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Abstract

One of the few commonly believed principles of molecular evolution is that functionally more important genes (or DNA
sequences) evolve more slowly than less important ones. This principle is widely used by molecular biologists in daily
practice. However, recent genomic analysis of a diverse array of organisms found only weak, negative correlations between
the evolutionary rate of a gene and its functional importance, typically measured under a single benign lab condition. A
frequently suggested cause of the above finding is that gene importance determined in the lab differs from that in an
organism’s natural environment. Here, we test this hypothesis in yeast using gene importance values experimentally
determined in 418 lab conditions or computationally predicted for 10,000 nutritional conditions. In no single condition or
combination of conditions did we find a much stronger negative correlation, which is explainable by our subsequent
finding that always-essential (enzyme) genes do not evolve significantly more slowly than sometimes-essential or always-
nonessential ones. Furthermore, we verified that functional density, approximated by the fraction of amino acid sites within
protein domains, is uncorrelated with gene importance. Thus, neither the lab-nature mismatch nor a potentially biased
among-gene distribution of functional density explains the observed weakness of the correlation between gene importance
and evolutionary rate. We conclude that the weakness is factual, rather than artifactual. In addition to being weakened by
population genetic reasons, the correlation is likely to have been further weakened by the presence of multiple nontrivial
rate determinants that are independent from gene importance. These findings notwithstanding, we show that the principle
of slower evolution of more important genes does have some predictive power when genes with vastly different
evolutionary rates are compared, explaining why the principle can be practically useful despite the weakness of the
correlation.
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Introduction

When referring to any DNA sequence, a popular textbook of

cell and molecular biology [1] states that ‘‘if it’s conserved, it must

be important’’ and calls this ‘‘one of the foremost principles of

molecular evolution’’ (p. 416). Here, the word ‘‘conserved’’ means

that the sequence has a low rate of evolution such that its orthologs

from distantly related species are detectable and alignable. The

word ‘‘important’’ means that the sequence has relevance to the

wellbeing and fitness of the organism bearing the sequence. The

above principle is often used in a comparative context, asserting

that functionally more important DNA sequences evolve more

slowly. Despite the fact that thousands of biologists accept this

principle and use it daily in identifying functionally important

DNA sequences, its validity had not been systematically examined

until a few years ago when gene importance could be measured at

the genomic scale [2–10]. Unexpectedly, however, genomic

studies of bacteria, fungi, and mammals showed that although

the evolutionary rate of a gene is significantly negatively correlated

with its importance, the latter only explains a few percent of the

total variance of the former [3,4,10,11]. The striking contrast

between the wide acceptance and apparent utility of the principle

and the weakness of the correlation revealed from genomic

analysis of a diverse array of organisms is perplexing.

The perceived theoretical basis of this simple principle is the

neutral theory of molecular evolution, which asserts that most

nucleotide substitutions during the evolution of a gene are due to

random fixations of neutral mutations [12–14]. Based on this

theory, Kimura and Ohta first predicted that functionally more

important genes should evolve slower than less important ones

because the former have a lower rate of neutral mutation than the

latter [15], although their use of ‘‘functional importance’’ appears

to mean ‘‘functional constraint on the gene’’ rather than

‘‘importance to the fitness of the organism’’. A few years later,

Wilson et al. separated the two meanings and decomposed the

substitution rate of a gene (k) into two factors: the probability (P)

that a random mutation will be compatible with the function of the

gene and the probability (Q) that an organism can survive and

reproduce normally without the gene (i.e., gene dispensability)

[16]. Under the simple assumption that a mutation either

completely abolishes the function of a gene (with a probability of

a= 12P) or does not affect it at all (with a probability of 12a), we

can write the substitution rate of a gene as the sum of the rate of

fixation of neutral mutations and that of null mutations. Here, a
can also be interpreted as functional density, the effective fraction

of sites in a gene (or protein) that are required for its function. Let u

be the total mutation rate, b= 12Q be the probability that an

organism cannot survive or reproduce without the gene (i.e., gene
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importance or the coefficient of selection against null mutations), N

be the organism’s population size, and Ne be the effective

population size. For diploid organisms, we have

k~ 1{að Þuza 2Nuð Þf ~u 1{a 1{2Nfð Þ½ �, ð1Þ

where f ~ 1{ebNe=N

1{e2bNe
is the probability of fixation of a new null

mutation with fitness 0,Q,1, under genic selection (i.e, the

selection against the null allele is b in homozygotes and b/2 in

heterozygotes) [12]. Because f,1/(2N), k is a monotonically

decreasing function of a. It is obvious that k is also a monotonically

decreasing function of b, because the stronger the selection against

null mutations, the lower f and k are. However, note that the above

formula also indicates that in large populations, f and hence k

should be relatively insensitive to b except when b is extremely

small (i.e., on the order of 1/Ne). In other words, under the

simplistic model assumed here, a strong negative correlation

between gene importance and evolutionary rate is not expected [6]

(see also Text S1 and Figure S1). However, under a more realistic

model with the presence of slightly and moderately deleterious

mutations, a much stronger correlation between gene importance

and evolutionary rate becomes theoretically possible [7]. The

strength of the correlation depends on the distribution of the

deleterious functional effects of random mutations (Text S1 and

Figure S1). Because the true distribution is currently unknown,

theories cannot predict precisely the strength of the correlation

between gene importance and evolutionary rate. These consider-

ations notwithstanding, the apparent utility of the principle in daily

practice and its lack of empirical support from genomewide studies

require an explanation.

There are two simple, yet untested, hypotheses that potentially

explain the weakness of the observed correlation between gene

importance and evolutionary rate. First, the importance of a gene

to an organism is now commonly measured by the fitness

reduction caused by the deletion of the gene from the genome

in a benign lab condition; deleting an important gene reduces the

fitness of the organism more than deleting a less important one.

But, because lab conditions differ significantly from the natural

environments of organisms, gene importance determined in lab

may be quite different from that in nature [6,17]. For example, in

rich media, ,80% of yeast genes are not essential for growth [18].

However, metabolic network analysis and experimental studies

showed that most of these dispensable genes are important for

growth under other conditions [18,19], some of which may

resemble the natural environments of the species better than rich

media. Hence, it is plausible that the weakness of the correlation

between gene importance and evolutionary rate is due to

inaccuracy in measuring genes’ natural importance, which we

refer to as the lab-nature mismatch hypothesis. But, measuring

gene importance in a species’ natural environment is difficult

because many species such as the yeast Saccharomyces cerevisiae are

found in diverse environments that are poorly characterized [20].

