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Abstract

At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability
occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the
instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus,
containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting ‘‘instability elements,’’
and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained
binding sites for CTCF—a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA
conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7
genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat
instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further
destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our
findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the
modulation of genetic repeat instability.
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Introduction

Trinucleotide repeat expansion is the cause of at least 25 inherited

neurological disorders, including Huntington’s disease (HD), fragile

X mental retardation, and myotonic dystrophy (DM1) [1]. One

intriguing aspect of trinucleotide repeat disorders is ‘anticipation’ – a

phenomenon whereby increased disease severity and decreased age-

of-onset are observed as the mutation is transmitted through a

pedigree [2]. In spinocerebellar ataxia type 7 (SCA7), for example,

disease onset in children, who inherit the expanded repeat, averages

20 years earlier than in the affected parent [3]. The basis of the

profound anticipation in SCA7 stems from a significant tendency to

undergo large repeat expansions upon parent-to-child transmission

[4]. Other similarly-sized, disease-linked CAG/CTG repeat tracts do

not exhibit strong anticipation, and are much more stable upon

intergenerational transmission, as occurs at the spinobulbar muscular

atrophy (SBMA) disease locus [5]. Drastic differences in the stability

of CAG/CTG repeats, depending upon the locus at which they

reside, strongly support the existence of cis-acting DNA elements that

modulate repeat instability at certain loci. Furthermore, dramatic

variation in CAG tract instability in tissues from an individual patient,

together with disparities in the timing, pattern, and tissue-selectivity of

somatic instability between CAG/CTG disorders, indicates a role for

epigenetic modification in DNA instability [1,6–9]. While the

existence of cis-elements regulating disease-associated instability is

widely accepted, the identities of cis-elements that define the

mutability of any repeat are still unknown. Proposed cis-elements

that regulate repeat instability include: the sequence of the repeat

tract, the length and purity of the repeat tract, flanking DNA

sequences, surrounding epigenetic environment, replication origin

determinants, trans-factor binding sites, and transcriptional activity

[10–12]. Such cis-elements may enhance or protect against CAG

tract instability.

To identify cis-elements responsible for CAG expansion at the

SCA7 locus, we previously introduced SCA7 CAG-92 repeat

expansions into mice, either on 13.5 kb ataxin-7 genomic
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fragments or on ataxin-7 cDNAs. Comparison of CAG repeat

length change revealed that ataxin-7 genomic context drives

repeat instability with an obvious bias toward expansion, while

SCA7 CAG repeats introduced on ataxin-7 cDNAs were stable

[13]. To localize the cis-acting elements responsible for this

instability tendency, we derived lines of transgenic mice based

upon the original 13.5 kb ataxin-7 genomic fragment, deleting a

large region (,8.3 kb) of human sequence beyond the 39 end of

the CAG tract (a-SCA7-92R construct). As deletion of the 39

region in the a-SCA7-92R transgenic mice significantly stabilized

the CAG-92 tract [13], we hypothesized that cis-elements within

this 39 region modify repeat instability at the SCA7 locus. To

identify cis-acting instability elements at the SCA7 locus and the

trans-acting proteins that regulate them, we evaluated the critical

genomic region 39 to the CAG repeat for sequences that might

regulate genetic instability. In the case of SCA7 and a number of

other highly unstable CAG/CTG repeat loci, including HD,

DM1, SCA2, and dentatorubral-pallidoluysian atrophy, binding

sites for a protein known as CTCF (i.e. the ‘‘CCCTC binding

factor’’) have been found [14]. CTCF is an evolutionarily

conserved zinc-finger DNA binding protein with activity in

chromatin insulation, transcriptional regulation, and genomic

imprinting [15,16]. As CTCF affects higher order chromatin

structure [17,18], we wondered if CTCF binding at the SCA7

locus might regulate CAG repeat instability. To test this

hypothesis, we derived SCA7 genomic fragment transgenic mice

with CTCF binding site mutations, and found that impaired

CTCF binding yielded increases in both intergenerational and

somatic instability at the SCA7 locus. Detection of increased

somatic instability in association with hypermethylation of the

CTCF binding site indicated a role for epigenetic regulation of

SCA7 CAG repeat stability. Our results identify CTCF as an

important modifier of repeat instability in SCA7, and suggest that

CTCF binding may influence repeat instability at other tandem

repeat expansion disease loci.

