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Abstract

Constraints in embryonic development are thought to bias the direction of evolution by making some changes less likely,
and others more likely, depending on their consequences on ontogeny. Here, we characterize the constraints acting on
genome evolution in vertebrates. We used gene expression data from two vertebrates: zebrafish, using a microarray
experiment spanning 14 stages of development, and mouse, using EST counts for 26 stages of development. We show that,
in both species, genes expressed early in development (1) have a more dramatic effect of knock-out or mutation and (2) are
more likely to revert to single copy after whole genome duplication, relative to genes expressed late. This supports high
constraints on early stages of vertebrate development, making them less open to innovations (gene gain or gene loss).
Results are robust to different sources of data—gene expression from microarrays, ESTs, or in situ hybridizations; and
mutants from directed KO, transgenic insertions, point mutations, or morpholinos. We determine the pattern of these
constraints, which differs from the model used to describe vertebrate morphological conservation (‘‘hourglass’’ model).
While morphological constraints reach a maximum at mid-development (the ‘‘phylotypic’’ stage), genomic constraints
appear to decrease in a monotonous manner over developmental time.
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Introduction

To what extent do the processes of embryonic development

constrain genome evolution? Correlations between developmental

timing and morphological divergence have long been observed, but

the mechanisms and molecular basis of such patterns are poorly

understood. The most commonly used measure of selective pressure

on the genome, the ratio of non-synonymous to synonymous

substitutions (dN/dS) in protein coding genes, has been of limited help

in this case. Stronger constraints have been found on genes expressed

in late embryonic stages in Drosophila [1], but most other studies have

failed to report robust evidence for a lower dN/dS ratio in genes

expressed at constrained developmental stages [2–5]. A different

approach has been to characterize which genes are duplicated, and

which are not: studies of C. elegans [2] and Drosophila [6] have found

less duplication of genes expressed in early development. These results

show that it is possible to identify developmental constraints at the

genomic level. They have a few limitations though. One is that the

data available has limited the characterization of developmental time

to broad categories such as ‘‘early’’ and ‘‘late’’. A second is the

difficulty of relating results from two derived invertebrate species, to

morphological evolution models in vertebrates [7].

Indeed it is in vertebrates that the fundamental models of

developmental constraint on evolution have been established,

starting in the nineteenth century with the ‘‘laws’’ of von Baer [8],

claiming a progressive divergence of morphological similarities

between vertebrate embryos, with the formation of more general

characters before species-specific characters. Integration of these

observations within evolutionary biology has not always been

straight-forward [9–11]. More recently, an ‘‘hourglass’’ model was

proposed to describe morphological evolution across development

[12,13]: in the earliest stages of development (cleavage, blastula)

there is in fact a great variety of forms in vertebrate embryos. Later

in development, a ‘‘phylotypic’’ or conserved stage is observed,

where many morphological characteristics are shared among

vertebrates. This stage is usually presumed to be around the

pharyngula stage. After this bottleneck, a ‘‘von Baer-like’’

progressive divergence is again observed. The conserved phylo-

typic stage has been explained by assuming higher developmental

constraints [13–15]. The limits on morphological evolution would

be placed by the structure of animal development, making some

changes unlikely or impossible. How such limitations are encoded

in the genome, or impact its evolution, is still an open question.

In this work, we investigate the existence and timing of

constraints on genes expressed in vertebrate development. We use

representatives of the two main lineages of vertebrates, a teleost fish

and a tetrapode, and we explore the impact of experimental gene

loss, and of gain of gene copies in evolution. We find that timing of

development has a strong impact in both cases, but that the pattern

of constraints on genome evolution does not follow the morpho-

logical hourglass model. High constraints are present in early stages

of development and relax progressively over time.

Results

Constraints on Gene Loss-of-Function in Zebrafish
First, we used the phenotypes of gene loss-of-function as an

indicator of selective pressure on genes. We extracted genes
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essential for the viability of the zebrafish, giving a lethal phenotype

when non functional [16]. We expect that the loss of a gene should

be more deleterious if this gene is expressed at a developmental

stage with strong constraints. Thus we estimated whether genes

were expressed or not at each stage, and computed the ratio of

expressed essential genes to expressed reference genes (no reported

loss of function phenotype). We then plotted the variation across

development of this ratio. We used two different types of data to

evaluate the presence of gene expression: (i) expression patterns

from in situ hybridizations (Figure 1A), and (ii) ‘‘present’’ or

‘‘absent’’ calls from an Affymetrix microarray experiment

(Figure 1B). Results are consistent for both data types: the

proportion of essential genes is higher among genes expressed in

early development, with a significant negative correlation. For the

in situ hybridizations (Figure 1A), a linear regression is significant,

but a parabola is not. The parabola has been suggested as the

quantitative expectation of an hourglass-like model [3,17]. These

results indicate a continuous trend over developmental time, with

stronger constraints on early development.