Moreover, even if we know the present-day natural environments

of a species, they may not reflect the environments where the

species lived in the past. These historical environments are crucial

because the gene evolutionary rate that is being correlated to gene

importance is determined by comparison between species.

Nonetheless, if gene importance is measured in many different

conditions, we can examine whether the correlation between gene

importance and evolutionary rate is much stronger in some

conditions than in the benign lab condition, which could at least

demonstrate the plausibility of the lab-nature mismatch hypoth-

esis. Here we test this hypothesis in yeast using gene importance

measures from both experimental data and computational

predictions. The experimental data came from a set of recently

published fitness measurements of yeast single-gene-deletion

strains under 418 lab stress conditions [19]. We complemented

this dataset with in silico predictions of importance for metabolic

enzyme genes under 104 nutritional conditions, achieved by flux

balance analysis (FBA) of reconstructed metabolic networks

[21,22].

Another potential factor influencing the correlation between

gene importance (b) and evolutionary rate (k) is functional density

(a) in Equation 1. If a and b are negatively correlated (i.e., more

important genes have lower functional density), the correlation

between k and b will be weakened. Although there is no reason to

believe that a and b are negatively correlated, it is worth verifying

using actual data. For a given protein, a may be approximately

measured by the fraction of sites in functional domains, which can

be computationally predicted.

In this work, we show that neither of the above two hypotheses

is correct in yeast. Rather, the weakness of the correlation between

gene importance and evolutionary rate is likely to be factual rather

than artifactual. We show, however, that the principle of slower

evolution of more important genes does have some predictive

power when genes with vastly different evolutionary rates are

compared, explaining why the principle can be practically useful

despite the weakness of the correlation.

Results/Discussion

Testing the Lab-Nature Mismatch Hypothesis with
Experimental Measures of Gene Importance

The most frequently used yeast gene importance data came

from the measures of relative growth rates of 5936 single-gene-

deletion yeast strains in the nutritionally rich YPD medium [23].

Recently, the same type of measure was taken for all YPD-viable

single-gene-deletion yeast strains under 418 diverse laboratory

conditions, of which ,75% are chemical drug treatments and the

rest are environmental stress conditions such as different pHs and

temperatures [19]. These two datasets of gene importance are

used in our analysis.

Evolutionary rates of S. cerevisiae genes are estimated by

comparing these genes to their orthologs in related species.

Because the functional importance of a gene may change during

Author Summary

The fact that functionally more important genes or DNA
sequences evolve more slowly than less important ones is
commonly believed and frequently used by molecular
biologists. However, previous genome-wide studies of a
diverse array of organisms found only weak, negative
correlations between the importance of a gene and its
evolutionary rate. We show, here, that the weakness of the
correlation is not because gene importance measured in
lab conditions deviates from that in an organism’s natural
environments. Neither is it due to a potentially biased
among-gene distribution of functional density. We suggest
that the weakness of the correlation is factual, rather than
artifactual. These findings notwithstanding, we show that
the principle of slower evolution of more important genes
does have some predictive power when genes with vastly
different evolutionary rates are compared, explaining why
the principle can be practically useful for tasks such as
identifying functional non-coding sequences despite the
weakness of the correlation.

Rate of Gene Evolution
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evolution [10,24], it is better to use a closely related species for rate

estimation. However, when the species are too close, the number

of nucleotide substitutions per gene may be insufficient for precise

estimation of evolutionary rates. A previous study found the

strongest correlation between gene importance and evolutionary

rate when S. cerevisiae is compared with S. bayanus [10]. We thus use

this species pair and obtain 3999 genes with identifiable orthologs.

Our results remain qualitatively unchanged when several other

yeast species were compared with S. cerevisiae (data not shown). We

use the number of nonsynonymous substitutions per nonsynon-

ymous site (dN) between orthologs to measure the rate of gene

evolution (k in Equation 1). Because the mutation rate (u in

Equation 1) may vary among genes, we also use the ratio between

dN and the number of synonymous substitutions per synonymous

site (dS) as a measure of k/u in Equation 1.

When gene importance is measured under the nutritionally rich

YPD medium, the Spearman’s rank correlation coefficient

between gene importance (i.e., amount of fitness reduction caused

by gene deletion) and dN is r= 20.2189 (P,10243; Figure 1A).

Our examination of 418 other lab conditions found the strongest

correlation to be r= 20.2379 (P,10251; Figure 1A). Thus, none

of the 418 conditions provides a substantially stronger correlation

than what is observed with YPD. Similar results were obtained for

the correlation between gene importance and dN/dS (Figure 1B).

Krylov et al. suggested another measure of gene evolutionary

rate known as the propensity for gene loss (PGL), which is the

Figure 1. Frequency distributions of Spearman’s rank correlation coefficient r between gene importance (i.e., fitness reduction
upon gene deletion) and evolutionary rate across many conditions. Gene importance is measured by experiments in 418 lab conditions
(panels A–C), predicted by FBA for enzyme genes in 104 simulated nutritional conditions (D–F), or predicted by MOMA for enzyme genes in the same
104 conditions (G–I). Gene evolutionary rate is measured by nonsynonymous substitution rate dN (A, D, G), nonsynonymous/synonymous rate ratio
dN/dS (B, E, H), or propensity for gene loss PGL (C, F, I). The yellow arrow in each panel indicates the observed correlation using gene importance
values experimentally determined in the YPD medium and the red arrow indicates the strongest correlation across the conditions examined. The
numbers of genes used are 3999 for panels A–C, 478 for panels D, E, G, and H, and 546 for panels F and I. The gene number is lower than 546 for
panels D, E, G, and H, because some S. cerevisiae genes do not have orthologs in S. bayanus. The yellow arrow is on the left-hand side of the red arrow
in panels G, H, and I, because, under all simulated conditions, MOMA-predicted fitness values have weaker correlations with the evolutionary rates
than that observed under YPD.
doi:10.1371/journal.pgen.1000329.g001
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number of times that a gene is lost during the evolution of a group

of species [11]. Although PGL and dN are correlated with each

other [11], they measure the rate of gene evolution from different

angles. The correlation between PGL and gene importance is

expected to be weaker than that between dN and gene importance,

because mutations that impair gene function only slightly do not

matter to gene loss. We estimated PGL for each S. cerevisiae gene by

counting the number of gene loss events on the known phylogeny

of 12 fungal species (see Materials and Methods). Consistent with

our expectation, the correlation between gene importance and

PGL is weaker than that between gene importance and dN (or dN/

dS) for both YPD and the other 418 lab conditions (Figure 1C).

