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Abstract

Lafora disease is the most common teenage-onset neurodegenerative disease, the main teenage-onset form of progressive
myoclonus epilepsy (PME), and one of the severest epilepsies. Pathologically, a starch-like compound, polyglucosan,
accumulates in neuronal cell bodies and overtakes neuronal small processes, mainly dendrites. Polyglucosan formation is
catalyzed by glycogen synthase, which is activated through dephosphorylation by glycogen-associated protein
phosphatase-1 (PP1). Here we remove PTG, one of the proteins that target PP1 to glycogen, from mice with Lafora
disease. This results in near-complete disappearance of polyglucosans and in resolution of neurodegeneration and
myoclonic epilepsy. This work discloses an entryway to treating this fatal epilepsy and potentially other glycogen storage
diseases.
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Introduction

Lafora disease (LD) is caused by recessively inherited

mutations in the EPM2A or EPM2B genes, encoding laforin (a

carbohydrate binding phosphatase) and malin (an E3 ubiquitin

ligase) [1,2]. The disease begins around age 15 with myoclonus

(jerk-like seizures) and generalized convulsive seizures, which

initially respond to medications. Over the next five years

seizures become intractable and the myoclonus near-constant,

and epileptic hallucinations with highly frightening content

appear. Extremely frequent myoclonic seizures (repetitive jerks)

and epileptic absence attacks permeate consciousness and

prevent formulation of complete thoughts. Dementia and a

vegetative state in constant myoclonus follow. Death occurs

around age 25 in status epilepticus. Pathology consists of the

progressive formation of polyglucosans, which are insoluble

glucose polysaccharides that precipitate and aggregate into

concretized masses called Lafora bodies (LB), and in neurode-

generation. LB form in neuronal perikarya (i.e. in the cell body

near the nucleus) and in neuronal short processes (mostly

dendrites). LB in the neuronal processes are much smaller but

they massively outnumber LB in the perikarya. Extraneurally,

LB also form in heart, liver, and skeletal muscle, but cause no

symptoms in these organs [3–6].

A normal glycogen molecule contains up to 55,000 glucose

units, yet remains soluble because its glucose chains are short (13

units), each chain is a branch of another, and the whole molecule

is a sphere, the surface of which is composed of the hydrophilic

ends of chains [7]. This unique organization allows mammalian

cells to store large amounts of carbohydrate energy in a soluble

rapidly accessible form. Without branching, glucose polymers 13

units or longer are poorly soluble and tend to precipitate and

crystallize [8]. Polyglucosans are malformed glycogen molecules.

They have very long chains, insufficient branches, and a resultant

lack of spherical organization. They are more similar to plant

amylopectin or starch than to glycogen, and like these plant

carbohydrates they are insoluble, precipitate, and accumulate

[3,5,9].

Glycogen is synthesized through coordinated actions of

glycogen synthase (GS) and glycogen branching enzyme, the

former responsible for chain elongation, the latter for chain

branching. Glycogen is digested by glycogen phosphorylase (GP)

and glycogen debranching enzyme. PTG (protein targeting to

glycogen) is an indirect activator of GS and an indirect inhibitor

of both GP and glycogen phosphorylase kinase (GPK), the

enzyme that activates GP. PTG performs this reciprocal

activation of synthesis and inhibition of breakdown by binding

the pleiotropic phosphatase PP1 through its C-terminus, binding

glycogen, and through a common region in its N-terminus (amino

acid sequence WDNNE) binding GS, GP, or GPK, thus targeting

PP1 to each of the three enzymes. PP1 dephosphorylates each of

the three enzymes, activating GS and inhibiting GP and GPK

[10,11].

There are two main hypotheses of polyglucosan formation, the

first based on evidence from cell models that laforin interacts with

malin and with PTG, and that the laforin-malin complex

downregulates GS through malin-mediated ubiquitination and

degradation of PTG. In this hypothesis, absence of laforin or malin

PLoS Genetics | www.plosgenetics.org 1 April 2011 | Volume 7 | Issue 4 | e1002037



would increase PTG, which would over-activate GS, leading to

excessive extension of glycogen chains and conversion of glycogen

to polyglucosan [12–14]. Although results from animal models

have yet to confirm this idea [15–17], there is indeed a body of

work implicating PTG.

