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Abstract

As we move forward from the current generation of genome-wide association (GWA) studies, additional cohorts of different
ancestries will be studied to increase power, fine map association signals, and generalize association results to additional
populations. Knowledge of genetic ancestry as well as population substructure will become increasingly important for GWA
studies in populations of unknown ancestry. Here we propose genotyping pooled DNA samples using genome-wide SNP
arrays as a viable option to efficiently and inexpensively estimate admixture proportion and identify ancestry informative
markers (AIMs) in populations of unknown origin. We constructed DNA pools from African American, Native Hawaiian,
Latina, and Jamaican samples and genotyped them using the Affymetrix 6.0 array. Aided by individual genotype data from
the African American cohort, we established quality control filters to remove poorly performing SNPs and estimated allele
frequencies for the remaining SNPs in each panel. We then applied a regression-based method to estimate the proportion
of admixture in each cohort using the allele frequencies estimated from pooling and populations from the International
HapMap Consortium as reference panels, and identified AIMs unique to each population. In this study, we demonstrated
that genotyping pooled DNA samples yields estimates of admixture proportion that are both consistent with our
knowledge of population history and similar to those obtained by genotyping known AIMs. Furthermore, through
validation by individual genotyping, we demonstrated that pooling is quite effective for identifying SNPs with large allele
frequency differences (i.e., AIMs) and that these AIMs are able to differentiate two closely related populations (HapMap JPT
and CHB).
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Introduction

Genetic ancestry, as studied through DNA sequence variation,

has shed light on the history, migration patterns, and relationships

among human populations [1,2]. In the context of medical

population genetics, genetic ancestry forms the basis of admixture

mapping [3]. Additionally, genetic ancestry is useful for proper

matching of cases and controls and is also an important covariate

to consider in association studies for complex human traits [4,5] as

spurious associations around variants with large allele frequency

differences between populations have long been recognized as

potential confounders [6–9]. For admixed populations, having an

estimated proportion of genetic ancestry attributable to each

ancestral population (i.e., the admixture proportion) would also
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allow the construction of weighted reference panels, which has

been shown to enable a more efficient design of a panel of tag

SNPs to capture untyped variations over a genomic region (e.g., a

candidate gene region) and possibly facilitate more efficient

imputation of untyped SNPs genome-wide in admixed populations

[10]. Moreover, as we move forward from hypothesis-generating

genome-wide association (GWA) studies, the research focus will

start to shift to fine mapping of associated signals and/or pathways

identified through such studies and will also expand to include

understudied diseases as well as studies in additional populations of

unknown ancestry. For all of these studies, knowledge of genetic

ancestry (and thus potential population substructure) will be

necessary.

Currently, two main approaches exist for inferring genetic

ancestry. If the ancestral populations of the population being

studied are known, ancestry informative markers (AIMs) number-

ing in the hundreds can be genotyped to infer global ancestry via

principal components analysis (PCA) or a clustering-based

algorithm (for examples, see [8–16]). However, often the ancestral

populations are not known with confidence, and many markers

would need to be genotyped in the discovery phase to assemble a

panel of AIMs. Moreover, AIMs identified in this manner will only

be informative for the axis of ancestry they are selected to explain

(e.g., a panel of AIMs selected to differentiate between Africans and

Europeans will be less effective for differentiating northern

Europeans from southern Europeans). The alternative approach

is to apply PCA to individual-level genetic data for a large number

of loci, typically obtained from GWA studies, to infer global

ancestry. The limitation of this approach is the high cost of

obtaining genome-wide genotype data from a sizable cohort,

particularly when studying a less well-funded phenotype. There-

fore, the need to efficiently (both in terms of cost and time) assess

the biogeographical ancestry in the study population and to

rapidly screen hundreds of thousands of genetic makers for AIMs

will be valuable for future genetic association and demographic

studies. This is particularly true for populations of relatively

complicated admixture or of origins dissimilar to standard

reference populations such as those catalogued by the Interna-

tional HapMap Consortium [17]. One possible method for rapidly

and inexpensively estimating admixture proportion and identifying

AIMs in a cohort is through genotyping of pooled DNA.

Genotyping pools of DNA from multiple individuals rather than

genotyping each individual separately has been proposed as a cost-

effective alternative to GWA studies (see [18]). One study

estimated that a 20-fold reduction in cost could theoretically be

achieved if pooled genotyping were employed [19]. This reduction

in cost would allow preliminary GWA studies of numerous orphan

diseases to be conducted. For this reason, several reports have

investigated the feasibility of and have developed analysis tools for

genotyping pooled DNA using SNP microarrays (see [19–26],

among others). Despite the potential cost-savings of pooled

genotyping, drawbacks of not directly measuring individual

genotypes include loss of the ability to study additional or sub-

phenotypes within the pooled cohort and loss of the ability to

detect gene-gene interactions (see [20]). It has also not been shown

definitively that small allele frequency differences between cases

and controls can be reliably detected given the additional

imprecision in allele frequency estimates due to pooling. Indeed,

reproducible associations have only been reported for variants

with large effect sizes (for example, [20,27–30]), whereas common

variants known to be associated with common diseases such as

type 2 diabetes and obesity typically have modest effect sizes with

odds ratios ranging from about 1.1 to 1.3 [31].

Because pooled genotyping may reliably detect SNPs with large

between-group allele frequency differences [20,27–30], we hy-

pothesized that this approach may represent a feasible method to

identify AIMs, as these are, by definition, markers that display

large allele frequency differences between two populations. To test

this hypothesis, we constructed four pools from African American

samples and genotyped both the pooled and individual DNA

samples at ,900 K markers using the Affymetrix 6.0 array.

Taking advantage of the expected allele frequency estimates based

on individual genotypes, we established a set of quality control

(QC) filters to enrich for SNPs truly displaying allele frequency

differences between two pools and applied QC filter to a Hawaiian

cohort, a Latina cohort, and two Jamaican cohorts that had been

similarly pooled and genotyped. Then, based on the estimated

allele frequencies for post-QC SNPs, we were able to reliably

estimate admixture proportions in these pooled cohorts from

admixed populations, using HapMap reference panels as proxies

for the populations ancestral to the admixed populations.

Moreover, we were able to identify AIMs informative for ancestry

beyond what can be modeled by the HapMap reference panels.

Therefore, genome-wide genotyping of pooled DNA appears to be

extremely efficient and informative for assessing the genetic

ancestry of a population.

