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Abstract

Genome-wide association studies (GWAS) examine a large number of markers across the genome to identify associations
between genetic variants and disease. Most published studies examine only single markers, which may be less informative
than considering multiple markers and multiple genes jointly because genes may interact with each other to affect disease
risk. Much knowledge has been accumulated in the literature on biological pathways and interactions. It is conceivable that
appropriate incorporation of such prior knowledge may improve the likelihood of making genuine discoveries. Although a
number of methods have been developed recently to prioritize genes using prior biological knowledge, such as pathways,
most methods treat genes in a specific pathway as an exchangeable set without considering the topological structure of a
pathway. However, how genes are related with each other in a pathway may be very informative to identify association
signals. To make use of the connectivity information among genes in a pathway in GWAS analysis, we propose a Markov
Random Field (MRF) model to incorporate pathway topology for association analysis. We show that the conditional
distribution of our MRF model takes on a simple logistic regression form, and we propose an iterated conditional modes
algorithm as well as a decision theoretic approach for statistical inference of each gene’s association with disease.
Simulation studies show that our proposed framework is more effective to identify genes associated with disease than a
single gene–based method. We also illustrate the usefulness of our approach through its applications to a real data
example.

Citation: Chen M, Cho J, Zhao H (2011) Incorporating Biological Pathways via a Markov Random Field Model in Genome-Wide Association Studies. PLoS
Genet 7(4): e1001353. doi:10.1371/journal.pgen.1001353

Editor: David B. Allison, University of Alabama at Birmingham, United States of America

Received June 17, 2010; Accepted February 24, 2011; Published April 7, 2011

Copyright: � 2011 Chen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by NIH grants R01 GM59507, U01 DK62422, R01 DK72373, and U01 RR24139 and NSF grant DMS-0714817. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hongyu.zhao@yale.edu

Introduction

In genome-wide association studies (GWAS) researchers

examine a large number of markers across the genome in many

individuals to identify associations between genetic variants and

disease, or to prioritize markers for follow up studies. However,

most of the times the signals from individual markers are weak and

the sample size is not large enough to have adequate power for

true discoveries, especially when the minor allele frequency is low.

Various approaches have been developed to increase statistical

power, including aggregating multiple markers from the same

gene or in the same haplotype block region and incorporating

information from other sources into the GWAS analysis. It has

been found that the gene level analysis has the ability to identify

new associations in addition to those identified using individual

Single Nucleotide Polymorphisms (SNPs) [1,2]. Gene-based

analyses include those using the most significant SNP within and

near a gene [1]; combination statistics (Fisher, Sidat, and Simes)

from all individual markers [2]; Principal Component Analysis

(PCA) regressions [3] and the sparse partial least squares

regressions [4]. To incorporate prior biological knowledge, one

information rich resource is biological pathways. It is believed that

genes interact with each other in biological processes, and it is

conceivable that they may jointly affect the risk of a complex

disease. There exist an abundance of databases containing known

gene pathways and protein-protein interactions, such as KEGG,

BioCarta, GenMAPP, and HPRD. A number of gene prioritiza-

tion methods incorporating prior biological knowledge have been

developed for GWAS. Some examples include Prioritizer [5],

Endeavour [6], CGI [7], CANDID [8], GeneWanderer [9],

CIPHER [10], GIN [11], and the pathway based gene set

enrichment approach [1]. These methods have shown that

incorporating prior biological information in GWAS is useful.

However, they do not consider functional relationships among

genes. The general input of these approaches is a list of genes as a

set, in which genes are treated as exchangeable without taking into

account the regulatory relationships among them. As a result,

information from the pathway topology and interactions among

genes is usually ignored. However, how genes are functionally

related to each other in a pathway may be very informative for

GWAS analysis and such information can be utilized to increase

the power of detecting real associations. When associations have

been firmly established for some genes either through GWAS or

prior candidate gene-based studies, we can take advantage of this

knowledge to examine other genes related to these known genes

through the same pathways they all participate in.

In this paper we propose a Markov Random Field (MRF) model

to incorporate biological pathway information in GWAS. MRF
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has been considered by several authors to combine data from

different sources in genomics studies, e.g., a spatial normal mixture

model [12] for gene expression and CHIP-chip data, a Gamma-

Gamma model and MRF for mRNA microarray data [13], and

prioritizing genes by combining gene expression and protein

interaction data [7]. However, little has been done in the context

for GWAS, with the exception of Li et al. [14] who proposed a

hidden MRF for GWAS. But their method is developed in the

context of jointly analyzing markers in linkage disequilibrium.

We first present a motivating example from a GWAS of Crohn’s

disease [15] for the proposed method. As will be shown next, the

result clearly suggests that genes in the same neighborhood within

a pathway tend to show similar association status. This Crohn’s

disease cohort includes 401 cases and 433 controls, and the

Illumina HumanHap300 BeadChip (Illumina, San Diego) were

used for genotyping. We first mapped SNPs to genes and then

applied PCA regressions to obtain gene-level p values of the

association tests with Crohn’s disease status [3]. More details about

this data set are given in the Materials and Methods section. We

then obtained pathway and interaction from BioCarta (http://

www.biocarta.com/), GeneMAPP [16] and KEGG [17]. We

consider a total of 3,735 genes in over 350 pathways. Genes on the

same chromosome that are within 1 million base pairs are

excluded to avoid effects caused by possible linkage disequilibrium.

To see whether genes connected with each other in the same

pathway tend to show similar evidence for association, we use a

cut-off value 0.15 where genes whose p values are below this cut-

off are considered interesting and labeled with 1. Note that we use

a relatively loose threshold so that a sufficiently large number of

genes are called ‘‘interesting’’ and this loose cut-off also reflects our

belief that many genes have weak effects and only show moderate

evidence of association. In a pathway k, we consider the number

of edges connecting a pair of ‘‘interesting’’ genes, which depends

on the labels of all genes. We denote this number by Dk. A large

value of Dk would suggest that ‘‘interesting’’ genes are more likely

to be neighboring genes. To assess the statistical evidence for the

tendency to observe large Dk values, we employ a permutation

procedure as follows. In each permutation, we randomly permute

the ‘‘interesting’’ labels of all genes and derive a permuted statistic

and these permuted statistics are used to arrive at an empirical

distribution of Dk under the null hypothesis that there is no

tendency for neighboring genes to have similar disease association

status, i.e. ‘‘interesting’’ or not. We then compare the observed Dk

statistic with the empirical distribution. Finally the p value of the

observed Dk in this empirical distribution is calculated. A p value

close to 0 indicates that ‘‘interesting’’ genes tend to be neighbors.