Results

At the SCA7 locus, there are two CTCF binding sites that flank

the CAG repeat tract; the CTCF-I binding site is located 39 to the

CAG repeat (Figure S1), within the critical region deleted from the

SCA7 genomic fragment in the a-SCA7-92R mice (Figure 1A). As

CTCF binding sites are associated with highly unstable repeat loci

[14], and CTCF binding can alter chromatin structure and DNA

conformation [17,18], we hypothesized that CTCF binding might

be involved in SCA7 repeat instability. To test this hypothesis, we

decided to compare SCA7 CAG repeat instability in mice carrying

either the wild-type CTCF binding site or a mutant CTCF

binding site that would be incapable of binding CTCF. To define

the CTCF binding sites, we performed electrophoretic mobility

shift assays to confirm that CTCF protein specifically binds to the

putative CTCF-I binding site, and we found that both the CTCF

DNA binding domain fragment and full-length CTCF protein

bind to the SCA7 repeat locus 39 region (Figure 1B). When we

mapped the CTCF-I contact regions at the SCA7 repeat locus by

methylation interference and DNA footprinting, we defined a

region that is protected from DNase I treatment upon CTCF

binding and subject to altered CTCF binding upon methylation

treatment (Figure 1C). We then introduced point mutations at 11

nucleotides within this 39 CTCF-I binding site, including eight

contact nucleotides contained within the footprinted region

(Figure 1C; Figure 1A, bottom). After confirming that CTCF

binding was abrogated by these point mutations in electrophoretic

mobility shift assays (Figure 1B), we derived a RL-SCA7 94R

13.5 kb genomic fragment construct, that was identical to our

original RL-SCA7 92R genomic fragment construct [13], except

for: i) the presence of a mutant CTCF-I binding site, and ii) a

minor repeat size increase to 94 CAG repeats. The RL-SCA7 94R

CTCF-I-mutant construct was microinjected, and two indepen-

dent lines of RL-SCA7 94R CTCF-I mutant transgenic mice were

generated (hereafter referred to as the SCA7-CTCF-I-mut line

mice – to distinguish them from the original RL-SCA7-92R

transgenic mice with an intact CTCF-I binding site, hereafter

referred to as the SCA7-CTCF-I-wt line mice).

To assess in vivo occupancy of the CTCF-I binding site in SCA7-

CTCF-I-wt and SCA7-CTCF-I-mut mice, we performed chromatin

immunoprecipitation (ChIP) assays. To distinguish between the

two CTCF binding sites, separated by a distance of 562 bp, we

used two primer sets, including one extending 39 to the CAG

repeat. Quantitative PCR amplification with a primer set (‘A’)

within ,800 bp of the CTCF-I and CTCF-II sites yielded

comparable CTCF occupancy in SCA7-CTCF-I-wt and -mut mice.

As most sheared DNA fragments isolated by ChIP exceed 1 kb,

intact CTCF-II sites and the primer set ‘A’ amplicon will be

present in sheared DNA fragments isolated by ChIP from SCA7-

CTCF-I-wt and -mut mice, accounting for comparable CTCF

occupancy with primer set A. However, a significant reduction in

CTCF occupancy at the CTCF-I site was observed in the SCA7-

CTCF-I-mut mice for primer set B, which is closer to the CTCF-I

binding site (at a distance of ,700 bp) than the CTCF-II binding

site (at a distance of ,1,200 bp, thereby exceeding the size of most

sheared DNA fragments isolated by ChIP) (Figure 1D; p = 0.02,

one-way ANOVA). Thus, ChIP analysis indicated that in vivo

CTCF-I occupancy is significantly diminished in the cerebellum of

SCA7-CTCF-I-mut mice.

