu-

lation of misfolded proteins in the endoplasmic reticulum (ER) or

mitochondria triggers the ER unfolded protein response (UPRer),

or mitochondrial UPR (UPRmt), respectively. To investigate

whether the UPRer or UPRmt is activated in response to inhibition

of TEFs, we examined transcriptional levels of hsp-4, an indicator

of the UPRer [31], along with the UPRmt indicators hsp-6 and

hsp-60 [32]. In general, TEF RNAi did not robustly increase the

levels of hsp-4, hsp-6, or hsp-60 mRNAs (Figure 2A and 2B). Heat

shock proteins (HSPs) act as chaperones that cope with misfolded

cytoplasmic proteins during multiple stresses. As an indicator of

effects on this network, we assayed for induction of genes

representing four major classes of heat shock proteins: small HSPs

(hsp-16.2), DnaJ/HSP40s (dnj-19, dnj-12), Hsc/HSP70s (hsp-70),

and HSP90s (T05E11.3, daf-21) [33]. These HSP genes were also

not upregulated in response to inhibition of most TEFs (Figure 2C,

Figure S3A and S3B). Taken together, the data indicate that RNAi

against TEFs does not broadly activate stress responses involved in

proteostasis.

In C. elegans, interference with translation initiation or

elongation decreases brood size (Figure S3C) [34–36], raising

the concern of whether the activation of SKN-1 that results from

TEF RNAi might derive in part from reduction in germline

proliferation. Interference with germ cell proliferation stimulates

translocation of the transcription factor DAF-16/FOXO into

intestinal nuclei, resulting in increased DAF-16 target gene

expression and a daf-16-dependent increase in longevity [37,38].

In contrast, TEF RNAi only minimally affected either DAF-16

nuclear levels, or expression of the DAF-16 target sod-3 (Figure

S3D and S3E). Interference with germ cell proliferation also

dramatically upregulated expression of the SKN-1 target gst-4

(Blackwell lab, unpublished), which is not induced by TEF RNAi

(Figure 1D and Figure S2D). Together, these results suggest that

the effects of translation elongation inhibition on SKN-1 activity

do not derive from either a non-specific stress response, or indirect

effects mediated by the germline.

SKN-1 increases stress resistance in response to reduced
translation elongation

RNAi against TIF or ribosomal protein genes increases resistance

to various environmental stresses [23,34–36]. We therefore

examined whether TEF knockdown affects resistance to two

different sources of oxidative stress, the organic hydroperoxide

tert-butyl hydrogen peroxide (TBHP), and the metalloid sodium

arsenite (As) [20]. TBHP resistance was dramatically increased after

knockdown of multiple TEFs in wild type animals (Figure 3A; Table

S2). In contrast, RNAi against eef-2 or eef-1G did not robustly

increase oxidative stress resistance in skn-1(zu135) mutants,

indicating that skn-1 is essential for the TBHP resistance that

derives from TEF knockdown (Figure 3B; Table S3). TEF inhibition

also increased resistance to As (Figure 3C; Table S4). We conclude

that the SKN-1-mediated transcriptional response to impaired

translation elongation increases oxidative stress resistance.

C. elegans lifespan is increased by mutation or adulthood

knockdown of several TIFs, ribosomal proteins, or other

translation regulators [23,34,35]. TIF and TEF mRNAs are

expressed at lower levels in the long-lived IIS mutant daf-2, also

consistent with an opposing correlation between protein synthesis

and longevity [39]. However, when we performed TEF RNAi by

feeding during adulthood, lifespan was increased slightly by

knockdown of eef-1A.2, eef-1B.1 and eef-2, but not by eef-1A.1 or

eef-1G (Figure 3D; Table S5A; Figure S3F; Table S5B). This failure

of TEF RNAi to increase lifespan robustly could arise from TEF

RNAi having more pleiotropic effects on the animal than TIF

knockdown, or could be related to the differences in gene

expression responses that result from interference with translation

elongation and initiation.

SKN-1 mediates a proteasome bounce-back response
and maintains UPS activity tissue-specifically in vivo

For multiple reasons, we examined the involvement of SKN-1

in proteasome gene regulation and activity. Firstly, our micro-

array-based expression profiling suggested that SKN-1 contributes

to transcription of 14 proteasome subunit genes (44% of the

apparent total), under both normal and oxidative stress conditions

[20]. Secondly, a transgenic SKN-1::GFP fusion protein was

detected with high confidence at the promoter regions of 25

proteasome genes (78% of the apparent total) during the L1 larval

stage [22]. These included all of the proteasome genes that

expression profiling suggested are regulated by SKN-1, with only a

single exception (rpt-5). In addition, some SKN-1 target genes are

induced by RNAi knockdown of proteasome genes [23,26,27].

Finally, as suppression of translation elongation might increase the

fraction of incompletely translated proteins, it seemed possible that

SKN-1 might increase proteasome gene expression and activity in

response to interference with translation elongation.

We first investigated the extent to which skn-1 is required for

proteasome gene expression under normal conditions. The 26S

proteasome consists of at least 32 subunits in C. elegans, including

19S ATPases involved in substrate unfolding (rpt-1,6), other 19S

subunits (rpn-1,12), 20S a-rings (pas-1,7) and 20S b-rings

(pbs-1,7) [11]. We examined how skn-1 RNAi affected the

expression of the endogenous proteasome subunit genes rpt-3,

rpn-12, pas-4 and pbs-6, which represent the four subunit classes

above. Each of these genes is a predicted SKN-1 target at which at

least four canonical SKN-1 binding sites lie within 1 kb upstream

of the translation initiation codon, and SKN-1::GFP was detected

by ChIP [20,22] (data not shown). In whole animals skn-1 RNAi

slightly decreased the expression of each gene, except for rpt-3

(Figure 4A). We also examined expression of transcriptional

reporters in which proteasome promoters are fused to GFP. RNAi

against skn-1 slightly decreased expression of reporters for rpt-5,

rpn-11 and pas-5, particularly in the intestine, but did not detectably

affect rpn-2 or pbs-4 (Figure 4B and 4C, Figure S4A and S4B,

Table S6). The data suggest that under normal conditions SKN-1

contributes to but is apparently not essential for the expression of

many proteasome subunit genes.