This procedure is repeated for all pathways, and the histogram of p

values of Dk for all pathways is plotted in Figure 1. It is evident

that this distribution is highly skewed to the left, which suggests

associated genes tend to be neighbors in a given pathway.

In the rest of this article, we first introduce our model and statistical

inferential procedures. The performance of our methods is then

assessed through both simulation studies and real data applications.

Author Summary

Statistical methods used in most GWAS are based on the
analysis of single markers. Prior biological information about
markers, genes, and pathways is not commonly incorporated
in the detection of associated disease loci. Recently a number
of methods have been developed to incorporate such
information, and it has been shown that they may make
use of prior biological knowledge in association analysis.
However, most of these methods ignore the regulatory
relationships and functional interactions among genes. In
this article, we propose a statistical method that can explicitly
model the interactions of genes in a neighborhood defined
by the topology of a pathway. Simulation studies and a real
data example show that the proposed method can improve
the power of identifying associated genes when they are in
the neighborhood of other genes whose association has
been firmly established in previous studies.

Figure 1. Histogram of p values of Dk, the number of edges connecting a pair of ‘‘interesting’’ genes in a pathway k, which depends
on the labels of all genes. A large value of Dk would suggest that ‘‘interesting’’ genes are more likely to be neighbors. A permutation procedure is
used to derive an empirical distribution of Dk under the null hypothesis. The p value of an observed Dk is calculated with respect to this empirical
distribution. See the Introduction section for more details.
doi:10.1371/journal.pgen.1001353.g001
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Results

A MRF model of gene pathways
We start by considering a simple model in which a pathway is

represented by an undirected graph G~(V,E) where V~
f1, � � � ,ng is a set of n genes (nodes) and E~fvi,jw : i and j
are directly connected} denotes the set of all edges. For the ith
gene in V, let Ni~fj : vi,jw[ Eg denote the set of its neighbors,

and di~DNi D denote the number of its neighbors. Let Si denote the

true association status where

Si~z1 if gene i is associated with the disease,

Si~{1 if gene i is NOT associated with the disease:

The values +1 are referred to as labels of a node hereafter. Let

S~(S1, � � � ,Sn) denote the labeling of V. Thus S is a spatial

random vector whose elements may be correlated with each other.

Note that each node can be labeled either {1 or z1, and so there

are a total of 2n unique configurations of the pathway. The

ultimate goal is to infer the value of Si based on the pathway

topology and the observed association data.

To formalize the idea that neighboring genes tend to have

similar association status, we need a probability measure so that

nodes connected with each other tend to have the same labels.

Here we consider a nearest neighbor Gibbs measure [18] that has

the following form:

Pr(Sjh0)~
1

z(h0)
exp

h
X
i [ V

I1(Si)zt0

X
vi,jw[ E

(wizwj)I{1(Si)I{1(Sj)

(
z

t1

X
vi,jw[ E

(wizwj)I1(Si)I1(Sj)

)
,

ð1Þ

where h0~(h,t1,t0) are the prior parameters or hyperparameters,

I1(:) and I{1(:) are the indicator functions, wi~d
1=2
i , and z(h0) is

a normalizing function that is the sum over all 2n possible

configurations:

z(h0)~
X

S

exp h
X
i [ V

I1(Si)zt0

X
vi,jw[ E

(wizwj)I{1(Si)I{1(Sj)z

(

t1

X
vi,jw[ E

(wizwj)I1(Si)I1(Sj)

)
:

ð2Þ

Note that it is prohibitive to evaluate z(h0) when n is large. Here

t0 and t1 assign prior weights to edges connecting two non-

associated nodes and two associated nodes, respectively. The

function wi will be elaborated in more details in the context of the

conditional probability later.

In (1), the second sum is taken over all edges connecting direct

neighbors in which both end nodes are labeled 21, and the third

sum is taken over all edges in which both end nodes are labeled 1.

Positive t0 and t1 will put more weights on configurations in which

directly linked nodes have the same labels, which is desirable in

our context. The hyperparameter h determines the marginal

probability of Si when t0~t1~0, i.e., all nodes are treated as

singletons that are independent:

Pr(Si~1Dh,t0~t1~0)~
exp (h)

exp (h)z1
:

The simple form Gibbs measure in (1) has the Markov property

that makes it attractive to model a biological pathway, in which

directly linked genes interact with each other. It defines a MRF,

which by definition is a probability measure that satisfies

Pr(Si DSV{i)~Pr(Si DSNi
), where V{i denote all nodes but i,

and Ni is the set of all direct neighbors of node i. Please see

Materials and Methods for details.

Posterior distribution
Now we discuss the posterior distribution of association status

after combining the evidence from the observed association

statistics at the gene level and the structure of the gene

pathway. Before we proceed, it is necessary to present the

likelihood function of the observed data. We consider the

situation where the observed evidence of association is

summarized by p values, which are assumed to be conditionally

independent given the true association status S. Under the null

hypothesis of no association, each p-value has a uniform (0,1)

distribution. In this article, we consider y~(y1, � � � ,yn), where

yi~W{1(1{pi=2) and W(:) is the CDF (Cumulative Distribu-

tion Function) of N(0,1). Therefore, under the null hypothesis

of no association, i.e., Si~{1, the density of yi is

f0(yi)*N(0,1). However, if there is association between the

gene and disease, i.e., Si~z1, the distribution of yi is usually

unknown. For simplicity, we assume that it is from N(mi,s
2
i ),

where mi is the location parameter and si is the scale parameter

that usually depends on the true effect size, allele frequencies,

and the sample size. To account for the uncertainty about the

parameters, we can put prior distributions on mi and s2
i , and

marginalize over them to obtain the predictive density of yi.