The second hypothesis is based on the observation that laforin

dephosphorylates glycogen and that in LD there is progressive

hyperphosphorylation of glycogen, causing it to unfold and

precipitate. GS remains bound to the precipitating glycogen, but

glycogen branching enzyme, the enzyme responsible for

branching, even under normal condition does not associate

tightly [16–19]. In this hypothesis, elongation by GS of the

chains of the precipitated glycogen, with no branching, would

convert glycogen to polyglucosan. Both hypotheses predict that

inhibiting GS would prevent polyglucosan formation, and if LB

are causative of the PME, this might ameliorate or cure the

epilepsy. One way to inhibit GS would be to interfere with its

activation by PTG. In the present work we genetically remove

PTG from mice with LD. We obtain dramatic reduction in LB,

and resolution of neurodegeneration and the PME. This work

has direct implications for therapeutic intervention in this fatal

disease.

Results

Generation of laforin-deficient mice lacking PTG
We initially considered removing the muscle/brain isoform of

GS (GYS1) from LD mice by breeding GYS1-deficient mice with

laforin-deficient mice. However, this is impractical because in

90% of cases GYS1-deficient mice cannot survive birth (although

the 10% that do are subsequently healthy with normal lifespan

and exercise tolerance) [20,21]. Recently, DePaoli-Roach gener-

ated a mouse line deficient of PTG. In contrast to an earlier

report that disruption of the PTG gene was embryonic lethal

[22], the present mice are healthy and have normal lifespan [23].

Their glycogen is reduced by 30% in skeletal muscle and by 70%

in brain.

Laforin-deficient mice (LKO) have been extensively character-

ized and exhibit LB formation, neurodegeneration, and PME [24].

The PME is not as severe as in humans. The mice develop

progressively worsening myoclonus, but convulsive seizures are not

seen [24]. Unlike human patients and despite the neurodegener-

ative changes and progressive myoclonus LKO mice do not have a

shortened lifespan (unpublished observation). Metabolically, LKO

mice have progressively increasing accumulation of glycogen in

tissues, reaching approximately fivefold normal in brain and

threefold in skeletal muscle by age nine to 12 months [16]. To

remove PTG from the laforin-deficient mice, we bred LKO mice

with PTG knockout mice and interbred their litters to produce

PTG/laforin double knockout (DKO) animals. DKO mice are

born at Mendelian frequency, have normal skin, body habitus and

growth, exhibit no obvious behavioral abnormalities, and appear

to have normal lifespan, our oldest presently healthy at 18 months

of age.

Laforin-deficient mice lacking PTG have greatly
decreased Lafora bodies and normal glycogen levels

As mentioned, nine to 12 month-old LKO mice have vast

amounts of LB in brain and other organs, and neurodegeneration

[24]. We studied brain and skeletal muscle from LKO and DKO

mice and their wild-type (wt) littermates at 12 months and found

massive reduction in LB in DKO mice (Figure 1 and Figure 2). In

hippocampus, frontal cortex and cerebellum, the numbers of LB

in neuronal processes in DKO were respectively 3%, 0.1%, and

0.5% of those in LKO animals. The numbers of perikaryal LB

were diminished to 10% in hippocampus and 5% in frontal

cortex. In cerebellum, perikaryal LB were not significantly

reduced in number, although they were much smaller in size.

In skeletal muscle, LB had completely disappeared, compared to

their very large quantities in LKO animals (Figure 3). Wt

animals, as expected, had no LB in either tissue. To determine

whether the reductions in LB correlated with reductions in

glycogen content, we measured total glycogen in whole brain and

skeletal muscle and found that the increased glycogen content of

LKO mice had normalized to wt levels in DKO animals

(Figure 4).

Absence of PTG rescues neurodegeneration in
laforin-deficient mice

Lost neurons are replaced by astrocytes. We assessed

neuronal loss in DKO, LKO and wt animals at 12 months

first by measuring gliosis, which we quantified by morphometric

counts of glial fibrillary acidic protein (GFAP)-positive cells. In

cerebellum, there were no differences between the genotypes. In

hippocampus and frontal cortex, however, DKO mice had half

the number of astrocytes as LKO animals, and the same

number as wt, i.e., they have no measurable gliosis (Figure 5).