Considering gene expression either ‘‘present’’ or ‘‘absent’’

allows straightforward statistical analysis, but it is a strong

approximation of the continuous nature of gene expression. To

take advantage of the quantitative signal from the microarray data,

we contrasted the median expression level of all the essential genes

to that of all of the reference genes (Figure 2A). We used the

median because it is less sensitive to extreme values [18]; results

were consistent using the mean (not shown). To estimate the

significance of the difference between the two curves, we

performed a randomization test (see Methods), which provides

1% and 1% confidence intervals (Figure 2B). The expectation is

now that the essential genes should be enriched in genes highly

expressed at the stages with strong constraints. And consistently

with the previous observations, essential genes are significantly

more expressed in early stages (until 11.7 hours), and less

expressed in late stages of development (from 5 days to 14 days).

No specific trend is visible around the phylotypic stage. Similar

results are obtained for genes which give an ‘‘abnormal’’

phenotype after loss of function (Text S1 and Figure S4).

To complement this approach, we defined groups of genes

according to their expression pattern during development (see

Methods). This clustering of zebrafish genes provided us notably

with a cluster of 2446 genes with high expression in early

development, decreasing over time (Figure 3, cluster 3), and an

opposite cluster of 1123 genes lowly expressed in early

development, increasing over time (Figure 3, cluster 4). As

expected, genes whose expression is highest in early development

are more frequently essential (1.1% vs. 0.6%), and induce more

frequently abnormal phenotypes when non functional (6.1% vs.

2.9%).

Constraints on Gene Loss-of-Function in Mouse
We performed a similar analysis in mouse, with some

differences of methodology due to the data available. For

Author Summary

Because embryonic development must proceed correctly
for an animal to survive, changes in evolution are
constrained according to their effects on development.
Changes that disrupt development too dramatically are
thus rare in evolution. While this has been long observed
at the morphological level, it has been more difficult to
characterize the impact of such constraints on the
genome. In this study, we investigate the effect of gene
expression over vertebrate developmental time (from early
to late development) on two main features: the gravity of
mutation effects (i.e., is removal of the gene lethal?) and
the propensity of the gene to remain in double copy after
a duplication. We see that both features are consistent, in
both zebrafish and mouse, in indicating a strong effect of
constraints, which are progressively weaker towards late
development, in early development on the genome.

Figure 1. Variation across zebrafish development of the expression of essential genes compared to non-annotated genes. At each
time point, the ratio of the number of essential genes expressed on the number of non-annotated genes expressed is plotted. A gray box on the x-
axis indicates the phylotypic period. (A) Gene expression as reported using in situ hybridization data. The x-axis is proportional to time. A weighted
linear regression was fitted to the data and the regression line plotted. (B) Gene expression as reported by ‘‘present’’ calls from Affymetrix array data.
The x-axis is in logarithmic scale. A Spearman correlation was computed (coefficient r).
doi:10.1371/journal.pgen.1000311.g001

Constraints on Genome Evolution

PLoS Genetics | www.plosgenetics.org 2 December 2008 | Volume 4 | Issue 12 | e1000311



expression, we used of a large amount of EST (Expressed

Sequence Tags) data from libraries spanning development, from

which we deduced presence or absence of expression (see

Methods). Only phenotypes obtained by the targeted knock-out

technique were used. As knock-out experiments with no

observable phenotype are reported in mouse, we can use these

as a reference set, instead of non annotated genes as in zebrafish.

The ratio of expressed essential genes to expressed reference genes

is significantly negatively correlated with developmental time

(Figure 4A), as in zebrafish (Figure 1).

Repeating the same approach with genes inducing a phenotype

reported as ‘‘abnormal’’ when they are not functional, no

significant trend is detected compared to genes inducing no

phenotype, after multiple testing correction (Figure 4B). Moreover,

these genes can be used as a reference for essential genes

(Figure 4C), with results very similar to the use of genes inducing

no phenotype after loss of function (Figure 4A). Thus in mouse,

genes inducing abnormal phenotypes when non-functional have a

behavior more similar to the reference set of ‘‘non essential’’ genes.

Constraints on Gene Duplication
The fish specific whole genome duplication [19] provides us

with a natural experiment on constraints on gene doubling: after

this event approximately 85% of duplicated genes lost one copy,

and the subset which retained both copies is known to be biased

relative to function and selective pressure [20]. Thus we tested if

duplicate gene expression pattern in zebrafish development was

biased compared to singletons. We plotted the median expression

profiles of duplicates originating from the fish specific whole

genome duplication, and of singletons, genes whose duplicate copy

has been lost after the genome duplication (Figure 5). Duplicates

are less expressed in early stages of development. The difference of

median expression decreases progressively, similar to the observa-

tions for essential or abnormal phenotype genes. Larval time

points show a maximum expression of duplicates relative to

singletons.

Two scenarios can explain this result. First, retention of two

copies may be more likely after the whole genome duplication for

genes less expressed in early development. Second, the retention of

genes may be unbiased relative to development, but duplicate

genes may evolve secondarily lower expression in early develop-

ment. To get a proxy of the ancestral state before whole genome

duplication, we used again mouse data, which has diverged from

zebrafish before the fish specific duplication. We compared mouse

orthologs of zebrafish duplicates to mouse orthologs of zebrafish

singletons, regarding their expression in development (Figure 6).