Regardless, the examination of the 418 lab conditions does not

substantially improve the strength of the correlation between gene

importance and PGL.

Testing the Lab-Nature Mismatch Hypothesis with
Computationally Predicted Gene Importance Values

Because the 418 experimentally examined conditions contain

mostly artificial chemical treatments and hence may not cover the

diverse natural environments of the yeast, we decide to

complement the experimental data with computationally predict-

ed gene importance values for 546 metabolic enzyme genes under

104 conditions generated by random combinations of different

nutrients following a sampling strategy that mimics the potential

nutritional environments of the wild yeast (see Materials and

Methods). We then used two different experimentally validated

computational methods to predict the fitness reduction caused by

the deletion of each enzyme gene. These methods rely on the

reconstructed high-quality yeast metabolic network [25], which

contains 632 biochemical reactions associated with 546 enzyme

genes after the removal of dead-end reactions [26]. The first

method we used is flux balance analysis (FBA). Under the

assumption of steady state of every cellular metabolite, FBA

maximizes the rate of biomass production under the stoichiometric

constraints of all metabolic reactions [22]. Simulation of different

nutritional conditions is achieved by setting the boundaries of

uptake reaction fluxes and simulation of gene deletion is achieved

by constraining the flux of corresponding enzymatic reaction to

zero (see Materials and Methods). In our analysis, we consider the

FBA-optimized rate of biomass production as the wild-type

Darwinian fitness of the cell under the condition specified. The

relative fitness of a cell lacking a gene is the FBA-optimized rate of

biomass production of the cell, divided by that of the wild-type

cell. Previous studies demonstrated that FBA makes excellent

qualitative predictions of yeast gene essentiality under typical

experimental conditions [18,25]. A recent study further showed

consistent performances of FBA across many different conditions

[27]. Following a previous study [28], we approximated the YPD

condition in the FBA model and predicted the fitness values of

single-gene-deletion yeast strains. We found that the FBA-

predicted fitness values correlate well with the experimentally

determined fitness values under YPD (Pearson’s r = 0.562,

P,10241). We were not able to verify FBA for the other 418 lab

conditions because these conditions are difficult to specify in FBA.

Our extensive analysis of 104 simulated conditions identified the

strongest correlation between FBA-predicted gene importance and

dN to be r= 20.2186 (P = 1026; Figure 1D) for 546 enzyme genes.

Although this correlation is 34% stronger than that estimated

using experimentally determined gene importance under YPD

(r= 20.1636, P = 661024; Figure 1D) for the same set of genes,

the fraction of variance in dN that is explainable by gene

importance is still as low as (20.2186)2 = 4.8%. Similar results

are obtained when either dN/dS (Figure 1E) or PGL (Figure 1F) is

used as a measure of gene evolutionary rate. One interesting

observation is that the standard deviation of r from the 104

simulated conditions (0.042, 0.037, and 0.037 in Figure 1D, E, and

F, respectively) is much greater than that for the 418 experimental

conditions (0.013, 0.009, and 0.008 in Figure 1A, B, and C,

respectively). Part of this difference is due to the use of essentially

all genes in Figure 1A–C but only enzyme genes in Figure 1D–F.

However, even when only enzyme genes are considered, the

standard deviation of r is still smaller for lab conditions (dN: 0.024;

dN/dS: 0.021; PGL: 0.020) than for the 104 simulated conditions,

suggesting that the simulated conditions represent a more diverse

set of conditions than the experimental conditions.

FBA assumes that a cell can readjust its metabolic fluxes to

achieve the highest possible biomass production immediately after

the deletion of any gene, which is probably unrealistic. Segre and

colleagues proposed a modified method known as the minimiza-

tion of metabolic adjustment (MOMA) [29]. Instead of maximiz-

ing biomass production upon gene deletion, MOMA minimizes

the changes of fluxes from those of the wild-type cell. Empirical

examples suggested that MOMA outperforms FBA in predicting

gene essentiality and metabolic fluxes [29]. We found that

MOMA-predicted fitness values of single-gene-deletion strains

are slightly better than FBA-predicted values in correlating with

the experimentally determined fitness values in YPD (Pearson’s

r = 0.571, P,10243). However, none of the 104 simulated

conditions provide a better correlation between MOMA-predicted

gene importance and evolutionary rate than the correlation found

using experimentally measured gene importance in YPD

(Figure 1G–H).

Although we examined 104 simulated conditions, it is possible

that they still do not cover the natural conditions of yeast. We

simulated 105 additional conditions and found that the distribution

of the correlation coefficient r (Figure S2) is virtually identical with

that from the initial 104 conditions. Because the distribution of r is

approximately normal, statistically speaking, it is extremely

unlikely to obtain a much stronger correlation by examining even

106 conditions. Due to the large amount of computational time

required for examining large numbers of conditions and the

similarity of the results from 104 and 105 conditions, we used the

gene importance values predicted from the 104 conditions in

subsequent analysis.

Testing the Lab-Nature Mismatch Hypothesis using
Combinations of Individual Conditions

Because under no single condition, either experimentally

examined or computationally simulated, did we find a strong

correlation between gene importance and evolutionary rate, and

because yeast may have had experienced diverse natural

conditions during its evolution, we ask whether we can find

combinations of single conditions for which the correlation

between gene importance and evolutionary rate is much stronger

than that under any single condition. We consider a simple

scenario in which gene importance values under different

conditions are weighted and linearly combined to form an average

gene importance value across all the conditions considered. These

weighting coefficients potentially represent the (unknown) relative

durations of the conditions where the yeast has lived. We identify

these coefficients by mathematically maximizing the correlation

between the weighted average gene importance and evolutionary

rate. We further constrain the weighting coefficients to be non-

negative because negative coefficients are biologically meaningless.