In mammalian cells, Nrf1 and Nrf2 have been implicated in the

‘‘bounce-back’’ response whereby inhibition of the proteasome

results in a compensatory upregulation of proteasome subunit gene

expression [17–19]. To test this model in C. elegans tissues in vivo,

SKN-1 Monitors Protein Synthesis and Degradation
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we blocked proteasome activity by performing RNAi against an

essential proteasome subunit gene, then examined expression of

other proteasome genes. Knockdown of pas-5 or rpn-2 resulted in

dramatic upregulation of the pbs-4, rpt-5 and rpn-11 transcriptional

reporters, as well as an RPN-11::GFP translational fusion protein

(Figure 4C, Figure S4A and S4B, Table S6). These increases in

proteasome gene expression were largely dependent upon skn-1 in

the intestine, where SKN-1 is prominently expressed [24], as

well as in some muscles. Additionally, pas-5 or rpn-2 knock-

down increased endogenous proteasome subunit mRNA levels in a

Figure 2. TEF inhibition does not globally induce stress responses. In (A–C), Relative levels of the indicated endogenous mRNAs were
assayed by qRT-PCR after RNAi against the indicated TEF, or CHX treatment. N = not significant. In (A), all other P,0.025; in (B), all other P,0.05; in (C),
all other P,0.02.
doi:10.1371/journal.pgen.1002119.g002

SKN-1 Monitors Protein Synthesis and Degradation
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skn-1-dependent manner (Figure 4D). In certain tissues, therefore,

SKN-1 is required in vivo for the compensatory induction of

proteasome gene upregulation that occurs in response to

proteasome inhibition.

As our data suggested that skn-1 contributes to proteasome gene

expression, particularly when proteasome activity is impaired, we

used a novel in vivo assay to investigate whether SKN-1 is

important for UPS activity under normal conditions [40]. We

generated a strain (Pvha-6::UbG76V-Dendra2) in which the intestine-

specific promoter vha-6 drives expression of a photoswitchable

green-to-red fluorescent protein (Dendra2) that is fused to a

non-hydrolyzable ubiquitin moiety (UbG76V) [40,41]. By mon-

itoring this fusion protein after photoconversion, we could assess

ubiquitin-dependent protein degradation activity in living animals

[40]. In control RNAi animals, at 9 hours after photoconversion

the levels of red-fluorescing intestinal UbG76V-Dendra2 had been

reduced to 40% of that present just after photoconversion, but a

control Dendra2 that lacked UbG76V was still stable (Figure 5A,

upper left panels). UbG76V-Dendra2 degradation was dramati-

cally inhibited by RNAi against the proteasome genes pbs-5, rpn-2,

or rpt-4, indicating that this degradation required the proteasome

(Figure 5B and S4C). Together, the data show that this intestinal

UbG76V-Dendra2 protein is degraded by the UPS.

Degradation of intestinally-expressed UbG76V-Dendra2 was

also markedly reduced by skn-1 RNAi, indicating that UPS activity

in the intestine depends upon SKN-1 (Figure 5A, upper panels). In

contrast, skn-1 RNAi did not impair degradation of UbG76V-

Dendra2 that was expressed specifically in the body-wall muscle,

and slightly increased its degradation in dopaminergic neurons

(Figure S4D and S4E, respectively). skn-1 RNAi also decreased the

total proteasome activity in the animal under normal conditions,

as detected in vitro by a proteasome in-gel activity assay (Figure

S5A). Treatment with the proteasome inhibitor MG132 was more

toxic for animals in which skn-1 had been knocked by RNAi than

for control animals (Figure S5B), further supporting the idea that

SKN-1 is important for proteasome gene expression and activity.

We conclude that SKN-1 functions tissue-specifically to maintain

UPS activity in the intestine under normal conditions, and that a

significant proportion of total C. elegans UPS activity is skn-1-

dependent.

Dependence of the UPS on translation elongation factors
Having determined that SKN-1 is important for proteasome

gene expression and UPS activity in the intestine, and that RNAi

against TEFs induces SKN-1 to upregulate particular target genes,

we wanted to investigate whether interference with translation

elongation might direct SKN-1 to increase proteasome expression

and degradation activity. This seemed like a plausible model,

because it might be advantageous for proteasome activity to be

increased upon interference with elongation, in order to ensure

that any incompletely translated proteins are degraded. Surpris-

ingly, however, the levels of endogenous mRNAs encoding four

proteasome subunits decreased slightly in response to RNAi

against each TEF that we examined, with the exception of eef-1B.1

(Figure S6A). Intestinal fluorescence from the pas-5p::GFP reporter

was not increased by either eef-1A.1 or eef-2 RNAi, but was slightly

decreased by eef-2 knockdown (Figure S6B; Table S6). Further-

more, in whole animals the levels of proteasome 20S a subunits

Figure 3. TEF knockdown increases oxidative stress resistance. (A) Increased TBHP resistance after TEF RNAi. In (A–C), data were analyzed by
JMP and plotted with EXCEL. Representative experiments are shown, with replicates, statistics, and percent changes in survival time provided in Table
S2 (A), Table S3 (B), and Table S4 (C). Error bars represent the SEM, and P values were calculated by log-rank. *P,0.0001. (B) skn-1 contributes to TBHP
resistance deriving from TEF RNAi. (C) Resistance to Arsenite resulting from TEF RNAi. (D) Lifespan analysis of worms fed TEFs or TIF (ifg-1) RNAi
bacteria. A composite of three replicates (Table S5A) is shown.
doi:10.1371/journal.pgen.1002119.g003