Results

DNA pool construction and quality control filters
In total we constructed four DNA pools of 521 African

American samples from Maywood, IL (MAY); two pools of 321

African American women (MEC-AA), two pools of 252 Native

Hawaiian women (MEC-H), two pools of 332 Latina women

(MEC-L), and two pools of 202 Japanese American women (MEC-

J) from Los Angeles, CA and Honolulu, HI; six pools of 688

Jamaican samples from Kingston, Jamaica (GXE); and four pools

of 480 Jamaican samples from Spanishtown, Jamaica (SPT) (see

Text S1 for details). Each pool was genotyped in triplicate using

the Affymetrix 6.0 array. Samples comprising the MAY panel

were also genotyped individually as part of a separate GWA study

of obesity (C.W.K.C., H.N.L., R.S.C., X.Z., and J.N.H.,

unpublished). For each pool, pooled allele frequencies (AF) were

estimated as the proportion of angular distance observed for the

pooled sample relative to that observed for the individual samples

on the same plate, and averaged over all replicates (see Methods

for details). Quality control (QC) was performed in two stages.

First, any pool replicate with excessively low intensity, low call

rate, or high heterozygosity compared to the other replicates

within the same pool was either re-genotyped or dropped from the

study (see Text S1). Second, because of the availability of

individual genotype data for the MAY panel, it was used as a

Author Summary

Many association studies have been published looking for
genetic variants contributing to a variety of human traits
such as obesity, diabetes, and height. Because the
frequency of genetic variants can differ across populations,
it is important to have estimates of genetic ancestry in the
individuals being studied. In this study, we were able to
measure genetic ancestry in populations of mixed ancestry
by genotyping pooled, rather than individual, DNA
samples. This represents a rapid and inexpensive means
for modeling genetic ancestry and thus could facilitate
future association or population-genetic studies in popu-
lations of unknown ancestry for which whole-genome data
do not already exist.

Estimating Genetic Ancestry from Pooled DNA
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training set to establish a set of four SNP QC filters to

preferentially eliminate SNPs that genotyped poorly or inconsis-

tently (see Methods, Text S1). ,306 K SNPs in MEC-H, ,359 K

SNPs in MEC-L, ,346 K SNPs in MEC-J, ,477 K SNPs in

MEC-AA, ,353 K SNPs in GXE, and ,307 K SNPs in SPT

passed all four QC filters. When examining the correlation of the

estimated allele frequencies of one of the MEC-H pools with those

of the other MEC-H pool the SNP QC filters were effective in

removing the vast majority of SNPs predicted to have large allele

frequency differences, even though the difference in predicted AF

between the two pools was not part of the QC filter (Figure 1A and

1B). Similar results were observed for the pools from other panels

(data not shown). These removed SNPs are likely to be false

positives, as very few SNPs with large AF differences between two

samplings from the same underlying population are expected. The

effectiveness of the filters in removing poorly genotyped SNPs is

also evident when comparing the estimated allele frequency by

pooling to the actual allele frequency by individual genotyping in

the MAY panel (Figure S1). We attempted to identify

putative AIMs only among the SNPs that passed the QC filters

(below).

Estimation of admixture proportion
To both assess genetic ancestry and identify new AIMs

particular to the admixed populations, we first used our QC-

filtered pooled genotype data to estimate the relative contributions

of different continental ancestries to each of our admixed

populations (MEC-H, MEC-L, MEC-AA, GXE, and SPT).

Second, for each of our admixed panels we constructed a

corresponding weighted reference panel (pseudopopulation) based

on the estimated admixture proportion, and identified putative

AIMs, i.e., SNPs with pooled AF estimates significantly different

from those predicted by the pseudopopulation. Finally, we

validated putative AIMs by genotyping the individuals who

comprised the pools.

To estimate the proportion of ancestry relative to the HapMap

reference panels (i.e., the admixture proportion), we applied a

linear regression-based approach to the QC-filtered data,

overcoming the uncertainty in pooled AF estimates with the high

density of SNPs. For each SNP, we modeled the estimated allele

frequency of the pooled sample as a linear combination of the

known allele frequencies in the HapMap YRI (West African),

CEU (European), and/or CHB/JPT (East Asian) reference panels.

The associated regression coefficients can be thought of as

estimates of the proportional contribution from each of the

reference panels (see Methods). We first tested the method in a

population of known ancestry. For the MAY pool, regression

estimates from pooling yielded an estimated overall admixture

proportion of ,82.4% YRI and ,17.5% CEU (Table 1). This

estimate is very similar to that obtained using allele frequencies

based on individual genotyping on pre- or post- QC-filtered SNPs

(,81.2% YRI and ,17.8% CEU pre-QC, ,80.6% YRI and

,17.6% CEU post-QC), showing that the method is robust to

pooling-associated error in estimating allele frequencies. Addition-

ally, this estimate is also very close to that obtained when we

restricted the analysis to genotypes at 699 published ancestry

informative markers (AIMs) found on the Affymetrix 6.0 array

[32] and estimated ancestry using STRUCTURE [13] (,83.3%

YRI and ,16.7% CEU, Table 1), and previously published

estimates (,81.2% YRI and ,18.8% CEU [33]; ,80.5% YRI

and ,19.5% CEU [34]) for this population.

To extend this method to additional admixed populations, we

applied our regression method to the MEC-H and MEC-L pools,

using allele frequencies in all three HapMap populations as the

predictor variables. We estimated the Native Hawaiians to be

closest to ,5.6% YRI, ,31.9% CEU, and ,59.9% CHB/JPT,

and the Latinas to be closest to ,8.0% YRI, ,61.1% CEU, and

,29.2% CHB/JPT (Table 1). These estimates are consistent with

our knowledge of the population history for Native Hawaiians and

Latinas (as East Asians are useful, though imperfect, surrogates for

Figure 1. Estimated allele frequencies in MEC-H pool 1 versus MEC-H pool 2 before and after application of QC filters. Estimated
allele frequencies for 100,000 random SNPs from the two MEC-H pools were plotted against each other (A) before SNP QC filtering and (B) after
applying all four SNP QC filters. There were ,869 K autosomal SNPs pre-QC filtering, and ,306 K SNPs post-QC filtering (see Methods). Among the
5,000 SNPs with the largest AF differences between the two pools, the mean AF difference in the post-QC filtered dataset was significantly reduced
(0.604 pre-QC versus 0.186 post-QC, P%10215 by unpaired two-tailed t-test). Note that this comparison is based only on the average of allele
frequency estimates, without taking into account the error involved in such estimates, which is compensated for when calculating the association x2

statistic (see Methods).
doi:10.1371/journal.pgen.1000866.g001
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the ancestral Native American and Polynesian populations due to

their relatively recent divergence from East Asians [11,35,36]), and

are again very close to STRUCTURE-generated estimates based

on 69 published AIMs previously typed in the MEC-H and MEC-L

populations (,3.5% YRI, ,32.8% CEU, ,63.7% CHB/JPT for

MEC-H; ,5.2% YRI, ,66.0% CEU, ,28.8% CHB/JPT for

MEC-L, Table 1) [15]. We further estimated the MEC-AA pools to

most closely correspond to 71.3% YRI and 24.1% CEU, the GXE

pools to correspond to ,86.8% YRI and ,12.2% CEU, and the

SPT pools to correspond to ,82.2% YRI and ,10.1% CEU

(Table 1). Qualitatively, these estimates are consistent with reported

estimates based on populations of similar demographic history.