Employing the least squared method in statistics, we can transform

this maximization task into a quadratic programming problem.

The mathematical representation of the problem is

Rate of Gene Evolution

PLoS Genetics | www.plosgenetics.org 4 January 2009 | Volume 5 | Issue 1 | e1000329



minimizing object: Z~
X

i

fi{kið Þ2, where fi~
X

j

cjfij ,

subject to: cj§0 for any j,

ð2Þ

where ki is the evolutionary rate of gene i and fi is the weighted

average importance of gene i in all conditions, calculated by

averaging gene importance under each condition (fij) using non-

negative weighting coefficients of the condition (cj). We solved the

quadratic programming problem using the commercial optimiza-

tion package CPLEX and then calculated the correlation between

the weighted average importance of a gene and its evolutionary

rate. Note, however, that the above estimation of c guarantees the

identification of the strongest Pearson’s linear correlation between

fi and ki, but not Spearman’s rank correlation. We know of no

method that guarantees the identification of the strongest rank

correlation between fi and ki.

Our results showed that the improvement of the correlation by

combining individual conditions is trivial (Table 1). For example,

for the 418 experimental conditions, the strongest Pearson’s

correlation between the weighted average gene importance and dN

is r = 20.2187 (P,10243), only 5% stronger than the strongest

correlation found among all single conditions (r = 20.2082,

P,10239). Similar results were observed for the other measures

of gene evolutionary rate and for combinations of the 104

simulated conditions (Table 1). These results indicate that even

weighted average of gene importance across multiple conditions is

not strongly correlated with gene evolutionary rate.

Why doesn’t the consideration of so many experimental and

simulated conditions and combinations of conditions improve the

correlation between gene importance and evolutionary rate? Using

FBA, one can classify enzyme genes into three categories

according to their importance across multiple conditions: always-

essential, sometimes-essential, and always-nonessential. Deleting

an always-essential gene causes lethality in all conditions; deleting

a sometimes-essential gene causes lethality in some but not all

conditions; deleting an always-nonessential gene does not cause

lethality in any condition, although it may reduce the fitness of the

organism to a non-zero level. Because always-essential genes are as

important as or more important than the other two classes of genes

in any condition, it is clear that in order to achieve a strong

correlation between gene importance and evolutionary rate in any

condition or combination of conditions, the evolutionary rate of

always-essential genes must be lower than those of the other two

classes of genes. Here the enzyme genes are classified into the

above three groups based on the essentiality predicted in the 104

simulated conditions. Although the average dN of always-essential

genes is lower than that of sometimes-essential genes and that of

always-nonessential genes, the differences are small and not

statistically significant (Figure 2A). The same is true for dN/dS

(Figure 2B) and PGL (Figure 2C). These results strongly suggest

that no single condition or combination of conditions will show a

strong correlation between gene importance and evolutionary rate

even when more conditions are examined. Thus, if the conditions

under which yeast evolved belong to the 418 experimentally

examined conditions or are amenable to the current FBA, the lab-

nature mismatch hypothesis must be rejected.

Examining the Correlation between Functional Density
and Gene Importance

Equation 1 shows that if functional density (a) and gene

importance (b) are independent from each other, evolutionary rate

of a gene (k) should decrease with the increase of b. The observed

weakness of the correlation between gene importance and

evolutionary rate prompts us to examine the presumption of

independence between a and b, because the correlation between

gene importance and evolutionary rate could have been weakened

if there is a negative correlation between a and b. By definition, a
is the proportion of mutations that destroy the function of a gene,

which may be experimentally determined by large-scale site-

directed mutagenesis coupled with gene functional assay, a

formidable task even for a few genes. In theory, one can use the

average number of allowable alternative states across all amino

acid sites of a protein to estimate 12a. But such a measure is

currently difficult to acquire at the genomic scale, because it

requires the alignments of orthologs from many (i.e., &20)

divergent species to assure that all potentially allowed amino acids

have had chance to appear at any given site. Use of many

divergent species greatly increases misidentification of paralogs as

orthologs and the risk of comparing functionally-different

orthologous proteins, leading to potential overestimation of 12a.

A further complication is that the evolution of a site is often

dependent on other sites, meaning that an amino acid is allowed at

a site only when another site has a particular amino acid [30,31].

Thus, the number of allowed amino acids at a site is not a unique

number, but rather depends on the genetic background of the

same gene or even other genes. Given these difficulties, we decide

to use the proportion of amino acid sites within computationally

predicted functional domains of a protein to estimate a
approximately, because a is expected to be much greater within

functional domains than outside domains. This estimation of a is

based on the assumption that all sites within functional domains

Table 1. Strongest correlations between gene evolutionary rate and importance measured at different conditions.

Conditions (methods) Measures of evolutionary rate

dN dN/dS PGL

418 individual lab conditions (experimental) 20.2082a (1E-39b) 20.1520 (1E-21) 20.1122 (1E-12)

Combined lab conditions (experimental) 20.2187 (1E-43) 20.1580 (1E-23) 20.1185 (1E-13)

10,000 individual simulated conditions (FBA) 20.1193 (0.009) 20.0747 (0.14) 20.0868 (0.04)

Combined simulated conditions (FBA) 20.1252 (0.006) 20.0767 (0.12) 20.0937 (0.03)

10,000 individual simulated conditions (MOMA) 20.1354 (0.003) 20.0748 (0.13) 20.0941 (0.03)

Combined simulated conditions (MOMA) 20.1442 (0.002) 20.0786 (0.12) 20.1021 (0.02)

aPearson’s correlation coefficient.
bP-value.
doi:10.1371/journal.pgen.1000329.t001
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are important to the function of the protein whereas all sites

outside domains are unimportant. Although this assumption does

not hold in reality, it should not affect our results as long as it does

not systematically bias our estimation of a among genes of

different b.

Computational algorithms for predicting protein functional

domains are based on proteins of known structures and/or amino

acid sequences with high evolutionary conservation [32]. There

are many available algorithms for protein domain prediction and

they are based on different assumptions. Here we employ two

widely used methods. The first is the ProSite prediction algorithm

[33], which is based on known conserved functional motif

sequences. ProSite predictions are relatively conservative and

should contain few false positives, as on average only 10% of

amino acid sites in a protein are predicted by ProSite to be within

functional domains. The second method we used is InterProScan

[34], which integrates 13 well known domain prediction

algorithms and databases to look for domains. Because Inter-

ProScan uses multiple algorithms, its predictions are more

comprehensive. To avoid false positive predictions, we consider

only those sites that are identified by at least two algorithms of

InterProScan as functional domain sites. Under this criterion, on

average 47% of protein sites are identified as functional domain

sites.