Here we consider conjugate priors mi Ds
2
i *N(�mm,s2

i =a) and

s2
i *Inverse Gamma(n=2,nd=2), or nd=s2

i *x2
n : We denote

h1~(�mm,a,n,d) that are hyperparameters. The prior mean of mi

is �mm and its variance is s2
i =a. The prior mean of s{2

i is d{1 and

the prior variance is Var½s{2
i �~2=(nd2). This prior is of

conjugate form so that the integration over mi and s2
i is

analytically tractable. We note that the hyperparameters can be

estimated from the observed data via an empirical Bayes

method (see Text S2, Figures S1 and S2). Under this prior

setting, the marginal density of yi is

f1(yijSi~1,h1)~p{1=2(nd)n=2

ffiffiffi
a
pffiffiffiffiffiffiffiffiffiffi
az1
p C((nz1)=2)

C(n=2)

a

az1
(yi{�mm)2znd

� �{(1zn)=2

:

This is equivalent to (yi{�mm)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(az1)d=a

p
*t(n) when n~1, 2,

and others.

The joint marginal density of y is

f (yDS,h1)~ P
fj:Sj~{1g

f0(yj)| P
fj:Sj~z1g

f1(yi Dh1):

Thus, the posterior distribution of S given the observed data y is

Incorporating Pathways via an MRF in GWAS
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Pr(SDy,h0,h1) ! f (yDS,h1)Pr(SDh0): ð3Þ

Similar to the MRF interpretation of the prior distribution (1), the

posterior also has a nice conditional distribution and is actually a

MRF, as will be shown in the Materials and Methods section.

When n is large, since it is prohibitive to evaluate posterior

probabilities on the entire space of configurations, we implement a

Markov chain Monte Carlo (MCMC) method to sample from the

posterior distribution. Naturally a Gibbs sampler is well suited for

a MRF. As will be shown later, due to the MRF property, the

posterior has a nice closed-form conditional distribution that can

greatly facilitate the MCMC.

Making inference based on the posterior distribution
Most GWAS lead to a set of candidate genes/SNPs that will

need to be validated in follow-up studies. Therefore, it is important

to include as many truly associated genes as possible among the

top ranked genes. Our proposed method allows us to rank order

genes as detailed below.

There are several ways of inferring the labels according to the

posterior distribution of S. The first one is to use maximum a

posteriori (MAP) estimate, which is the configuration with the largest

posterior probability, a reasonable point estimate for S. Let us

denote it by ŝsA~(̂ssA
1 , � � � ,̂ssA

n ). The MAP is the maximizer of the

joint posterior distribution:

ŝsA~ arg max
s

f (yDs,h1)Pr(sDh0):

A Gibbs sampler outlined above can be applied to stochastically

search for the solution to the above optimization problem.

Multiple restarts with different initial configurations are recom-

mended. An alternative approach is to base the estimate on the

posterior conditional probability of Si given the observed data and

all the other nodes sV{i. We can estimate si by maximizing this

conditional probability (MCP):

ŝsC
i ~ arg max

si
f (yi Dsi,h1)Pr(si DsNi

,h0): ð4Þ

The advantage of this approach is that the above problem is trivial

to solve. As will be explained in equation (8) of the Materials and

Methods section, the second term in formula (4) can be evaluated

in closed form. Besag [19] proposed an algorithm known as

iterated conditional modes (ICM) that iteratively updates si. Note

that the convergence of ICM is assured because the posterior is

proportional to

Pr(yDs,h0,h1)~Pr(si Dy,sV{i,h0,h1)Pr(sV{i Dy,h0,h1),

which never decreases at any iteration because the first term is

non-decreasing and the second one is a constant. So it is easy to

see the ICM will converge to a local maximum in the posterior

distribution. Since the ICM runs fast and usually converges in

several iterations, multiple restarts with different initial configura-

tions are recommended. Finally the resulting configurations can be

compared by evaluating f (yD̂ssC ,h1)Pr(̂ssC Dh0) up to a normalizing

constant to pick the largest one.

The inference can also be based on the marginal posterior

probability. Let mi~Pr(S1~1Dy). We consider a decision rule in

the form d(mi)~I(mi§m�), where I(:) is an indicator function and

m� is the sought decision threshold. If d(mi)~1, the decision is

positive (also referred to as discovery) and gene i is called to be

associated with the disease. Likewise if d(mi)~0 the decision is

negative. To address the problem of multiple comparisons, we

consider loss functions associated with making wrong decisions (false

discoveries and false negatives), and solve the decision problem by

minimizing the expectation of the loss functions under the posterior

distribution. Here we consider two loss functions. First, if we are

interested in the 0-1 loss function L1(S,d)~
Xn

i~1
DI1(Si){d(mi)D,

we may want to minimize the expected loss

m�1~ arg min
m�

EfL1(S,d)jy,h0,h1g

~ arg min
m�

X
S

Xn

i~1

jI1(Si){d(mi)j
( )

:Pr(Sjy,h0,h1),
ð5Þ

under the posterior distribution of S. The solution is m�1~0:5. Note

that L1 assigns equal loss to the false positive and false negative errors.

This is to minimize the expected frequency of making wrong calls for

the association status. Note that the performance of the decision rule d
is based on the frequentist operating characteristic in the Bayesian

framework, which is common in medical decision makings [20]. The

second loss function we consider is the false discovery rate (FDR):

FDR~L2(S,d)~

P
i d(mi)I{1(Si)P

i d(mi)
: ð6Þ

Suppose the goal is to control the expected FDR, under the

posterior distribution, such that it is no more than a, i.e.,

EfL2(S,d)Dy,h0,h1gƒa. If we rank order all genes by their

posterior probabilities from the largest to the smallest, and let m(i)

denote the ith order statistics, then the solution is to choose a cut

off value m�2~m(j) where j is the largest integer that makes

j{1
Xj

i~1
m(i)§(1{a). We should mention that more compli-

cated loss functions can be considered under the framework of our

model. See Müller et al. [20] for other examples.

