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Abstract

DNA sequence polymorphism in a regulatory protein can have a widespread transcriptional effect. Here we present a
computational approach for analyzing modules of genes with a common regulation that are affected by specific DNA
polymorphisms. We identify such regulatory-linkage modules by integrating genotypic and expression data for individuals
in a segregating population with complementary expression data of strains mutated in a variety of regulatory proteins. Our
procedure searches simultaneously for groups of co-expressed genes, for their common underlying linkage interval, and for
their shared regulatory proteins. We applied the method to a cross between laboratory and wild strains of S. cerevisiae,
demonstrating its ability to correctly suggest modules and to outperform extant approaches. Our results suggest that
middle sporulation genes are under the control of polymorphism in the sporulation-specific tertiary complex Sum1p/
Rfm1p/Hst1p. In another example, our analysis reveals novel inter-relations between Swi3 and two mitochondrial inner
membrane proteins underlying variation in a module of aerobic cellular respiration genes. Overall, our findings demonstrate
that this approach provides a useful framework for the systematic mapping of quantitative trait loci and their role in gene
expression variation.
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Introduction

DNA sequence polymorphisms that alter the activity of

regulatory proteins can have considerable effect on gene

expression [1–3]. With the advent of microarray and other

genotyping technologies, it is now possible to examine the

genome-wide effects of naturally occurring DNA sequence

polymorphism on gene expression variation in segregating

populations. For example, genotyping and expression data have

been measured for 112 segregants obtained from a cross between

the laboratory (BY) and wild (RM) strains of S. cerevisiae [1] and for

111 BXD mouse strain segregants [3].

Linkage analysis is commonly employed to identify DNA

sequence polymorphism underlying gene expression phenotypes

[1,3–14]: the gene expression levels are treated as quantitative traits

and the underlying DNA polymorphisms are called expression

quantitative trait loci (eQTLs). Although standard linkage analysis

successfully identifies eQTLs when applied to relatively small

datasets, its utility in high-throughput eQTL analysis is limited due

to the increased amount of background noise. To tackle this

problem, a variety of methods take advantage of the modularity of

biological systems and identify sequence polymorphisms that

underlie an entire group of genes rather than single gene expression

traits [4–6,8,10,12]. Alternatively, a number of integrative ap-

proaches combine several data sources, including promoter binding

data and sequence information, to improve the accuracy of eQTL

identification [3,14]. Several advanced methods capture not only

sequence polymorphisms, but also the regulatory proteins under-

lying the expression changes. In those methods, the regulatory

proteins are inferred concurrently with the linkage analysis, based

on the approximation of regulatory protein activities by their

mRNA expression level (e.g., [4,12]).

In this study we devise a new method for characterizing the

transcriptional response to DNA sequence variation. Called

Regulatory-Linkage (ReL) analysis, it captures groups of genes

together with their underlying DNA polymorphisms and their

common regulatory mechanisms. The method (Figure 1A) takes as

input genotyping and expression data for individuals in the

segregating population, as well as a compendium of high-

throughput transcription regulatory signatures. These regulatory

signatures are gene expression profiles (selected from the literature)

of strains mutated in particular regulatory proteins, such as

transcription factors and chromatin modifiers. Our method

produces a set of ‘ReL modules’, each consisting of a triplet: a

small set of regulatory proteins, a group of target genes, and a

genetic linkage interval. The target genes are jointly linked to the

interval and share a common transcriptional control by the

regulatory proteins. We say that the module’s target genes are co-

regulated by the module’s regulatory proteins and are co-linked to

the modules’ linkage interval (Figure 1B).

The novelty of the current approach is twofold. All three

components of the ReL modules – the groups of target genes, the
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underlying polymorphism and the regulatory proteins – are

predicted simultaneously. Extant methods predict only two of the

components simultaneously and add the third one in a separate

pre- or post-processing step. Moreover, we integrate high-

throughput gene expression data consisting of perturbations in a

large variety of transcription factors. This integrated approach has

several important benefits: First, the additional regulatory

information makes it possible to capture weaker linkage signals.

Second, the analysis focuses on groups of target genes that have a

common regulatory protein and therefore avoids groups of genes

that happen by chance to be co-linked to the same genomic

interval. Third, the approach infers regulatory relations based on

perturbations in a variety of regulatory proteins, thereby avoiding

the approximation of protein activities by mRNA expression

levels. Previous studies relied on this rough approximation to infer

regulatory proteins concurrently with DNA polymorphisms (e.g.,

[4,12]). Finally, the predicted regulatory proteins may suggest

possible mechanisms through which genetic polymorphisms affect

their target genes, providing initial interpretations of the ReL

modules as part of the analysis.

Results

Our analysis takes, as input, genotypic and expression data for a

set of 112 individuals in a yeast wild-type segregating population.