To examine whether the proportion of sites within predicted

domains indeed provide information about functional density, we

conducted three tests. First, based on the domains predicted by

ProSite, we found that sites within domains evolve more slowly

than those outside domains in 89% of the yeast genes. The

corresponding number is 77% when the domains are predicted by

InterProScan. These percentages are significantly greater than the

random expectation of 50 percent (P,102100, x2 test). Second, the

mean dN within domains is 40% and 54% that outside domains in

ProSite and InterProScan analysis, respectively, both being

significantly different from the random expectation of 100%

(P,10250, paired t-test). Finally, we examined if there is a negative

correlation between the proportion of sites within domains and the

evolutionary rate of the gene, and found the correlation to be

r= 20.24 (P,10250) and 20.56 (P,10250), respectively, in

ProSite and InterProScan analysis. Taken together, the proportion

of sites within predicted domains indeed provide information

about functional density and thus may be used as a proxy for a.

Because our results do not support the lab-nature mismatch

hypothesis, we here consider only experimentally measured gene

importance under YPD (b). We found very weak positive

correlation between a estimated by ProSite and b (r= 0.049,

P = 0.0002) (Figure 3A). If InterProScan predictions are used,

there is a stronger positive correlation between a and b (r= 0.15,

P,10230), suggesting that important genes tend to have a higher

fraction of functional sites (Figure 3B). We also repeated the

analysis under more stringent criteria of InterProScan where a site

is considered as a functional domain site only when it is recognized

by at least 3 to 6 algorithms. The observed correlation between a
and b remains significant (r= 0.08–0.12, P,0.0001).

However, the above analysis has a confounding factor. Because

sequence conservation information is used in predicting functional

domains and because important genes tend to be more conserved

in sequence (though the correlation is weak), the above observed

level of positive correlation between a and b may in part or in total

due to the artifact of the analysis. Indeed, we found that after the

control of dN, the partial correlation between a and b becomes

r= 0.0190 (P = 0.240) for the ProSite analysis and r= 20.0110

(P = 0.497) for InterProScan analysis ($two algorithms). This

result suggests no genuine correlation between a and b. Thus, the

weakness of the correlation between gene importance and

evolutionary rate is unlikely the result of a potential negative

correlation between gene importance and functional density.

Why Is the Correlation between Gene Importance and
Evolutionary Rate So Weak?

Our analysis rejected two frequently proposed explanations of

the weakness of the observed correlation between gene importance

and evolutionary rate, raising the question of why the correlation is

so weak. As mentioned in Introduction, depending on the

distribution of the fitness effect of deleterious mutations, the

expected correlation may not be strong (Figure S1 and Text S1).

In addition, there may be other reasons. Bivariate analysis of yeast

data revealed a strong negative correlation between gene

Figure 2. Always-essential enzyme genes do not evolve
significantly slower than sometimes-essential and always-
nonessential ones, regardless of the measure of the evolu-
tionary rate. Error bars show one standard error. P-values are from
Mann-Whitney U test between groups of genes. The numbers of genes
used are 478 for panels A and B and 546 for panel C.
doi:10.1371/journal.pgen.1000329.g002
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expression level and evolutionary rate [35], which led to the recent

proposal of the translational robustness hypothesis, asserting that

selection against toxicity of misfolded proteins generated by

translational errors is the single most important factor governing

the rate of protein sequence evolution [36,37]. This hypothesis

explains several factors known to correlate with the rate of protein

sequence evolution (e.g., gene expression level and codon usage

bias). However, many other rate determinants are known in yeast,

including the number of protein interaction partners and gene

length, although their impacts on the evolutionary rate are

generally much smaller than that of gene expression level [38].

Principal component regression analysis and partial correlation

analysis have suggested independent and significant contributions

of all these factors [39,40], although it is not always clear how

these factors determine the rate of gene evolution independently

from the influence of gene importance [41]. In bacteria and

mammals, independent contributions from multiple factors to

gene evolutionary rate are also known [4,5]. Theoretically

speaking, the single most important rate determinant is the

fraction of mutations that are unacceptable to the gene (a), but this

fraction is affected by many biological factors. The fact that the

rate of gene evolution is jointly determined by multiple

independent factors, some of which are stronger determinants

than gene importance, is likely an additional reason why the rate is

only weakly correlated with gene importance. To simplify the

explanation, let us assume that the rate of gene evolution (k) is

determined linearly by n independent factors (A1 to An) as

k~a1A1za2A2z . . . zanAnze, where e represents the statisti-

cal error that cannot be explained by the n factors and ai’s are

coefficients. Pearson’s correlation coefficient between k and factor

Ai is

r k,Aið Þ~r k,aiAið Þ~ Cov k,aiAið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var kð ÞVar aiAið Þ

p ~
Var aiAið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var kð ÞVar aiAið Þ
p

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var aiAið Þ

Var kð Þ

s
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var aiAið Þ

Var eð Þz
Pn
j~1

Var ajAj

� �
vuuut ,

ð3Þ

where Var stands for variance and Cov stands for covariance.

Because one rate determinant, gene expression, already accounts

for .25% of the variance of k [36,37] and several other factors

also make independent and nontrivial contributions [39,40], the

correlation between gene importance and evolutionary rate is

much weakened, compared to that when gene importance is the

sole contributor.