Mouse orthologs of duplicates are significantly less expressed in

early development compared to orthologs of singletons. This result

in mouse is consistent with the observations in zebrafish, and the

most parsimonious explanation is that expression was similar in

the ancestor of the two lineages. Therefore we can accept the first

hypothesis: after the fish specific whole genome duplication, there

was preferential retention of duplicates less expressed in early

development.

To check if this phenomenon is particular to the fish specific

genome duplication, we repeated this analysis with the two ancient

rounds of genome duplication (‘‘2R’’), which occurred in the

ancestor of vertebrates [21]. It is difficult to distinguish between

the two whole genome duplications since no model species

diverged from the vertebrate lineage between them. Therefore we

looked at the median expression profiles of genes with any

duplication at the origin of vertebrates, compared to singletons,

whose duplicates were lost after both whole genome duplications.

For zebrafish, we restricted this analysis to genes which are

singletons regarding the fish specific whole genome duplication.

Similarly to fish specific duplicates, duplicates from 2R are

significantly less expressed than singletons in the early develop-

ment of zebrafish (Figure S1) and mouse (Figure S2). Thus

Figure 2. Expression in zebrafish development of essential genes. (A) Median expression profiles of zebrafish essential genes, in red dashed
line and triangles, compared to non-annotated genes in black solid line and circles. (B) Significance of the expression difference between the two
groups of genes. 1% and 1% confidence intervals are drawn in dashed lines. Significant points (outside the 1% confidence interval) are filled on both
plots. A Spearman correlation was computed (coefficient r) to test the trend over time. The x-axis is in logarithmic scale. A gray box on the x-axis
indicates the phylotypic period.
doi:10.1371/journal.pgen.1000311.g002

Constraints on Genome Evolution
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mechanisms of retention after whole genome duplication seem to

be conserved during vertebrate evolution (see also Text S1).

Constraints on Gene Sequence
To check if sequences of genes expressed at different stages in

development are experiencing different selective pressure, we used

the non synonymous to synonymous substitution ratios (dN/dS). In

zebrafish, we used an approach similar to Davis et al. [1]: at each

stage we performed the correlation between dN/dS and gene

expression from microarray data (Figure S3). It has been shown

that genes retained in duplicate tend to evolve slowly [20,22]. To

control for that factor, we kept only strict singletons in the analysis

(genes whose duplicate was lost after 2R and fish-specific genome

duplications). At all stages the correlation is negative, confirming

that genes with higher expression levels are under stronger

purifying selection [23,24]. We note that correlation at the ‘‘adult’’

stage (90 days) is weaker (Figure S3): the link between expression

and selective constraints on sequences appears stronger in

development than in adult. But there is not a significant trend

over time (Spearman r= 0.08; p = 0.68).

In mouse, we considered only singletons after 2R genome

duplication, and we compared the slowest evolving genes (25%

lower dN/dS) with the fastest evolving genes (25% higher dN/dS).

There is a significant correlation with time of expression (Figure 7).

Genes with strong sequence constraints (low dN/dS) tend to be

expressed early in development.

Figure 3. Expression of four groups of genes, clustered according to their expression in zebrafish development.
doi:10.1371/journal.pgen.1000311.g003

Constraints on Genome Evolution
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Gene Ontology Characterization
What is the function of the genes whose evolution is constrained

by expression in early development? We analyzed enrichment or

depletion in Gene Ontology [25] categories for the clusters based

on gene expression (Figure 3). Using the Molecular Function

ontology, genes whose expression is highest in early development

are significantly enriched in fundamental processes of the cell, such

as RNA processing, transcription, and DNA replication (Table

S1). This is very similar to the categories observed to be enriched

in house keeping genes [26]. It is also consistent with the categories

depleted in fish specific duplicates [20]. Conversely, genes highly

expressed in early development are depleted in receptor or

channel activity, while these activities are enriched in genes highly

expressed in late development. Fewer terms are significant for the

Biological Process ontology, and results are essentially consistent

with the Molecular Function. Overall, the genes expressed in early

development, which appear constrained against gene duplication

or loss of function, seem to be house keeping genes involved in

basic cellular processes.