We organize these data as a linkage matrix, which presents the

linkage (an eQTL likelihood score) between the expression level of

each gene and each genetic marker (Figure 1A; see Methods). In

addition, our procedure utilizes a compendium of ‘regulatory

signatures’ that includes gene expression profiles from 283

different strains mutated in a variety of regulatory proteins [15–

16]. In the following analysis, linkage relations are evaluated based

on the linkage matrix, whereas regulatory relations are assessed by

preferential over- or under-expression of target gene groups across

regulatory signatures.

We aim to identify triplets of (i) target genes, (ii) linkage interval,

and (iii) regulatory signatures, where the target genes are jointly

linked to the linkage interval and co-expressed in the regulatory

signature. The naı̈ve approach of finding high-scoring triplets by

evaluating all possible combinations is computationally infeasible

even for relatively small datasets. To tackle this problem, our

method proceeds heuristically in two stages. In the first stage, we

organize the input as a higher order ‘ReL matrix’ across all genetic

markers and regulatory signatures (Figure 1A). Each entry in the

matrix indicates whether genes that are strongly linked to a

particular marker are also over- or under-expressed in a particular

regulatory signature. This statistical measure, referred to as ReL

score, is calculated as follows: For each genetic marker, we

partitioned the genes into two sets: genes with high linkage to the

genetic marker and the rest of the genes. Given the regulatory

signature, the ReL score measures the difference in the gene

expression distribution between these two sets (see Methods).

We now use the observation that when a group of genes is co-

regulated by several regulatory proteins and is jointly linked to the

same linkage interval, the corresponding ReL sub-matrix will

attain high scores. In accordance, the second analysis stage

(Figure 1A) applies a biclustering algorithm on the ReL matrix to

search for sub-matrices whose average scores are higher than

randomly expected. In this work, we assume a single linkage

interval underlying each sub-matrix. Accordingly, the ISA

biclustering algorithm [17] was adapted to choose a single range

of genetic markers (Methods).

The biclustering output is a set of sub-matrices, each scored by

its average ReL scores, and specifies a set of regulatory signatures

and a single linkage interval. For each high-scoring sub-matrix,

referred to as ReL module, we attached additional attributes: (i) A

set of regulatory proteins – the proteins that were mutated in the

strains from which the module’s regulatory signature was

obtained. (ii) A group of target genes - genes that are both co-

regulated by the module’s regulatory proteins and co-linked to the

module’s linkage interval (see Methods). Since we focus only on

trans-acting regulation, genes residing within or near the modules’

linkage interval were excluded from the group of target genes. (iii)

We hypothesize that the linkage interval contains a single gene

that underlies the module’s gene expression variation. We call this

gene the causal regulator of the module. Among the genes within

the linkage interval, we predict a plausible putative causal

regulator (see Methods; Figure 1B).

In this analysis, we focus on the thirteen highest-scoring ReL

modules (modules with ReL score .3). A comprehensive

description of these modules is given in Table S1 and Table S2.

Five additional modules were highly enriched in target genes

residing in telomeric or subtelomeric regions of multiple

chromosomes, and therefore were excluded from the analysis

(Table S2; gene expression variation in telomeres has been

discussed extensively elsewhere (e.g., [4])). Each of the identified

ReL modules consists of at least 10 target genes. The modules

comprise a total of 311 genetic markers, 82 different regulatory

proteins, and 281 different target genes. Randomization analysis

shows that the identified modules are highly unlikely to be

generated at random (module size P-value,0.05, see Text S1 for

details).

The identified ReL modules have no overlapping linkage

intervals and only a few shared regulatory proteins: Eleven

regulatory signatures are shared across two modules and no

regulatory signature is shared across three or more modules. This

is likely to be a consequence of our biclustering approach and the

small number of modules. The little overlap allows us to organize

the ReL matrix into a global map of ReL modules (Figure 2). The

global map highlights the existence of ‘high intensity’ sub-matrices

(modules). The map clearly shows that the high ReL scores within

each module decrease drastically at the boundaries of its linkage

Author Summary

High-throughput genotypic and expression data for
individuals in a segregating population can provide
important information regarding causal regulatory events.
However, it has proven difficult to predict these regulatory
relations, largely because of statistical power limitations.
The use of additional available resources may increase the
accuracy of predictions and suggest possible mechanisms
through which the target genes are regulated. In this
study, we combine genotypic and expression data across
the segregating population with complementary regula-
tory information to identify modules of genes that are
jointly affected by changes in activity of regulatory
proteins, as well as by genotypic changes. We develop a
novel approach called ReL analysis, which automatically
learns such modules. A unique feature of our approach is
that all three components of the module—the genes, the
underlying polymorphism, and the regulatory proteins—
are predicted simultaneously. The integrated analysis
makes it possible to capture weaker linkage signals and
suggests possible mechanisms underlying expression
changes. We demonstrate the power of the method on
data from yeast segregants, by identifying the roles of new
as well as known polymorphisms.

