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Abstract

Polycomb group (PcG) proteins control organism development by regulating the expression of developmental genes.
Transcriptional regulation by PcG proteins is achieved, at least partly, through the PRC2-mediated methylation on lysine 27
of histone H3 (H3K27) and PRC1-mediated ubiquitylation on lysine 119 of histone H2A (uH2A). As an integral component of
PRC1, Bmi1 has been demonstrated to be critical for H2A ubiquitylation. Although recent studies have revealed the
genome-wide binding patterns of some of the PRC1 and PRC2 components, as well as the H3K27me3 mark, there have
been no reports describing genome-wide localization of uH2A. Using the recently developed ChIP-Seq technology, here, we
report genome-wide localization of the Bmi1-dependent uH2A mark in MEF cells. Gene promoter averaging analysis
indicates a peak of uH2A just inside the transcription start site (TSS) of well-annotated genes. This peak is enriched at
promoters containing the H3K27me3 mark and represents the least expressed genes in WT MEF cells. In addition, peak
finding reveals regions of local uH2A enrichment throughout the mouse genome, including almost 700 gene promoters.
Genes with promoter peaks of uH2A exhibit lower-level expression when compared to genes that do not contain promoter
peaks of uH2A. Moreover, we demonstrate that genes with uH2A peaks have increased expression upon Bmi1 knockout.
Importantly, local enrichment of uH2A is not limited to regions containing the H3K27me3 mark. We describe the
enrichment of H2A ubiquitylation at high-density CpG promoters and provide evidence to suggest that DNA methylation
may be linked to uH2A at these regions. Thus, our work not only reveals Bmi1-dependent H2A ubiquitylation, but also
suggests that uH2A targeting in differentiated cells may employ a different mechanism from that in ES cells.
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Introduction

In higher eukaryotes, DNA is organized in the form of

chromatin. The basic repeating unit of chromatin is called the

nucleosome, which consists of 146 bp of DNA wrapped around a

core histone octamer. One unique feature of core histones is their

proclivity for covalent modification including acetylation, methyl-

ation, ubiquitylation, and phosphorylation [1]. In addition, DNA

can be modified directly through methylation. These covalent

modifications can affect gene transcription directly or indirectly

through the recruitment of additional modulatory factors [2].

Therefore, different combinations of modifications on chromatin

may ultimately determine distinct cellular states through regulat-

ing the transcriptional programs that cells adopt. Thus, identifi-

cation and characterization of the proteins that are responsible for

the placement and maintenance of these epigenetic marks is of

great importance in understanding cellular proliferation and

differentiation.

The addition of a single ubiquitin molecule to histone H2A at

lysine 119 was first discovered over thirty years ago [3]. Classic

experiments demonstrated that uH2A accounts for about 10% of

total H2A [4]. Despite the knowledge of its existence, the identity

of the responsible enzymes and the function of this modification

have only recently begun to be elucidated. The first H2A ubiquitin

E3 ligase was identified as the core components of the Polycomb

repressive complex 1 (PRC1) composed of RING1/2, BMI1, and

HPH2 [5]. Biochemical and functional analysis of the PRC1

complex has revealed RING2/Ring1b as the catalytic subunit,

which can be greatly stimulated by Bmi1 and Ring1a, as loss

function on any of these two proteins resulted in drastic genome-

wide reduction of uH2A [6,7]. Genome-wide location studies

revealed that PRC1 occupies the promoters of a subset of

Polycomb repressive complex 2 (PRC2) targets and both PRC1

and PRC2 are enriched at genes involved in developmental

processes [8–10]. Recent studies have uncovered that Bmi1

homologs, such as Mel18 and NSPc1, can target the PRC1
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complex in various cell types [11,12]. In addition, a new E3 ligase

for H2A, 2A-HUB, has also been reported [13] highlighting the

fact that there must be Bmi1-dependent and Bmi1-independent

pools of uH2A in the genome.

Unlike PRC1, PRC2 possesses H3K27-specific histone meth-

yltransferase activity [14]. The discovery that a component of

PRC1, Pc, can specifically recognize and bind to H3K27me3 [15–

17] has prompted researchers to embrace a sequential recruitment

model whereby PRC2-mediated H3K27 methylation contributes

to PRC1 recruitment and subsequent ubiquitylation of histone

H2A. This model is supported by three pieces of evidence. First,

studies on Hox and Ink4a/Arf loci indicate that PRC1 knockdown

reduced local uH2A levels which correlate with upregulation of

gene expression [7,18,19]. Second, knockdown of the H3K27me3

demethylase, Utx, results in enrichment of both PRC1 and uH2A

at PRC2 target genes [20]. Third, the majority of genome-wide

Ring1b enriched regions in mouse embryonic stem cells (mES) co-

localize with peaks of H3K27me3 [21].

In addition to the relationship between H3K27 methylation and

H2A ubiquitylation, several studies also suggest a potential link

between H3K27 methylation and DNA methylation. For example,

H3K27 methylation has been demonstrated to play an important

role in imprinted gene silencing [22,23]. Components of PRC2,

such as Ezh2, have been reported to interact with Dnmt1/3a/3b

and are required for efficient DNA methylation at several target

genes [24]. On the other hand, Dnmt1 may contribute to the

recruitment of PRC1 as knockdown of Dnmt1 abrogates

localization of PRC1 components to Polycomb bodies in cultured

cells [25]. Consistent with this notion, recent studies have

demonstrated that components of PRC1 can interact with a

methyl-DNA binding protein, Mbd1 [26], and the Dnmt1-

associated protein, Dmap1 [27]. Despite these reports, a general

correlation between H3K27 methylation and DNA methylation

may not exist as genome-wide epigenetic profiling revealed only a

small subset of H3K27me3 positive promoters were found to be

hypermethylated [28,29]. Whether there exists a genome-wide link

between PRC1 mediated H2A ubiquitylation and DNA methyl-

ation remains to be determined.