Simulation studies
First we use simulated data to study the performance of the

proposed method. The simulation is based on a simple 6-node

network shown in Figure 2. Genes G1 through G3 are assumed to

be associated with the disease (labeled +1) while G4 through G6

are not associated with the disease (labeled 21). Data are

simulated from a disease model as follows. We assume G1, G2

and G3 have independent effects on disease risk and each has a

disease related SNP. The genotypes and minor allele frequencies

of these three SNPs are denoted by (g1,g2,g3) and (p1,p2,p3),
respectively, where gi [ f0,1,2g for i~1,2,3: A multiplicative

genetic model is assumed for the risk of having the disease. More

specifically, for an individual with genotype (g1,g2,g3), the risk is

r0r
g1

1 r
g2

2 r
g3

3 , where r0 is the baseline risk of those carrying two

normal alleles in all three genes, and ri is the relative risk, or effect

size, of gene i, i [ f1,2,3g. For each SNP the Hardy-Weinberg

equilibrium (HWE) is assumed to hold in the general population so

that the genotype probabilities are (1{pi)
2, 2pi(1{pi), and p2

i for

gi~0, 1, and 2, respectively. In the simulation we use three minor

allele frequencies p = (0.05, 0.10, 0.15), three disease prevalence

values k = (0.05, 0.10, 0.15), and six effect sizes r = (1.05, 1.10,

1.15, 1.20, 1.25, 1.30). As a result, there are a total of 54 settings of

(p,k,r), for each of which we first let p1~p2~p3~p and

Incorporating Pathways via an MRF in GWAS
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r1~r2~r3~r, and then calculate the baseline risk r0, and finally

obtain the conditional distribution of the genotypes (g1,g2,g3)
given the disease status. Then genotypes of G1, G2 and G3 of 600

cases and 600 controls are simulated according to the conditional

genotype distribution. The p values of the three causal genes are

calculated from a logistic regression of the data. For G4 through

G6, the p values are simulated from Uniform(0,1). The power of

detecting the true association depends on the disease model. In this

case, larger values of relative risk, MAF and prevalence

corresponds to association tests with higher power.

In the simulation we set the hyperparameters (h,t1,t0) = (21,

0.25, 0.01) where more weights are assigned to edges connecting

two associated genes. This corresponds to a prior belief that the

probability of association is roughly between 0.35 and 0.50. The

hyperparameters (�mm,a,n,d) are set to (3, 1, 10, 1) where a large value

of n puts a large prior variance on s2
i , which allows a wide range of

values for both mi and s2
i . For each simulated data set, the posterior

probabilities are enumerated since there are only 64 possible

configurations in this simple example. The simulation is repeated

500 times. We compare the proposed method using the posterior

mean with the one using the p value, and apply cut-off values of 0.7

and 0.05 for posterior probabilities and p values, respectively. For

each simulated data set, we calculate the false positive rate (FPR),

sensitivity (Sens.), and false discovery rate (FDR) by thresholding on

p values and posterior probabilities. In addition, genes can be rank

ordered by the two methods and the area under the Receiver

Operating Characteristic curve (AUC) can be calculated. The

average values of the three rates plus the AUC over the 500

simulated data sets are shown in Table 1. As can be seen, the

proposed method of the posterior probability has higher sensitivity,

smaller false discovery rate, and higher AUC than the p value

thresholding in every setting of the prevalence, MAF and effect size,

while the FPR of both methods are controlled at 0.05.

The second simulation study is based on the network shown in

Figure 3. This network was adapted from BioCarta ‘‘Human Rho

cell motility signaling pathway’’ and we deleted a few genes that

are either absent from our Crohn’s disease data or not connected

to others. We assume three different sets of truly associated genes,

plotted in triangles, rectangles and pentagons, each of which

contains three, five, and seven nodes, respectively. To simulate

different levels in the power of the association tests, for each gene

with Si~z1, the p value is computed from a two-sided z test

where z scores are randomly drawn from N(1,1), N(1:5,1) and

N(2,1), respectively, corresponding to the power 0.16 (low), 0.32

(median) and 0.51 (high) in the association tests. The p values for

Si~{1 are generated randomly from Uniform(0, 1) as before.

To examine the effects of hyperparameters of the network, we

consider eight priors, listed in Table 2, that roughly form four main

groups indexed by numbers 1 through 4, and two subgroups

indexed by letters a and b. For each set of hyperparameters a Gibbs

sampler is run to draw samples from the corresponding prior

distribution, and we can estimate Pr(Si~1), the prior mean, and

Pr(Si~Sj~1) and Pr(Si~Sj~{1) where vi,jw[ E, the

probabilities of edge vi,jw linking two nodes with identical labels.

The averages of the estimated probabilities are listed in the last three

columns of Table 2. The average prior means of all nodes are about

0.05, 0.15, 0.25, and 0.4, respectively for the four main groups.

Roughly speaking, it means that group 1 is in favor of a small

number, and group 4 a large number, while groups 2 and 3 in

between, of nodes labeled with +1. Furthermore, values of (t0,t1) in

subgroup b are larger than those in subgroup a, meaning that nodes

with identical labels are more likely to be next to each other apriori

in subgroup b than subgroup a, as can be seen from the last two

columns in Table 2. On the other hand, because the posteriors are

found to be insensitive to the hyperparameters (�mm,a,n,d) when n is

large, they are set to (3, 1, 10, 1) as in the previous example.

We simulate 200 data sets for each combination of the three

power settings (low, median and high) and three truly associated sets

(3, 5, and 7 nodes). For each data set, we run eight Gibbs samplers

using eight different hyperparameters described above. Each Gibbs

sampler is run with 100 restarts and each start contains 100 steps.

We compare the average AUC of 200 simulated data sets using p
value and the posterior mean and plot the results in Figure 4. In

general, the AUC of the proposed method is larger than that using p
values alone. It achieves good AUC if the prior mean is close to the

truth, especially when the power is low. For example, in the middle

column panels where there are 5 truly associated genes, prior

settings 2 and 3, favoring median number of truly associated nodes,

outperform prior settings 1 and 4. Similarly, in the right panel where

the true model contains 7 genes, prior settings 3 and 4, which are in

favor of large models, perform better than the other prior settings.