Namely, the Jamaican samples are expected to have proportionally

more African ancestry than African Americans from Illinois [33],

while African Americans from Los Angeles, CA, are expected to

have proportionally more European ancestry [37]. Interestingly, the

SPT panel appears to have a component of missing ancestry

(summed proportion of admixture = 92.3%, Table 1, and not

improved substantially when the JPT/CHB panel was included,

data not shown), yet displays relatively low FST when compared to

its pseudopopulation (Table S1; also see Discussion).

Identification and validation of ancestry informative
markers

To identify additional components of ancestry beyond those

already modeled by the HapMap reference panels, we first

constructed a corresponding pseudopopulation using the estimated

admixture proportions for each of the populations pooled in this

study. We then sought to identify potential AIMs that showed

large differences in AF when comparing the pooled estimates to

those based on the pseudopopulation (see Methods for details). To

obtain an initial approximation of the number of AIMs expected,

we examined the distribution of AF differences between the pooled

population and its respective pseudopopulation among the top 200

AIMs (Figure 2, Figure S2). The distribution from the MAY pools

serves as a null distribution for which few true AIMs are expected,

as the admixture in this population is known to be very well

described by the HapMap populations (FST = 0.0016 between the

MAY pools and their pseudopopulation, Table S1). Relative to the

distribution observed in the MAY pools, the distribution of the

MEC-H pool displayed the most dramatic shift, followed by that of

the MEC-L pool (Figure 2). The rightward shifts observed in the

MEC-H and MEC-L pools are unlikely to be due to systematic

error because the distribution of the MEC-AA pool (which was

constructed and processed at the same time) appears similar to that

observed in the MAY pools (Figure 2). On the other hand, the

distributions from the GXE and SPT pools were similar in shape

to that of the MAY pools, with only a slight rightward shift

observed with the SPT pools (Figure S2). The relative degrees of

rightward shift of the AF difference distributions corresponded

with the rank order of the FST between the pooled panel and its

respective pseudopopulation in all cases (Table S1), suggesting that

the AIMs identified here are representative of the overall

Table 1. Comparison of estimates of admixture proportion.

Pool
bYRI

(s.e.)
bCEU

(s.e.)
bCHB/JPT

(s.e.)
Intercept
(s.e.) NSNP Method

MAY 0.824
(0.0003)

0.175
(0.0003)

n.d. 20.00056
(0.0001)

378,337 Pooling

0.812
(0.0002)

0.178
(0.0002)

n.d. 0.00495
(0.0001)

854,156 Genotype

0.806
(0.0003)

0.176
(0.0003)

n.d. 0.00848
(0.0001)

377,880 Genotype

0.833 0.167 n.d. n.a. 699 AIMs

GXE 0.868
(0.0003)

0.122
(0.0003)

n.d. 0.00434
(0.0002)

353,260 Pooling

SPT 0.822
(0.0004)

0.101
(0.0004)

n.d. 0.0376
(0.0002)

303,269 Pooling

MEC-AA 0.713
(0.0003)

0.241
(0.0003)

n.d. 0.0189
(0.0001)

476,847 Pooling

MEC-H 0.056
(0.0007)

0.319
(0.0009)

0.599
(0.0008)

0.0123
(0.0003)

306,138 Pooling

0.035 0.328 0.637 n.a. 69 AIMs

MEC-L 0.080
(0.0006)

0.611
(0.0008)

0.292
(0.0007)

0.0122
(0.0003)

358,822 Pooling

0.052 0.660 0.288 n.a. 69 AIMs

The proportion of admixture for each of the admixed populations pooled in this study was estimated using a regression-based method (see Methods). Wherever possible,
we also estimated the proportion of admixture using genotypes at AIMs known to distinguish the HapMap populations. bYRI, bCEU, and bCHB/JPT are the regression
coefficients, which are taken as the proportion of ancestry contributed by each of the YRI, CEU, and CHB/JPT populations. The standard error (s.e.) of the regression
coefficient is also listed when available. Note that the s.e. may be biased downward, due to LD between SNPs. However, the s.e. estimates based on the LD-pruned set of
SNPs are on the order of 1023 (data not shown). Intercept is the regression intercept, which in this case is half of the unexplained ancestry in the model, as the average allele
frequency for the population of interest and each of HapMap populations is ,0.5 (Text S2). NSNP is number of SNPs used to generate the ancestry estimates (see Methods).
The ‘‘method’’ column indicates the method used to generate the admixture estimates: ‘‘pooling’’ indicates that estimates are based on regression from pooled allele
frequencies, ‘‘genotype’’ indicates that estimates are based on regression from individual genotype data, and ‘‘AIMs’’ indicates that estimates are were generated using
STRUCTURE and individual genotype data from a small number of AIMs (see Text S1). n.d. denotes not determined; n.a. denotes not available. Estimates based on the
regression approach do not appear to be confounded by issues due to collinearity (data not shown). For MAY, GXE, and SPT, when SNP allele frequencies from CHB/JPT
were included in the model, bYRI was be largely unchanged, but a small contribution (,0.025) from CHB/JPT was estimated. This small admixture contribution from CHB/
JPT appears to be largely an artifact due to sampling variation of the CEU and CHB/JPT reference populations (C.W.K.C., unpublished).
doi:10.1371/journal.pgen.1000866.t001
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differentiation of the pooled panel and its pseudopopulation rather

than being a biased set of SNPs that happen to show large AF

differences due to pooling error. Taken together, these results

suggest that many more AIMs with large AF differences

informative for ancestral components not captured by the three

HapMap panels likely exist in the MEC-H and MEC-L pools than

in the MEC-AA and the Jamaican pools and can be identified

through pooling.

To validate the putative AIMs identified by pooled genotyping,

we successfully genotyped 25, 28 and 26 of the top candidate AIMs

in the individuals that comprised the MEC-L, GXE and SPT pools.