Discussion

Recent discussion of the evolution of ontogeny [27] has allowed

the clarification of several important points. The first is that

models must be explicitly defined, to allow testing. Poe and Wake

[17] distinguish three models for the evolution of ontogeny: the

Figure 4. Variation across mouse development of the ratio of genes with different Knock-Out phenotypes. (A) Ratio of expressed
essential genes relative to ‘‘non essential’’ genes. At each time point, the ratio of the number of essential genes expressed on the number of ‘‘non
essential’’ genes expressed is plotted. Detailed counts for each data point in Dataset S2. A weighted linear regression was fitted to the data and the
regression line plotted. A Bonferroni multiple-testing correction was used to adjust the significance threshold (a= 0.05/6 = 0.0083). A gray box on the
x-axis indicates the phylotypic period. (B) Ratio of expressed genes inducing abnormal phenotypes when non functional compared to non essential
genes. The linear regression is not significant after multiple testing correction (r = 20.477; p = 0.014). (C) Ratio of expressed essential genes compared
to genes inducing abnormal phenotypes when non functional. Legend as in Figure 4A.
doi:10.1371/journal.pgen.1000311.g004

Figure 5. Expression in zebrafish development of genes according to retention after the fish specific whole genome duplication.
Median expression profiles of zebrafish duplicates from the fish specific whole genome duplication in red dashed line and triangles, and of singletons
in black solid line and circles. Legend as in Figure 2.
doi:10.1371/journal.pgen.1000311.g005

Constraints on Genome Evolution
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early conservation model à la von Baer [8]; the hourglass model,

characterized by a conserved phylotypic stage [12,28]; and the

adaptive penetrance model (an inverted hourglass). The second

point is that quantitative testing is important to distinguish

between these models. At the morphological level, several studies

have used heterochrony data from vertebrates to quantify the

amount of change at each stage of development [17,29].

Surprisingly, this led to rejection of both the early conservation

and the hourglass models, although which model is favoured

remains disputed [27]. The third point that should be clarified is

the distinction between constraints at the level of patterns, and

constraints at the level of processes [29]. The studies of

heterochrony in vertebrates are typically concerned with the

pattern.

In this framework, our results clearly provide a quantitative test

which supports the early conservation model. By studying not

morphological structures but features of the genome and its

expression, this test concerns the level of processes, not patterns.

Thus an important point to be made is that our results should be

taken neither in contradiction nor in support of any specific model

at the level of patterns, given our still limited knowledge of causal

relationships between process and patterns in ontogeny [30]. On

the other hand, our results do appear to be in contradiction with

previous reports of a maximum of constraints on processes around

the phylotypic stage of vertebrates [3,4,31].

We use two simple measures of constraint on the expression of a

gene at a developmental stage: if expression of one copy is needed,

then (i) removing it may be deleterious, and (ii) increasing the

number of copies may also be deleterious. This view is consistent

with a recent study in yeast which suggests that constraints

influencing the ability to lose certain genes or to maintain them in

duplicate may be similar [32]. We expect gain or loss of genes

highly expressed at more constrained developmental stages to be

counter-selected. And indeed, we find a clear and significant trend:

early development is strongly constrained, then constraints

diminish during development in a continuous manner. Genes

highly expressed in early development are more frequently

essential, and less frequently preserved in double copy after

genome duplication. Thus early development is less robust against

gene loss and against gene doubling. Trends are conserved

between mouse and zebrafish, representatives of the two main

lineages of bony vertebrates, and between 2R and fish specific

genome duplications. An indication of how strong these

constraints are is our capacity to predict which genes were kept

in duplicate in zebrafish based on expression pattern in mouse.

Despite more than 400 MY of independent evolution, and the use

of relatively noisy data (mix of EST libraries), more than a quarter

of the variance in gene retention is explained (Figure 6; r2 = 0.27).

There is also some signal for early conservation at the level of

coding sequences, at least in mouse (Figure 7). What we do not see

is any genomic evidence for specific constraints at a phylotypic

stage. Both in zebrafish and in mouse, the pharyngula stage

appears to be part of the general trend from stronger genomic

constraints in early development, towards weaker genomic

constraints at later stages. We believe that our data are sufficiently

detailed, and exhibit sufficiently strong signal, that a maximum of

genomic constraints at the phylotypic stage would be visible. So

where does the contradiction with previous studies come from?

An early quantitative study [31] found that when screens were

done in rodents for the induction of teratogenesis, most

abnormalities were obtained by applying teratogens during the

phylotypic stage. This was interpreted [31] as supporting strong

constraints at the phylotypic stage, due to inductive interactions.

But these screens aimed not to test developmental robustness, but

to obtain abnormal embryos for experimental work. As remarked

by Bininda-Emonds et al. [29], Galis and Metz [31] define the

phylotypic stage broadly as including most organogenesis. If

application of teratogens in early development resulted in lethality

before organogenesis, it would not be of interest to the researchers

performing the screens. Thus it seems that what Galis and Metz

[31] measured was the potential for a stage to produce

morphological abnormalities, not the overall constraints on

ontogeny at each stage. There seems to be little reason to suppose

that such data provide ‘‘an accurate model of natural selection’’

[33], unlike e.g. the retention of duplicate genes over long

evolutionary periods.

It is worth noting that we observe a ‘‘peak’’ of constraints shortly

after pharyngula (Figure 4B) for the expression profile of mouse

genes which give an ‘‘abnormal’’ phenotype when knocked-out.