We next assessed neurodegeneration directly. In their original

study of neuropathology in LKO mice, Ganesh and colleagues

noted absence of apoptosis and necrosis. Using electron

microscopy (EM), they documented an unusual form of somatic

degeneration characterized chiefly by shrinkage and retraction

of plasma and nuclear membranes and darkening of the

cytoplasm [24]. We performed EM studies in the present set

of LKO, DKO and wt mice. Figure 6A–6C show representative

wt cerebellar Purkinje neurons with characteristic full nuclei and

cytoplasms and taut and circular plasma membranes. Numerous

axon terminals are seen directly apposed to the membranes

Author Summary

Lafora disease (LD) is a fatal epilepsy that afflicts
previously normal teenagers. It is caused by mutations
in the EPM2A or EPM2B genes encoding the laforin
carbohydrate-binding phosphatase and the malin E3
ubiquitin ligase. LD is the most common neurodegen-
erative epilepsy of adolescents. Affected children suffer
an ordeal lasting 10 years, consisting of escalating
seizures, constant body jerking, particularly frightening
epileptic visual hallucinations, and later on dementia.
They die of massive convulsion. Brain biopsies reveal
accumulation of a starch-like compound, polyglucosan,
overtaking dendrites and likely causing the disease, and
neurodegeneration. Glycogen synthase (GS), the enzyme
that forms normal glycogen, is also responsible for
synthesizing these polyglucosans. We reasoned that
reducing GS activity might prevent polyglucosan forma-
tion. Mice deficient of Epm2a replicate LD and are a
standard model. Members of our group generated mice
deficient of PTG, a protein involved in activating GS. By
breeding LD mice with PTG-lacking mice, we generated
LD mice lacking the GS-activating effect of PTG. This
resulted in a cure. The double knockout mice have
almost no polyglucosan, no neurodegeneration, and no
seizures. Our work opens an avenue of treatment for this
fatal epilepsy, which may also be applicable to other
glycogen storage diseases.

PTG Depletion Rescues Lafora Disease
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forming normal synapses lined one next to the other around the

circumferences of the cells. Figure 6D–6F show typical LKO

Purkinje cells. Nucleus and cytoplasm are shrunken. The plasma

membrane is wrinkled and retracted with appearance of

indistinct spaces between it and the axon boutons that would

normally associate with it, effectively resulting in loss of synaptic

contacts. Numerous LB in neuronal processes are present.

Figure 6G–6I show representative DKO Purkinje cells. The

cells are essentially back to normal with full nuclei and

cytoplasms, circular plasma membranes, and generally a full

complement of synapses around the cell body. However, the

correction while near-perfect is not completely perfect. The

plasma membrane is not quite as taut as in wt, and there are

rare instances of synaptic contact loss.

Absence of PTG rescues the myoclonus of
laforin-deficient mice

Myoclonus is a single jerk of the body or of a body part. Mice,

like humans, exhibit a certain amount of physiologic myoclonus,

such as hypnagogic myoclonus [25,26]. In LD patients,

myoclonus is extremely frequent and in later stages near-constant

and debilitating [4,5,25]. We counted myoclonus in 12 month-

old wt, LKO, and DKO animals, blind to genotype. Myoclonus

was defined as sudden rapid jerks of the head or of the dorsum of

Figure 1. LB in brain of 12 month-old LKO and DKO mice. (a–b) Frontal cortex and hippocampus respectively from a LKO mouse stained with
PAS-D. Note abundant LB within the neuropil and in the perikarya of numerous neurons. (c–d) Comparable regions from a DKO mouse. Arrows,
examples of LB. All bars, 50 mm.
doi:10.1371/journal.pgen.1002037.g001
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the animal. In the latter, the split-second myoclonus causes

retropulsion of the animal, closely resembling the myoclonus we

documented previously in canine LD [27]. LKO mice have

fourfold increased myoclonus over wt. DKO were the same as wt

(Figure 7). In their original description Ganesh and colleagues

reported that in addition to myoclonus 80% of nine to 12 month-

old LKO animals also exhibit myoclonic seizures (polymyoclo-

nus), consisting of rapid repetitive head and body jerks lasting few

seconds and associated with epileptic discharges on electrocorti-

cography [24]. We observed polymyoclonus in 80% of the

present 12 month-old LKO mice, in no wt mice, and in no DKO

mice.