The advent of chromatin immunoprecipitation coupled to

genomic tiling arrays (ChIP-chip) has provided scores of reports

highlighting genome-wide maps of histone modifications [30],

histone modifying enzyme binding profiles [9], and transcription

modulators [31,32]. Recent advances in ChIP-coupled deep

sequencing have greatly expedited the tedious task of dissecting

the interplay between epigenetic modifications and complex

transcriptional output [33]. Although genome-wide analysis of

most epigenetic marks [34–36], as well as transcription factors

[37], has been reported for various cell lines, uH2A distribution

remains a mystery. In addition, the recent discovery that the

majority of uH2A in the fly genome is placed by a complex

containing the Bmi1 homolog but lacking Pc [38] calls the

generality of the sequential recruitment model into question.

To understand how uH2A fits into the complex epigenetic

architecture associated with mammalian chromatin, we describe

the genome-wide profile of Bmi1-dependent uH2A by comparing

the enrichment of this mark in Bmi1 wild-type and null MEF cells.

This analysis provides evidence that while Bmi1 dependent uH2A

is enriched at genes containing the H3K27me3 mark, it is not

limited to these regions. In addition, analysis of genome-wide

DNA methylation patterns reveals a link between uH2A and DNA

methylation in high-density CpG promoters. Transcription

profiling of wild-type MEF cells indicates that Bmi1-dependent

uH2A is enriched at genes with low levels of de novo expression.

Finally, genes containing the highest levels of Bmi1 dependent

uH2A at their promoters are expressed higher upon Bmi1 loss of

function than genes harboring low levels of uH2A. Thus, our study

uncovers some previously unrecognized features of uH2A.

Results

Generating Genome-Wide uH2A Modification Maps
In an effort to understand the function of the Bmi1-dependent

uH2A epigenetic mark, we performed chromatin immunoprecip-

itation (ChIP) experiments using the well characterized uH2A

monoclonal antibody E6C5 [5,7,39–41] in wild-type MEFs. The

precipitated DNA was subjected to deep sequencing using the

Solexa sequencing technology. As a control for non-specific

background, and to focus the research on the Bmi1-dependent

proportion of genomic uH2A, parallel ChIPs were also performed

in Bmi1 null MEF cells. A previous report has shown that these

cells undergo drastic reductions in global H2A ubiquitylation [7].

After sequencing 25 bp DNA fragments, the data retrieved from

both cell types were mapped to the mm8 build of the Mus musculus

genome. DNA tags which did not uniquely map to the genome

were discarded and the resulting tag libraries consisted of over 6

million and 8 million unique reads for the wild-type and Bmi1 null

MEF cells, respectively. We next performed normalization for the

total number of uniquely mapped reads, and generated a final

Bmi1-dependent uH2A summary file by aligning reads from both

libraries and subtracting uH2A tags derived from Bmi1 null MEFs

from those derived from wild-type MEFs. Density maps were

created by ignoring negative tag density regions. UCSC genome

browser tracks corresponding to the normalized uH2A in wild-

type MEFs, Bmi1 null MEFs, and subtracted tag density plots are

available from the NCBI GEO Database under accession number

GSE15909.

Enrichment of uH2A at the Majority of Gene Promoters Is
Dependent on Bmi1 Function

Given the enrichment of many epigenetic marks at gene

promoters, we began our analysis of Bmi1-dependent uH2A

localization by examining the area directly surrounding the

transcription start site of well annotated genes. To this end, the

average per base pair normalized density of Bmi1-dependent

uH2A was determined for a 10 kb region surrounding well

annotated TSSs at a 200 bp resolution (analyzed gene list is

Author Summary

A wealth of recent studies has demonstrated the role of
Bmi1-stimulated histone ubiquitylation in the repression of
transcription at targeted genetic loci. However, the
repressive function of this mark has never been extrapo-
lated genome-wide. We have used deep sequencing
technology to explore the global deposition of Bmi1-
dependent H2A ubiquitylation (uH2A) in mouse embryon-
ic fibroblast cells. Our study confirms the gene-specific
repressive function of the uH2A mark on a genome-wide
scale. In addition, we also analyzed the general trends of
uH2A distribution with respect to genomic elements, such
as various classes of gene promoters and transcribed
regions. Our work implies that the mechanism of uH2A
distribution in differentiated cells may vary from that in
embryonic stem cells. Given the importance of the uH2A
modification in fundamental biological processes and
cancer, insight into the distribution of this modification
has reaching implications in understanding the contribu-
tion of epigenetic silencing to cellular physiology.

Genome-Wide uH2A Localization
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available in Table S1). This genome-wide averaging analysis

revealed enrichment of the uH2A mark that peaked just inside the

TSS (Figure 1A). Given the link between uH2A and PRC2 [25],

we next set out to determine if a quantitative relationship existed

between Bmi1-dependent promoter uH2A enrichment and

promoter H3K4me3 and/or H3K27me3 placement. To this

end, well-annotated genes were grouped into four classes based on

the presence of H3K4me3 and H3K27me3 within their

promoters, as determined by a previous study [35]. The same

averaging analysis was applied to these separate groups of genes

which included promoters containing H3K4me3 only,

H3K27me3 only, both H3K4me3 and H3K27me3 (bivalent), or

lacking both modifications (no K4/no K27). This analysis re-

vealed Bmi1-dependent enrichment of average uH2A tag density

for both the bivalent and H3K27me3 modified gene classes

(Figure 1B, compare grey line to green and blue lines). Enrichment

manifested in an increase in averaged peak height, as well as an

overall broadening of the uH2A peak further into the body of

K27me3 marked genes. This result is consistent with a role for

PRC2 in the recruitment of PRC1 and subsequent ubiquitylation

of histone H2A [7,42]. Interestingly, Bmi1-dependent uH2A was

still present at H3K4me3 genes at a level comparable to the all

gene average (Figure 1B, red line). Furthermore, genes lacking

both H3K4me3 and H3K27me3 exhibited a depletion of uH2A

tag density (Figure 1B, purple line). Together these gene region

averaging results reveal an overall enrichment of Bmi1-dependent

uH2A at gene promoters which is biased towards genes marked by

H3K27me3.