The behavior of these genes is surprising, because in zebrafish the

Figure 6. Variation across mouse development of the ratio of
expressed orthologs of zebrafish singletons after the fish
specific genome duplication (FSGD) relative to orthologs of
zebrafish duplicates. Legend as in Figure 4.
doi:10.1371/journal.pgen.1000311.g006

Figure 7. Variation across mouse development of the expres-
sion of rapidly evolving genes (25% highest dN/dS) compared
to slowly evolving genes (25% lowest dN/dS). Only singletons for
2R were considered. Legend as in Figure 4.
doi:10.1371/journal.pgen.1000311.g007

Constraints on Genome Evolution
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trend for such genes was similar to that for essential genes. We

suspect that the definition of abnormal phenotypes differs between

databases and between investigators working in different species.

Less severe phenotypes may be reported as ‘‘abnormal’’ in mouse,

relative to zebrafish. Of note, data in ZFIN [16] come mainly from

the reviewed literature, where minor abnormalities of phenotype

are rarely reported, whereas data in the MGD [34] come also

from genome wide mutagenesis, and thus include such minor

abnormalities. Minor abnormalities in mouse phenotype may also

be easier to detect because of the gross similarity with human in

anatomy and physiology. In any case, these are the data in our

study which most closely approximate the teratogenesis study, and

the only data that do not support the early conservation model.

Although this trend is statistically not significant, it is consistent

with the observations of Galis and Metz [31]. This deserves to be

further examined in future studies.

Two other studies which quantified a maximum of constraints

at the phylotypic stage did use evolutionary measures of constraint.

These studies [3,4] estimated constraints on the evolution of

coding sequences, in relation to the timing of expression in mouse

development from EST data. Despite similar experimental designs

and data, we reached differing conclusions. First, we note that we

did check for sequence conservation (dN/dS) trends over develop-

ment. In zebrafish, we found no robust pattern (Figure S3), while

in mouse we found support for the early conservation model

(Figure 7). Second, in our analyses we found that small samples of

ESTs could introduce important variability, which is why we used

weighted regressions for all computations based on these data. For

example, we see a very high ratio of mouse orthologs of zebrafish

singletons to duplicates for Theiler stage 5 (day 4) (Figure 6); but

this is obtained based on only 628 genes with at least one EST at

that stage (median over all stages: 3767). The weighted regression

insures that such a point has a weak incidence on the statistical

significance. Similar issues are visible in the data of Irie et al. [4],

but are not addressed in their analysis. Indeed, the extreme points

they use to support constraints at pharyngula are based on some of

the smallest samples of their dataset. Finally, it should be noted

that another study in mouse found an opposite pattern (relaxation

of constraints near the phylotypic stage) using an alternative

measure of constraints on sequences, the ratio of radical to

conservative amino acid changes, KR/KC [5]. In our opinion, these

contradictory and weakly supported results are consistent with the

idea that overall, coding sequence change seems to have a rather

modest contribution to the evolution of development. This is

consistent with a stronger contribution of regulation of expression

[35,36].

Our results were obtained on data which either reflect the

action of natural selection (duplicate gene retention), or are

directly relevant to fitness (loss-of-function lethality), and provide

unambiguous trends with strong statistical support. Moreover, the

consistent patterns in zebrafish in situ hybridization and micro-

array data, and mouse EST data, show robustness to potential

experimental biases or sampling errors. The early conservation

model for genomic processes is reinforced by the enrichment of

early expressed genes in fundamental cellular processes (Figure 3;

Table S1). This is the opposite of duplicated genes, which may be

more involved in innovation, and have been reported to be

enriched in developmental or behavioural processes [20,21]. Our

results are consistent with the observation that basic cores of gene

regulatory networks (GRNs) are highly constrained in early stages

of animal development [37,38], although we add the notion of a

progressive decrease in constraints. This indicates that some

relations between the timing of cell-fate decisions in development

and rates of genome evolution may be widely shared among

animals [7,39]. Indeed, many studies underline gastrulation as a

crucial step in development [40,41]. Accordingly this period is

shown here to be subject to highest constraints, consistent with the

famous Lewis Wolpert quote: ‘‘It is not birth, marriage, or death,

but gastrulation, which is truly the most important time in your

life’’ [42].

Materials and Methods

Microarray Data
Microarray data of zebrafish (Danio rerio) development were

downloaded from ArrayExpress (E-TABM-33) [43]. This exper-

iment uses an Affymetrix GeneChip Zebrafish Genome Array (A-

AFFY-38). 15 stages were sampled, spanning from fertilization to

adult stages (15 minutes, 6, 8, 9, 10, 11.7, 16, 24, 30 hours, 2, 4, 5,

14, 30, 90 days, covering zygote, segmentation, gastrula,

pharyngula, hatching, larval, juvenile, adult). Two replicates were

made per time point; we use both of them for computations, and

the 2 values are plotted to give an order of the variability between

replicates.

Raw CEL files were renormalized using the package gcRMA

[44] of Bioconductor version 2.2 [45]. We used the ‘‘affinities’’

model of gcRMA, which uses mismatch probes as negative control

probes to estimate the non-specific binding of probe sequences.