For MEC-H, we examined 19 of the top 4000 AIMs (prior to

pruning by distance) that had been already genotyped in the

laboratory. Given the success of genotyping pooled DNA in

identifying disease variants with large AF differences between cases

and controls (see Introduction), we expected that the majority of the

AIMs identified in the MEC-H and MEC-L panels would display

true large AF differences between the pooled individuals and their

corresponding pseudopopulations. Indeed, our estimates of AF

differences in the MEC-H and MEC-L pools were generally quite

close to the actual AF differences (Figure 3). A list of 438 and 431

putative AIMs genome-wide identified from MEC-H and MEC-L

pools, respectively, is provided in Table S2. However, we tended to

over-estimate the AF differences of the putative AIMs in the GXE

and SPT pools (Figure 3), both of which have much lower FST

values when compared to their respective pseudopopulations.

To further demonstrate that the AIMs selected via pooling

would be informative in differentiating closely related popula-

tions, we sought to identify AIMs informative for distinguishing

the two East Asian HapMap panels often grouped together by

investigators: JPT (Japanese) and CHB (Han Chinese)

(FST = 0.0067). We first removed population outliers along any

of the top 10 principal components by EIGENSTRAT [4] using

genome-wide Affymetrix 6.0 genotypes from HapMap phase 3 for

JPT, CHB, and CHD (Chinese from Metropolitan Denver,

Colorado). Using genome-wide data, JPT was clearly distinguish-

able from the two Chinese populations along the first axis of

variation (eigenvector 1), with the second axis (eigenvector 2)

starting to separate CHB from CHD, possibly reflecting a north to

south cline among the Chinese (data not shown). We identified

AIMs by comparing the MEC-J pools to CHD (which are both

composed of Asian American individuals), and tested whether the

420 putative AIMs would be able to distinguish JPT from CHB.

Indeed, using the panel of 420 putative AIMs, JPT and CHB were

clearly separated from each other along the top principal

component (Figure 4A). Based on this set of AIMs, the FST

between JPT and CHB is 0.026, with a correlation of 0.946 with

the true axis of variation (inferred by genome-wide data; discussed

in [8,14]). A set of 420 random SNPs was not able to distinguish

the two East Asian populations (Figure 4B); ,3100 random SNPs

were necessary to achieve the same level of correlation with the

true axis of variation (data not shown). Thus, AIMs identified via

pooling should be informative for distinguishing even two

relatively closely related populations (e.g., JPT and CHB), and

will likely be effective in distinguishing populations from

neighboring countries (e.g., divergent European populations,

where FST is typically on the order of 0.01 [4]).

Overall, these results support our hypothesis that pooled

genotyping may be most effective for detecting variants with large

AF differences and that more AIMs exist in our Native Hawaiian

and Latina cohorts that remain to be discovered. Additionally, this

also suggests that the HapMap populations model the true genetic

ancestry for the Jamaican populations accurately enough such that

few SNPs with large AF differences would be detected.

Figure 2. Distribution of allele frequency differences among
the top 200 AIMs. The distribution of the corrected allele frequency
differences between the estimated pooled allele frequency and that
expected based on each population’s respective pseudopopulation
among the top 200 putative AIMs is shown for the MEC-AA, MEC-H, and
MEC-L pools. Corrected pooled AF difference was calculated by fixing
the AF in the pseudopopulation, computing the pooled AF in the
appropriate direction given the deflated x2 statistic, and then taking the
difference. The distribution observed in the MAY pool represents the
null distribution in which few additional validated AIMs are expected.
To provide an estimate of the expected AF difference in a scenario
where only sampling variation is responsible for the allele frequency
difference between a population and its pseudopopulation, we
simulated genotypes at ,382 K SNPs for 521 individuals (the same
number of post-QC SNPs and individuals as used in the MAY pools),
drawing from the allele frequency in YRI 82% of the time and CEU 18%
of the time, and compared the allele frequency of the simulated
genotypes to that expected based on a 82%–18% mix of YRI and CEU.
From this comparison, the top ‘‘AIMs’’ would only have an allele
frequency difference of , ,0.08.
doi:10.1371/journal.pgen.1000866.g002

Figure 3. Validation by individual genotyping of the top
putative AIMs in the individuals that comprised the pools. The
actual AF difference between the population AF and that of the
pseudopopulation was plotted against the corrected AF difference
predicted by pooling for 25, 28, 26, and 19 of the top candidate AIMs in
MEC-L, GXE, SPT, and MEC-H, respectively. Corrected pooled AF
difference was calculated as in Figure 2. Filled circles represent results
from GXE, unfilled circles are those from SPT, filled triangles are those
from MEC-H, and unfilled triangles are those from MEC-L. In all three
populations the classification of a putative AIM as either ‘‘encouraging’’
or ‘‘inconclusive’’ (see Methods) did not appear to correlate with the
probability of successful validation (data not shown).
doi:10.1371/journal.pgen.1000866.g003
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Discussion

Genotyping of pooled DNA has previously been proposed to be

useful for several purposes. First, it has been shown that GWA

studies using pooled DNA can efficiently screen large cohorts for

variants with large AF differences between cases and controls

[20,27–30]. Second, it has been shown that the ability to resolve

individuals contributing trace amounts of DNA to a pool holds

great promise for forensic science [38]. Here we have proposed

and demonstrated that genotyping of pooled DNA using genome-

wide arrays is an efficient means to identify AIMs and to estimate

global ancestry.

As the first study evaluating the efficacy of genotyping pooled

DNA on the Affymetrix 6.0 platform, we first established a set of

four SNP QC filters and showed that together the filters eliminated

the vast majority of SNPs falsely displaying large allele frequency

differences between pools (Figure 1), although at the apparent cost

of an increased false negative rate (see Methods, and data not

shown). Using SNPs that passed our stringent QC filters, we

demonstrated that the estimated admixture proportions for our

admixed panels were very similar to those obtained using current

techniques and were robust to any remaining pooling-specific error

(Table 1). Note that while we adopted a linear regression approach

to estimate admixture proportions, variable transformations (such as

the logit-transformation) or other forms of regression analysis for

modeling rates and proportions could also be considered.