Furthermore, priors in subgroup b are better than subgroup a in

general. It is not surprising because the priors in subgroup b

encourages nodes labeled with +1 to group together, which agrees

with the simulation setting.

To evaluate the control of the false positive rates and the false

discovery rates of the proposed methods in relatively large pathways

with only a few associated genes, we conduct a third simulation

study based on a simulated network shown in Figure 5 that contains

60 nodes. We consider three truly associated gene sets, namely (2,

11, 19), (2, 11, 19, 41), and (2, 11, 19, 20, 41), and label them as

models 1, 2 and 3 in Table 3. Similar to the previous study, we

simulate p values from z scores randomly drawn from N(1,1),
N(1:5,1) and N(2,1), corresponding to weak, median and strong

associations, respectively. Three prior settings are considered for

(h,t1,t0), namely (21.5, 0.15, 0.02), (21.50, 0.10, 0.01) and (22,

Figure 2. A simple 6-node network.
doi:10.1371/journal.pgen.1001353.g002
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0.2, 0.01), whose average prior probability Pr(Si~1) is approxi-

mately 0.2, and average prior probabilities Pr(Si~Sj~1) for

vi,jw[ E are roughly 0.13, 0.11, and 0.08, respectively. For the

proposed method, we consider three decision rules. The first one

(PM1) uses the posterior mean with a cut-off value m�1~0:5 as in (5),

the second one is MCP as in (4), and the third one (PM2) is the

method to control the FDR at 0.1 as in (6). Then we compare them

with the p value method (P value) with a cut-off value set at 0.05 and

the correction method (BH) of Benjamini & Hochberg (1995) [21].

For each scenario we simulate 100 data sets, and run a Gibbs

sampler with 100 restarts where each start contains 100 iterations.

For each simulated data set, we calculate the FPR, sensitivity (Sens.),

FDR, and AUC as before. Table 3 lists the average values of the 100

simulation runs. In general PM1 and MCP control the FPR below

the 0.05 level and have lower FDR than the p value while achieving

better or similar power as the p value method. In terms of

controlling FDR, PM2 controls the FDR around 0.1, and it has

smaller FPR or better power than the BH method in most cases

when it achieves similar or better FDR.

Crohn’s disease data
We use one Crohn’s disease [15] data set to further evaluate the

performance of the proposed method. Details of this data can be

found in the Materials and Methods section.

Table 1. Average FPR, sensitivities, FDR, and AUC of the 6-node network.