Bmi1-Dependent uH2A Are Enriched at Specific Genomic
Regions

To complement the genome-wide averaging studies described

above, the uH2A tag library of wild-type MEFs was subjected to

peak enrichment analysis using the TIROE algorithm [43] with

the uH2A tag library derived from Bmi1 null MEFs set as

background. This data processing allowed us to identify the most

enriched Bmi1-dependent peaks of uH2A throughout the genome.

A complete list of peak coordinates mapped to the mm8 build of

Figure 1. Bmi1-dependent promoter uH2A enrichment correlates with promoter H3K27me3 enrichment. (A) Profiles of per base pair
Bmi1-dependent uH2A enrichment across the TSS of well annotated genes. Error bars represent s.e.m. of per base pair average for all genes analyzed
(n = 15867). (B) Well-annotated genes were grouped by epigenetic modification state and the average normalized uH2A tag density was determined
for each group. No K4/No K27 (n = 4690), purple; both H3K4me3 and H3K27me3 (Bivalent) (n = 1377), green; H3K27me3 only (n = 888), blue;
H3K4me3 only (n = 8912), red; all genes (n = 15867), grey.
doi:10.1371/journal.pgen.1000506.g001

Genome-Wide uH2A Localization
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the mouse genome (Table S2) as well as a UCSC genome browser

track showing the Bmi1 null subtracted tag density at peak regions

(Dataset S1) is available as supplementary material online.

The TIROE algorithm identified 16,406 peaks of Bmi1-

dependent uH2A throughout the genome with enrichment P

values of at least 1e-5. We began our analysis of peak distribution

by roughly dividing the genome into genic and non-genic regions

as determined by the presence of transcribed regions annotated in

the REFSEQ database. Interestingly, while genic regions corre-

spond to only about 47% of the genome, they harbored 52% of

the identified peaks (Table 1). Further division of the genic regions

of the mouse genome into promoter and transcribed regions

revealed that peak number enrichment was present in both of

these sub-groups with 671 peaks (4.1%) falling within gene

promoters and the remaining 7415 peaks (47.3%) localizing

elsewhere along the transcribed body of the gene (Table 1, Table

S3). Distribution analysis of defined peaks along transcribed

regions revealed an increased tendency of uH2A peak localization

towards the transcription termination site of genes (Figure S1A).

However, in agreement with tag library averaging data presented

in Figure 1A, peaks that fell within the promoter of genes (defined

as 21 kb to +1 kb around TSSs) exhibited an average tag density

higher than those lying within gene bodies (Figure S1B). Taken

together, these data indicate that peaks of Bmi1-dependent uH2A

are enriched within the transcribed regions of well-annotated

genes with smaller peaks clustered towards the transcription

termination site and larger peaks specifically occupying gene

promoters.

Given the enrichment of tag density at gene promoters as

visualized by both genome-wide averaging (Figure 1A) and peak

localization (Table 1 and Figure S1B), we next selected several

representative TIROE peaks that localized within gene promoters

to be verified by ChIP-qPCR. ChIP assays were carried out in

both wild-type and Bmi1 null MEFs using antibodies against

uH2A and Bmi1. The Bmi1 null subtracted tag density profiles

surrounding the TSS of Cebpa, B4galnt1, Gfod2, Zfp12, Fgf6, Dcxr,

Iars, Arpc3 and Chmp2a are shown in Figure 2A. These peaks have

TIROE enrichment P values of 2.4e-15, 1.2e-14, 1.3e-12, 7.0e-11,

9.2e-09, 1.1e-08, 1.1e-07, 2.2e-06, and 3.0e-06, respectively. ChIP

assays not only confirmed the enrichment of uH2A at these loci in

wild-type cells as compared to Bmi1 null cells, but also the

presence of Bmi1 at these same regions in wild-type cells

(Figure 2B). Similar enrichment of uH2A and Bmi1 localization

was not detected within the promoters of Mta2, Hbb2, and Ppara;

genes which do not contain peaks of the uH2A epigenetic mark

(Figure 2B).

Peaks of Bmi1-Dependent uH2A Overlap with Other
Epigenetic Marks

Genetic studies have revealed a link between PRC1-catalyzed

H2A ubiquitylation and PRC2-catalyzed H3K27 methylation.

Biochemically, H3K27me3 has been shown to serve as a binding

site for the recruitment of the PRC1 complex [16,17]. These

studies suggest that there should be a link between uH2A and

H3K27me3. However, recent evidence from Drosophila has

implicated another Bmi1 containing complex, dRAF, in H2A

ubiquitylation. Interestingly, this complex lacks Pc and must utilize

an alternative means of targeting [38]. To examine whether our

dataset could shed light on the relationship between the two

modifications, we investigated the overlap between peaks of Bmi1-

dependent uH2A, H3K27me3, and H3K4me3. We reasoned that

if an alternate method of E3 ligase recruitment was present in

MEF cells then uH2A enrichment would be present in regions not

marked by H3K27me3. Of the 4132 peaks of H3K27me3

identified in a previous study [35], about 15% (651) overlap with

peaks of uH2A. Furthermore, about 11% of the 2,604 genomic

regions defined as bivalent overlap with our uH2A dataset.

Interestingly, about 5.6% of the 14,178 peaks of H3K4me3 exhibit

co-localization with peaks of Bmi1-dependent uH2A. Together,

these findings reveal that enriched regions of uH2A show a

marked localization bias to genomic regions which also contain the

H3K27me3 mark. However, they also indicate that the vast

majority of Bmi1-dependent uH2A falls outside of regions

containing this mark and suggests that an alternate method of

ubiquitin E3 ligase recruitment may exist in MEF cells.

Given that about half of all uH2A enriched regions in the genome

fall outside of genic regions and only 4% are localized to gene

promoters (Table 1, Table S3), we next explored possible differences

between promoter and non-promoter peaks of uH2A with regards

to H3K4me3 and H3K27me3 overlap. To this end, peaks were

binned by their localization inside or outside of promoters, and the

number of peaks from each of these groups which overlapped with

additional epigenetic modifications was calculated. This analysis

revealed that a higher proportion of promoter bound Bmi1-

dependent uH2A peaks co-localized with either H3K4me3 or

H3K27me3 when compared to peaks located outside of promoter

regions (Figure 3A). This result is not surprising given the relative

enrichment of H3K4/H3K27 within gene promoter regions.