For the MEC-H and MEC-L panels, whose genetic ancestries

were not sufficiently modeled by HapMap reference panels, we

identified hundreds of AIMs with large AF differences by

comparing these panels to their respective pseudopopulations

and validated the top AIMs by individual genotyping (Figure 3). As

markers informative for ancestry are those displaying large AF

differences between populations (in this case, ,20% difference in

the MEC-H and MEC-L pools), our successful identification of

AIMs is consistent with the reported identification of disease

variants with large AF differences in case-control studies using

pooled DNA [20,27–30]. For identifying markers with moderate

AF differences (in this case, ,10% difference in the GXE and SPT

pools), pooling tends to overestimate the differences (which is

expected due to the ‘‘winner’s curse’’) but can still identify such

SNPs (Figure 3). We also showed that AIMs identified via pooling

are effective in differentiating the two East Asian HapMap

populations (CHB and JPT) using principal components analysis

(Figure 4).

In contrast to the MEC-H and MEC-L panels, the Jamaican

pools (GXE and SPT) appeared to be much better modeled using

just the YRI and CEU reference panels when we compared the

distribution of AF differences among the top putative AIMs

(Figure 2) and the estimated FST between the pooled sample and

its pseudopopulation (Table S1), to those from the African

American (MAY) pools. As a result, we anticipated and determined

that most AIMs identified in the Jamaican pools have AF differences

with moderate values from ,8% to 15%. Moreover, we noted that

the SPT pools appeared to have a missing component of ancestry

unexplained by the HapMap YRI and CEU panels (summed

proportion of admixture = 92.3%, Table 1, and not improved

substantially when the JPT/CHB panel was included, data not

shown). The AIMs identified by comparing SPT to its pseudopo-

pulation should be indicative of the missing ancestry. Given the

modest AF differences detected between SPT and its pseudopopu-

lation, it appears that these AIMs are informative for a between-

population difference less than that expected for a between-

population difference across continents (data not shown). Therefore,

we suspect that the missing ancestry is from a population more

similar to either the YRI or the CEU panel (or that YRI and/or

CEU are inappropriate populations to serve as the ancestral

populations for SPT), rather than due to contributions from other

continental populations. Although it may appear contradictory that

many more AIMs with large AF differences were detected in the

MEC-H and MEC-L pools, despite a much higher level of genetic

ancestry explained (summed proportion of admixture = 97%–98%

using all three HapMap panels) than the Jamaican pools, this likely

reflects the fact that the HapMap East Asian panels are acceptable,

but not perfect, proxies for Polynesian or Native American

ancestries on average. Thus, at least a subset of the AIMs identified

in MEC-H and MEC-L should be informative for the difference

between East Asians and Polynesians or Native Americans (e.g., due

to drift). Therefore, the extent of the summed proportion of

admixture of a pooled panel will not necessarily correlate with the

expected number of AIMs with large AF differences.

In light of the results presented here, we envision that studies

using pooled DNA have great potential utility for future

association studies. Given the success of identifying variants with

large effect sizes using pooled DNA [20,27–30], one potential use

Figure 4. The top two axes of variation from principal component analysis of JPT and CHB. Results from EIGENSTRAT were based on (A)
420 putative AIMs selected by comparing the MEC-J pools to the CHD population from HapMap phase 3 and (B) 420 random SNPs. Differentiation
between JPT and CHB is clear when using the set of putative AIMs, compared to that using the same number of random SNPs. Note that the two CHB
individuals within the JPT cluster in (A) would also cluster with JPT individuals if genome-wide data were used (data not shown). Similar
differentiation using random SNPs could also be achieved when ,3,100 random SNPs were used (data not shown).
doi:10.1371/journal.pgen.1000866.g004
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of genotyping pooled DNA is to quickly screen for the presence of

variants with large effect sizes, which can provide guidance to

study design for additional GWA studies using individual DNA.

Moreover, we have shown that studying pooled DNA can be used

to evaluate genetic ancestry and potential population substructure

in the context of association studies. As future association studies

expand beyond populations of European ancestry, our approach

should allow rapid assessment of global ancestry to identify AIMs.

Once AIMs are validated and genotyped in the study population,

individual level genetic ancestry as well as local ancestry can be

estimated for use as covariates in association studies where

genome-wide data are not available. As genome sequencing and

SNP discovery projects for additional species are completed,

pooling-based experiments may also be an efficient first step in

assessing genetic structure in populations from other species.

Lastly, a rigorous assessment of GWA studies using pooled DNA

for identifying disease variants with small effect sizes is needed.

Our African American and Jamaican samples here were initially

pooled by thresholded BMI, and the MEC samples were pooled

by age at menarche status (see Text S1). A preliminary attempt to

identify variants associated with BMI or age at menarche showed

enrichment of variants with nominal associations when genotyped

individually (C.W.K.C., Z.K.Z.G., J.N.H., unpublished). Howev-

er, our power to detect strongly associated variants may have been

limited by the number of replicates genotyped to control for error

due to pooling, limitations of the platform used, and the small

sample size relative to the expected effect sizes, and thus was not a

focus of this paper.

Although we utilized the availability of individual genotypes in

informing our QC filters, individual level genotypes are not

required to establish filter parameters. Given a population of

individuals randomly pooled into multiple pools in order to assess

the genetic ancestry of the population, one can compare pools in a

pair-wise case/control-like fashion where no associations would be

expected. Then, by assessing changes in the genomic control

inflation factor [5] when different QC filter cut-offs are applied,

one can adjust the filter parameters to suit the goals of the study

and to reflect varying levels of tolerance for false positives.

Therefore, for the three of the four filters established here that do

not depend on individual genotypes (FLD-filter, r-filter, and maf-

filter), data quality and the study population will dictate the

number of SNPs filtered given a particular threshold.

Finally, it should be noted that the recommendations for use of

genotyping pooled DNA on a genome-wide array – to determine

genetic ancestry, to screen for disease variants with large AF

differences, and to study population demographics – are made

based on the current state of the technology and methodology.

Given our experience with the Affymetrix 6.0 platform, we have

focused on applications that require the detection of moderate to

large allele frequency differences. We anticipate that advances in

the genotyping platform and improvements in sample handling

may enhance the overall data quality and accuracy of allele

frequency estimates, and that the same filter parameters may

retain more SNPs for analysis than did the conservative approach

taken here. Thus, given a sufficiently robust platform, it may be

increasingly possible to efficiently search genome-wide for variants

that have small allele frequency differences between samples using

pooled DNA.

Methods

Study populations and DNA pool construction
The cohorts used in this study consisted of 775 African

American individuals from Maywood, IL (MAY); 1,039 and

1,467 Jamaican individuals from Kingston (GXE) and Spanish-

town (SPT), Jamaica, respectively; and women from the Hawai’i

and Los Angeles Multi-Ethnic Cohort (MEC) [39]: 391 African

Americans (MEC-AA), 298 Native Hawaiians (MEC-H), 363

Latin Americans (MEC-L), and 202 Japanese Americans (MEC-J).