We assessed intergenerational repeat length instability in 3

month-old SCA7-CTCF-I-wt and SCA7-CTCF-I-mut mice by PCR

amplification of the CAG repeat from tail DNAs, and found that

mutation of the CTCF-I site destabilized the CAG repeat during

intergenerational transmission (p = 0.002, Mann-Whitney two-

Author Summary

The human genome contains many repetitive sequences.
In 1991, we discovered that excessive lengthening of a
three-nucleotide (trinucleotide) repeat sequence could
cause a human genetic disease. We now know that this
unique type of genetic mutation, known as a ‘‘repeat
expansion,’’ occurs in at least 25 different diseases,
including inherited neurological disorders such as the
fragile X syndrome of mental retardation, myotonic
muscular dystrophy, and Huntington’s disease. An inter-
esting feature of repeat expansion mutations is that they
are genetically unstable, meaning that the repeat expan-
sion changes in length when transmitted from parent to
offspring. Thus, expanded repeats violate one major tenet
of genetics—i.e., that any given sequence has a low
likelihood for mutation. For expanded repeats, the
likelihood of further mutation approaches 100%. Under-
standing why expanded repeats are so mutable has been a
challenging problem for genetics research. In this study,
we implicate the CTCF protein in the repeat expansion
process by showing that mutation of a CTCF binding site,
next to an expanded repeat sequence, increases genetic
instability in mice. CTCF is an important regulatory factor
that controls the expression of genes. As binding sites for
CTCF are associated with many repeat sequences, CTCF
may play a role in regulating genetic instability in various
repeat diseases—not just the one we studied.

CTCF Regulates Repeat Instability
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tailed test) (Figure 2A). Increased intergenerational instability in

the SCA7-CTCF-I-mut mice was reflected by a broader range of

repeat length change, as mean expansion and deletion sizes were

greater for SCA7-CTCF-I-mut mice in comparison to SCA7-CTCF-

I-wt mice (+4.4 CAG’s/24.7 CAG’s vs. +2.6 CAG’s/22.0

CAG’s). Analysis of repeat length instability between the two

SCA7-CTCF-I-mut lines revealed similar intergenerational repeat

instability (p = 0.93, chi-square), and there was no difference in

expansion bias between the two lines (p = 0.25, chi-square). Thus,

the SCA7-CTCF-I-mut mice did not show integration site effects,

suggesting that increased instability in the two lineages results from

altered CTCF binding. We then assessed germ line repeat

instability by small-pool PCR of individual alleles in sperm DNAs

from mice at age 2 months and 16 months (Figure 2B–C). As the

mice aged, the CAG repeat in SCA7-CTCF-I-mut mice became

increasingly unstable (p = 0.009, Mann-Whitney two-tailed test), as

mean expansion and deletion sizes were significantly greater for 16

month-old SCA7-CTCF-I-mut mice in comparison to SCA7-CTCF-

I-wt mice (+24.3 CAG’s/215.5 CAG’s (mut) vs. +9.2 CAG’s/

21.0 CAG (wt)). Increasing CAG repeat instability with aging in

SCA7-CTCF-I-mut mice suggests a role for CTCF in DNA

instability during spermatogenesis, or for the male germ line-

restricted CTCF-like paralogue (CTCFL), also known as brother

of the regulator of imprinted sites, or ‘BORIS’ [19]. A potential

role for CTCFL/BORIS in male germ line instability in the SCA7-

CTCF-I-mut mice is plausible, as mutation of the SCA7-CTCF-I

site also prevented binding of CTCFL/BORIS in electrophoretic

mobility shift assays (Figure S2).