SKN-1 Monitors Protein Synthesis and Degradation
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were decreased slightly in response to RNAi against each TEF

(Figure S6C). Expression of proteasome subunits was similarly

reduced slightly by RNAi against TIFs (Figure S6A and S6D). We

conclude that whereas SKN-1 directly upregulates proteasome

gene transcription under normal conditions, and particularly after

depletion of individual proteasome subunits, it does not do so after

inhibition of translation elongation or initiation.

In yeast, eEF1A interacts with proteasome subunits and may

escort incompletely translated proteins to the proteasome, thereby

facilitating their degradation [7,9,10]. This raised an alternative

possibility, that the translation elongation apparatus might be

important for proteasome activity. Consistent with this notion, in

C. elegans EEF-1A.1 interacts with proteasome subunits RPN-2 and

RPT-4 [11] and inhibition of three TEFs resulted in the

premature aggregation of transgenic proteins, suggesting a possible

downregulation of proteasome activity [42]. When we monitored

UbG76V-Dendra2 degradation in the intestine, we observed that

its degradation was significantly impaired by knockdown of

multiple different TEFs, but not TIFs (Figure 5; Table S7).

Having observed that proteasome gene expression is affected

similarly by TEF and TIF RNAi (Figure S6A–S6D), this suggests

that UPS activity may be mechanistically dependent upon the

translation elongation machinery.

These findings raised an unexpected model for why SKN-1

target genes are induced by RNAi against TEFs: that the resulting

reduction in proteasome activity might stimulate a SKN-1-

dependent stress response. However, several observations argue

against this interpretation. In contrast to the effects of TEF RNAi,

knockdown of proteasome subunit genes induced skn-1-dependent

expression of other proteasome genes, and did not increase p38

MAPK signaling or SKN-1 nuclear occupancy (Figure 4C, 4D

and S6E–S6G; Table S6). Also different from TEF RNAi effects,

proteasome gene RNAi activated the skn-1-regulated gst-4p::GFP

reporter [26,27], and knockdown of pas-5, rpn-2 or rpt-4 induced

skn-1-dependent endogenous gst-4 and gst-10 expression (Figure

S6G and S6H). Finally, proteasome subunit but not TEF RNAi

activated heat shock promoters hsp-70 and hsp-16.2 (Figure S3A

and S3B). Induction of a SKN-1-mediated stress response by TEF

RNAi therefore does not derive from an indirect effect on the

proteasome, and may result directly from signals associated with

slowed translation elongation.

Discussion

We have determined that interference with either mRNA

translation or proteasome integrity results in induction of SKN-1-

mediated stress responses. These responses are remarkably

specific, in that SKN-1 upregulates distinct suites of target genes

in response to impairment of translation initiation, translation

elongation, or proteasome activity (Figure 6). When protein

synthesis is inhibited, SKN-1 increases oxidative stress resistance.

If proteasome subunit expression is blocked, SKN-1 attempts to

compensate by upregulating proteasome genes in multiple tissues.

In contrast, proteasome gene expression is not increased when

translation is impaired, and proteasome activity is actually

decreased in response to reduced translation elongation, suggest-

ing that the specificity of these SKN-1-mediated functions may be

important for maintaining protein homeostasis.

It is intriguing that different mechanisms seem be involved

when SKN-1 is directed to activate target genes in response to

inhibition of translation initiation or elongation. It is unlikely that

the differences between these SKN-1-dependent responses derive

simply from different degrees of translation activity or stress,

because these responses are qualitatively distinct. Whereas TIF but

not TEF RNAi upregulates transcription of the SKN-1 target

genes gst-4 and gst-10 (Figure 1B, 1D and 1E), TEF but not TIF

RNAi leads to accumulation of SKN-1 in intestinal nuclei

(Figure 1F) [23]. In addition, TEF RNAi increases p38 pathway

signaling more robustly (Figure 1G and Figure S2G). One possible

model is that interference with translation initiation might

upregulate SKN-1-dependent gene expression by acting on

transcription factors that cooperate with SKN-1. Consistent with

this idea, several mRNAs are translated preferentially when

translation initiation is inhibited, including some that encode stress

response factors [43]. It may be important to increase oxidative

and xenobiotic stress resistance when either translation initiation

or elongation is impaired, because broad reductions in protein

synthesis could disrupt cellular metabolism or redox buffering,

particularly in a key metabolic and synthetic tissue like the C.

elegans intestine [23]. In addition, oxidizing conditions facilitate

IIS, suggesting that under conditions of growth and high

translation rates it could be advantageous to suppress SKN-1-

regulated oxidative stress defenses [44].

In addition to its well-documented role in small molecule

detoxification, we have found that SKN-1 is also important for

regulating proteasome gene expression and sustaining UPS

activity, particularly in the intestine. The SKN-1 orthologs Nrf1

or Nrf2 have been reported to induce compensatory proteasome

gene expression when proteasome activity is impaired in cultured

mammalian cells [17–19]. We have shown that this SKN-1/Nrf

function is both important in vivo and evolutionarily conserved, and

involves each class of proteasome genes. We also obtained the

novel finding that SKN-1 orchestrates this response in multiple

post-mitotic tissues, including the intestine. It will be important to

investigate the extent to which the proteasome bounce-back

response might rely on different Nrf1/2/3 isoforms or other

mechanisms in various mammalian cell types, particularly the gut,

liver, and adipose tissues, which are counterparts to the C. elegans

intestine.