Prevelance Effect Size MAF = 0.05 MAF = 0.10 MAF = 0.15

Method FPR Sens. FDR AUC FPR Sens. FDR AUC FPR Sens. FDR AUC

0.05 1.05 p value 0.05 0.06 0.42 0.50 0.05 0.07 0.39 0.52 0.04 0.08 0.35 0.54

Posterior 0.04 0.07 0.39 0.55 0.04 0.08 0.35 0.56 0.04 0.08 0.33 0.59

1.10 p value 0.05 0.08 0.38 0.55 0.05 0.12 0.25 0.60 0.05 0.13 0.26 0.60

Posterior 0.05 0.08 0.38 0.60 0.04 0.13 0.22 0.65 0.04 0.16 0.21 0.67

1.15 p value 0.05 0.13 0.25 0.60 0.04 0.20 0.18 0.67 0.06 0.28 0.17 0.72

Posterior 0.04 0.15 0.21 0.67 0.04 0.23 0.16 0.74 0.05 0.33 0.13 0.80

1.20 p value 0.05 0.18 0.19 0.64 0.04 0.32 0.10 0.76 0.05 0.40 0.11 0.81

Posterior 0.05 0.20 0.17 0.71 0.04 0.38 0.09 0.84 0.05 0.49 0.09 0.88

1.25 p value 0.05 0.25 0.16 0.70 0.06 0.41 0.12 0.80 0.05 0.56 0.07 0.88

Posterior 0.05 0.29 0.14 0.77 0.06 0.51 0.10 0.87 0.06 0.68 0.06 0.93

1.30 p value 0.05 0.34 0.11 0.76 0.05 0.57 0.07 0.88 0.05 0.72 0.05 0.92

Posterior 0.05 0.41 0.10 0.83 0.06 0.68 0.06 0.93 0.05 0.83 0.05 0.96

0.1 1.05 p value 0.05 0.06 0.43 0.54 0.05 0.08 0.39 0.52 0.05 0.07 0.41 0.53

Posterior 0.05 0.07 0.42 0.58 0.05 0.08 0.39 0.58 0.05 0.07 0.38 0.59

1.10 p value 0.05 0.09 0.34 0.57 0.04 0.13 0.24 0.60 0.05 0.16 0.25 0.62

Posterior 0.04 0.09 0.31 0.62 0.04 0.15 0.20 0.66 0.05 0.18 0.21 0.70

1.15 p value 0.04 0.14 0.22 0.62 0.05 0.21 0.18 0.67 0.05 0.27 0.14 0.72

Posterior 0.04 0.15 0.20 0.69 0.05 0.24 0.16 0.73 0.05 0.33 0.11 0.80

1.20 p value 0.04 0.21 0.16 0.68 0.05 0.33 0.12 0.77 0.05 0.45 0.09 0.82

Posterior 0.04 0.24 0.14 0.76 0.06 0.40 0.11 0.84 0.06 0.54 0.08 0.89

1.25 p value 0.05 0.27 0.13 0.73 0.05 0.48 0.08 0.84 0.04 0.62 0.05 0.91

Posterior 0.04 0.33 0.11 0.80 0.05 0.57 0.06 0.90 0.05 0.73 0.05 0.95

1.30 p value 0.05 0.37 0.12 0.79 0.05 0.61 0.05 0.90 0.05 0.78 0.04 0.94

Posterior 0.05 0.46 0.09 0.87 0.05 0.73 0.05 0.94 0.05 0.87 0.04 0.97

0.2 1.05 p value 0.06 0.06 0.50 0.52 0.05 0.08 0.39 0.54 0.06 0.09 0.39 0.55

Posterior 0.05 0.06 0.49 0.55 0.04 0.08 0.33 0.59 0.05 0.09 0.36 0.59

1.10 p value 0.06 0.09 0.39 0.53 0.05 0.13 0.26 0.60 0.06 0.17 0.24 0.64

Posterior 0.05 0.09 0.36 0.58 0.04 0.15 0.22 0.66 0.04 0.20 0.18 0.71

1.15 p value 0.05 0.15 0.24 0.63 0.04 0.24 0.14 0.71 0.04 0.37 0.10 0.78

Posterior 0.05 0.18 0.20 0.69 0.05 0.28 0.13 0.79 0.05 0.44 0.10 0.85

1.20 p value 0.05 0.24 0.18 0.70 0.05 0.43 0.10 0.81 0.04 0.55 0.06 0.89

Posterior 0.05 0.28 0.15 0.78 0.05 0.52 0.08 0.88 0.05 0.67 0.06 0.93

1.25 p value 0.05 0.35 0.12 0.78 0.05 0.57 0.06 0.88 0.04 0.73 0.04 0.94

Posterior 0.05 0.43 0.09 0.84 0.05 0.68 0.05 0.94 0.05 0.82 0.04 0.97

1.30 p value 0.05 0.46 0.08 0.83 0.05 0.73 0.05 0.93 0.05 0.86 0.04 0.97

Posterior 0.06 0.57 0.08 0.90 0.06 0.84 0.05 0.97 0.05 0.93 0.04 0.99

doi:10.1371/journal.pgen.1001353.t001
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We run our algorithm on 289 pathways that have at least 20

genes with non-missing p values. The hyperparameters (h,t1,t0)
are chosen such that the average prior mean is roughly between

0.2 and 0.4 based on the simulation findings. To evaluate the

performance, we consider 32 target genes that are confirmed to

be related to the Crohn’s disease [22]. Among these genes, 10

genes can be mapped to 66 pathways. In Figure 6 we plot the

AUC values of the rankings by p values on the y axis and

posterior means on the x axis for pathways containing three or

more target genes. A majority of AUC values are improved if

genes are rank ordered by the posterior mean. The average AUC

based on p values is 0.568 while on posterior means is 0.613. To

see what causes the rank changes of genes in the posterior

probability, in Figure 7 we show the Human IL-2 Receptor Beta

Chain in T cell Activation pathway from BioCarta. Genes in this

pathway are densely connected. To aid visualization, we

randomly remove some edges. Significant genes whose p values

are below 0.05 are colored in cyan, genes with improved ranks

are colored in light blue and others are colored in pink. It can be

clearly seen that genes colored in light blue have more

connections with the significant genes, and are more heavily

linked among themselves, compared to other genes in the

pathway. Genes that have many interactions with each other

may play important roles in the biological processes in the

pathway. When they are connected to many significant genes, it

might be reasonable that they are more likely to associate with

the disease than other genes.

Discussion

In this article we introduced a Bayesian method to incorporate

prior knowledge of biological pathways into GWAS. This

approach uses a MRF as a prior distribution to model the

interactions among genes that participate in the same pathway.

We showed that the posterior distribution is also a MRF and can

be sampled via a Gibbs sampler. Inferences based on the

posterior distribution allow us to combine data from the

association study with prior information of biological pathways.

In particular, this framework considers the topology of all genes

in a pathway, which has not been fully utilized in many of the

existing methods. The simulation studies and real data example

suggest that the proposed method has higher power to identify

genes associated with disease.

One limitation of the MRF model is that the Gibbs sampler tends

to move around local maxima for a long time and thus can be slow

in convergence to the posterior distribution. We recommend to run

the Markov chain Monte Carlo with multiple random restarts, and

examine the sampling distribution of network statistics, like the

number of genes labeled with +1 and the proportion of edges linking

genes with identical labels. In our studies, we found that a Markov

chain initially moves very rapidly from its starting state, usually

within the first 10 to 20 steps, before it reaches some steady states

and stabilizes for a long period thereafter. We suggest running 100

Gibbs steps for each random starting state, and conducting the

simulation with 100 restarts. The computing time of this scheme

typically takes a few minutes on a PC for a pathway of about 30

genes. We should also mention that the characteristics of the MRF

defined in (1) depend on both the hyperparameters and the

structure of the network under consideration. Consequently there

does not exist a set of hyperparameters that can be suitable for all

pathways. To assist the specification of hyperparameters, we

provide an algorithm of estimating hyperparameters based on a

Figure 3. A 31-node network adapted from BioCarta ‘‘Human
Rho cell motility signaling pathway.’’ Triangles, rectangles and
pentagons denote three different sets of truly associated genes, each of
which contains three, five, and seven nodes, respectively.
doi:10.1371/journal.pgen.1001353.g003

Table 2. Eight priors.

Hyperparameters Estimates

Group Subgroup h t1 t0 E½Pr(Si~1)� E½Pr(Si~Sj~1)� E½Pr(Si~Sj~{1)�

1 a 23.00 0.10 0.01 0.044 0.003 0.917

b 23.00 0.25 0.10 0.049 0.043 0.923

2 a 22.00 0.10 0.01 0.156 0.047 0.710

b 22.50 0.20 0.05 0.141 0.119 0.776

3 a 21.25 0.05 0.01 0.250 0.081 0.563

b 23.00 0.25 0.05 0.254 0.264 0.602

4 a 21.50 0.10 0.01 0.355 0.227 0.402

b 22.00 0.25 0.10 0.405 0.412 0.466

doi:10.1371/journal.pgen.1001353.t002
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conditional empirical Bayes approach in Text S2. It is recom-

mended that these values would be used in initial attempts and it

would be better to test several other variants of hyperparameters,

possibly through fine-tuning the initial values. It is helpful to draw

samples from the prior distribution to assess the effects o f different

prior settings. One limitation of pathway-based analysis is that not

all the genes can be associated with pathways. It is likely with

knowledge accumulation, more genes will be mapped to pathways.

An R package is under construction and will be made publically

available soon.