Discussion

In this study we show for the first time that removal of PTG

in an animal model of LD reduces LB formation, and

eliminates neuronal loss and the myoclonic epilepsy. PTG is

not the only protein that targets PP1 to glycogen and glycogen

metabolizing enzymes. Others include R6, which like PTG is

ubiquitously expressed, RGL/GM specific to striated muscle,

and GL found in rodent liver [7,28]. It is therefore not

surprising that skeletal muscle and brain of PTG-deficient mice

still make glycogen, 70% and 30% of normal respectively [23].

What is surprising is the complete absence of LB in skeletal

muscle in DKO. It would have been expected that if there is

70% glycogen synthesis in the absence of PTG, there would be

70% LB formation in the absence of laforin and PTG. Possibly,

LB formation requires a threshold amount of glycogen.

Alternatively, the laforin-malin complex in skeletal muscle

acts specifically through PTG. On the other hand, if PTG is

the preferred mediator of laforin-malin, it is surprising that its

elimination from brain results in incomplete disappearance of

LB, despite deeper glycogen reduction in brain in PTG

deficient mice than in muscle. Much work ahead is needed

to resolve these paradoxes.

The cause of neurodegeneration in LD has received much

attention in recent years. Presence of up to 28% protein in some

LB [9,29], and signs of neurodegeneration in LKO mice at two

months of age when LB are still small [24], led to considerations as

Figure 2. LB numbers in brain. (a) Morphometric analysis of granular LB in whole brain and different brain regions. Granular is the histochemical
description of the small LB in the neuropil, which by electron microscopy are shown to be in neuronal processes, mainly dendrites. Statistics: p,0.001
in all regions between LKO and DKO (ANOVA); n = 4 per genotype. (b) Morphometric analysis of perikaryal LB. Statistics: p,0.001 between LKO and
DKO, except in cerebellum, where the difference is not significant (ANOVA); n = 4 per genotype.
doi:10.1371/journal.pgen.1002037.g002

Figure 3. LB in skeletal muscle. (a) Muscle from a LKO mouse stained with PAS-D. Note presence of numerous LB in many fibers; bar, 100 mm;
arrows, LB-replete myofibers; arrowheads, myofibers not containing LB. (b) Comparable field from a DKO mouse; bar, 50 mm. Higher magnification
chosen for the DKO example to illustrate lack of even small LB.
doi:10.1371/journal.pgen.1002037.g003
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to whether the neurodegeneration is related not to polyglucosans

but to protein aggregation, similar to Alzheimer’s and other

neurodegenerative diseases [24,30–32]. In the present study,

correction of the neurodegeneration through interference in

glycogen metabolism suggests that the neurodegeneration is

connected to the disturbance in glycogen metabolism. This is

consistent with recent observations that neurons, unlike other cell

types, are highly vulnerable to increases in glycogen and

polyglucosan content, with upregulation of GS leading to cell

death [13]. Presence of small LB in two month-old LKO mice

indicates that polyglucosans were already formed and accumulat-

ing by that time, likely triggering cell death, even as they had not

yet formed large LB. Proteins in LB could be glycogen-

metabolizing and other proteins trapped amidst aggregating

polyglucosans.

Recently, it was reported that laforin enhances macroautophagy

and that macroautophagy is dysfunctional in LD [33], indicating

that laforin might function not only to prevent polyglucosan

formation but also in clearing polyglucosans when they do form.

Our results show that preventing polyglucosan formation obviates

other laforin functions and suffices to prevent LD in mouse.