Implications for Predicting Functional Importance
Taken together, we showed empirically that the correlation

between gene importance and gene evolutionary rate is weak and

showed that this weakness may not be inconsistent with theoretical

predictions. In fact, if we randomly pick two yeast genes, the

probability that the slower evolving of the two is the more

important one is only 54% (based on 100,000 pairs of randomly

sampled genes under YPD) (Figure 4A). That is, the prediction

based on one of the foremost principles of molecular evolution has

a success rate of only 54%, not much greater than that of a pure

guess (50%). When the two genes being compared have a larger

difference in evolutionary rate, the prediction about their relative

importance becomes more accurate, as expected (Figure 4A). For

example, we ranked all yeast genes by their evolutionary rates and

found that when two genes are separated in rank by over 95% of

all genes, the probability that the slower evolving one is more

important than the other is 81% (Figure 4A). Essential genes are

functionally most important. When the gene importance data from

YPD is considered, we found that 55% of the top 5% most

conserved genes are essential, whereas only 20% of the remaining

95% of yeast genes are essential (Figure 4B). Similar results are

found using the gene importance data from the other 418 lab

conditions (Figure 4B). Note that the above demonstrated

predictability may not be entirely due to the causal relationship

between gene importance and evolutionary rate, because other

confounding factors such as gene expression level have not been

controlled for. Regardless, our results show that although the

correlation between gene importance and evolutionary rate is

weak, the principle does have some predictive power when genes

of extreme sequence conservation are considered.

Caveats
There are several caveats in our analysis that warrant

discussion. First, experimental measures of gene importance are

not without errors. Repeated measures of gene importance under

the same conditions showed a correlation as high as 0.92 for the

YPD data [23] but a reduced mean correlation of 0.72 for the

other 418 lab conditions [19], possibly due to less well controlled

Figure 3. Relationship between the importance (b) and
functional density (a) of genes. Gene importance is measured by
the experimentally determined fitness reduction upon gene deletion in
YPD. Functional density is measured by the proportion of amino acid
sites within functional domains predicted by (A) the ProSite algorithm
or (B) InterProScan. In InterProScan, a site is considered a domain site
when predicted by at least two algorithms. A total of 5936 yeast genes
are used in this analysis.
doi:10.1371/journal.pgen.1000329.g003
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experimental procedures in the latter. Thus, the gene importance

data we used could potentially explain a maximum of 0.722 = 52%

of the variance of the evolutionary rate. But the strongest

correlation actually observed was only r2 = 4.3% among the 418

individual conditions and 4.8% among combinations of the 418

conditions, both being substantially lower than the theoretical

maximum. Similar arguments can be made for the analysis based

on computationally predicted gene importance values.

Second, a limitation in using dN and dN/dS to measure the rate

of gene evolution is that they can be used only for those S. cerevisiae

genes that have orthologs in the species being compared with (i.e.,

S. bayanus). Our results would not represent a full picture if genes

with and without orthologs have drastically different levels of gene

importance. To examine this possibility, we compared their

importance levels. Because we used reciprocal best hits in BLAST

searches to define orthologs, a S. cerevisiae gene would not have its

operational S. bayanus ortholog, if (i) the gene evolved extremely

fast, (ii) the gene has been lost in S. bayanus, or (iii) the gene has

been duplicated in S. cerevisiae such that its S. bayanus best hit

happens to find its paralog to be the best hit. Thus, we separated S.

cerevisiae genes into singletons and duplicates. We found no

significant difference in gene importance between S. cerevisiae

genes with and without S. bayanus orthologs, for either singletons

(P = 0.11, Mann-Whitney U test; Table S1) or duplicates (P = 0.63,

Table S1). Hence, the potential bias of studying only S. cerevisiae

genes that have S. bayanus orthologs is negligible.

Third, we used three different measures of gene evolutionary

rate: dN, dN/dS, and PGL. They all have pros and cons, aside from

the above consideration. In principle, dN/dS would be the best

measure, because it best measures k/u, which is determined by a
and b only, according to Equation 1. Estimates of dN/dS, however,

suffer from two problems. First, dS values may have been saturated

because the average dS between S. cerevisiae and S. bayanus is as high

as 1.24. Although using more closely related species could improve

the estimation of dS, it would increase the estimation error of dN

and that of dN/dS, due to a reduced number of nonsynonymous

substitutions per gene. Second, codon usage bias, prevalent in

highly expressed genes of yeast, could lead to underestimation of

neutral substitution rates and thus overestimation of k/u. Because

of the positive correlation between the importance of a gene and

its expression level [10], codon usage bias causes greater

overestimation of k/u for more important genes, weakening the

negative correlation between k/u and gene importance. If there is

little variation in mutation rate among genes, dN would be a better

index of evolutionary rate for our purpose than dN/dS, because

estimates of dN have smaller sampling errors than those of dN/dS.

Our results show stronger correlations between gene importance

and dN, compared to that between gene importance and dN/dS,

suggesting that the disadvantages of using dN/dS outweigh its

advantages. Propensity for gene loss (PGL) treats each gene as a

unit and does not consider the number of substitutions per

nucleotide or amino acid site. It is thus conceptually different from

the evolutionary rate that Kimura and Ohta [15] and Wilson et al.

[16] referred to. There are three reasons underlying our

observation that gene importance correlates more poorly with

PGL than with dN and dN/dS. First, because PGL is determined by

the fixation of null mutations but not slightly deleterious

mutations, it should be less influenced by gene importance, as

explained in Introduction and Figure S1. Second, estimation of

PGL requires genome sequences from a number of species related

to the focal species of interest (S. cerevisiae). In the present case, PGL

is estimated from 12 diverse fungi and thus may not accurately

reflect the propensity of gene loss in S. cerevisiae, because the

importance of a gene can change in evolution [10,24]. Third,

estimates of PGL potentially have large sampling errors, because

the estimated number of losses per gene is quite small.

Fourth, to understand why no single condition or combination

of single conditions provides gene importance values that correlate

strongly with evolutionary rates, we classified enzyme genes into

three groups (always-essential, sometimes-essential, and always-

nonessential) and compared their respective evolutionary rates.

Due to computational intensity, our classification was based on the

FBA analysis of 104 simulated conditions, while in theory it should

have been based on all possible conditions. This limitation

potentially caused misclassification of some truly sometimes-

essential genes as always-essential genes or always-nonessential

genes and hence blurred the differences among the three groups.