However, this finding reinforces the fact that Bmi1-dependent

uH2A is distinct from the H3K27me3 mark with respect to the

extent of its enrichment outside of genic regions.

We next investigated the local tag density of uH2A peaks both

within and outside of promoters. Results presented in Figure 3B

Table 1. Bmi1-dependent peak distribution throughout the mouse genome.

Genome* Peak P value**

BP coverage Number BP coverage

Gene & Promoter 893514855 (47.4%) 8086 (49.3%) 7748448 (52.4%) ,2.2e-16

Promoter 39206000 (2.1%) 671 (4.1%) 755102 (5.1%) ,2.2e-16

Transcribed Region 854308855 (45.3%) 7415 (45.2%) 6993346 (47.3%) ,2.2e-16

Non-genic 1770940233 (52.6%) 8320 (50.7%) 7046343 (47.6%) ,2.2e-16

Total 1884453825 (100%) 16406 (100%) 14794791 (100%)

*Total base pairs refer to alignable portion of the genome.
**Two-sided proportional test of Genome BP coverage as compared to Peak BP coverage.
doi:10.1371/journal.pgen.1000506.t001

Genome-Wide uH2A Localization

PLoS Genetics | www.plosgenetics.org 4 June 2009 | Volume 5 | Issue 6 | e1000506



show that on average, peaks of uH2A localized within gene

promoters are composed of significantly more tags than peaks

lying outside of gene promoters (Wilcoxon P value = 2.2e-3). In

addition, further sub-division of promoter and non-promoter

peaks by H3K4me3 and H3K27me3 overlap reveals two

additional pieces of information. First, promoter specific enrich-

ment of uH2A peak tag density occurs at genes that also contain

the H3K27me3 mark (Figure 3C, compare promoter peak data

sets). This result is consistent with whole genome averaging

analysis presented in Figure 1B. Second, there is a depletion of

average peak tag density at non-promoter regions that do not

contain either H3K4me3 or H3K27me3 (Fig 3C, compare non-

promoter peak data sets). This finding, in conjunction with the fact

that the vast majority of non-promoter uH2A falls outside of

H3K4me3 and H3K27me3 regions (Figure 3A), suggests that the

contribution of these independent peaks is driving overall

depletion of tag density at non-promoter regions.

Promoter-Bound uH2A Is Genetically Linked to DNA
Methylation

Previous studies indicate that PRC2 facilitates recruitment of

DNA methyltransferases to at least a sub-set of Polycomb target

genes [24]. This finding, together with the relationship between

DNA methylation and transcriptional repression prompted us to

Figure 2. Bmi1-dependent promoter uH2A enrichment at a sub-set of gene promoters. (A) Bmi1-dependent tag density at selected gene
promoters that contain peaks defined by the TIROE algorithm. Red arrow indicates the start and direction of transcription. (B) ChIP-qPCR validation of
uH2A peaks (blue bars) and Bmi1 enrichment (red bars) was carried out in WT and Bmi1 null MEF cells. Enrichment was normalized to input control
and data is presented as log2 value of WT versus Bmi1 null.
doi:10.1371/journal.pgen.1000506.g002

Genome-Wide uH2A Localization
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investigate a possible link between genome-wide promoter uH2A

and DNA methylation. To this end, we first analyzed uH2A

localization in relation to CpG dinucleotide content surrounding

the TSS of known genes. Following a previous characterization

[35], we divided the genes into three groups defined as high level

(n = 10,310), intermediate level (n = 2889), and low level (n = 2668)

based on the density of CpGs within their promoter regions (HCP,

ICP, and LCP, respectively) (Table S1). We repeated whole

genome promoter averaging analysis and found that the promoter

tag density of uH2A is strongly enriched at genes defined as HCP

when compared to both ICP and LCP genes (Figure 4A). Recent

reports have used bisulphite treatment coupled with deep

sequencing to characterize the extent of DNA methylation at

HCP group genes in ES, NPC, and MEFs [44]. Comparison of the

available DNA methylation data with our promoter uH2A peaks

revealed a correlation between DNA methylation levels and

average uH2A tag density in the HCP group (Figure 4B).

Specifically, HCP genes with promoter peaks of Bmi1-dependent

uH2A had higher levels of average DNA methylation when

compared to HCP genes without uH2A peaks (Wilcoxon P

value = 0.0426).

To further characterize this correlation we asked whether the

two modifications are genetically connected. Toward this end, we

asked whether loss of DNA methylation would cause alteration in

H2A ubiquitylation. A comparison of the uH2A levels in Dnmt1

null MEFs [45] revealed that loss of DNA methylation resulted in

a significant decrease in uH2A levels (Figure 4C). To determine

whether alteration in uH2A level affects DNA methylation, we

compared the DNA methylation levels in wild-type and Bmi1 null

MEFs by cytosine extension analysis. This technique takes

advantage of DNA methylation sensitive/insensitive restriction

enzymes and allows for the relative quantification of DNA

methylation through end-labeling of genomic DNA digestion

products [46]. Results shown in Figures 4D and 4E revealed a

small, but statistically insignificant difference in the DNA

methylation levels in the wild-type and Bmi1 null MEFs as

determined by Student’s t-test. As expected, parallel analysis

revealed a drastic decrease of DNA methylation in the Dnmt1 null

MEFs as indicated by the increased sensitivity of genomic DNA to

the methylation sensitive restriction enzyme, HpaII (Figure 4D, E).

Taken together, these data not only revealed a correlation between

promoter bound uH2A and HCP promoter DNA methylation,

but also provide evidence that DNA methylation may be upstream

of H2A ubiquitylation.