Materials and Methods

The MRF property of the prior distribution on pathways
The nearest neighbor Gibbs measure on gene pathways in

formula (1) defines a MRF and its conditional distribution has a

logistic regression form as shown below.

Proposition 1. The Gibbs measure in (1) is Markovian and

thus defines a MRF

Pr(Si DSV{i,h0)~Pr(Si DSNi
,h0):

Moreover, the conditional distribution has a logistic form:

logitPr(SijSNi
,h0)~hzt1 wiJ

(1)
i z

X
k [ Ni

wkI1(Sk)

0
@

1
A{

t0 wiJ
({1)
i z

X
k [ Ni

wkI{1(Sk)

0
@

1
A, i~1, � � � ,n,

ð7Þ

where J
(l)
i ~

X
k [ Ni

Il(Sk), l~+1. Equivalently, (7) can be

rewritten as a system of linear equations:

logitPr(Si DSNi
,h0)~bi0zbi1S1z � � �zbinSn, i~1, � � � ,n, ð8Þ

Figure 4. Comparison under different priors. The three rows of panels are for weak (top panel), median (middle panel), and strong (bottom
panel) association signals. The three columns of panels are for three sets of truly associated genes corresponding to three (left), five (middle), and
seven (right) nodes, respectively. The dotted lines link AUC of the proposed method and the solid lines connect AUC using p values. Circles, triangles,
plus signs and crosses denote prior parameter groups 1, 2, 3, and 4, respectively.
doi:10.1371/journal.pgen.1001353.g004

Incorporating Pathways via an MRF in GWAS

PLoS Genetics | www.plosgenetics.org 8 April 2011 | Volume 7 | Issue 4 | e1001353



where

bi0~h,

bij~
0 if i~j or vi,jw 6 [ E
(wizwj)ft1I1(Sj){t0I{1(Sj)g if vi,jw[ E:

�

Proof. See Text S1.

This result shows the Markov property that the conditional

distribution of Si, given all other node labels in the network, is

equal to the conditional distribution of Si given all its neighbors. It

follows immediately from (8) that if Si and Sj are not neighbors,

then they are conditionally independent.

Now we give an interpretation of wi. From (8), it is clear that the

conditional distribution of Si depends on the weighted sum of

labels of its neighbors, with weight (wizwj)t1 if Sj~1 and

{(wizwj)t0 if Sj~{1. Here (wizwj) is the sum of weights on

both ends of a linking edge. We set wi to be the square root of of

di, which is the degree of gene i. As a result, a gene that interacts

with many other genes in the pathway has a large weight because

it may play a central role in a biological process and thus it is likely

to have a large influence.

The Markovian property of (1) can be derived directly from a

more general result [18], which states that a nearest neighbor

Gibbs measure is equivalent to a MRF. Our proof that is

specific to (1) and is needed to derive the logistic model in (7).

We note that under the setting of rectangular lattice systems,

Besag [23,24] presented a general logistic model called the auto-

logistic model.

Figure 5. A simulated 60-node network.
doi:10.1371/journal.pgen.1001353.g005
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The MRF property of the posterior distribution
To see that the posterior distribution is also a MRF, note that

for node i,

Pr(Si~z1Dy,SV{i,h0,h1) ! f1(yi Dh1)Pr(Si~z1DSV{i,h0)

~f1(yi Dh1)Pr(Si~z1DSNi
,h0):

Thus, the conditional posterior distribution of Si given all other

nodes only depends on its neighbors, which means the posterior

distribution is also a MRF. The conditional posterior log odds of

Si is

hz log LR(yi; h1)zt1 wiJ
(1)
i z

X
k [ Ni

wkI1(Sk)

0
@

1
A{

t0 wiJ
({1)
i z

X
k [ Ni

wkI{1(Sk)

0
@

1
A,

ð9Þ

where

LR(yi; h1)~
f1(yi Dh1)

f0(yi)

Table 3. Average FPR, sensitivities, FDR, and AUC of the 60-node simulated network.

Weak Association Median Association Strong Association

Model Method FPR Sens. FDR AUC FPR Sens. FDR AUC FPR Sens. FDR AUC

1 P Value 0.0470 0.157 0.817 0.629 0.0516 0.297 0.745 0.739 0.0523 0.533 0.621 0.863

BH 0.0021 0.037 0.085 0.0014 0.043 0.070 0.0032 0.187 0.098

Prior 1 PM1 0.0412 0.167 0.790 0.657 0.0468 0.297 0.695 0.776 0.0496 0.567 0.591 0.899

MCP 0.0370 0.150 0.768 0.0418 0.253 0.696 0.0454 0.523 0.593

PM2 0.0018 0.030 0.087 0.0014 0.050 0.075 0.0026 0.187 0.120

Prior 2 PM1 0.0404 0.163 0.792 0.653 0.0437 0.290 0.689 0.768 0.0472 0.543 0.585 0.890

MCP 0.0375 0.150 0.779 0.0416 0.277 0.689 0.0449 0.523 0.583

PM2 0.0016 0.030 0.085 0.0021 0.090 0.110 0.0025 0.177 0.115

Prior 3 PM1 0.0300 0.143 0.688 0.690 0.0326 0.293 0.592 0.795 0.0377 0.577 0.483 0.907

MCP 0.0253 0.140 0.648 0.0270 0.247 0.594 0.0337 0.500 0.480

PM2 0.0023 0.040 0.107 0.0012 0.053 0.065 0.0019 0.187 0.100

2 P Value 0.0457 0.173 0.730 0.629 0.0514 0.330 0.668 0.738 0.0505 0.465 0.565 0.840

BH 0.0018 0.018 0.090 0.0027 0.035 0.100 0.0038 0.178 0.094

Prior 1 PM1 0.0389 0.168 0.694 0.659 0.0450 0.340 0.621 0.788 0.0446 0.508 0.523 0.879

MCP 0.0370 0.145 0.701 0.0416 0.318 0.618 0.0411 0.490 0.515

PM2 0.0020 0.018 0.110 0.0016 0.050 0.085 0.0016 0.178 0.075

Prior 2 PM1 0.0379 0.170 0.692 0.653 0.0439 0.323 0.624 0.775 0.0430 0.490 0.522 0.869