In total, we constructed 22 DNA pools from the individual DNA

samples: four pools from 521 MAY individuals, six pools from 688

GXE individuals, four pools from 480 SPT individuals, and two

pools each from 321 MEC-AA, 252 MEC-H, 332 MEC-L, and

202 MEC-J individuals. Pools were initially constructed in case/

control fashion by dichotomized BMI and age at menarche status

(Text S1). For the purpose of identifying AIMs in this study the

pools differing in menarche or obesity status were treated as

independent samples from their respective admixed populations.

Pooled allele frequency estimation by polar
transformation of raw data

The Birdseed algorithm [40] was used to estimate AA, AB, and

BB cluster means and covariances of probe intensities for

individuals on the same plate as the pooled samples, as well as

to call the genotypes for these samples. Pooled samples were

processed in the same fashion as individual samples, with the

exception of using only median normalization without quantile

normalization. Informed by the covariance matrices of the three

genotype classes of the individuals on the plate, we calculated the

angle hAA measuring the degree of rotation of the AA genotype

cluster with respect to the horizontal axis (i.e., the probe intensity

space of allele A) for each autosomal SNP as the following (Figure

S3, Text S2):

hAA~
1

2
arctan

2Cxy

Cxx{Cyy

� �
,

where Cxy, Cxx, and Cyy are from the covariance matrix of the AA

genotype cluster:

Cxx Cxy

Cxy Cyy

� �
:

hAB and hBB were calculated similarly, using the appropriate

covariance matrices. The intersection of the two lines angled at

hAA and hBB and intersecting the center of the AA and BB

genotype cluster centroids, respectively, was defined as the origin

(O), with respect to which new axes x’ and y’ were established. We

then defined hpool, the angle of the replicate pool intensity with

respect to the x’ axis as:

hpool~arctan
y0pool NF

x0pool

 !
:

x’pool and y’pool represent the x’- and y’-coordinates of the replicate

pool intensity, and NF is the normalization factor to adjust for

differential allelic signal intensities using the location of the AB

genotype cluster, akin to the various forms of k-correction

proposed (for example, [41]), given by:

NF~
tan 1=2 hBB{hAAð ÞzhAA

h i
y0AB=x0AB

,

where x’AB and y’AB represent the x’- and y’-coordinates of the

center of the AB genotype cluster.

Estimating Genetic Ancestry from Pooled DNA

PLoS Genetics | www.plosgenetics.org 7 March 2010 | Volume 6 | Issue 3 | e1000866



To estimate the pooled allele frequency (AF) for the A allele for

each replicate given hpool, we used the following conversion:

AFA~1{
hpool{hAA

� �
hBB{hAAð Þ :

AF estimates for all replicates from a given pool were averaged to

obtain the final pooled AF estimate.

Quality control filters
Informed by the genotype data from the individuals comprising

the MAY pool, we explored several possible filtering methods to

identify those that most efficiently eliminated SNPs that genotyped

inconsistently in pooled DNA. We first compared the distributions

of the 200 worst and best performing SNPs with respect to

parameters of various potential filters to determine both which

filtering methods were most effective and to approximate values

for filter cut-offs. The worst and best performing SNPs were

defined as follows: for each SNP, we calculated the corrected x2

test statistic ([21] and described below) by comparing the two case

pools to the two control pools from the MAY panel (Text S1)

(using both actual genotypes and pooled estimates of AF). The

worst performing SNPs were defined as those with the greatest

corrected x2 difference between individual data and pooled data.

The best performing SNPs were defined as those with the least x2

difference among SNPs with the most significant x2 test statistics.

We then defined the proportion of false positives (PFP) as the

proportion of SNPs with an expected (based on individual

genotyping) P-value of .0.05 that were ranked among the top

0.05% SNPs by estimated pooling P-value. PFPs were calculated

for the pre- and post-filtered list of SNPs at various filter cut-offs to

establish the final values used for each filter.

In the manner described above, we established three filters that

were effective in eliminating SNPs that genotyped poorly or

inconsistently: 1) separation of individual genotype clusters based

on Fisher’s linear discriminant, a measure of distance between two

clusters (FLD-filter), 2) radius of intensity of the signal from pooled

DNA (r-filter), and 3) population minor allele frequency estimated

from pooled DNA (MAF-filter) (see Text S1 and Figures S4, S5,

and S6 for details). In all cases we strived for filter cut-offs that

stringently eliminated poorly performing SNPs while retaining

sufficient SNPs for broad coverage of the genome (Figure S4A,

S4B and Figure S6). Applying these three filters left ,382 K SNPs

for association analysis within the MAY panel, comparing the case

pools to the control pools. The QC filters lowered the PFP from

0.793 to 0.642, and improved the genomic control (GC) inflation

factor [5] from 1.52 to 1.38. Among the 809 independent SNPs

with a P-value of 0.001 or lower (based on individual genotyping),

397 SNPs (or at least one proxy with r2.0.8) passed the three QC

filters in pooling, for a false negative rate of 0.509 due to QC

filtering. (Note that post-QC SNPs are still subject to pooling-

specific error, which is not yet accounted for at this step in the

process.) The relatively elevated inflation factor after applying the

three filters likely represents error in the pooled AF estimates we

were unable to account for in our study design. As one is often

searching for variants with small AF differences between case and

control groups in a disease association, we also recommend fitting

the distribution of the pooled AF estimates from the case and

control pools to the overall pooled AF distribution to ensure a

similar distribution of AF estimates between the case and control

pools. In our experience this further lowers the inflation factor

(from 1.38 to 1.08 in our data) and improves the PFP (C.W.K.C.,

unpublished).

By taking advantage of the individual genotypes from the MAY

pools, we also established a filter to measure the consistency of the

AF estimates for each SNP. Over the four MAY pools, we

calculated the difference in the AF estimates between the pooled

sample and the individual samples, and the variance across the

four pools was used as a measure of consistency of the AF

estimates (hist-filter, see Text S1 for details). The effectiveness of

the cut-off values for this filter was established by the changes in

the GC inflation factor of a presumed null distribution in the

comparison of one of the MEC-AA pools to the other (Figure

S4C). All four filters were applied in the analysis of all pooled

panels other than the MAY panel in this study.