A major question in LD is why this particular neurode-

generative disease exhibits extremely severe epilepsy. Poly-

glucosans and LB occur in one other neurological disease,

Adult Polyglucosan Body Disease (APBD), caused by muta-

tions in the glycogen branching enzyme gene [34]. APBD LB

differ from LD LB in one respect. For reasons unknown, they

form exclusively in axons, especially long axons traveling to

and from peripheral structures (skin, muscle, etc.) and the

central nervous system. Affected patients suffer from motor

neuron disease, may have mild dementia, but have no

epilepsy [34,35]. LD LB, on the other hand, are not seen in

long tract axons, but instead almost completely replace the

cytoplasm of vast numbers of small neuronal processes,

mainly dendrites [3,5,6]. One possibility for the intractable

epilepsy in LD is the progressive disturbance of dendritic

function, the chief determinant of a neuron’s excitability state.

Near-complete disappearance of dendritic LB in the present

study may account for the correction of the PME in our DKO

mice.

In this paper, we correct the pathology and eliminate the PME

of LD through genetic depletion of one of the proteins that

targets the PP1 phosphatase to glycogen and the glycogen

metabolizing enzymes. The effect on glycogen is partial, i.e.

glycogen is not altogether eliminated, only reduced, the reduction

returning the elevated glycogen levels of LD to normal wt levels,

correcting the cardinal features of the disease, and causing no

apparent harm to the mice. The crystal structures of PP1 [36],

GS [37,38], GP [39,40], and GPK [41] are known, as is the PTG

interaction domain with GS, GP and GPK [10,12]. Identification

of inhibitors of this interaction through rational design or large-

scale small molecule screens could result in a treatment for this

fatal epilepsy.

In addition to LD, accumulation of normal or abnormal

glycogen is a cause of disease in several glycogen storage diseases

including APBD and its severe fatal infantile form Andersen’s

disease [42], and the common and debilitating glycogenosis

Pompe disease (acid maltase deficiency) [43]. Our results in LD

suggest that removal of PTG could also improve these diseases. In

fact, GS itself was recently removed from a Pompe mouse model

resulting in a cure of the disease in that model [44]. While

complete elimination of GS in humans cannot be contemplated as

this causes significant pathology including sudden cardiac death

[45], the Pompe study and our present work suggest that classes of

medications that partially reduce GS or that partially reduce GS

and activate GP, e.g. through interference in the PTG – GS/GP/

GPK interaction, could have therapeutic benefit in multiple

glycogenoses.

Methods

Ethics statement
All animal procedures were approved by the Toronto Centre

for Phenogenomics Animal Care Committee.

Immunohistochemical staining
Laforin-deficient mice were a gift of Dr. AV Delgado-Escueta

and S Ganesh. Mice were sacrificed by cervical dislocation and

tissues immediately fixed in 10% formalin. Periodic acid-Schiff-

diastase (PAS-D) staining was as previously described [17]. PAS

stains normal glycogen and polyglucosans. The short treatment

with diastase (amylase) digests glycogen but not polyglucosans.

Diastase resistant PAS stained structures are LB. For GFAP

staining, deparaffinized 5 mm sections were incubated with a

polyclonal GFAP antibody (Dako) for one hour. Sections were

thoroughly rinsed, and antibody visualized using diaminobenzi-

dine conjugated avidin biotin complex (Vector).

Figure 4. Glycogen levels in skeletal muscle and brain in 12-
month-old wt, LKO, and DKO mice (mmol glucose/gm tissue).
Skeletal muscle (a) and brain (b).
doi:10.1371/journal.pgen.1002037.g004
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Lafora body counts
Images from PAS-D slides were acquired at a 4006

magnification (Olympus) by a CCD camera (Roper Scientific).

Perikaryal and granular (neuronal processes) LB were distin-

guished by size and location. Numerical density [46] of both

perikaryal and granular LB was then determined using the

formula:

N~
either NpLBa or NgLBa

4=pð Þ:dð Þzt{2h

where N is the number of either the perikaryal LB or the number

of granular LB per unit volume of tissue (number/mm3), NpLBa is

the number of perikaryal LB per area, NgLBa is the number of

granular LB per area, d is the average diameter of either the

perikaryal or granular LB, t is the thickness of the section (5 mm),

and h is the smallest recognizable LB (1 mm). A minimum of 500

fields/animal were analyzed using an image analysis program

(Image Pro Plus, Media Cybernetics, Bethesda). Data were

expressed as means 6 SEM and significance calculated using an

ANOVA analysis.