An Integrative Approach for eQTL Identification
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interval and for regulatory signatures that are not part of the

module.

Table 1 summarizes the ReL modules and their function.

Modules are listed along with their key (best-scoring) regulatory

protein, putative causal regulator, and the biological processes

most enriched in the target genes (based on enrichment test; see

Table S3). For example, the nucleobase biosynthesis module

(module #6) predicts that uracil biosynthetic enzymes are linked

to the causal regulator URA3 and regulated by the transcription

factor Ppr1. Indeed, Ppr1 is a known transcription regulator of

uracil biosynthesis genes, and the RM parental strain carries a

deletion of URA3, a gene encoding one of the uracil biosynthetic

enzymes (see details below).

All thirteen modules are significantly associated with a biological

process (Table 1; eleven significant enrichments based on the GO

database and two additional enrichments based on SGD, see

Table S3). These significant enrichments give further support to

the inferred ReL modules. For example, they justify the division of

linkage interval II:352–697kb into two neighboring modules, #1

and #2 (linkage intervals II:352–376kb and II:489–697kb,

respectively), since each module is characterized by a different

biological process (‘ribosome biogenesis’ and ‘cytokinesis’, respec-

tively; Table S3). Module #1 consists of 32 target genes, including

ten ribosome biogenesis genes and only one cytokinesis gene. In

contrast, module #2 consists of thirteen target genes with seven

cytokinesis genes and no ribosome biogenesis genes (Table S1).

Among the genes residing within the linkage interval, the

putative causal regulators (Table 1) were identified based on three

criteria: (i) genes sharing the same biological process as the target

genes, (ii) genes that have a physical interaction with at least one of

the module’s regulatory proteins, or (iii) proteins having a

preferential binding to the promoter of the target genes (see

Methods and Text S2 for a comprehensive description of causal

regulator identification). For example, we have two indications

that the causal regulator URA3 underlies gene expression variation

in module #6. First, it takes part in the same biological process as

Figure 1. Overview of the ReL analysis procedure. (A) The ‘‘linkage matrix’’ contains eQTL likelihood scores between particular genetic markers
(columns) and target genes (rows). The compendium of regulatory signatures consists of gene expression arrays from strains mutated in a variety of
regulatory proteins. First, we aim to detect groups of genes that are co-expressed in one signature and co-linked to a specific genetic marker. Given a
regulatory signature j and genetic marker i, we ask to what extent genes with high linkage to i manifest a distinct distribution in signature j. The
difference between the distributions is estimated, producing a P-value called ‘‘ReL score.’’ The ‘‘ReL matrix’’ represents these scores across all
regulatory signatures (columns) and genetic markers (rows). Blue/white indicates significant/non-significant ReL scores. Next, we aim to detect a
group of genes that are co-expressed in a few signatures and co-linked to a common linkage interval. To that end, we look for high-scoring sub-
matrices in the ReL matrix, referred as ‘‘ReL modules.’’ (B) Each ReL module represents a triplet: (i) a range of genetic markers (linkage interval) that
contains a genetic causal regulator, (ii) a set of regulatory signatures matching particular regulatory proteins, and (iii) a group of target genes that are
co-regulated by the module’s regulatory proteins and co-linked to the module’s causal regulator.
doi:10.1371/journal.pgen.1000800.g001

An Integrative Approach for eQTL Identification

PLoS Genetics | www.plosgenetics.org 3 January 2010 | Volume 6 | Issue 1 | e1000800



the target genes (nucleobase biosynthesis), and second, it physically

interacts with the module’s regulatory protein Ppr1.

Out of the thirteen putative causal regulators, seven were

previously confirmed (LEU2, URA3, AMN1, MAT, GPA1, HAP1,

IRA2; [1,6,18–19]), thereby serving as positive controls. Two other

putative causal regulators (ZAP1 and CAT5) were proposed

previously but have not been tested [4,6]. Two previously

confirmed eQTLs (MKT1 and FLO8 [1,5]) are not included in

our ReL modules. Four putative causal regulators, RFM1, CRD1,

TRM7 and TAN1 (modules #1, #5, #7, and #13), have not been

previously identified.

The ReL analysis predicts regulatory relations between the

modules’ regulatory proteins and target genes. To demonstrate the

quality of these predictions, we present their agreement with

known, well-established transcriptional relations. Out of six known

relations, ReL detects five relations whereas compared methods

detect zero and four relations (see Text S3 for details).

Interestingly, the nucleobase biosynthesis system was detected

only by the ReL analysis.