Bmi1-Dependent Promoter uH2A Marks Repressed
Genes through Its Co-Localization with the H3K27me3
Mark

Recent studies suggest a role for uH2A in the repression of

developmental genes [7,9,47]. In addition, studies utilizing in vitro

assembled chromatin templates have implicated uH2A in the

repression of transcription initiation [48]. To determine whether

Bmi1-dependent uH2A is a general indicator of transcriptional

activity, we asked whether uH2A levels and gene expression levels

have a general correlation. To this end, we profiled gene

expression in wild-type MEFs using the Affymetrix Mouse

Genome 430 2.0 microarray (Table S1) and analyzed the

Figure 3. Promoter and non-promoter peaks of Bmi1-dependent uH2A are distinct. (A) Proportion of promoter uH2A peaks (n = 671) (left
bar) and non-promoter uH2A peaks (n = 15735)(right bar) which overlap with H3K4/H3K27 methylation peaks. No K4/No K27, purple; both H3K4me3
and H3K27me3 (Bivalent), green; H3K27me3 only, blue; H3K4me3 only, red. (B) Box plot representation of peak tag density distribution for promoter
and non-promoter uH2A peaks. Red lines indicate median values. P value derived from Wilcoxon signed-rank test. (C) Box plot representation of peak
tag density distribution for promoter (+) and non-promoter (2) uH2A peaks further sub-divided by H3K4me3/H3K27me3 co-localization. No K4/
No K27, purple; both H3K4me3 and H3K27me3 (Bivalent), green; H3K27me3 only, blue; H3K4me3 only, red. White lines indicate median values. P
value derived from Wilcoxon signed-rank test.
doi:10.1371/journal.pgen.1000506.g003

Genome-Wide uH2A Localization
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relationship between presence of uH2A peaks and gene activity for

13,354 genes. Based on their expression level, genes were grouped

into 10 equal sized bins (Table S1) and were correlated with

promoter uH2A enrichment levels using genome-wide tag density

averaging. This analysis revealed that while the peak height of

uH2A enrichment did not change much over these expression

groups, the lowest expressed gene groups exhibited a broadening

of the average uH2A tag density peak into the body of genes

(Figure 5A). To better visualize this trend, the region spanning

from +0.6 kb to +2.0 kb of genes was reanalyzed with genes

divided into 4 groups. The resulting plot (Figure 5B) confirms

Bmi1-dependent tag density broadening for genes present within

the lowest expressed gene groups, a medium range broadening for

genes in the third group, and no tag density broadening for the

highest expressed genes present within the fourth group.

We next turned our attention to distinct promoter peaks of

uH2A in an effort to understand gene specific outcomes as related

to epigenetic mark deposition. In agreement with the data

described above, expression level averaging of genes containing

promoter peaks of uH2A revealed them to be significantly lower

expressed then those without uH2A peaks (Wilcoxon P va-

lue = 9.8e-3) (Figure 5C). Taken together, these data indicate that

an overall increase in Bmi1-dependent uH2A abundance can be

found at silenced or low expressed genes; likewise, genes marked

by promoter peaks of uH2A tend to be expressed at a lower level

then genes lacking peaks of Bmi1-dependent uH2A.

Figure 4. uH2A deposition is linked to DNA methylation. (A) Bmi1-dependent per base pair uH2A tag density was determined for genes
defined as high CpG dinucleotide promoter content (HCP, blue) (n = 10,310), intermediate CpG dinucleotide promoter content (ICP, red) (n = 2889),
low CpG dinucleotide promoter content (LCP, green) (n = 2668). (B) HCP class genes with available DNA methylation data were grouped based on the
presence (+) (n = 266) or absence (2) (n = 8230) of a promoter bound peak of Bmi1-dependent uH2A and the distribution of DNA methylation values
for each group was visualized using a standard box plot. Red lines indicate median values. P value derived from Wilcoxon signed-rank test. (C)
Western blotting of uH2A was carried out using cell lysate prepared from wild-type and Dnmt1 null MEFs. H3 was used as a loading control. (D)
Cytosine extension analysis was carried out using wild-type and Bmi1 null MEFs as well as Dnmt1 null and control cells. Biotin labeled restriction
digests were spotted in triplicate onto a Nylon membrane and visualized using alkaline phosphatase. The procedure was repeated three independent
times and data for one representative experiment is shown. (E) Data presented in panel D were quantified and presented as the ratio between
methylation sensitive HpaII incorporation versus methylation insensitive MspI incorporation. Error bars represent s.e.m. (n = 3).
doi:10.1371/journal.pgen.1000506.g004
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The correlation between increased levels of uH2A and gene

repression could be due to an intrinsic repressive effect of uH2A

on transcription or due to an association of uH2A with other

silencing epigenetic marks. To differentiate between these

possibilities, we compared genes with promoter uH2A enrichment

peaks to those without peaks in terms of their association with

promoter H3K4me3 or H3K27me3 marks. This analysis revealed

that a higher proportion of genes containing uH2A are also

marked by H3K27me3 either alone or in the context of bivalent

domains when compared with genes not marked by uH2A

Figure 5. Bmi1-dependent uH2A is enriched at repressed genes. (A) Bmi1-dependent uH2A tag density surrounding the TSSs of genes was
calculated and grouped into 10 bins (n<1335 for each group) based on de novo gene expression levels in MEF cells. (B) Bmi1-dependent uH2A tag
density was calculated for the region indicated in (A) for genes grouped based on de novo expression in MEF cells (n = 4007, n = 2674, n = 2668,
n = 4005; highest expressed to lowest expressed). Error bars represent the s.e.m. of the highest expressed and lowest expressed gene groups. (C) WT
MEF expression of genes with (+, n = 483) and without (2, n = 12,871) a peak of Bmi1-dependent uH2A was subjected to data distribution analysis by
standard box plot. Red lines indicate median values. P value derived from Wilcoxon signed-rank test is indicated. (D) Gene promoters with (+) and
without (2) peaks of uH2A were analyzed for the presence of H3K4/H3K27 methylation peaks. No K4/No K27, purple; both H3K4me3 and H3K27me3
(Bivalent), green; H3K27me3 only, blue; H3K4me3 only, red. (E) Box plot of expression data distribution for promoters with (+) and without (2) uH2A
peaks in WT MEFs were further sub-divided by H3K4/H3K27 co-localization. No K4/No K27, purple; both H3K4me3 and H3K27me3 (Bivalent), green;
H3K27me3 only, blue; H3K4me3 only, red. White lines indicate median values. P value derived from Wilcoxon signed-rank test is shown. (F) Genes
containing a peak of Bmi1-dependent uH2A were divided into three groups based on increasing peak tag density (n = 157, 157, and 158, respectively)
and the distribution of log2 expression change (Bmi1 null versus WT MEF cells) was presented by box plot. Red lines indicate median values. P value
derived from Wilcoxon signed-rank test is shown.
doi:10.1371/journal.pgen.1000506.g005
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(Figure 5D). In addition, the uH2A positive gene set is enriched for