Under non-stressed conditions, lack of SKN-1 or Nrf1

decreased proteasome gene expression only modestly in C. elegans

and mammalian cells, respectively (Figure 4A and 4B) [18,20].

However, this seemingly small effect of SKN-1 evidently has

substantial consequences, because we determined that under

Figure 4. Importance of SKN-1 for the proteasome bounce-back response. (A) Relative mRNA levels of endogenous proteasome subunit
mRNAs in N2 animals fed with control (L4440) or skn-1 RNAi bacteria. All P,0.005 compared to control, except where N = not significant. Error bars
indicate SEM. (B) skn-1 RNAi slightly decreases rpt-5p::GFP expression, particularly in the intestine, under normal conditions. Representative projection
images show all z-stacks in the left panels, and z-stacks through the intestine on the right. Here and in (C), 2-day-old adults were used for imaging,
boundaries of the intestine are indicated by dashed lines, and quantification and statistics are listed in Table S6. (C) skn-1 RNAi blocks the bounce-
back response to proteasomal subunit knockdown. Representative confocal projection images of pas-5 or rpn-2 RNAi effects on the rpn-11p::GFP
transcriptional reporter are shown, with z-stacks through the intestine or muscles displayed for double RNAi experiments. Abbreviations: M,
body-wall muscle; SIM, stomatointestinal muscle. (D) Impaired bounce-back response in skn-1 mutants. Endogenous proteasome subunit mRNAs
were detected by qRT-PCR in wild-type (N2) or skn-1(zu135) animals that had been fed with proteasome subunit RNAi bacteria. A paired t test
(two-tailed) was employed to compare wild-type (N2) and skn-1(zu135) animals. An unpaired t test (two-tailed) was used to compare proteasome
subunit vs control RNAi in N2 animals. Compared to N2 control, all P,0.05. mRNA levels were normalized to tba-1 (a-tubulin).
doi:10.1371/journal.pgen.1002119.g004
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normal conditions SKN-1 has a major effect on UPS activity in vivo

in the intestine (Figure 5A, upper panels), and contributes to the

total proteasome activity in the animal (Figure S5A). Taken

together with recent ChIP data indicating that SKN-1 occupies

the promoters of most proteasome genes under non-stressed

conditions [22], our findings suggest that SKN-1/Nrf proteins are

critical regulators of proteasome genes even under normal

circumstances. Perhaps the ‘‘bounce-back’’ function of SKN-1 is

needed for fine-tuning the levels of proteasomal subunits in the

intestine, so that proteasome assembly can proceed efficiently.

Our observation that animals fed skn-1 RNAi bacteria are

sensitized to treatment with a proteasome inhibitor (Figure S5B)

suggests that SKN-1 is critical for sustaining proteasomal defenses

against proteotoxicity in vivo. The involvement of SKN-1/Nrf

proteins in regulating proteasome gene expression might be

important not only under acute stress conditions, but also in

situations of chronic proteotoxic stress such as alcoholic liver and

neurodegenerative diseases. Interestingly, in mice liver-specific

inactivation of Nrf1 results in non-alcoholic steatohepatitis and

hepatic cancer [45]. This syndrome is associated with oxidative

damage in hepatocytes, but our results suggest that impaired

proteasome activity might also be involved. SKN-1/Nrf proteins

have been shown to increase longevity in both C. elegans and

Drosophila [15,25]. Our new results predict that this effect may

derive not only from their function in protecting against reactive

small molecules, but also may involve their role in sustaining

proteasome expression and activity, and thereby helping to

maintain protein homeostasis. Consistent with this idea, a recent

study showed that skn-1 is required for C. elegans lifespan to be

extended by an amyloid-binding compound that suppresses

toxicity deriving from misfolded proteins [46].

We also observed that UPS activity is dependent upon the

translation elongation machinery. A conclusive assessment of how

TEF RNAi affected total proteasome activity in the animal, as

measured in vitro, was problematic because translation inhibition

reduced the total amount of protein present (data not shown).

However, our in vivo assay [40] demonstrated clearly that intestinal

UPS activity was reduced by TEF but not TIF RNAi (Figure 5).

Previous work in yeast had noted that TEFs interact with the

proteasome, and that eEF1A may facilitate degradation of

defective newly synthesized proteins by escorting them to the

proteasome (see Introduction). Working in a metazoan, we have

now obtained support for the idea that UPS-mediated protein

degradation and translation elongation are mechanistically

coupled processes. We determined that inhibition of translation

elongation but not initiation reduced UPS activity in the intestine

in vivo, an effect that seems unlikely to be mediated by the modest

decline in proteasome gene expression seen after RNAi of either

TEFs or TIFs (Figure 5 and Figure S6A–S6D). It also seems

unlikely that this effect derived simply from the UPS being

swamped by incompletely translated proteins arising from

inhibition of elongation, because we did not see simultaneous

upregulation of proteasome genes. Interestingly, our assay

measured degradation of fluorescent and presumably folded

UbG76V-Dendra2, suggesting that the translation elongation

apparatus may promote UPS-mediated degradation of complete

polypeptides that are no longer associated with the translation

apparatus. The physical interactions that have been described

between the proteasome and elongation factors [6,14] therefore

may be generally important for UPS activity.