Estimation of admixture proportion
To estimate the proportion of admixture in the pooled

populations, we employed a linear regression model where the

estimated allele frequency for SNP i was modeled as follows:

Pui~cz
X

j

bjPji:

Pui is the estimated allele frequency from pooling in the population

of unknown admixture for SNP i, and is regressed on independent

variables Pji, which is the allele frequency in the ancestral

(reference) population j for SNP i with respect to allele

A according to the Affymetrix 6.0 array annotation (http://

www.affymetrix.com/support/technical/annotationfilesmain.affx,

GenomeWideSNP_6_Annotations, na25). bj is the regression

coefficient and is an estimate of the proportion of contribution

from population j, and c is the constant combining error and

unexplained ancestry (i.e., the intercept). Because allele A

assignment on Affymetrix 6.0 array is independent of the minor

allele at the locus, E(Pji) = E(Pui) = 0.5, which is necessary for the

accurate estimation of bj using regression (Text S2). bj’s and their

standard errors were estimated by multivariate linear regression

using the method of least squares in R version 2.4.0 (Vienna,

Austria; http://www.r-project.org/), using all SNPs that passed

our QC filters (see above) and had genotyping success rates .0.8

in all three HapMap populations (YRI, Yoruba in Ibadan,

Nigeria; CEU, Utah residents with ancestry from northern and

western Europe; JPT/CHB, combined Japanese in Tokyo, Japan

and Han Chinese in Beijing, China). We used the three HapMap

populations genotyped on the Affymetrix 6.0 array as our

reference ancestral populations [42]. For estimating admixture

proportions in MAY and MEC-AA, YRI and CEU were used as

the reference populations. For estimating admixture proportion in

the remaining pools (GXE, SPT, MEC-H, and MEC-L), YRI,

CEU, and combined JPT/CHB were used as the reference

populations. For each pooled population, a corresponding

pseudopopulation was constructed, in which the allele frequency

of each SNP was calculated using the allele frequency catalogued

in each of the reference populations, weighted by the estimated

proportion of admixture, and adding the constant c.

Deflation of the test statistic using pooled DNA
One factor that influences the analysis of pooled but not

individual genotype data is that when DNA pools are genotyped,

an estimated rather than observed number of allele counts is

obtained. The variance around the estimated allele frequency

obtained from pooled genotyping includes variance that arises

specifically due to pooling in addition to the sampling variance. If

the additional variance is not taken into account, a standard x2

statistic will have a greatly inflated value. Here we corrected for
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this x2 statistic inflation using a method proposed by Visscher and

Le Hellard [21,43], where the corrected statistic, T�est, is given by:

T�est~Test

V

Vzvar epcase

� �
zvar epcontrol

� �
" #

,

where Test is the standard (naı̈ve) x2 statistic based on estimated

allele counts derived from the estimated pooled allele frequency.

(Note that when calculating Test, the minor allele frequency in

either the case or the control pools must be .0, otherwise the x2

statistic cannot be calculated. Thus while not a formal QC filter,

any SNP in which the estimated minor allele frequency was ,0 in

either the case or the control pool, a situation that would arise for

very rare SNPs or erroneous hybridization signals, was dropped

from analysis.) V is the sum of the sampling variance for the case

and control pools, given by:

V~

~PPcase 1{~PPcase

� 	
2Ncase

z

~PPcontrol 1{~PPcontrol

� 	
2Ncontrol

,

where ~PP
case

and ~PP
control

are the estimated pooled AF for the case and

control pools, respectively. Var(epcase) and var(epcontrol) are the squared

standard errors among the pooled AF estimates from all of the

replicates for the case and control pools, respectively. V, var(epcase)

and var(epcontrol) were calculated for each SNP tested for association.

When multiple case or control pools were available, the total pooled

allele frequency used was the weighted average (by number of

individuals in the pool) of the pooled allele frequencies estimated for

each pool. The pooled variance, var(ep_totcase), is then given by:

var ep totcase

� �
~

Pk
1

ni{1ð ÞSE2
i

Pk
1

ni{1ð Þ

for k case pools each with ni replicates. SEi is the standard error of

the estimated AF for the ith pool. The pooled variance for the

control pool was calculated similarly.

When identifying AIMs informative for ancestry over and above

that explained by available reference panels, all pools from the

population being studied were designated the ‘‘case’’ pools, and

the pseudopopulation was used as the ‘‘control’’ pool. In this case,

the sampling variance for the pseudopopulation was based on a

population size of either 120 individuals (if only YRI and CEU

were used) or 210 individuals (if YRI, CEU, and JPT/CHB were

all used). Pooling specific variance for the pseudopopulation was

assumed to be 0.

Identification of ancestry informative markers (AIMs)
Ancestry informative markers were selected for the GXE, SPT,

MEC-H, and MEC-L panels by comparing the estimated allele

frequency in each population by pooling to its respective weighted

reference panel (pseudopopulation), or for the MEC-J panel by

comparison to the AF from the HapMap phase 3 CHD (Chinese

from Metropolitan Denver, Colorado) population (http://www.

hapmap.org). Pseudopopulations were constructed based on the

estimates of admixture proportion using the HapMap populations

as proxies for the ancestral populations.

For the Jamaican pools, SNPs were divided into three

categories, based on the P-values associated with the surrounding

SNPs in linkage disequilibrium (LD) with the SNP of interest.

Here, P-values measure the extent to which pooled allele

frequencies differ from those expected using the pseudopopulation.

LD was determined using the set of pre- and post-QC filtered sets

of SNPs, based on the HapMap YRI population; SNPs within

20 Mb of the SNP of interest were considered to be in LD if they

had r2.0.5 in HapMap YRI with the SNP of interest.

‘‘Encouraging’’ SNPs had at least one SNP in LD with a GC-

corrected P-value,0.05 and had at least half of the surrounding

SNPs (those in LD) with GC-corrected P-values,0.1. ‘‘Discour-

aging’’ SNPs had none of the SNPs in LD with GC-corrected P-

values,0.1. The remaining SNPs were categorized as ‘‘inconclu-

sive,’’ a category also encompassing SNPs with no other SNPs in

LD. Non-discouraging (i.e., encouraging or inconclusive) AIMs

were then further pruned to remove any AIMs within 4 Mb of

each other to obtain a panel of independent AIMs.

We chose a set of 50 candidate AIMs each in GXE and SPT to

be validated by individual genotyping, using two complementary

approaches. First, we selected the top 25 SNPs based on GC-

corrected P-value, excluding any SNPs categorized as discouraging

when either the filtered or unfiltered set of SNPs in LD was

examined for categorization. Second, we selected an additional 25

SNPs with GC-corrected P-values ,161023, at least 2 SNPs in

LD with the SNP of interest from the unfiltered dataset, and a

categorization of encouraging when using both the filtered and

unfiltered datasets for a set of SNPs in LD. For this second list, we

chose the SNPs with the largest number of SNPs that were in LD

that also had P-values ,0.05.