promoters lacking both H3K27me3 and H3K4me3 as well as

depleted for the H3K4me3 mark alone (Figure 5D). This indicates

that grouping genes based on uH2A results in a population

enriched for epigenetic marks tightly linked to gene repression and

depletion of epigenetic marks tightly linked to gene expression.

Given that this proportional shift could indicate that uH2A is

passively correlated to gene repression, we next asked the question

whether uH2A could function in conjunction with these additional

epigenetic marks to fine-tune mRNA expression levels. To this

end, we repeated the analysis described in Figure 5C for uH2A

gene groups further sub-divided by additional promoter modifi-

cations and compared the average expression of these gene groups

across classes (Figure 5E). Results confirm higher average

expression of genes marked by H3K4me3 and drastically lower

expression levels of genes containing promoter H3K27me3,

H3K27me3 and H3K4me3 (bivalent), and neither mark

(Figure 5E). Co-occurrence of uH2A with H3K4me3,

H3K27me3, or bivalent domains did not result in any changes

of average expression level when compared to genes harboring

only the K4/K27 combinations. The sole significant change in

WT expression level was a small increase for genes containing only

the uH2A mark (Wilcoxon P value = 0.026) (Figure 5E). These

results indicate that the correlation that exists between promoters

bound by Bmi1-dependent uH2A and low level de novo gene

expression is due to a proportional shift in other epigenetic marks

that have a more profound effect on transcriptional state.

Even though Bmi1-dependent promoter uH2A is enriched at

silenced genes, results of de novo expression analysis in wild-type

cells were not able to ascertain an active function for uH2A in

gene silencing. It is possible that a global role for uH2A in gene

silencing was masked in this analysis by the presence of other

epigenetic modifications which are more potent in enacting

transcriptional control. To directly address a potential global role

for Bmi1-dependent uH2A in gene silencing, we turned our

attention to expression changes upon Bmi1 knock-out. To this

end, we performed a microarray study on Bmi1 null MEFs and

compared gene expression with that in the wild-type MEFs (Table

S1). Of the 671 genes marked by promoter uH2A, we were able to

generate reliable fold-change transcription data for 472 genes. We

found that on average, this group was upregulated in Bmi1 null

MEF cells by 1.5 fold. We next investigated whether the level of

uH2A loss at genes in Bmi1 null cells was correlated to increased

expression upon Bmi1 knock-out. For this analysis, genes

containing Bmi1-dependent peaks of uH2A were sorted into three

groups by increasing tag density (n = 157, 157, and 158,

respectively), and both the average fold change as well as the

data distribution of each group was determined. Interestingly,

genes marked by the lowest levels of uH2A exhibited the smallest

average increase in transcription upon Bmi1 knock-out when

compared to both intermediate and high tag density groups (1.14,

1.98, and 1.37 fold, respectively). In addition, data distribution

analysis and Wilcoxon signed-rank testing reveals that this finding

is statistically significant (Figure 5F). Taken together, these data

are consistent with a global role for Bmi1-dependent uH2A in

gene silencing and extend gene specific analysis at important

developmental regulators to genome-wide correlation.

Discussion

Deep sequencing techniques have recently been used to map

epigenetic marks in high definition throughout mammalian

genomes [34,35,44]. Even though mono ubiquitylation of H2A

was one of the first histone modifications identified [3], it remains

among the least understood. Using a ChIP-Seq approach, here we

analyzed the genome-wide distribution of Bmi1-dependent uH2A.

This investigation revealed several interesting features of this

epigenetic modification which serve as the basis for further studies.

Bmi1-Dependent uH2A Distribution throughout
Mammalian Chromatin

By combining genome averaging and peak localization analyses,

this study reveals the first picture of the genome-wide localization

of the uH2A mark and identifies Bmi1-dependent enrichment

within both genic and non-genic regions of the mouse genome. On

average, uH2A tag density is enriched at gene promoter regions

(Figure 1A) with further enrichment at genes marked by

H3K27me3 (Figure 1B). Peak analysis reveals that Bmi1-

dependent uH2A enriched regions coincide with gene promoters

at a much higher rate than can be expected by chance (Table 1),

and these peaks encompass significantly higher tag values when

compared with non-promoter peaks (Figure 3B). In addition,

promoter peak tag values are enriched at genes also marked by

H3K27me3 (Figure 3C). Interestingly, the gross distribution of

genic uH2A peaks is skewed towards the 39 end of genes,

indicating that more regions of uH2A enrichment are found

within these genic regions (Figure S1A). However, these peaks

represent lower enrichment regions when compared to promoter

peaks (Figure S1B). Together, these data support the notion that

H3K27me3 can contribute to the recruitment of PRC2 and

ubiquitylation of H2A in promoters [16,17]. However, even

though the highest regions of Bmi- dependent uH2A enrichment

are at H3K27me3 genes, clear peaks also exist at genomic regions

(both genic and non-genic) that do not contain this mark. This

uH2A distribution pattern is very different from what would be

expected given a recent study of Ring1b and Bmi1 binding profiles

in mES cells [21] but are more consistent with a previous study

which described a proportion of gene promoters positive for

Ring1b/Bmi1 but negative for PRC2 binding [8]. Although this

discrepancy may reflect the differences of uH2A distribution in ES

cells and MEF cells, it is possible that similar to the observations in

Drosophila [38], a Pc independent mechanism of Ring1b/Bmi1

recruitment may exist in MEF cells. Along these lines, about half

of all the most enriched Bmi1-dependent uH2A regions lie outside

of both promoter and transcribed regions of the genome (Table 1).