Another intriguing feature of repeat instability is variation in

repeat size within and between the tissues of an individual

Figure 1. Analysis and mutagenesis of the SCA7-CTCF-I binding site. (A) SCA7 genomic fragments used for transgenesis. Upper: SCA7-CTCF-I-
wt; Middle: a-SCA7 39 genomic deletion; Bottom: SCA7-CTCF-I-mut. Core CCCTC sequences are underlined, and sequence alterations in the SCA7-
CTCF-I-mut transgenic construct are shown in gray. (B) Electrophoretic mobility shift assays with SCA7-CTCF-I-wt and -mut probe fragments were
performed with probe only, empty lysate (no protein), full-length CTCF protein with pre-immune anti-CTCF sera (CTCF+pI), CTCF protein with anti-
CTCF sera (CTCF+a-CTCF), or the 11 zinc-finger DNA binding domain region of CTCF. Arrows indicate shifted CTCF-DNA complexes. Addition of CTCF-
DM1 probe as cold competitor prevented CTCF-DNA complex formation for SCA7-CTCF-I-wt fragment, while non-specific cold competitor did not
(data not shown). (C) Methylation interference (Me I) and DNase I footprinting (DNase) on SCA7-CTCF-I fragment. Left and right panels correspond to
the 59-end labeled coding and anti-sense strands respectively. B, CTCF-bound DNA; F, free DNA; long bars, CTCF-protected from DNase I; arrows,
DNase I hypersensitive sites created by CTCF binding; filled circles, contact guanine nucleotides essential for sequence recognition by CTCF. See panel
‘A’ for precise location of sites. (D) ChIP on cerebellar lysates from SCA7-CTCF-I-wt and -mut mice (n = 3/genotype). Significantly decreased occupancy
at the CTCF-I site was detected with the 39 amplicon (primer set B) in SCA7-CTCF-I-mut mice (p = 0.02, one-way ANOVA), as this amplicon is not in
close proximity to the 59 CTCF-II site. No differences in CTCF occupancy between SCA7-CTCF-I-wt and -mut mice were detected with primer set A (or
other adjacent primer sets; data not shown) due to the close proximity of the two CTCF binding sites. Results are normalized to SCA7-CTCF-I-wt. Error
bars are s.d.
doi:10.1371/journal.pgen.1000257.g001
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Figure 2. SCA7-CTCF-I-mut mice display increased germ line instability. (A) Comparison of CAG repeat instability in parent-offspring
transmissions for SCA7-CTCF-I mice. Repeat lengths are plotted as % of total alleles scored for 53 SCA7-CTCF-I-wt and 95 SCA7-CTCF-I-mut mice. The
repeat size range in the SCA7-CTCF-I-mut mice was significantly different from the distribution of repeat alleles in the SCA7-CTCF-I-wt mice (p = 0.002;
Mann-Whitney two-tailed test). (B) Small-pool PCR of sperm DNAs in 16 month-old SCA7 transgenic mice. SCA7-CTCF-I-wt mice typically exhibited
small repeat length changes, while SCA7-CTCF-I-mut mice displayed pronounced instability. (C) Compilation of small-pool PCR data. At 2 months of
age, only modest instability was noted. At 16 months of age, SCA7-CTCF-I-wt mice displayed moderate instability, but SCA7-CTCF-I-mut mice exhibited
significantly greater instability (p = 0.009; Mann-Whitney two-tailed test).
doi:10.1371/journal.pgen.1000257.g002
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organism. This tissue-specific instability, or ‘‘somatic mosaicism’’,

occurs in human patients with repeat diseases, and in mouse

models of repeat instability and disease [1,8,11]. While shown to

be age-dependent, the mechanistic basis of inter-tissue variation,

which even occurs in postmitotic neurons [20], is unknown. To

determine if somatic CAG mosaicism at the SCA7 locus involves

CTCF binding, we surveyed repeat instability in various tissues

from SCA7-CTCF-I-wt and SCA7-CTCF-I-mut mice. At two

months of age, the SCA7 CAG repeat was remarkably stable in

all analyzed tissues (Figure 3A). However, by ,10 months of age,

SCA7-CTCF-I-wt and SCA7-CTCF-I-mut mice displayed large

CAG repeat expansions in the cortex and liver (Figure 3B). The

liver also exhibited a bimodal distribution of repeat size (i.e. two

populations of cells with distinct tract lengths) (Figure 3B). The

most pronounced somatic instability differences existed in the

kidney, with large expansions for SCA7-CTCF-I-mut mice, but

stable repeats in the SCA7-CTCF-I-wt mice (Figure 3B). This

pattern of increased kidney and liver repeat instability was present

in both SCA7-CTCF-I-mut transgenic lines (Figure 3B; Figure S3).