To rectify this problem, we used a strategy that guarantees the

identification of all always-essential genes. The metabolic model of

yeast allows us to know all nutrients that can be used by this

Figure 4. Predictability of the principle of slower evolution of
more important genes. (A) Predictions of relative gene importance
are more likely to be correct when the difference in evolutionary rate
between the two genes under comparison increases. Rank difference
shows the minimal fraction of genes in the genome whose ranks in dN

are between the two genes under comparison. Gene importance is
measured by the amount of fitness reduction caused by the deletion of
the gene under YPD. For each rank difference criterion, 100,000 random
pairs of genes satisfying the criterion are used to estimate the
prediction accuracy. (B) Extremely conserved genes (measured by dN)
are more likely to be essential. For the 418 lab conditions, the average
proportion of essential genes among the 418 lab conditions and its
standard error are shown.
doi:10.1371/journal.pgen.1000329.g004
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metabolic model. If a gene is essential when all these nutrients are

present, it must be essential when one or more of these nutrients

are absent. We find that in fact the always-essential genes thus

identified are identical to those identified from the 104 simulated

conditions. There is, however, no systematic way to guarantee the

exact separation of sometimes-essential and always-nonessential

genes. We thus merged them and compared this combined group

with always-essential genes. Again, we do not find the combined

group to have significantly greater dN, dN/dS, or PGL than always-

essential genes (Figure 2). Thus, our result is true not only for the 104

simulated conditions, but also for all possible combinations of

nutrients usable by the yeast metabolic model. Our result differs

from that of Papp et al. [18] where they found that enzyme genes

active in more conditions have lower probabilities of presence in the

genomes of 133 diverse species. At least five reasons may account for

this difference. First, we counted PGL on a known phylogeny of

related species using the parsimony method whereas these authors

simply calculated the percentage of species that do not have the gene

without considering the species phylogeny [18]. Second, most of the

species they used are distantly related to yeast and their result is

expected to be highly dependent on the choice of species. Third, we

considered gene essentiality, a more relevant measure of gene

importance than gene activity, because deleting an active gene may

or may not have any fitness consequence, depending on alternative

pathways in the metabolic network. Fourth, we used a more recent

reconstruction of the yeast metabolic network, which is more

complete and accurate than the one they used. Fifth and most

importantly, because only nine conditions were examined, their

result could simply be due to small sample size.

Fifth, Hirsh and Fraser suggested that the correlation between gene

importance and evolutionary rate should exist only among genes with

relatively low importance [7]. This is because, in Equation 1, f quickly

declines to virtually 0 when b increases from 0 to 0.1 and any further

increase in b has negligible effects on f and k, although Hirsh and

Fraser came to this conclusion using a more complex model [7].

However, we found that the correlation for genes with b,0.1 is

extremely weak (r= 20.05 for YPD and the strongest r= 20.04

among the 418 experimental conditions). We cannot test genes with

even smaller b because the accuracy of the estimated b decreases and

the number of useable genes decreases. The contradiction between

Hirsh and Fraser’s prediction and our empirical observation can be

understood using Figure S1. Apparently, when there are many

slightly and moderately deleterious mutations, use of all genes

provides a stronger correlation than using only unimportant genes,

because the expected evolutionary rates can still be different between

a gene with b= 0.2 and a gene with b= 0.3 (Figure S1K). For

example, in Figure S1L, using only genes with b,0.1 gives

r= 20.36, whereas using all genes gives r= 20.83.

Sixth, the correlation between gene importance and evolution-

ary rate reported here may be in part caused by other co-varying

factors. For three reasons, we did not control for confounding

factors in our analysis. First, previous authors already determined

that the correlation is statistically significant even after the control

of confounding factors [3,10]. Second, our goal here is to discern

why the correlation is so weak even when part of it may come from

confounding factors. Third, we study the difference in the

magnitude of the correlation when various gene importance

measures are used; confounding factors such as gene expression

level would not affect this difference.

Conclusions and Implications
Despite the general belief and wide application of the principle that

important genes evolve more slowly than less important ones, genomic

analysis showed that the correlation between gene importance and

evolutionary rate is quite weak. Our analysis does not support the

hypothesis that the weakness of the observed correlation is due to the

difference between gene importance in the lab and in nature.

Furthermore, we found no evidence for the possibility that the

correlation is weakened by the potential presence of a smaller fraction

of functional sites in more important genes. We conclude that the

weakness of the correlation is factual, rather than artifactual. This

conclusion is not inconsistent with population genetic predictions,

because the predictions vary depending on the prevalence and

distribution of the fitness effect of deleterious mutations.

Our result cautions molecular biologists from predicting relative

functional importance of genes directly from their relative levels of

evolutionary conservation. Nevertheless, our finding that extremely

conserved genes are highly likely to be functionally very important

may explain the universal perception that the principle of slower

evolution of more important genes (or DNA sequences) works well.

For example, substantial amount of comparative genomic work aims

at using the principle to identify functional non-coding sequences

based on their extremely low rates of nucleotide substitution [42–45].

An ultra-conserved non-coding sequence is a segment of DNA of

over 200 nucleotides with no variation among human, mouse, and

rat. Pennacchio et al. found that such ultra-conserved sequences,

when they are also conserved between mouse and fish, have a

probability of 62% to be actual enhancers during mouse embryonic

development [42]. Compared to the virtually zero probability with

which a random segment of DNA in the mouse genome is an

enhancer, the principle appears to work well. This success is not

surprising, because only extremely conserved non-coding sequences

are considered. Nevertheless, it should be noted that although a large

fraction of extremely conserved non-coding sequences are function-

al, many functional sequences are not extremely conserved. In other

words, the current application of the principle in detecting functional

non-coding sequences has a high false-negative rate. Thus far, there

has been no evidence that the correlation between sequence

importance and evolutionary rate is stronger for non-coding regions

than for coding regions. One reason for a potentially stronger

correlation for non-coding regions is that several rate determinants in

coding sequence evolution simply do not exist in non-coding

sequence evolution (e.g., codon usage bias, amount of translation,

gene length, and number of protein-interacting partners). In

addition, the fraction of mutations that are slightly deleterious may

be greater for non-coding regions than for coding regions, given the

high modularity of regulatory sequences. In the future when relative

importance of many functional non-coding sequences is measured, it

will be interesting to examine whether non-coding sequences exhibit

a greater correlation between importance and evolutionary rate.

Materials and Methods

Yeast Gene Importance Values under YPD and Other 418
Lab Conditions

The fitness values of homozygous-single-gene-deletion yeast

strains in the YPD medium [23] were downloaded from http://

www-deletion.stanford.edu/YDPM/YDPM_index.html. The cor-

responding data from the other 418 lab conditions [19] were

obtained from http://chemogenomics.stanford.edu:16080/sup-

plements/global/download.html. The microarray raw data were

processed by the author-provided Perl scripts and were then

normalized to the central mean to yield the relative fitness values

of the deletion strains under each condition.