It is an intriguing question why SKN-1 does not increase

proteasome gene expression and activity when translation

elongation is inhibited, particularly when it appears to be present

at most proteasome gene promoters constitutively [22]. Perhaps it

would be deleterious for SKN-1 to do so, because if translation

elongation were to slow in response to limited nutrients or other

conditions, an inappropriate increase in proteasome activity might

prematurely degrade nascent polypeptides, and thereby could

globally impair protein synthesis. This could provide a rationale

not only for the failure of TEF RNAi to induce proteasome gene

upregulation, but also for the apparent dependence of UPS

activity on translation elongation but not initiation factors. Taken

together, our findings indicate that SKN-1 plays an important role

in sensing and maintaining protein homeostasis, by mobilizing

distinct responses to perturbations in polypeptide chain elongation

and proteasomal degradation (Figure 6). They also indicate that

the stress defenses that are regulated by SKN-1/Nrf proteins are

not controlled in unison through a simple on/off switch, but are

remarkably customized for specific conditions. This raises

important questions concerning how these stresses are sensed at

the molecular level, and how different stress signals are integrated

by SKN-1/Nrf proteins to achieve specificity in their responses.

Materials and Methods

RNAi
RNAi was performed by feeding essentially as described [23],

except that L3 and (or) early L4-stage worms were fed RNAi

bacteria for 3 days at 20uC unless otherwise indicated. Bacteria

carrying the vector plasmid L4440 were used as the control. RNAi

constructs were taken from the Vidal ORFeome-Based RNAi

library [47] and confirmed by sequencing. In all double RNAi

Figure 5. Knockdown of SKN-1 or TEFs, but not TIFs, reduces UPS activity in the intestine. (A) Representative images of Pvha-6::UbG76V-
Dendra2 and Pvha-6::Dendra2 reporters in animals exposed to control, skn-1, eef-1A.1 (TEF) or eif-1(TIF) RNAi. Red fluorescence derives from substrate
that was present at the time of photoconversion. Bar: 20 mm. In (A–C), bar graphs depict the percentages of green and red fluorescence compared to
either the initial value (t = 0 for green) or point of photoconversion (t = C for red) for UbG76V-Dendra2 and Dendra2, respectively (6 SEM). (B,C)
Summary of UbG76V-Dendra2 and Dendra2 imaging in intestinal cells after 9 hours in response to TEF and TIF RNAi, respectively. Significant
differences relative to control RNAi (red fluorescence after 9 hours) are indicated with **P,0.01, *P,0.05.
doi:10.1371/journal.pgen.1002119.g005

Figure 6. Specific SKN-1–mediated responses to impaired
protein synthesis and degradation. SKN-1 target genes are
activated through distinct mechanisms by interference with translation
initiation or elongation, so that TEF RNAi (red) induces a more restricted
set of SKN-1 target genes than TIF RNAi (blue). TEF RNAi also impairs
UPS activity, supporting the idea that proteasome activity and
translation elongation are mechanistically coupled processes. In the
intestine, SKN-1 is also important for the ‘‘bounce-back’’ response to
proteasome inhibition, and for UPS activity under normal conditions
(green).
doi:10.1371/journal.pgen.1002119.g006
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experiments, RNAi and/or control bacteria were mixed at a 1:1

volume ratio. The wild-type strain is N2.

RNA isolation and quantitative RT-PCR
Animals subjected to RNAi were collected and washed 3 times

in M9, then total RNA was extracted from approximately 60

animals for each treatment. RNA was extracted using the TRI

Reagent (Sigma) and cDNA synthesized using the SuperScript

First-Strand Synthesis Kit (Invitrogen). SYBR Green Real Time

Quantitative PCR was carried out using the ABI 7900 and

analyzed using the Standard Curve method [48]. For all RNAi

experiments, qRT-PCR data were derived from 3–4 independent

biological replicates. In CHX experiments, the values presented

were derived from 2–3 independent PCR analyses of one

biological experiment. Results were graphed so that the level of

each mRNA that was seen in N2 animals fed with control (L4440)

RNAi bacteria was set as 1. Unless otherwise indicated, act-1

(b-actin) was used for normalization and P values were derived

from an unpaired t test (two-tailed). Primer sequences are listed in

Table S8.

Western blotting
L2/L3 stage larvae were fed RNAi bacteria for two days, then

collected and washed in M9 buffer, and snap frozen in liquid

nitrogen. Worms were lysed in RIPA buffer (50 mM Tris

[pH = 8.0], 150 mM NaCl, 1% Nonidet P-40, 0.5% sodium

deoxycholate and 0.1% SDS) supplemented with 0.2 mM sodium

vanadate, 50 mM sodium fluoride, 0.1 mM PMSF and protease

inhibitor cocktail (Roche). Supernatant was quantitated by the BCA

protein assay kit (Pierce). Western blots were performed with

antibodies specific for phospho-p38 (Cell signaling #9211),

proteasome 20S a subunits (BIOMOL #8195), and a-tubulin

(Sigma-Aldrich #9026).

Oxidative stress resistance assays
Analyses of oxidative stress resistance were performed essentially

as described [23]. To assay TBHP resistance, L3/L4 stage animals

were fed with RNAi bacteria for three days, then transferred to

plates that contained 9.125 mM TBHP (Sigma-Aldrich) in the

agar and E. coli OP50 food. Fresh TBHP plates were prepared

fresh two hours before transfer. Animals that bagged, crawled off

the plates and exploded were censored. As resistance assays were

performed by essentially the same method, using freshly prepared

plates that contained 10 mM NaAsO2 (Sigma-Aldrich) in the agar

and E. coli OP50 food.