The nucleobase biosynthesis system (module #6; Table 1)

shows the unique ability of ReL analysis to recover not only the

causal regulators, but also the regulatory proteins. The module’s

causal regulator is URA3, the target genes consist of URA1 and

URA4, and the highest scoring regulatory protein is Ppr1. The

module successfully captures the current biological knowledge

about the uracil biosynthesis system. The RM parental strain

carries a deletion of the URA3 gene, which is known to be linked to

several members of the uracil biosynthesis pathway [1]. De-novo

uracil biosynthesis is catalyzed by seven biosynthetic enzymes

(Ura2,3,4,5,6,7,10). Four biosynthetic enzymes (Ura1,3,4,10) are

subject to transcription regulation via the transcriptional activator

Ppr1, whose activity is negatively regulated by uracil production

rate [20]. The predicted effect of URA3 mutation on URA1,4 is

highly likely to be mediated by Ppr1 activity: in the absence of

Ura3 (RM variant), uracil production is reduced, causing Ppr1

activation (through the negative feedback) and, consequently, a

transcriptional up-regulation of the uracil biosynthetic genes.

Notably, although most extant methods detect the nucleobase

biosynthesis module, our approach is unique in inferring Ppr1 as

the regulatory protein of the module (Text S3). This difference is

not surprising, as most extant methods estimate Ppr1 activity by its

mRNA level, whereas the actual activity is governed by uracil

production rate. Taken together, the nucleobase biosynthesis

module highlights the advantage of ReL analysis in predicting

Figure 2. The ReL matrix. A matrix of genetic markers (rows) versus
regulatory signatures (columns), where the colors indicate the ReL
score. A blue (white) entry indicates significant (non-significant) ReL
score. Shown are only columns and rows that are part of at least one
ReL module as well as five additional flanking genetic markers on the
boundaries of the module’s linkage interval. Genetic markers are
displayed according to their genomic order, and the modules’ linkage
intervals are shown as black vertical lines. Columns are grouped
according to the biclustering solution whereas columns that are shared
among multiple modules are assigned to one of their modules
arbitrarily. The visualization highlights the existence of high intensity
sub-matrices (modules) within the ReL matrix. The number of target
genes in each module is shown as gray bars on the left.
doi:10.1371/journal.pgen.1000800.g002

Table 1. Summary of ReL modules.

#Module ReL score Linkage interval
Regulatory
signatures

Target
genes Primary biological process

Best-scoring
regulatory protein

Putative causal
regulator

1 3.5 II:352–376 2 32 ribosome biogenesis Pib2 TRM7

2 5.5 II:489–697 8 13 cytokinesis Ace2 AMN1

3 10.4 III:75–105 10 12 leucine biosynthesis Leu3 LEU2

4 11.4 III:175–210 6 23 response to pheromone Ste12 MATa1,2

5 3.2 IV:188–226 1 28 oxidative phosphorylation Swi3 CRD1

6 11.6 V:73–166 1 16 nucleobase biosynthesis Ppr1 URA3

7 3.6 VII:55–73 17 29 ribosome biogenesis Stb3 TAN1

8 18.4 VIII:56–140 8 18 conjugation Ste12 GPA1

9 6.3 X:307–387 1 10 zinc-dependent process Tec1 ZAP1

10 4.0 XII:607–748 2 27 ergosterol metabolism Reb1 HAP1

11 6.8 XV:170–193 31 41 energy reserve metabolism Mga2 IRA2

12 4.9 XV:469–581 5 35 oxidative phosphorylation Swi3 CAT5

13 6.4 XV:779–880 2 17 sporulation Sum1, Hst1 RFM1

A list of all modules with ReL score .3. The columns in the table (left to right) are as follows: module number, the module’s ReL score, linkage interval, number of
regulatory signatures, number of target genes, the primary biological process of the module (Table S3), the best-scoring regulatory protein of the module, and the
predicted causal regulator of the module (Text S2). A comprehensive description of these ReL modules is given in Table S1.
doi:10.1371/journal.pgen.1000800.t001

An Integrative Approach for eQTL Identification
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regulatory proteins based on causal information, without estimat-

ing protein activities with mRNA levels.

The sporulation module (module #13) shows our method’s

ability to reveal small modules. This module consists of only

seventeen genes, eight of which encode meiosis- and sporulation-

specific proteins (Figure 3A), linked to a locus on chromosome

XV. Using previously reported mRNA expression patterns of all

yeast genes through the sporulation time course, we found that

these target genes are induced during mid-sporulation (Figure 3B).

In agreement, the module’s regulatory proteins are two DNA-

binding proteins, Hst1 and Sum1, both required for transcrip-

tional repression of middle sporulation-specific genes during

vegetative growth and mitosis ([21], Figure 3A). Taken together,

these results associate the module with transcription regulation of

middle sporulation.

Hst1 and Sum1 are two subunits [1] of the Sum1p/Rfm1p/

Hst1p tertiary repression complex controlling middle sporulation

genes. RFM1 is a specificity factor that directs the Hst1p histone

deacetylase to some of the promoters regulated by Sum1p [22].