Yeast Metabolic Network
The metabolic network model of S. cerevisiae (iND 750) [25] used in

this study was downloaded from the BiGG database (http://bigg.
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ucsd.edu) and parsed by the COBRA toolbox [46]. The network is

composed of 1149 reactions, associated with 750 known genes. Some

reactions do not have associated genes because the genes whose

protein products catalyze these reactions have yet to be identified.

The network model also provides information about stoichiometry,

direction of reaction, and gene-reaction association. We followed an

established protocol [26] to identify dead-end reactions, which are

reactions that must have zero flux under a steady state. These

reactions are involved in the generation of metabolites that are

neither included in biomass nor transported outside the cell, and

may reflect the incompleteness of the metabolic network model.

After the removal of dead-end reactions, the yeast metabolic network

used in our analysis contains 632 biochemical reactions with 546

associated enzyme genes.

Flux Balance Analysis (FBA) and Minimization of
Metabolic Adjustment (MOMA)

Details of FBA have been described in the literature [21,22].

Briefly, the flux of each reaction is determined by maximizing the

rate of biomass production under the assumption of steady state

and the constraints of stoichiometry. We used the optimization

package CPLEX (www.ilog.com) to solve the linear programming

problem. Gene deletion is modeled by constraining the flux of the

corresponding reaction to zero.

MOMA has been previously described in detail [29]. Briefly,

MOMA predicts the maximal biomass production rate upon

deletion of a reaction by minimizing the differences in all

metabolic fluxes between the deletion strain and the wild-type

strain. All the constraints used in FBA are still enforced in

MOMA. The quadratic programming problem is also solved by

CPLEX. As in FBA, deletion of a gene is realized by constraining

the flux of the corresponding reaction to zero.

Simulation of Nutritional Conditions
The natural environments of yeast may change frequently. It is

also likely that yeast usually faces nutritionally poor conditions but

occasionally encounter rich conditions. To mimic their natural

environments, we simulate random nutritional conditions in the

following manner. For each condition, we generate a random

number g from an exponential distribution with a mean of m = 0.1

for each of the 103 usable carbon-source nutrients. Here, g is the

probability that the carbon-source nutrient is available. The actual

presence or absence of each nutrient is then determined stochasti-

cally using g. We then add all required inorganic metabolites. Use of

other m values (0.05 or 0.5) does not change our results. For each

available nutrient, we fix the uptake rate at a random value between

0 and D = 20. The actual D value used is unimportant and does not

alter our result. Only conditions that support the growth of the wild-

type cell, as shown by FBA, are considered.

Separation of Singleton from Duplicate Genes
Singleton and duplicate genes of yeast S. cerevisiae are identified

by BlastP searches of each gene against all other genes in the

genome. A gene is considered as a duplicate if it hits at least one

other gene in the genome with the criteria of an E-value = 10210

and an alignable region .50% of the longer sequence. Otherwise,

it is treated as a singleton.

Gene Evolutionary Rates
Following [10], we used the maximum likelihood method to

estimate synonymous (dS) and nonsynonymous (dN) substitution

rates of yeast genes by comparing the orthologous genes of S.

cerevisiae and S. bayanus, which were identified by reciprocal best

BLAST hits. The PGL information was obtained from a previous

study [47], which used the parsimony principle to estimate the

number of gene losses on the phylogeny of 12 fungi (S. cerevisiae, S.

bayanus, S. paradoxus, S. mikatae, Candida glabrata, Kluyveromyces lactis,

Eremothecium gossypii, Debaryomyces hansenii, Yarrowia lipolytica, Neuros-

pora crassa, Kluyveromyces waltii, and Schizosaccharomyces pombe).

Protein Domain Identification
We downloaded the latest release (Release 20.27) of protein

domain scan algorithm ProSite [33] from ftp://ca.expasy.org/

databases/prosite/, where an executable program and a compiled

domain motif database were available. InterProScan [34] was

downloaded from http://www.ebi.ac.uk/Tools/InterProScan/

with the current-release database, and was set up to run locally

to identify protein domains.

Supporting Information

Figure S1 Theoretical expectations of the correlation between

gene importance and evolutionary rate under neutral and nearly

neutral models. The cumulative probability functions of deleteri-

ous effects of random mutations on gene function are shown for

the neutral model (A) and the nearly neutral model with three sets

of parameters (D, G, J). The expected relationships between dN/dS

and gene importance under the four situations are shown in panels

B, E, H, K, respectively. When 1000 genes are simulated with

measurement errors, the observed relationships between dN/dS

and gene importance under the four situations are shown in panels

C, F, I, L, respectively, with the blue lines showing the linear

regressions. Spearman’s rank correlation coefficients and associ-

ated P-values are shown. The beta distribution that describes the

deleterious functional effect of mutations used in panels D, G, and

J all have the parameter b = 1. The parameter a = 104, 105, and

106, respectively, for D, G, and J. Panel M shows Spearman’s rank

correlation coefficient under different fractions of slightly delete-

rious mutations. See Text S1 for details.

Found at: doi:10.1371/journal.pgen.1000329.s001 (0.94 MB PDF)

Figure S2 Frequency distributions of Spearman’s rank correla-

tion coefficient r between gene importance (i.e., fitness reduction

upon gene deletion) and evolutionary rate across 105 simulated

nutrient conditions. Gene importance is predicted by FBA. Gene

evolutionary rate is measured by (A) nonsynonymous substitution

rate dN, (B) nonsynonymous/synonymous rate ratio dN/dS, or (C)

propensity for gene loss PGL. The yellow arrow in each panel

indicates the observed correlation using gene importance values

experimentally determined in the YPD medium and the red arrow

indicates the strongest correlation across the conditions examined.

Found at: doi:10.1371/journal.pgen.1000329.s002 (0.36 MB PDF)

Table S1 No significant difference in importance between S.

cerevisiae genes with and without S. bayanus orthologs.

Found at: doi:10.1371/journal.pgen.1000329.s003 (0.02 MB PDF)

Text S1 Theoretical expectations of the correlation between

gene importance and evolutionary rate.

Found at: doi:10.1371/journal.pgen.1000329.s004 (0.09 MB PDF)
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