Indeed, comparable somatic instability was also detected in both

SCA7-CTCF-I-mut transgenic lines at five months of age (Figure

S4). When we closely examined repeat instability in the cortex by

small-pool PCR, we observed significantly different repeat sizes

(p = 8.661025, Mann-Whitney), with a range of 39 to 152 CAG

repeats in SCA7-CTCF-I-wt mice and 26 to 245 CAG repeats in

SCA7-CTCF-I-mut mice (Figure 3C; Table 1). The increased

somatic instability occurred in both SCA7-CTCF-I-mut transgenic

lines, as an expansion bias was apparent in both lineages upon

small-pool PCR analysis (Figure 3D; Table 1). These findings

suggest that CTCF binding stabilizes the SCA7 CAG repeat in

certain tissues. Thus, as noted for the germ line and documented

for two independent lines of SCA7-CTCF-I-mut transgenic mice,

SCA7 somatic CAG instability is dependent upon age and the

presence of intact CTCF binding sites.

CTCF binding can be regulated by CpG methylation, as

methylation at CTCF recognition sites abrogates binding [16].

This finding was confirmed for un-methylated and methylated

versions of the SCA7 CTCF-I recognition site (Figure 4A; Figure

S5). Highly variable levels of instability have been documented in

the kidneys of transgenic repeat instability mouse models [21,22],

although the reasons for pronounced instability in this tissue are

unknown. Interestingly, one mouse with a wild-type CTCF-I

binding site (SCA7-CTCF-I-wt) displayed marked CAG repeat

instability in its kidney DNA (Figure 4B), paralleling the

considerable instability observed in the SCA7-CTCF-I-mut mice

(Figure 3B). Bisulfite sequencing of kidney DNA from this SCA7-

CTCF-I-wt mouse revealed high levels of CpG methylation at the

wild-type CTCF-I binding site, including the central CTCF

contact site (Figure S6); whereas methylation was not observed in

kidney DNAs from 14 other SCA7-CTCF-I-wt mice that displayed

only modest levels of CAG instability (Figure 4C). The high levels

of CAG instability and the CpG methylation in this mouse were

restricted to the kidney, as the cerebellum and tail DNAs of the

same mouse, which showed limited CAG instability (Figure 4B),

were completely unmethylated (Figure 4C). This finding suggests a

direct link between methylation status of the CTCF binding site

and CAG repeat instability. Of all the tissues analyzed from SCA7-

CTCF-I-wt mice, liver exhibits the greatest amount of somatic

mosaisicm, with the largest repeat expansions (Figure 3B). We

hypothesized that the high levels of CAG repeat instability in the

liver of SCA7-CTCF-I-wt mice might result from methylation of

the CTCF-I binding site. To address this question, we performed

bisulfite sequencing analysis of liver DNAs from SCA7-CTCF-I-wt

mice, and documented moderately high levels of methylation at

the CTCF-I binding site (Figure 4D; Figure S7). These results

indicate a correlation between CpG methylation and CAG repeat

instability. Thus, in SCA7 transgenic mice, decreased CTCF

binding, either by CpG methylation or mutagenesis of the CTCF-I

binding site, enhanced CAG repeat instability.

Discussion

We have identified a CTCF binding site as the first cis-element

regulating CAG tract instability at a disease locus. Furthermore,

binding of the trans-factor CTCF to this cis-element influences

CAG instability, and this interaction is epigenetically regulated. At

the SCA7 locus and four other CAG/CTG repeat loci known to

display pronounced anticipation, functional CTCF binding sites

occur immediately adjacent to the repeats, and CTCF binding can

affect DNA structure and chromatin packaging at such loci, and

elsewhere [14,23–26]. Although an interplay between GC-

content, CpG islands, epigenetic modification, chromatin struc-

ture, repeat length, and unusual DNA conformation has long been

postulated to underlie trinucleotide repeat instability [11,27–29],

the mechanistic basis of this process is ill-defined. CTCF insulator

and genomic imprinting functions are subject to epigenetic

regulation, as methylation status is a key determinant of CTCF

action at certain ‘‘differentially methylated domains’’ and

methylation changes at CTCF binding sites are linked to

oncogenic transformation [16,18]. At the SCA7 locus, methylation

status of the CTCF-I binding site may be similarly important for

its ability to tamp down repeat instability, as hypermethylation of

the CTCF-I site was associated with a dramatic enhancement of

somatic instability in the SCA7 genomic fragment transgenic

mouse model. Thus, inability to bind CTCF at sites adjacent to

CAG tracts, because of binding site mutation or CpG methylation

in the case of the SCA7-CTCF-I site, can promote further

expansion of disease-length CAG repeat alleles (Figure 5).