Lifespan analysis
Lifespan analyses were conducted at 20uC, with RNAi

treatments performed only during adulthood. N2 animals were

synchronized by timed egglay for 2–4 hours on plates seeded with

control RNAi bacteria. Synchronized one-day-old adults were

transferred to lifespan plates seeded with gene-specific or control

RNAi bacteria. 29 fluoro-59 deoxyuridine (FUDR) was present

(0.1 mg/ml) to prevent progeny development. The first day of

adulthood was used as t = 0, with animals scored each day after the

sixteenth day of adulthood. Those that crawled off the plate,

exploded, or bagged were censored. JMP version 7, was used for

statistical analyses, and P values were calculated using the log-rank

method.

In vivo proteasome activity assay
L2/L3 larvae were placed on RNAi feeding plates, then

exposed to photoconversion after 72 h (muscle cell imaging) or

48 h (all others). Photoconversion and image analysis were

performed as described [40]. Only gravid adults were imaged,

and worms were maintained on RNAi plates between time points.

P values were determined by Student’s t-test (homoscedastic).

Quantification and imaging of GFP reporters
For proteasome reporters, L2/L3 larvae were fed RNAi

bacteria for 3 days, then normal-appearing worms that developed

into gravid adults were analyzed. Animals were mounted on 5%

agarose pads, immobilized in 1 mM levamisole and imaged with a

Zeiss Axioplan 2 microscope. Confocal microscopy was used to

generate z-stack projections for a representative subset of animals

(LSM 510 Meta, 406plan-neofluar objective, Zeiss, Germany; z-

stacks with 0.5 mm interval). At least two stable transgenic lines for

each proteasome reporter strain were examined. Fluorescent

images were analyzed by the MCID system (Imaging Research) to

measure the average fluorescence level of the entire worm, or

particular regions. The average value of controls for each

experiment was set as 100%, with values obtained in parallel

from RNAi-treated worms converted to the relative fluorescence

level. Data obtained from several experiments were pooled for

statistical analysis.

For other reporters, an AxioVision (Zeiss) microscope was used

to acquire imaging and fluorescence was scored by eye as Low,

Medium, or High as described for each experiment.

Additional Materials and Methods are provided in Text S1.

Supporting Information

Figure S1 Schematic of the translation elongation cycle. eEF1A

is involved in delivering aminoacyl-tRNA to the empty A-site of

the ribosome in the presence of GTP. eEF1B is a multi-subunit

nucleotide exchange factor that partners with eEF1A, and

enhances the recycling of eEF1A-GDP to eEF1A-GTP. eEF2 is

a monomeric protein that translocates peptidyl tRNA to the P-site.

After translocation, the peptidyl-tRNA is positioned in the

ribosome P-site, and the next codon on the mRNA is made

available for the next elongation cycle [49].

(TIF)

Figure S2 SKN-1 target gene induction in response to inhibition

of translation elongation. (A) Diagram of the gcs-1 promoter

transgenes used in this study [24]. 1, 2, and 3 refer to SKN-1

binding sites. Mutation of site 3 abolishes most skn-1-dependent

expression. (B) Expression of gcs-1p::GFP is dependent upon SKN-1

binding site 3, and p38 signaling through the MAPKK SEK-1.

gcs-1p::GFP expression was scored as in Figure 1A, after RNAi

against the indicated TEF. P values were derived from a chi2 test,

and were all above 0.009. (C) SKN-1-dependence of endogenous

target gene induction. In all qRT-PCR figures, ***P,0.001,

**P,0.01, *P,0.05, N = not significant, and error bars indicate

SEM. Endogenous atf-5 or haf-7 mRNA was detected by qRT-PCR

in wild-type (N2) or skn-1(zu135) animals that had been fed with

TEF RNAi bacteria, or treated with CHX for 18 hs at 15uC. A

paired t test (two-tailed) was employed to compare wild-type (N2)

and skn-1(zu135) animals. An unpaired t test (two-tailed) was used to

compare TEF RNAi or CHX treatment vs the corresponding

control in N2 animals. Compared to N2 control, all P,0.05. (D)

Intestinal gst-4p::GFP expression is not robustly induced by TEF

RNAi. Worms were scored for GFP expression after RNAi

knockdown of the indicated TEFs or the TIF ifg-1, with examples

of high and low scoring provided. ‘‘High’’ indicates that gst-4p::GFP

was present at unambiguously high levels throughout most of the

intestine, while ‘‘low’’ refers to animals in which readily detectable

GFP signal was present only in the most anterior part of the
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intestine, and ‘‘medium’’ indicates an intermediate level of GFP

signal. P values were derived from a chi2 test. *** P,0.0001,

** P,0.005, NS = Not Significant. (E) Examples of SKN-1::GFP

accumulation in intestinal nuclei that scored as low, medium and

high in Figure 1F. ‘‘Low’’ refers to animals in which GFP was barely

detectable in nuclei throughout the intestine, ‘‘medium’’ indicates

that GFP was present in the anterior and/or posterior intestinal

nuclei, and ‘‘High’’ indicates that a strong GFP signal was present in

most intestinal nuclei. Arrows indicate intestinal nuclei. (F) Relative

skn-1 mRNA levels after TEF RNAi or CHX treatment, measured

by qRT-PCR. (G) The p38 MAPKK SEK-1 and MAPKKK

NSY-1 are required for p38 MAPK activation in response to TEF

RNAi. In C. elegans, canonical p38 signaling is blocked by mutation

of either sek-1 or nsy-1 [29]. Representative experiments are shown

in which lysates from control or RNAi worms were analyzed by

Western blotting for p38 kinase phosphorylation (activation) as in

Figure 1G. In all panels a-tubulin was the loading control. (H) p38

activation in response to knockdown of TIFs, assayed as in (G). In

this and multiple other experiments only ifg-1 RNAi increased levels

of p38 phosphorylation comparably to TEF RNAi. This p38

activation required the p38 MAPKK sek-1 (right panel).