Notably, Rfm1 lies in the modules’ linkage interval; in fact, it is

located within the peak of the interval (Figure 3C). It has an

average eQTL likelihood score of 2.6 to its targets, and explains

27% of their gene expression variation. Segregants that inherited

the linked locus from the wild RM showed higher expression of the

sporulation module’s targets than did segregants carrying the locus

from the BY strain (Figure 3D). The BY parent carries two

polymorphisms at the RFM1 locus: P247S and N227D. Sequence

alignment of six yeast species [23–24] showed that the proline

residue at position 247 is conserved whereas only the BY strain

carries the P247S polymorphism; aspartic acid at position 227 is

not evolutionarily conserved (data not shown). This observation

suggests that the Ser247 impairs Rfm1 function, perhaps affecting

the activity of the entire Sum1/Rfm1/Hst1 complex, leading to

residual de-repression of mid-sporulation genes during vegetative

growth. The linkage of RFM1 to expression variation has not been

previously shown, probably since the signal could not be detected

robustly for a small number of target genes. Our methodology

overcomes this problem by exploiting the joint repressive effect of

Hst1 and Sum1 during vegetative growth, enabling prediction of

the genetic cause of variation in mid-sporulation genes.

The two respiration modules (#5 and #12) show the ability of

our method to identify two distinct linkage intervals sharing the

same target genes. The target genes of both modules are enriched

with oxidative phosphorylation (Pƒ10216 in #5, Pƒ10241 in

#12), and generation of precursor metabolites and energy

(Pƒ10213 in #5, Pƒ10229 in #12), both of which are related

to the process of aerobic cellular respiration, generating energy in

the form of ATP (Table S3). The predicted causal regulators are

CRD1 and CAT5 (modules #5 and #12, respectively), both

required for normal respiration functionality and both residing

within the peaks of the linkage interval on chromosomes IV and

XV, respectively (Figure 4A; only CAT5 was previously proposed

as a causal regulator [6]). Cat5 and Crd1 have an average eQTL

likelihood score of 3.5 and 2.6 to their targets, respectively. Cat5 is

required for biosynthesis of ubiquinone, an electron-carrying

coenzyme in the electron transport chain. Cardiolipin is a

phospholipid of the mitochondrial inner membrane, synthesized

by the Crd1 cardiolipin synthase. Absence of cardiolipin in crd1

Figure 3. The sporulation module (#13). (A) The components: the modules’ regulatory proteins (in ovals), its putative causal regulator
(diamond-shaped), and eight meiosis-/sporulation-specific target genes (in rectangles). Protein–protein interactions between the components are
indicated as dashed lines (Text S2). (B) Gene expression patterns (y-axis) of the eight meiosis-/sporulation-specific target genes through the
sporulation time course ([30]; x-axis). The plot shows a temporal induction of the target genes during mid-sporulation. (C) The linkage plot. The eQTL
likelihood (y-axis) is plotted for each genetic marker position along the module’s linkage interval and its flanking regions (x-axis). Rfm1, a subunit of
the Sum1p/Rfm1p/Hst1p complex that controls mid-sporulation genes, is located within the eQTL likelihood peak (black box). (D) Expression levels of
parents and segregants for a marker in SNR31, which lies near RFM1. The plot shows average expression levels over the target genes for six replicates
of each parent and for segregants that inherited the marker from BY and RM. The effect of the locus is in the same direction as the difference
between the parents.
doi:10.1371/journal.pgen.1000800.g003

An Integrative Approach for eQTL Identification
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mutants results in decreased mitochondrial membrane potential

and reduced respiration activity [25]. The target genes of the two

modules show lower expression in segregants carrying the linked

locus from the RM strain compared to the BY strain (Figure 4B).

Our results point to Swi3, but not to the common regulators of

respiratory gene expression, as the key mediator of the CAT5-

CRD1 effect. Swi3 is the sole predicted regulator of both

respiratory modules (Table S1 and Table 1). Figure 4C demon-

strates that indeed, the two respiratory modules are significantly

over-expressed in the swi3 strain (t-test Pƒ1028 and Pƒ10222 in

modules #5 and #12, respectively). Interestingly, the effect of swi3

deletion is stronger than the deletion effect of known respiratory

transcriptional regulators, including Hap2/3/4/5, Mot3, Rox1,

Aft1/2, and Cth1/2 (Figure S1). Swi3 is a subunit of the SWI/

SNF chromatin remodeling complex, which is required for

transcription of a diverse set of genes (e.g., mating-type switching

and Gcn4 targets), but its specific role in respiratory gene

expression has not been documented.