The normalized values of expression are in log2 scale, which

attenuates the effect of outliers. Mapping of D. rerio genes on

Affymetrix probesets was made using Ensembl [46] annotation for

zebrafish genome version Zv7 (unpublished).

We did not consider the first time point of the data (15 minutes,

fertilization). Its behaviour was peculiar in many cases. We explain

this by the presence of maternal transcripts in the embryo [47].

These transcripts are largely degraded by 6 hours of development

[48], the second time point of the dataset.

For the absolute detection of transcripts (presence or absence

calls), the method we used [49] replaces all MM probe values by a

threshold value which is based on the mean PM value (after

gcRMA transformation) of probesets that are very likely to have

absent target transcripts. This removes the influence of probe

sequence affinity and results in better performance than the MAS

5 algorithm.

Significance of Trends in Zebrafish Development
For the zebrafish microarray data we first used a randomization

approach to assess the significance of the difference between two

curves of median expression across development (for example

median expression of duplicates vs. singletons, or of essential genes

vs. genes with no reported phenotype). If the two groups contain

n1 and n2 genes, we pooled all these genes and randomly separated

them into two new groups of same sizes (n1 and n2). Then we

calculated and recorded the difference between the two new

curves of median expressions across development. After repeating

this randomization 10,000 times, we could define 1% and 1%

confidence intervals.

Second, we calculated the Spearman correlation between

developmental time and the difference between two curves of

median expression across development. Bonferroni correction was

applied to correct for multiple testing, considering the 9 tests

computed with this microarray data (Figure 1; Figure 2; Figure 5;

Figure S1; Figure S3; Figure S5A–D): a= 0.05/9 = 0.0056.

Clustering of Microarray Data
In order to identify genes lowly or highly expressed in early

development, we used the Fuzzy C-Means soft clustering method

implemented in the Bioconductor package Mfuzz [50]. After a

Constraints on Genome Evolution
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pre-filtering step (genes with sd ,0.5 were removed), we ran the

algorithm with the number of clusters set to c = 4. This gave one

cluster of genes lowly expressed across development (3641

probesets, 2261 Ensembl genes), one of genes highly expressed

(2175 probesets, 1175 Ensembl genes), one of genes whose

expression increased (1714 probesets, 1123 Ensembl genes) and

one of genes whose expression decreased (3306 probesets, 2446

Ensembl genes) (Figure 3).

Mouse EST Data
EST (Expressed Sequence Tags) data were retrieved from

BGEE (dataBase for Gene Expression Evolution, http://bgee.unil.

ch/), a database comparing transcriptome data between species

[51], including EST libraries from UniGene [52]. The mapping of

UniGene clusters on Ensembl genes is taken from Ensembl

(version 48) [46], where a percentage of identity of 90% is set as

the minimum threshold to link an Ensembl gene with a UniGene

cluster. Each library has been annotated manually to ontologies of

anatomy and developmental stages, if it was obtained under non

pathological conditions, with no treatment (‘‘normal’’ gene

expression). We considered a gene expressed at one time point

in development if at least one EST was mapped to this gene at this

time point. Thus, we could retrieve the number of genes expressed

at each time point of mouse (Mus musculus) development. From this

set we extracted two groups to compare (for example essential/non

essential, or duplicates/singletons). As the total number of ESTs

available at each time point is different, we use at each time point

the ratio of the numbers of genes expressed in the two groups. We

obtained similar results when we defined a gene as expressed if it

had at least two ESTs mapped to it. Also, considering the ratio of

the mean number of ESTs per gene at each stage, instead of the

ratio of the number of genes expressed at each stage, gave similar

results (not shown). We used data from 297 EST libraries,

spanning 26 different developmental stages (from TS01 to TS27),

corresponding to a total of 633,307 ESTs.

A weighted linear regression between developmental time and

expression ratios was fit to the data, and a F-test was run to assess if

the slope was significantly different from zero. Weights were the

total number of genes expressed at each stage. Bonferroni

correction was applied to correct for multiple testing, considering

the 6 ratios tested with mouse EST data (Figure 4A–C; Figure 6;

Figure 7; Figure S2): a= 0.05/6 = 0.0083. To test for an hourglass-

like model, we adjusted a parabola (polynomial model of order 2),

as in Hazkani-Covo et al. [3]. We used an ANOVA to estimate if

the increase in fit to the data (r) between the linear and parabola

models was significant. The same Bonferroni correction was

applied to the ANOVA. This test was never significant, providing

no evidence for a maximum or a minimum of the ratio during

development (Dataset S2).

Zebrafish In Situ Data
In situ hybridization expression data from ZFIN [16] were

retrieved using BGEE [51]. We considered only stages with more

than 1000 genes expressed, starting when maternal genes are

largely degraded (6 hours post-fertilization [48]). We retrieved all

genes with at least one report of expression by in situ

hybridization, at each time point of zebrafish development. From

this set we extracted two groups (for example essential and non-

annotated genes), and analyzed their ratio across development

using the same methodology as with ESTs (see above).