Identification of AIMs in the MEC-H, MEC-L, and MEC-J

panels was performed similarly, with the exception that AIMs in

MEC-H were not pruned by distance in order to allow validation

using SNPs previously genotyped in those samples. The HapMap

reference panel representing the major ancestry in each of the

MEC pools was used as the reference panel for LD determination

(i.e., JPT/CHB for MEC-H and MEC-J, and CEU for MEC-L).

Technical validation by individual genotyping
Predicted AIMs and obesity-associated SNPs were validated by

individual genotyping in the individuals comprising the pools using

the Sequenom MassArray system (see Text S1).

Supporting Information

Figure S1 Estimated AF from pooling versus AF from individual

genotyping, before and after QC filtering, of the MAY panel.

Samples from the MAY panel were also genotyped individually,

allowing us to plot the population allele frequency of the

individuals that comprised the MAY pools against the estimated

allele frequency as determined by pooled genotyping to examine

the accuracy of allele frequency estimation using pooled DNA.

The left panel includes ,855 K autosomal SNPs for which

individual genotype data exist prior to applying the SNP QC

filters; the right panel includes ,382 K SNPs after applying three

of the four QC filters (see Methods, Text S1). (The hist-filter was

not applied as it is reliant on the individual and pooled genotyping

results from the MAY pool.) This comparison is based only on the

average of the allele frequency estimates, without taking into

account the error involved in such estimates, which is adjusted

when calculating the association x2 statistic (see Methods).

Found at: doi:10.1371/journal.pgen.1000866.s001 (0.23 MB TIF)

Figure S2 Distribution of allele frequency differences among the

top 200 AIMs for the GXE and SPT pools. The top 200 putative

AIMs in the GXE and SPT pools were identified as described in

the text and in Figure 2. The distribution of allele frequency
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differences due solely to sampling variation is , ,0.08, as

discussed in the legend of Figure 2. For both panels the

distribution appears similar to that of MAY, with a slight

rightward shift seen in SPT only, suggesting that a weighted

reference panel from the HapMap explains the majority of the

genetic ancestry in these two Jamaican samples.

Found at: doi:10.1371/journal.pgen.1000866.s002 (0.21 MB TIF)

Figure S3 Origin of SNP intensity space and polar transformation

of raw Affymetrix data. Genotypes for each individual on a given

genotyping plate cluster into three genotype classes when plotting

intensity of the A probe versus that of the B probe. By taking into

account the covariance of the two intensities for the two homozygous

genotype classes, the origin, O, is defined, conceptually, as the

intersection between the two lines that run through the center of the

two homozygous clusters angled in the same direction as the clusters

(see Methods). Once the origin is defined, hAA and hBB can be

determined and hpool can be estimated for the pooled sample, which

is then converted into the estimated allele frequency (see Methods).

The red circles represent centers of genotype clusters; the blue circle

represents the raw intensity of one replicate of a pooled sample.

Found at: doi:10.1371/journal.pgen.1000866.s003 (0.55 MB TIF)

Figure S4 Proportion of false positives and genomic coverage at

various SNP QC filter cut-offs. The various cut-off values for the:

(A) FLD-filter, (B) MAF-filter, and (C) hist-filter are plotted against

the number of SNPs remaining after filtering and the effectiveness

of the QC filter, as measured by proportion of false positives (PFP)

in A and B, or by genomic control inflation factor in C. The solid

lines correspond to the number of SNPs that passed the QC filter

in the MAY pools (A and B) and in the MEC-AA pool (C), while

the dotted lines correspond to the PFP. PFP is defined as the

proportion of SNPs with an expected (based on individual

genotyping) P-value of .0.05 ranked among the top 0.05% SNPs

by estimated pooling P-value (after deflation of the x2 statistic (see

Methods)). For the FLD- and MAF-filters, a SNP passed the QC

filter if its value was greater than or equal to the cut-off value; for

the hist-filter, a SNP passed the QC filter if its value was less than

or equal to the cut-off value. In all cases, more stringent cut-off

values appeared to improve the PFP or the genomic control

inflation factor, but decreased overall genomic coverage.

Found at: doi:10.1371/journal.pgen.1000866.s004 (0.33 MB TIF)

Figure S5 Determination of the r/r’ ratio. We calculated the

radius r as the distance from the origin O (calculated as described

in Figure S1) to the raw chip intensity P (blue circle). r was then

normalized using the expected value for an average individual

DNA sample on the same plate, given by r’. r’ was defined as the

distance from the origin O to I, the expected intensity signal of the

individual DNA sample given the same estimated allele frequency.

There is one r/r’ ratio for each pool replicate at each SNP. Red

circles represent the centers of the genotype clusters.

Found at: doi:10.1371/journal.pgen.1000866.s005 (0.60 MB TIF)

Figure S6 Proportion of false positives and genomic coverage at

various r-filter cut-offs. We evaluated the effect of using various

cut-offs for the r-filter and requiring SNPs from a variable number

of replicates (cases and controls combined) to pass the filter. Dark

blue lines required all 13 case and control replicates of the MAY

pools to have an r/r’ ratio greater than or equal to the cut-off value

to be retained for downstream analysis; light blue lines required 12

of 13 replicates; dark green lines required 11 of 13 replicates; light

green lines required 10 of 13. Solid lines correspond to the number

of SNPs passing the QC filter at the particular cut-off value; dotted

lines correspond to the PFP. For all values of the filter cut-off,

requiring fewer replicates to pass retained a greater number of

SNPs. At cut-off values of 0.9 to 0.95 the PFP increased, perhaps

reflecting the removal of real associations. To optimize both PFP

and SNP coverage, either a cut-off value of 0.8, requiring 11 of 13

passing replicates, or a cut-off value of 0.85, requiring 12 of 13

passing replicates, may be appropriate. Here we adopted a cut-off

threshold of 0.8 and required a pass rate of 80% among the

replicates.

Found at: doi:10.1371/journal.pgen.1000866.s006 (0.64 MB TIF)

Table S1 FST between pooled panels and their respective

pseudopopulations.

Found at: doi:10.1371/journal.pgen.1000866.s007 (0.03 MB

DOC)

Table S2 List of ancestry informative markers identified from

pooled Native Hawaiian and pooled Latina populations.

Found at: doi:10.1371/journal.pgen.1000866.s008 (0.09 MB

XLS)

Text S1 Supplemental methods.

Found at: doi:10.1371/journal.pgen.1000866.s009 (0.07 MB

DOC)

Text S2 Formula derivations.

Found at: doi:10.1371/journal.pgen.1000866.s010 (0.06 MB

DOC)
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