We next investigated the interrelations between the genetic

variation in CAT5 and CRD1. To that end, we analyzed all

genes that have high linkage (eQTL likelihood .2.5) to either

CAT5 or CRD1. Interestingly, the linked genes have a strong

overlap: out of the 62 genes linked to CAT5 and 29 genes

linked to CRD1, twelve genes are linked to both regulators

(hyper-geometric test Pƒ10217) and contain mainly respirato-

ry-related genes (11 of 12, Figure 5A and Table S4). Many of

the linked genes are subunits of four respiration-related

reactions: the electron transport chain, the citric acid cycle,

ATP synthase, and mitochondrial carriers (in total, 15 of 29 in

module #5 and 35 of 62 in module #12). Interestingly, the

linked genes encode proteins that are non-randomly distributed

across the various respiratory complexes: cytochrome c oxidase

(Complex IV of electron transport chain) is exclusively encoded

by genes linked to CAT5; the TCA cycle is composed of

proteins encoded by the CRD1 linked group; and the genes

encoding the ATP synthase complex and succinate dehydro-

genase (Complex II of electron transport chain) are linked to

both CAT5 and CRD1 (Figure 5B).

To test for possible genetic interactions, we compared the

expression of the twelve overlapping linked genes in segregants

carrying four possible combinations of the CRD1 and CAT5 alleles.

Interestingly, we observed an additive effect of the CAT5-CRD1

genotypes (Figure 5C; compare also with Figure 4B). Whereas

CAT5 and CRD1 alone explain 22% and 17% of gene expression

variation, respectively, the combination of the two eQTLs CAT5-

CRD1 explains 32% of the gene expression variation. Therefore,

our results indicate that a genetic interaction between the eQTL

pair CAT5 and CRD1 underlies the inheritance of genes required

for normal respiration.

Discussion

Our approach provides a high-resolution tool for identifying

functional DNA polymorphisms that affect gene expression.

Importantly, it also provides insights into the mechanisms by

which genotypes underlie expression changes.

In our method, the regulatory signatures are gene expression

profiles that were measured in rich medium under standard

conditions on yeast cells carrying a single perturbation. The same

methodology can be expanded to handle additional regulatory

signature resources. For example, gene expression data measured

under a variety of conditions may be included, disclosing modules

that are inactive under standard conditions but active under

particular extracellular stimuli. Furthermore, protein-DNA bind-

ing data, and data from double mutants might provide additional

powerful information on ReL modules.

The ReL modules should be interpreted with caution.

Genetic linkage does not necessarily imply causality. Two of

the three criteria used for identifying the causal regulator are

aimed to select among plausible hypotheses but do not

Figure 4. The respiration modules (#12 and #5). (A) The linkage plot. The eQTL likelihood (y-axis) is plotted at each genetic marker (x-axis)
residing within or near the linkage interval of modules #12 and #5. The modules’ linkage intervals are highlighted in gray. The putative causal
regulators CAT5 and CRD1 (black boxes), which play a role in respiration, are located within the eQTL likelihood peaks. (B) Expression levels of parents
and segregants for a marker in CCT4 and RGA1, which lie near CRD1 (top) and CAT5 (bottom). The plots are shown as in Figure 3D. In both cases, the
BY parents and segregants carrying the BY allele have higher expression levels than the RM parents and segregants. (C) Distribution of expression
values for the target genes of modules #12 (red) and #5 (green), compared with the rest of the genes (black) in swi3 knockout experiment. Shown
are log2-transformed swi3 vs. wild-type expression ratios [16].
doi:10.1371/journal.pgen.1000800.g004

An Integrative Approach for eQTL Identification
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demonstrate causality (see Text S2 for details). Additionally, the

linkage interval might contain more than one causal polymor-

phism, whereas ReL analysis assumes a single causal regulator.

In the case of two causal polymorphisms located at the same

genomic region, ReL analysis might unify them into the same

module or fail to detect one of them. Another point to consider

is that the ReL modules do not provide an unbiased view of

genome-wide genetic linkage. Since the modules are detected

based on co-regulation in at least one regulatory signature, the

resulting modules depend on the particular signatures included

in the compendium. Further, some regulatory relations might

be specific to a single regulatory signature, a short linkage

interval, or a small number of target genes. ReL analysis may

not have enough statistical power to generalize those focused

relations into a module. Finally, our modules currently contain

only a single linkage interval. Hence, ReL analysis might fail to

detect the prevalent case where the target genes are influenced

by a combination of multiple interacting loci. It might be

possible to extend our framework to detect such interactions

automatically. For all these reasons, our method may fail to

identify certain correct modules despite a detectable causal

polymorphism.

ReL analysis is likely to succeed in organisms other than yeast,

including mouse and human. Several genotypic and gene

expression datasets are available for these populations [26–27],

and thus the most prominent obstacle is the lack of a large

compendium of mammalian regulatory signatures. Such a

resource, however, is likely to be compiled in the future, and the

ReL methodology provides a good example of its usefulness. Text

S4 provides a quantitative estimation of the number of regulatory

signatures required for significant ReL analysis, highlighting the

importance of a large compendium. As new technologies for cost-

effective count of transcripts in perturbed cells become available

(e.g., nCounter [28], shRNA-perturbation), it will be soon easier to

obtain a large collection of mammalian regulatory signatures and

apply our methodology to them.