(TIF)

Figure S3 Effects of TEF RNAi do not derive from a global

induction of stress responses. (A, B) Heat shock genes are activated

by proteasomal gene knockdown but not TEF RNAi. In (A), a

transgenic reporter driven by the promoter for the heat-shock gene

hsp-70 (hsp-70p::GFP) [50] was robustly upregulated in the anterior

and posterior intestine after proteasomal subunit gene RNAi

(rpn-2, rpn-4), but not TEF RNAi. In (B), the GFP-fused promoter

for the small heat shock protein gene hsp-16.2 [51] was induced by

proteasomal subunit RNAi but not TEF knockdown. ‘‘Low’’

indicates that GFP was undetectable throughout the animal,

‘‘medium’’ indicates that GFP was present in the middle intestinal

nuclei, and ‘‘High’’ indicates that GFP signal was present in most

intestinal nuclei. (C) RNAi against TEFs decreased fecundity. P

values were derived from an unpaired t test (two-tailed). For each

RNAi treatment P,0.0001 compared with corresponding control.

(D) DAF-16::GFP does not accumulate in intestinal nuclei in

response to TEF knockdown, in contrast to the effect of decreased

germ cell proliferation. P values were derived from a chi2 test;

*** P,0.0001, **P,0.005, here and in (E). (E) Expression of the

DAF-16 target gene reporter sod-3p::GFP after TEF RNAi.

sod-3p::GFP is robustly induced by knockdown of the insulin

receptor DAF-2, or by inhibition of germ cell proliferation [38],

but is only modestly affected by TEF RNAi. For control and TEF

RNAi, ‘‘high’’ corresponds to a bright GFP signal being present

throughout the hypodermis (in both the cytoplasm and nucleus)

and posterior intestine, ‘‘medium’’ refers to modest GFP

expression in the anterior and posterior intestine, and ‘‘low’’

indicates modest GFP expression in the posterior intestine only.

For daf-2 RNAi, a strong GFP signal was present throughout both

the intestine and hypodermis. (F) Lifespan analysis of TEF RNAi

worms, performed in parallel to Figure 3D. For control, eef-1A.1

and eef-1G RNAi treatments, composites of two biological replicates

are shown. For ifg-1 RNAi, a single experiment is shown. Statistics

are provided in Table S5B.

(TIF)

Figure S4 Effects of proteosomal subunit and skn-1 RNAi on

proteasome gene expression and UPS activity in vivo. (A, B)

Requirement for skn-1 for the ‘‘bounce-back’’ response to

proteasome gene RNAi. Confocal z-stack projection images are

shown of representative 2-day-old adult worms that carry

proteasome gene reporter transgenes, and were subjected to the

indicated RNAi treatments. RPN-11::GFP is a translational fusion

reporter, but pbs-4p::GFP includes only the pbs-4 promoter region.

For all worms in double RNAi experiments, z-stack projections

through the intestine or body-wall muscle are shown. Dashed lines

indicate boundaries of the intestine. Abbreviations: M, body-wall

muscle; SIM, stomatointestinal muscle. Quantification and

statistics are listed in Table S6. In all double RNAi experiments,

RNAi and/or control bacteria were mixed at a 1:1 volume ratio,

with single RNAi treatments mixed with control. (C) Knockdown

of proteasome subunits impairs intestinal UPS activity. Represen-

tative images of animals fed control (L4440), pbs-5 (20S b-ring),

rpn-2 (19S non-ATPase) and rpt-4 (19S ATPase) RNAi respective-

ly. Bar: 20 mm. Note the difference in % UbG76V-Dendra2

fluorescence remaining after 9 hours. (D) SKN-1 does not

contribute to UPS-mediated protein degradation in body-wall

muscle cells. UbG76V-Dendra2 and control Dendra2 that were

expressed specifically in body-wall muscle cells (from Punc-54) were

imaged in control and skn-1 RNAi animals at 24 hours after

photoconversion. Bar: 20 mm. Depicted in the graphs: percentages

of green and red fluorescence related to the initial value (t = 0) or

point of photoconversion (t = C) respectively (6 SEM). P = 0.1787

(Student’s t-test). (E) SKN-1 is not required for UPS-mediated

UbG76V-Dendra2 degradation in dopaminergic neurons, assayed

at 9 hours after photoconversion. Representative experiment is

shown. UbG76V-Dendra2 and control Dendra2 that were

expressed specifically in dopaminergic neurons (from Pdat-1) were

imaged in control and skn-1 RNAi animals at 9 hours after

photoconversion. Experiments were performed in the RNAi-

sensitive strain rrf-3 (pk1426) to allow penetrance in neurons. Note

that degradation slightly increased by skn-1 RNAi. Bar: 5 mm.

Numbers of animals and statistics for all experiments are listed in

Table S7.

(TIF)

Figure S5 Importance of SKN-1 for proteasome function.

(A) SKN-1 is required for total C. elegans proteasome activity, as

measured by a proteasome in-gel activity assay. The left panels show

fluorescent (top) and Coomassie-stained (bottom) images of a

representative experiment in which the chymotrypsin-like activity of

the proteasome was assayed. CP refers to the 20S proteasome core

particle, and RP to the 19S regulatory particle. The 26S complexes

designated as RP-CP and RP2-CP include RPs at one or both ends

of the CP, respectively. The right panel shows the relative fold-

change in normalized substrate fluorescence compared to control

(set as 1). Results of four individual experiments are graphed, with

error bars that correspond to SEM. (B) Knockdown of skn-1 by

RNAi feeding increases sensitivity to proteasome inhibition. A

representative experiment (of three total) is shown in which one day-

old adults were fed L4440 control (in blue) or skn-1 RNAi (in red)

bacteria for three days, exposed to the indicated concentration of

the proteasome inhibitor MG132 in 1% DMSO for 24 hours, then

scored for viability. N = approx. 50 in each of two wells, and error

bars indicate SEM.