Rate of Protein Evolution
The orthology relationships, and the values of dN (rate of non-

synonymous substitution per codon) and dS (rate of synonymous

substitution per codon) were obtained from Ensembl version 48

[46]. We retrieved zebrafish genes with one-to-one orthologs in

Tetraodon nigroviridis and Takifugu rubripes (divergence time is ,32

MYA between the two pufferfish species and ,150 MYA with

Danio rerio [53]). We downloaded the pairwise dN and dS between

Tetraodon and Takifugu, calculated with codeml from the PAML

package in the Ensembl pipeline (model = 0, NSsites = 0) [54].

Ensembl considers that dS values are saturated when they reach a

threshold which is 2*median(dS). See http://www.ensembl.org/

info/about/docs/compara/homology_method.html for further

details.

We selected a set of 4937 genes having dN, dS and Affymetrix

expression data. Among them 620 genes were strict singletons in

fishes (loss of duplicates after 2R and after the fish-specific genome

duplication). At each time point we performed the Spearman

correlation between the dN/dS ratio and expression, following

Davis et al. [1]. A t-statistic was used to assess if the correlation

coefficient was different from 0.

For the analysis in mouse we retrieved pairwise dN and dS

between human and mouse, for genes with one-to-one human

orthologs (14,333 genes). We kept only the singletons for 2R

genome duplication and separated the 25% with the highest dN/dS

and the 25% with the lowest dN/dS (607 genes in each group). We

then compared the expression across development of these two

groups using EST data. Using the 10% highest and lowest dN/dS

gave similar results (not shown).

Genotypes and Phenotypes
Zebrafish mutants. Data on zebrafish mutants were

retrieved from the Zebrafish Information Network (http://zfin.

org/zf_info/downloads.html, April 2008) [16]. We selected

mutant genotypes having a lethal or abnormal phenotype from

the file ‘‘phenotype.txt’’, paying attention that they were grown in

normal conditions (ZDB-EXP-041102-1). These genotypes were

mapped to ZFIN gene IDs using the file ‘‘genotype_features.txt’’

and then to Affymetrix probesets using Biomart [55]. This resulted

in a dataset of 252 ZFIN IDs associated with a lethal phenotype

(79 Affymetrix probesets), and 2870 ZFIN IDs associated with an

abnormal phenotype (461 probesets). Annotated normal

phenotype data are rare in ZFIN, due to a lack of report of

such mutants in the literature, so we used non-annotated as a

reference (7246 ZFIN gene IDs with expression data).

To be sure that the technique used in the phenotype screen did

not bias our analysis, we separated the dataset of genotypes having

an abnormal phenotype by technique (file ‘‘genotype_fea-

tures.txt’’): inversion, transgenic insertion, deficiency, point

mutation, translocation, insertion, sequence variant or unspecified.

Only transgenic insertions, point mutations and sequence variants

provide enough data, with 343, 221 and 2424 ZFIN IDs

respectively, corresponding to 309, 171 and 88 Affymetrix

probesets respectively (Text S1 and Dataset S1).

Zebrafish morpholinos. The morpholinos knock-down

phenotypes were downloaded from ZFIN (http://zfin.org/

zf_info/downloads.html, April 2008) [16]. We selected

morpholinos (file ‘‘pheno_environment.txt’’) giving lethal or

abnormal phenotypes (file ‘‘phenotype.txt’’), paying attention

that the genotypes were wild type (file ‘‘wildtypes.txt’’). The

probes were mapped to ZFIN gene IDs using the file

‘‘Morpholinos.txt’’ and then to Affymetrix probesets using

Biomart [55]. Only ‘‘abnormal’’ phenotypes provided enough

data, with 601 ZFIN IDs corresponding to 256 Affymetrix

probesets (Text S1 and Dataset S1).

Mouse knock-outs. Data on mouse mutants were retrieved

from the Mouse Genome Database (ftp://ftp.informatics.jax.org/
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pub/reports/index.html, April 2008) [34]. We extracted from the

file MRK_Ensembl_Pheno.rpt all mutant genotypes having an

annotated lethal (lethality-embryonic/perinatal, MP:0005374 and

lethality-postnatal, MP:0005373), abnormal (other phenotypes

detected) or normal phenotype (no phenotype detected,

MP:0002873), and their mapping to Ensembl genes. We filtered

on the technique used and kept only the mutants obtained with a

targeted knock-out. Because different investigators do not report

the same phenotypes for the same genes, we removed from the

analysis all genes annotated to more than one group. We obtained

50 essential Ensembl genes (lethal phenotype), 164 non essential

(normal phenotype), and 1939 whose loss of function is annotated

abnormal (Dataset S2). Including genes annotated to more than

one group, the group sizes were 1659, 564 and 3721 respectively,

and the results were similar (not shown).

Identification of Duplicate Genes
Gene families were obtained from the HomolEns database

version 3 (http://pbil.univ-lyon1.fr/databases/homolens.html),

which is based on Ensembl release 41 [46]. HomolEns is build

on the same model as Hovergen [56], with genes organized in

families, which include pre-calculated alignments and phylogenies.