Interestingly, these regions do not overlap significantly with peaks

of H3K27me3.

Relationship between uH2A and DNA Methylation
Since the initial finding linking Polycomb silencing to DNA

methylation [24], genome-wide studies have called the generality

of this association into question as very little overlap exists between

genes methylated at H3K27 and genes that contain high levels of

CpG island methylation associated with their promoters

[28,29,49]. Recently, several reports have demonstrated a role

for PRC1 in recognizing methylated DNA at specific loci or

heterochromatic regions [25] either through Bmi1 interaction with

Dmap1 [27] or Ring1b interaction with Mbd1 [26]. However,

whether these specific instances of convergence of silencing

pathways are linked to global gene regulation has not been

determined. Here we provide evidence to support a functional link

between DNA methylation and histone ubiquitylation through

Bmi1-dependent mechanisms in a group of high CpG-containing

genes. Not only does the level of DNA methylation increase at

HCP promoters marked by uH2A (Figure 4B), a result that may be

explained by an increase in H3K27 methylation on these genes,

but knock-out of Dnmt1, which results in the ablation of CpG

methylation genome wide, causes a global decrease in the uH2A

Genome-Wide uH2A Localization
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levels (Figure 4C). In contrast, Bmi1 knock-out results in only a

small, statistically insignificant, increase in global DNA methyla-

tion (Figure 4D). Taken together, these data suggest that DNA

methylation may be upstream of Bmi1-dependent H2A ubiquity-

lation. Future work will reveal how DNA methylation contributes

to H2A ubiquitylation.

The Relationship between uH2A and Gene Expression
Recent studies in a limited gene set indicate that uH2A is mostly

linked to transcriptional repression [7,40,48,50]. Consistent with

these studies, our genome-wide analysis indicate that Bmi1-

dependent uH2A exhibits a broad enrichment at the most

repressed genes in the mouse genome (Figure 5A and 5B). Peak

centered analysis of promoter uH2A confirms this result

(Figure 5C) and reveals that this enrichment is most likely a

consequence of over-representation of the H3K27me3 mark

(Figure 5C, 5D, and 5E). These results indicate that unlike

H3K27me3 [34,35], uH2A by itself is not an accurate predictor of

de novo expression levels and could serve to explain earlier studies

which have reported the presence of uH2A at actively transcribed

genes [51,52]. Instead, our results suggest that uH2A plays a much

more refined role in the control of gene expression. Analysis of

expression changes in Bmi1 knockout MEFs revealed that, on

average, genes marked by promoter peaks of uH2A are

upregulated upon Bmi1 knockout. In addition, the level of

enrichment of these promoter uH2A peaks, as indicated by

sequence tag density, reveal a clear increase in average fold change

when higher density peaks are compared with lower density peaks

(Figure 5F). Thus, our work extends gene specific studies and

confirms the existence of a genome-wide link between uH2A and

gene silencing.

Materials and Methods

Cell Lines, Cell Culture, and Antibodies
Mouse embryonic fibroblast cells were isolated from Bmi1 null

and Bmi1 wild-type littermates and immortalized by expression of

the TBX2.pBabePURO construct [18]. Both cell lines were

maintained in Dulbecco’s modified Eagles Medium supplemented

with 10% (v/v) fetal bovine serum and 16 Penicillin/Streptomy-

cin. Antibodies employed in this study are as follows: a-uH2A

(Millipore, 05-678), a-Bmi1 (Millipore, 05-637), and a-H3

(Abcam, 1791).

Chromatin Immunoprecipitation Assays
ChIP assays were performed as previously described [7] with

the following alterations. Chromatin was prepared from one

15 cm2 plate grown to 95% confluence. After nuclei isolation, the

pellet was resusupended in Solution B (20 mM Hepes pH 7.9,

25% [v/v] glycerol, 0.5% [v/v] NP-40, 0.42 M NaCl, 1.5 mM

MgCl2, 1 mM CaCl), subjected to sonication, and treated with 30

units of micrococcal nuclease for 15 minutes to ensure mono-

nucleosome resolution. Immunoprecipitations were carried out

using 15 mg of antibody. For qPCR detection, the percent of IP

enrichment as compared to input was calculated for both WT and

Bmi1 null ChIPs using SYBR GreenER (Invitrogen) and data is

presented as the fold change in percent input of WT versus Bmi1

null cells. All detection primers are listed in Table S4.

Solexa Sequencing
Immunoprecipitated DNA fragments were blunt-ended, ligated

to Solexa adaptors and sequenced using the Illumina 1G Genome

Analyzer as previously described [34].

Sequence Mapping
The 25 bp sequenced reads were obtained and mapped to the

mouse genome (mm8 assembly) using the Solexa Analysis Pipeline,

as previously described [34]. This yielded a BED file containing a

total of 6.1 and 8.0 million unique tags for Bmi1 wild-type, and

Bmi1 null libraries, respectively. Summary files were then created

for each library by counting the number of tags falling into 200 bp

genomic bins. A Bmi1-dependent uH2A summary file was created

by applying a scaling factor to the WT file to equalize total tag

count and subtracting the Bmi1 null tag count from the WT tag

count within each genomic bin. Raw and processed sequencing

data are available from the NCBI Gene Expression Omnibus

(GEO) under accession number GSE15909.

Expression Microarray Experiments
7 mg of total RNA from both Bmi1 wild-type and null MEFs

was used to synthesize cDNA. A custom cDNA kit from Life

Technologies was used with a T7-(dT)24 primer for this reaction.

Biotinylated cRNA was then generated from the cDNA reaction

using the BioArray High Yield RNA Transcript Kit. The cRNA

was then fragmented in fragmentation buffer (56 fragmentation

buffer: 200 mM Tris-acetate, pH 8.1, 500 mM KOAc, 150 mM

MgOAc) at 94uC for 35 minutes before the chip hybridization.