(TIF)

Figure S6 Distinct effects of TEF, TIF, and proteasome subunit

RNAi on proteasome subunit and SKN-1 target gene expression.

(A) Relative levels of endogenous proteasome subunit mRNAs

after TEF or TIF RNAi. In contrast to results seen after

proteasome subunit gene knockdown, in most cases RNAi against

these translation factors modestly reduced proteasome gene

expression. N = not significant, all other P,0.05. (B) Representa-

tive confocal images of the proteasome reporter pas-5p::GFP fed

either control or eef-2 RNAi. Note that GFP levels were reduced in

the intestine in response to knockdown of eef-2. (C, D) Reduced

SKN-1 Monitors Protein Synthesis and Degradation

PLoS Genetics | www.plosgenetics.org 12 June 2011 | Volume 7 | Issue 6 | e1002119



levels of proteasome 20S a subunits after RNAi against TEFs or

TIFs. Lysates from control or RNAi worms were Western blotted

with an antibody against 20S proteasome a1, 2, 3, 5, 6 & 7 subunits

[52]. For TEF RNAi (C), the nitrocellulose transfer membrane used

was same as that used in Figure S2G. For TIF RNAi (D), the

membrane was same as that used in Figure S2H. Representative

experiments are shown. (E) p38 MAPK is not activated by RNAi

against proteasome subunits, in contrast to effects of TEF RNAi.

Western blot assay was performed as in Figure 1G, Figure S2G and

S2H. (F) RNAi against proteasome subunits does not dramatically

increase SKN-1 B/C::GFP accumulation in intestinal nuclei.

Worms were scored as in Figure 1F. (G) Relative levels of

endogenous proteasome (rpt-3, rpn-12, pas-4 and pbs-6) and SKN-

1 target (gcs-1, gst-4 and gst-10) mRNAs after proteasome subunit

(rpn-2 or rpt-4) RNAi, assayed by qRT-PCR. These genes are not

generally induced by TEF RNAi, except for gcs-1. tba-1 (a-tubulin)

was used for normalization, here and in (H). N = not significant, all

other P,0.02. (H) SKN-1-dependent upregulation of gst-4 and gst-

10 by proteasome subunit RNAi. Statistical analysis was performed

as in Figure S2C. All P,0.05 compared to control, except where

not significant is indicated by N.

(TIF)

Table S1 Mammalian and C. elegans TEFs. Identity (%) is from

NCBI/basic BLAST/protein blast program. *Isoform chosen to

run BLAST.

(DOCX)

Table S2 Effects of TEF RNAi on resistance of wild type worms

to 9.125 mM TBHP. The third individual experiment described

above is graphed in Figure 3A. JMP software was used for data

analysis. Percentage change of mean survival time = (mean

survival time of animals fed treatment RNAi - mean survival time

of animals fed control RNAi)/mean survival time of animals fed

control RNAi. 75th percentiles refer to the time at which 75%

population was dead. Wild type N2 animals were used in each

RNAi experiment. No. RNAi animals indicates the number of

observed deaths/total number of worms subjected to RNAi

treatment. P values were calculated by log-rank.

(DOCX)

Table S3 skn-1-dependence of TBHP oxidative stress resistance.

Three individual experiments are listed that were performed in

parallel as in Figure 3B. The third individual experiment labeled

with * is shown in Figure 3B. Data were analyzed as in Table S2.

(DOCX)

Table S4 Effects of TEF RNAi on resistance of wild type worms

to 10 mM Arsenite. Individual experiments are listed that were

performed as in Figure 3C. The first individual experiment is

shown in Figure 3C. Data were analyzed as in Table S2.

(DOCX)

Table S5 Lifespan analysis of inhibition of translation. Corre-

sponds to the data in Figure 3D and S3F, respectively. Data of

each table was a composite of multiple individual experiments.

Percentage increase in mean lifespan = (mean RNAi treatment

adult lifespan- mean control adult lifespan)/mean control adult

lifespan. 75th and 25th percentiles refer to the day at which 75% or

25% the population was dead. Wild type N2 animals were used for

the experiments. N represents number of RNAi worms, number of

observed deaths/total number of worms subjected to RNAi

treatment. P values were calculated by log-rank.

(DOCX)

Table S6 Quantification and statistical analysis of proteasome

subunit reporter expression. Fluorescence densities in whole

worms or selected regions (intestine, head) were obtained from

the measurement of fluorescent microscopic images by a

computer-based MCID image analysis system. For each experi-

ment, the average values of control worms (fed with L4440 RNAi

bacteria) were set as 1, with values obtained from RNAi-treated

worms in parallel converted to relative fluorescence levels. Data

obtained from several experiments were pooled for t tests

(two-tailed). The number of independent experiments was

indicated as N. For each proteasome subunit reporter, two to

three transgenic lines of worms were examined in each

experiment. Data correspond to results shown in Figure 4B, 4C;

Figure S4A, S4B and S6B.

(DOCX)

Table S7 Statistical analysis of in vivo UPS activity experiments.

Number of individual experiments is shown in parentheses. Data

correspond to results shown in Figure 5 and S4C–S4E.

(DOCX)

Table S8 Primer sequences. This table includes all primers used

in qRT-PCR experiments.

(DOCX)

Text S1 Supplementary Materials and Methods.

(DOC)
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