In HomolEns version 3, alignments are computed with MUSCLE

[57] (with default parameters), and phylogenetic trees with PhyML

[58]. Phylogenies are computed on conserved blocks of the

alignments selected with GBLOCKS [59]. Using the TreePattern

functionality of the FamFetch client for HomolEns, which allows

scanning for gene tree topologies [60], we selected sets of genes

with or without duplications on specific branches of the vertebrate

phylogenetic tree.

Regarding the fish-specific whole genome duplication, we found

1772 Ensembl IDs for duplicates in zebrafish, 8821 for singletons

in zebrafish, 755 mouse orthologs of these duplicates, and 6843

mouse orthologs of these singletons. For the 2R whole genome

duplications, we found 986 duplicates and 1266 singletons in

zebrafish, and 2448 duplicates and 2705 singletons in mouse

(Datasets S1 and S2).

Gene Ontology Analysis
Over and under representation of GO terms [25] was tested by

means of a Fisher exact test, using the Bioconductor package

topGO version 1.8.1 [61]. The reference set was all Ensembl genes

mapped to a probeset of the zebrafish Affymetrix chip. The ‘‘elim’’

algorithm of topGO was used, allowing to decorrelate the graph

structure of the gene ontology, reducing non-independence

problems. A False Discovery Rate correction was applied, and

gene ontology categories with a FDR ,15% were reported.

Tools
R was used for statistical analysis and plotting (http://www.R-

project.org/) [62], in conjunction with Bioconductor packages

(http://www.bioconductor.org/, version 2.2)[45]. To retrieve

genomic information we used the BioMart tool [55] or connected

to the Ensembl MySQL public database [46].

Supporting Information

Figure S1 Expression in zebrafish development of genes

according to retention after vertebrate 2R whole genome

duplications. Median expression profiles of vertebrate specific 2R

duplicates in zebrafish in red dashed line and triangles, and of

singletons in black solid line and circles. Legend as in Figure 2.

Found at: doi:10.1371/journal.pgen.1000311.s001 (0.53 MB TIF)

Figure S2 Variation across mouse development of the ratio of

expressed vertebrate 2R singletons, relative to duplicates. Legend

as in Figure 4.

Found at: doi:10.1371/journal.pgen.1000311.s002 (0.31 MB TIF)

Figure S3 Variation across zebrafish development of the

Spearman correlation between gene sequence evolution and

expression. Only singletons genes (for 2R and fish-specific genome

duplications) were considered. We used the ratio of the rate of

non-synonymous substitutions on the rate of synonymous

substitutions (dN/dS) as a measure of selective pressure. Correla-

tions below the dashed line are significantly different from 0 (p-

value ,0.05). The x-axis is in logarithmic scale. A gray box on the

x-axis indicates the phylotypic period.

Found at: doi:10.1371/journal.pgen.1000311.s003 (0.41 MB TIF)

Figure S4 Expression in zebrafish development of genes with

abnormal mutant phenotypes. Median expression profiles of

zebrafish genes inducing abnormal phenotypes when non

functional, for 4 different techniques, compared to non-annotated

genes in black solid line and circles. The techniques are:

morpholinos in purple dashed-dotted line and squares; transgenic

insertions in green dashed line and triangles; point mutations in

blue dashed line and diamonds; sequence variants in red dotted

line and crosses. Points significantly different from the reference

curve (non annotated genes) are filled. See Figure S5 for

confidence intervals of the difference with the reference curve.

The x-axis is in logarithmic scale. A gray box on the x-axis

indicates the phylotypic period.

Found at: doi:10.1371/journal.pgen.1000311.s004 (0.41 MB TIF)

Figure S5 Significance of the expression difference between

zebrafish genes inducing abnormal phenotypes when non

functional and non-annotated genes for 4 different techniques.

These randomization plots refer to Figure S4. Legend as in

Figure 2B.

Found at: doi:10.1371/journal.pgen.1000311.s005 (1.05 MB TIF)

Table S1 Gene Ontology analysis. The two groups analyzed are

the genes experiencing an increase of expression along develop-

ment (late expression, cluster 4) and the genes experiencing a

decrease of expression (early expression, cluster 3) (Figure 3).

Molecular Function and Biological process ontologies were

analyzed with the ‘‘elim’’ algorithm of the Bioconductor package

topGO (see Methods).

Found at: doi:10.1371/journal.pgen.1000311.s006 (0.02 MB PDF)

Dataset S1 Details and characteristics of zebrafish gene sets

used in this study. FSGD: Fish Specific whole Genome

Duplication.

Found at: doi:10.1371/journal.pgen.1000311.s007 (3.63 MB

XLS)

Dataset S2 Details and characteristics of mouse gene sets used

in this study. FSGD: Fish Specific whole Genome Duplication.

Found at: doi:10.1371/journal.pgen.1000311.s008 (1.51 MB

XLS)

Text S1 Supplementary text.

Found at: doi:10.1371/journal.pgen.1000311.s009 (0.03 MB

DOC)
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