When applied to the yeast system, our methodology reveals two

intriguing ReL modules. First, we find that DNA polymorphism in

RFM1 underlies gene expression variation of middle sporulation

genes. Second, we show that both CRD1 and CAT5 underlie gene

expression variation in aerobic cellular respiration genes. Further

analysis reveals a novel genetic interaction (epistasis) between these

two loci. It would be of great interest to explore whether the

regulatory mechanisms uncovered here are conserved in other

fungal genomes. The discovery here of previously uncharacterized

modules and interactions in the well-studied segregating yeast

population underscores the importance of large-scale integrated

methods in genetic analysis.

Figure 5. Genetic interactions between the respiration modules. (A) A scatter plot showing the linkage (eQTL likelihood score) to CAT5,
module #12’s putative causal regulator (x axis), and to CRD1, module #5’s putative causal regulator (y axis), across all genes. Genes that are tightly
linked (eQTL likelihood .2.5) to one of the causal regulators are indicated by the red and green boxes. (B) An illustration of mitochondrial respiratory-
related reactions and complexes. Shown are the electron transport chain (complexes I, II, III, and IV), the ATP synthase complex, phosphate and ATP/
ADP carriers, and the TCA cycle. Proteins that are part of these complexes, whose gene expression is also linked to the putative causal regulators of
module #5 only, #12 only, or both, are denoted by red, green and black dots, respectively. (C) Expression levels of parents and segregants for every
combination of module #5 and module #12 putative causal regulator alleles. RM12-RM5 and BY12-BY5 indicates that both alleles are from the RM and
BY parents, respectively. RM12-BY5 (BY12-RM5, respectively) indicates that only module #12’s allele is from the RM (BY, respectively) strain, whereas
module #5’s allele is from the other parental strain. The expression levels are averaged over the twelve overlapping target genes depicted in (A). The
plot indicates an additive effect of module #5’s and module #12’s linkage intervals. In plots (A–C), we used the genetic markers residing within CCT4
and RGA1, which are located proximal to the CRD1 and CAT5 genes, respectively.
doi:10.1371/journal.pgen.1000800.g005
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Methods

Data preparation
We calculated the linkage (an eQTL likelihood score) of

genotypic and expression data measured for 112 individuals in a

yeast segregating population, as described previously [1]. The

linkage matrix represents genetic markers versus genes, where

each entry corresponds to the eQTL likelihood score between a

given genetic marker and the expression of a given gene. The

analysis was applied to all 2956 markers that were genotyped, and

all 6230 genes whose gene expression was measured across the

segregating population.

We formed a compendium of 283 high-throughput expression

profiles obtained from strains mutated in various regulatory

proteins [15–16]. The compendium includes only strains mutated

in a single gene, and each mutant strain is represented by exactly

one expression profile. The expression profiles are referred to as

regulatory signatures.

ReL test
Given a genetic marker and a regulatory signature, we evaluate

whether genes that are tightly linked to the genetic marker are also

over- or under-expressed in the regulatory signature. To that end,

we partition the genes into two subsets: genes with high linkage to

the genetic marker (denoted high-linkage genes), and the rest of

the genes. The difference in the distribution of the regulatory

signature values between the two subsets is evaluated using a t-test.

The ReL score is the 2log10 P-value of this t-test (all reported ReL

scores are Bonferroni corrected). In our analysis, 11,166 of the

836,548 ReL scores (1.3%) were significant at P,0.001 (see Text

S1). Given that the high-linkage (the rest) genes tend to have high

(respectively low) regulatory signature values, the group of hit

genes includes all those high-linkage genes whose values are above

(respectively below) the average regulatory signature value. The hit

genes are later used to calculate the target genes of the ReL

modules.

The eQTL likelihood threshold, which distinguishes the high-

linkage genes from the rest of the genes, was identified as follows:

First, genes that are over-expressed and genes that are under-

expressed in the regulatory signature are identified. For every

possible eQTL likelihood threshold, we test for the over-

representation of high-linkage genes in one of these expression

groups using a hyper-geometric score (we consider all observed

eQTL likelihood values as thresholds). The best score determines

the eQTL likelihood threshold. The combination of hyper

geometric score and the t-test is important for a robust evaluation.

Unlike a t-test, the hyper-geometric test takes into account the

amount of high-linkage genes, making sure that the eQTL

likelihood threshold is not too high; on the other hand, unlike

the hyper-geometric test, the t-test estimates the significance of

difference between two distributions. Text S5 demonsrates the

robustness of ReL analysis to small changes in the eQTL

likelihood threshold.