MCP 0.0370 0.153 0.694 0.0413 0.305 0.626 0.0413 0.468 0.530

PM2 0.0020 0.018 0.110 0.0016 0.048 0.085 0.0020 0.158 0.095

Prior 3 PM1 0.0289 0.143 0.639 0.683 0.0364 0.320 0.583 0.803 0.0352 0.485 0.469 0.888

MCP 0.0252 0.125 0.610 0.0321 0.288 0.577 0.0293 0.455 0.454

PM2 0.0014 0.018 0.080 0.0013 0.048 0.065 0.0027 0.205 0.108

3 P Value 0.0478 0.148 0.756 0.648 0.0476 0.326 0.591 0.744 0.0458 0.524 0.468 0.856

BH 0.0038 0.028 0.129 0.0015 0.050 0.051 0.0029 0.166 0.052

Prior 1 PM1 0.0402 0.136 0.744 0.675 0.0425 0.336 0.544 0.794 0.0409 0.584 0.422 0.897

MCP 0.0364 0.124 0.737 0.0387 0.320 0.545 0.0373 0.568 0.403

PM2 0.0027 0.022 0.150 0.0011 0.056 0.053 0.0020 0.230 0.060

Prior 2 PM1 0.0404 0.134 0.738 0.669 0.0411 0.318 0.559 0.779 0.0398 0.556 0.427 0.886

MCP 0.0380 0.124 0.749 0.0393 0.302 0.559 0.0375 0.546 0.414

PM2 0.0025 0.026 0.140 0.0009 0.052 0.045 0.0018 0.206 0.062

Prior 3 PM1 0.0282 0.120 0.654 0.700 0.0333 0.310 0.486 0.806 0.0315 0.556 0.381 0.904

MCP 0.0247 0.100 0.620 0.0280 0.270 0.479 0.0276 0.540 0.358

PM2 0.0020 0.014 0.110 0.0011 0.046 0.055 0.0015 0.216 0.052

doi:10.1371/journal.pgen.1001353.t003

Incorporating Pathways via an MRF in GWAS

PLoS Genetics | www.plosgenetics.org 10 April 2011 | Volume 7 | Issue 4 | e1001353



is the marginal likelihood ratio. Therefore, (9) is the product of the

marginal likelihood ratio, reflecting the evidence from the data for

association with the disease, and the conditional prior odds,

reflecting the effect from interactions among neighboring genes

from the biological pathway.

To make it clear, we can rewrite (9) in the form of a system of

auto-logistic regression equations:

logitPr(Si Dy,SV{i,h0,h1)~b
0
i0zbi1S1z� � �zbinSn, i~1,� � �,n, ð10Þ

Figure 6. AUC comparison of rankings by p values and posterior means for Crohn’s disease data. AUC values of the rankings by p values
are on the y axis and that of the posterior means are on the x axis for pathways containing three or more target genes.
doi:10.1371/journal.pgen.1001353.g006
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Figure 7. IL-2 receptor Beta chain in T cell activation pathway. Significant genes whose p values are below 0.05 are colored in cyan, genes
with improved ranks are colored in light blue and others are colored in pink.
doi:10.1371/journal.pgen.1001353.g007
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where

b
0
i0~hz log LR(yi; h1),

bij~
0 if i~j or vi,jw 6 [ E
(wizwj)ft1I1(Sj){t0I{1(Sj)g if vi,jw[ E

�

There are a few observations. First, it is easy to see that the

posterior conditional logit form in (9) is the same as the prior

conditional logit in (8) except its intercept is hz log LR(yi; h1).
Thus, the observed log likelihood ratio provides a fixed additive

effect to the prior logit. Second, the coefficient matrix is

symmetric, i.e., bij~bji. If gene i and j are not neighbors, then

bij~bji~0 and they are conditionally independent. On the other

hand, if they are neighbors, then the impact between each other is

equal. Third, genes i and j are in general correlated in their joint

posterior distribution, even if they are not neighbors and are

conditionally independent. Moreover, the more common neigh-

bors they share with each other, the stronger the correlation

between the two.

The MCMC algorithm
To sample from the posterior distribution, here we implement a

Gibbs sampler that is well suited for a MRF. The algorithm is

described as follows. First we set an initial value for S, say s(0).

Then in step k, we update the labels sequentially for i~1, � � � ,n
according to (10):

logitPr(s
(k)
i Dy,s

(k)
1 , � � � ,s(k)

i{1,s
(k{1)
iz1 , � � � ,s(k{1)

n ,h0,h1)

~b
0
i0zbi1s

(k)
1 z � � �zbi,i{1s

(k)
i{1zbi,iz1s

(k{1)
iz1 z � � �zbins(k{1)

n ,

to obtain s(k) from s(k{1). In each cycle we may want to randomize

the order in which the nodes are updated.

Crohn’s disease data
The Crohn’s disease [15] data set is used to evaluate the

performance of the proposed method in the Results section.

Crohn’s disease is a type of inflammatory bowel disease

characterized by chronic inflammation of discontinuous segments

of the intestine. The disease is found to be related to the

interaction of several factors including genetic susceptibility, the

intestinal microbial flora of the patient, the patient’s immune

response to these microbiota, and environmental triggers [25]. It

has been well established that Crohn’s disease has a strong genetic

component [26].

The cohort used in the analysis includes 401 cases and 433

controls. SNPs with a call rate greater than 0.9, minor allele

frequency greater than 0.01, and HWE p value greater than 0.001

are kept, while subjects with a call rate less than 0.95 are removed

from the analysis. Finally 397 cases and 431 controls remain in the

analysis. SNPs are considered being mapped to a gene if their

physical locations are within +10 kb from the start or end point of

the gene as given by Refseq annotation at the NCBI website. Gene

level p values are obtained by regressing disease status on PCA

components that account for at least 85% of the variation [27–29].

The pathways and genes in each pathway as well as the gene-level

p values can be found at http://bioinformatics.med.yale.edu/

group/software.html.
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