15 mg of fragmented cRNA was then added to a hybridization

cocktail (0.05 mg ml21 fragmented cRNA, 50 pM control oligo-

nucleotide B2, BioB, BioC, BioD, and cre hybridization controls,

0.1 mg ml21 herring sperm DNA, 0.5 mg ml21 acetylated BSA,

100 mM MES, 1 M [Na+], 20 mM EDTA, 0.01% [v/v] Tween

20). 10 mg of cRNA was used for hybridization. Affymetrix Mouse

Genome 430 2.0 Arrays were hybridized for 16 hours at 45uC in

the GeneChip Hybridization Oven 640. The arrays were washed

and stained with R-phycoerythrin streptavidin in the GeneChip

Fluidics Station 400. After this, the arrays were scanned with the

Hewlett Packard GeneArray Scanner. Affymetrix GeneChip

Microarray Suite 5.0 software was used for washing, scanning,

and basic analysis. Sample quality was assessed by examination of

39 to 59 intensity ratios of certain genes. Raw and processed

microarray data are available from the NCBI Gene Expression

Omnibus (GEO) under accession number GSE15909.

Cytosine Extension
The assay was adapted from a previous report [46]. Briefly,

100 ng of genomic DNA was digested to completion using MspI

and HpaII (Fermentas) and the result was subjected to single

nucleotide extension in the presence of biotin-labeled dCTP

(Invitrogen). One-fiftieth of the final reaction was manually spotted

on (+) nylon membrane, incubated in 0.4N NaOH, neutralized

with 16 TBS, baked at 80uC for 20 minutes, and blocked

overnight at 65uC in blocking buffer (46 SSPE, 66 Denhardt’s,

300 mg ml21 salmon sperm DNA, 0.1% [w/v] SDS). The blot was

incubated with a 1:5000 dilution of streptavidin conjugated

alkaline phosphatase (Pierce) in blocking buffer for 20 minutes at

room temperature, washed 3615 minutes in TBST, and visual-

ized using BCIP/NBT solution (Sigma). The developed blot was

scanned and signal was quantified using NIH ImageJ software

(http://rsb.info.nih.gov/ij/).

Data Analysis
Determination of Bmi1-dependent peaks of uH2A.

Determination of Bmi1-dependent peaks of uH2A: Peak

enrichment calls were generated by the modified TIROE

algorithm. The original TIROE algorithm, as described in [43],

does not use a control background data while identifying peaks in

Genome-Wide uH2A Localization

PLoS Genetics | www.plosgenetics.org 10 June 2009 | Volume 5 | Issue 6 | e1000506



the test data. In the modified version, a ‘‘fold enrichment’’ score

was calculated for each candidate peak by computing the ratio of

the number of tags within that candidate peak in the test data to

the number of tags within the genomic region corresponding to the

peak in the background control data. The fold score is normalized

by the total number of tags within the test and control sample.

Only those peaks with fold score greater than or equal to a set

threshold are reported as final peaks. In our case, the input was set

to the mapped tag BED file corresponding to wild-type ChIP-Seq

and with the Bmi1 null BED file set to background. Parameter cut-

offs were set as follows: P-value (p)#1e-5, Fold enrichment cutoff

(f)$5, and the average DNA fragment length (f) was estimated to

be 232 from the reads in the input data using the algorithm

provided in [53].
Gene analysis groupings. REFSEQ gene coordinates were

extracted from the UCSC table browser and the list was parsed to

only consider one isoform per annotated gene. Isoform selection was

carried out by first searching for the 39 most transcription start sites.

If a single gene had more than one isoform sharing a single TSS,

then the longest isoform was kept for analysis. Promoters were

defined as 21 kb to +1 kb surrounding TSSs and previously

published peak data sets [35,44] composed of H3K4me3,

H3K27me3, CpG nucleotide density calls, and HCP promoter

methylation analyses were re-mapped onto this gene list. Table S1

lists all genes used in this analysis as well as promoter definitions and

dataset overlap. High resolution mapping surrounding gene TSSs

was accomplished by extracting per base pair Bmi1-dependent

uH2A tag density reads at 200 bp intervals surrounding TSSs.
Peak distribution analysis. The location of TIROE uH2A

peaks was carried out in relation to the alignable genome as

previously defined [35].
Standard Error calculation. Whole genome averaging

analysis error bars represent the standard error of the mean

(s.e.m.) and P values were determined using student’s t tests. Two-

sided proportional testing, Wilcoxon signed-rank testing, and box

plot generation were carried out using the R package.

Supporting Information

Figure S1 Genic peak distribution analysis reveals peak number

enrichment towards the transcription termination site of genes and

peak tag density enrichment within gene promoters. (A) Distribution

histogram of peak location along the transcribed region of well-

annotated genes (TSS, transcription start site; TES, transcription

end site). (B) Genic uH2A peaks were grouped by their location

within transcribed genes and the tag density data distribution was

visualized by standard box plot. Red lines indicate median values. P

value derived from Wilcoxon signed-rank test. *, **, and ***

respectively indicate P value of 2.2e-14, 1.1e-15, 2.6e-10.

Found at: doi:10.1371/journal.pgen.1000506.s001 (0.51 MB PDF)

Table S1 REFSEQ genes included in this analysis.

Found at: doi:10.1371/journal.pgen.1000506.s002 (3.82 MB

XLS)

Table S2 Bmi1-dependent uH2A peak regions as determined by

TIROE.

Found at: doi:10.1371/journal.pgen.1000506.s003 (1.67 MB

XLS)

Table S3 Bmi1-dependent peaks corresponding to gene pro-

moter regions.

Found at: doi:10.1371/journal.pgen.1000506.s004 (0.08 MB

XLS)

Table S4 List of primers used in this study.

Found at: doi:10.1371/journal.pgen.1000506.s005 (0.01 MB PDF)

Dataset S1 UCSC genome browser track of summary tag

counts throughout Bmi1-dependent uH2A peak regions.

Found at: doi:10.1371/journal.pgen.1000506.s006 (1.38 MB GZ)
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