Astrocyte counts
Images from GFAP stained slides were acquired at a 2506

magnification using the same microscope and equipment as above.

The total number of GFAP positive cells was divided by the total

area and expressed as cells/mm2. Genotype was blinded to the

reviewer. A minimum of 250 fields/animal were analyzed. Images

Figure 5. Gliosis in LKO mice. (a) Hippocampus of a LKO mouse stained with GFAP. Note the large numbers of GFAP-positive astrocytes. (b)
Comparable region from a DKO mouse. Bars, 100 mm. Arrows, astrocytes; arrowheads, gliosis. (c) Counts of GFAP-positive astrocytes. For significance,
whole brain p,0.02; hippocampus p,0.001; cerebellum, not significant; frontal cortex, p,0.002 (ANOVA); n = 4–7 per genotype.
doi:10.1371/journal.pgen.1002037.g005

PTG Depletion Rescues Lafora Disease
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were analyzed using an image analysis program (Image J, NIH,

Bethesda). Data were expressed as means 6 SEM and significance

calculated using ANOVA.

Glycogen measurements
Mice were sacrificed by cervical dislocation and tissues quickly

frozen in liquid nitrogen. Tissues were ground with a mortar and pestle

in liquid nitrogen. Aliquots of 30–50 mg of tissue were mixed with 30%

potassium hydroxide (KOH) and boiled at 100uC with frequent

mixing. Glycogen was then precipitated with a final concentration of

67% ethanol at 220uC, then pelleted. This process was repeated three

times. The purified glycogen samples were then dried and suspended in

sodium acetate buffer. Glycogen was digested with amyloglucosidase

(Sigma) at 37uC. Released glucose was determined using a glucose

assay kit (Sigma). The amount of glycogen was calculated and

expressed as mmoles of glucose per gram of tissue.

Figure 6. Neurodegeneration in LKO mice. (a–c) Cerebellar Purkinje cells from a wt mouse. Note the smooth appearance of the plasma
membrane and the absence of any voids between the cell and the surrounding neuronal processes; N, nucleus; arrows, synapses. (d) Purkinje cell
from a LKO mouse. Numerous LBs are seen surrounding the cell (asterisks). (e) Higher power of an LKO Purkinje cell; arrows indicate wrinkling and
retraction of plasma membrane. (f) A large LB (asterisk) in close proximity to a degenerating LKO Purkinje cell. (g) A typical DKO Purkinje cell. Note its
full normal appearance and smooth plasma membrane. Part of a second normal Purkinje cell is seen to the right of the panel. (h) Higher power of
plasma membrane from a DKO Purkinje cell. Note the relative linear appearance of the membrane and the attached synapses (arrows) typical of a
normal cell. (i) One of few LB (asterisk) near Purkinje cells detected by EM in DKO.
doi:10.1371/journal.pgen.1002037.g006

PTG Depletion Rescues Lafora Disease
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Electron microscopy
Brains for electron microscopy were taken from mice first

perfused through the left ventricle of the heart with 2.5%

glutaraldehyde in 0.1 M phosphate buffer (pH 7.4). The tissue

was minced into cubic 1 mm blocks and fixed for an additional

two to four hours. Samples were then washed in buffer and post

fixed in phosphate-buffered 2% OsO4 for one hour. They were

then dehydrated in an ascending series of acetones prior to being

infiltrated, embedded and polymerized at 60uC overnight in

embed 812-Araldite. Ultrathin sections were then prepared and

stained with uranyl acetate and lead citrate prior to examination

and image acquisition in the EM (JEOL JEM 1011, Peabody,

MA).

Myoclonus measurements
Mice were placed in individual Plexiglas chambers and

videotaped for four hours. Myoclonus was counted during periods

when the animal was not exploring. Myoclonus counts were

obtained in periods of a minimum of 10 minutes per mouse. The

entire record was reviewed for detection of polymyoclonus.

Observer was blinded to genotype. Myoclonus data in Figure 7

is shown as means 6 SEM and significance calculated using an

unpaired student’s t-test.
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