Biclustering analysis and ReL modules
The ReL matrix summarizes the ReL scores across all genetic

markers and regulatory signatures. We set out to construct a group

of co-regulated genes whose common transcription regulation

involves both regulatory proteins and a causal regulator. In the

ReL matrix, such an event appears as a sub-matrix with significant

over-representation of high ReL scores. To identify those sub-

matrices, the ISA biclustering algorithm [17] was adapted to work

on the ReL matrix. ISA looks for any subset of columns and any

subset of rows whose sub-matrix has high scores; the sub-matrix is

subject to iterative improvements by adding or removing any

column or row. Here we seek sub-matrices with a single range of

consecutive genetic markers rather than any subset of markers. To

that end, we modified the original ISA so that only markers at the

boundaries of the current genetic marker range can be added or

removed. On each ISA step, the genetic marker range is optimized

efficiently using a dynamic programming algorithm. We start from

all possible single entries as seed sub-matrices, and optimize each

such seed independently of all others (see Text S6 for details). The

resulting sub-matrix is called a ReL module. The ReL score of a

module is the average ReL score of its entries.

A ReL module specifies a single range of genetic markers

(referred as a linkage interval) and a set of regulatory signatures.

For each ReL module, we further compiled the following

information:

(i) Each module is associated with a set of regulatory proteins

corresponding to the deletion mutants in the module’s

regulatory signatures. The ReL score of a regulatory

protein is its average ReL score over the linkage interval.

(ii) As defined above, each entry of the ReL matrix is

associated with a set of hit genes. The module’s target

genes are all hit genes included in at least 60% of the sub-

matrix entries. Here we aim to investigate trans-acting

regulation, and therefore, to avoid biases related to cis-

acting regulation, genes residing within the linkage interval

or less than 30 genes away from it were excluded from the

set of target genes. In all thirteen modules under analysis,

the original fraction of cis-linked genes was relatively small

(Table S2).

Next, the function of the set of target genes is

characterized by a hyper-geometric enrichment test using

the GO biological process annotation (computed using the

EXPANDER software [29]; all reported P-values are

corrected for multiple testing). Given one or more

significantly enriched biological processes for the same set

of target genes, the best scoring process is termed the

primary biological process of the module.

(iii) A causal regulator is a gene carrying a polymorphism in its

promoter or coding region, which has a trans-acting effect

on expression variation of other genes. For each ReL

module, we aim to find one or a few putative causal

regulators – genes contained within the linkage interval

that are highly likely to be the causal regulators of the

target genes. Following Tu et al. [7], we predict a putative

causal regulator based on the following rules: The causal

regulator either plays a role in the primary biological

process of the module, or the yeast protein-protein and

protein-DNA interaction network contains at least one

direct link between the causal regulator and the module’s

regulatory proteins. Alternatively, the module shows

statistical significant enrichment for targets of the causal

regulator (see Text S2 for details).

Taken together, a full description of a module includes a set of

regulatory proteins, a (small) set of putative causal regulators, and

a set of target genes characterized by a primary biological process.

Additional information
A program implementing our framework is available on the

website: http://acgt.cs.tau.ac.il/ReL/.

Supporting Information

Figure S1 The effect of deletion in respiration transcription

regulators on expression in modules #5 and #12. Given a ReL
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module and a gene expression profile, we applied a t-test to

compare the distribution of gene expression values for the

module’s target genes to the distribution of gene expression values

for the rest of the genes. The histogram shows the results of this

t-test for profiles taken from strains mutated in respiratory

transcription regulators (x axis), using the target genes of module

#5 (white) or #12 (black). Y axis: 2log P-value of the t-test.

Among all respiratory transcription regulators, Swi3 has the

strongest effect on the target genes of modules #5 and #12.

Found at: doi:10.1371/journal.pgen.1000800.s001 (0.07 MB TIF)

Table S1 A full report of all identified modules.

Found at: doi:10.1371/journal.pgen.1000800.s002 (0.48 MB

XLS)

Table S2 Fraction of cis-genes and telomere genes in the ReL

modules.

Found at: doi:10.1371/journal.pgen.1000800.s003 (0.01 MB PDF)

Table S3 Biological processes associated with the ReL modules.

Found at: doi:10.1371/journal.pgen.1000800.s004 (0.02 MB PDF)

Table S4 CAT5 and CRD1 targets.

Found at: doi:10.1371/journal.pgen.1000800.s005 (0.03 MB PDF)

Text S1 Evaluating the quality of the results using several

statistical models.

Found at: doi:10.1371/journal.pgen.1000800.s006 (0.03 MB PDF)

Text S2 Identification of putative causal regulator.

Found at: doi:10.1371/journal.pgen.1000800.s007 (0.04 MB PDF)

Text S3 Evaluation of the learned regulatory proteins.

Found at: doi:10.1371/journal.pgen.1000800.s008 (0.04 MB PDF)

Text S4 The effect of the compendium size on the ReL analysis.

Found at: doi:10.1371/journal.pgen.1000800.s009 (0.03 MB PDF)

Text S5 Sensitivity to eQTL likelihood threshold.

Found at: doi:10.1371/journal.pgen.1000800.s010 (0.02 MB PDF)

Text S6 The biclustering algorithm.

Found at: doi:10.1371/journal.pgen.1000800.s011 (0.04 MB PDF)
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