In both human patients and transgenic mice with expanded

repeat tracts, the repeat displays high levels of instability. The

flanking sequence has been thought to contain elements that may

protect or enhance repeat instability. Our results show that CTCF

binding is a stabilizing force at the SCA7 repeat locus, suppressing

expansion of the CAG repeat in the germ line and soma.

Interestingly, deletion of ,8.3 kb of 39 genomic sequence in our

previous SCA7 transgenic mouse, including the CTCF-I site,

stabilized the repeat [13]. The CAG-92 stabilization, arising from

the ,8.3 kb 39 genomic fragment deletion, suggests the existence of

positive cis-regulators that were ‘‘driving’’ CAG instability. One

such element could be a replication initiation site that was mapped

within the genomic region 39 to the CTCF-I binding site at the

SCA7 locus [30]. Hence, the 8.3 kb 39 deletion could grossly alter

the chromatin organization of the adjacent repeat, and would likely

ablate replication origin activity, stabilizing the CAG repeat tract.

However, this ,8.3 kb genomic region likely also contained

negative cis-regulators of CAG repeat instability, whose dampening

effects would not be apparent due to the coincident loss of instability

drivers. Our results indicate that CTCF binding negatively regulates

expanded CAG repeat instability at the SCA7 locus. CTCF

regulation of repeat instability potential is consistent with its many

roles in modulating DNA structure. CTCF can mediate long-range

chromatin interactions and can co-localize physically distant

genomic regions into discrete sub-nuclear domains [17,18]. CTCF

insulates heterochromatin and silenced genes from transcriptionally

active genes, as CTCF binding sites occur at transition zones

between X-inactivation regions and genes that escape from X-

inactivation [24]. CTCF has been implicated in genomic

imprinting, although recent studies indicate that such transcription

CTCF Regulates Repeat Instability
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Figure 3. SCA7-CTCF-I-mut mice display increased somatic instability. (A) At 2 months of age, the SCA7 CAG repeat is stable in the SCA7-
CTCF-I-wt line and in both SCA7-CTCF-I-mut lines. (B) With advancing age, tissue-specific instability is seen in SCA7-CTCF-I-wt mice; however, this
tissue-specific instability is much more pronounced in SCA7-CTCF-I-mut mice. Results for individuals from the two different SCA7-CTCF-I-mut mice are
shown here. (C) To permit quantification of somatic instability, we performed small-pool PCR on tissue DNA samples from SCA7-CTCF-I-wt and SCA7-
CTCF-I-mut mice. As shown here for cortex, SCA7-CTCF-I-mut mice displayed significantly greater instability than SCA7-CTCF-I-wt mice (p = 8.661025,
Mann-Whitney two-tailed test). See Table 1 for a compiled list of repeat alleles. (D) Histogram of repeat length variation in the cortex of SCA7-CTCF-I-
wt and SCA7-CTCF-I-mut mice. SCA7-CTCF-I-mut mice exhibit significantly greater instability than SCA7-CTCF-I-wt mice, and this expansion tendency
exceeds that of SCA7-CTCF-I-wt mice, even when 2.5 months younger (p = 0.0003, Mann-Whitney two-tailed test). With advancing age, the expansion
bias between the SCA7-CTCF-I-mut and -wt mice becomes more pronounced (p,.0001, Mann-Whitney two-tailed test). Results for individuals from
the two different SCA7-CTCF-I-mut mice are shown here.
doi:10.1371/journal.pgen.1000257.g003
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insulator events may involve the coordinated action of CTCF with

cohesin [31–33]. CTCF binding at the DM1 locus sequesters

repeat-driven heterochromatin formation to the immediate repeat

region, while repeat expansion-induced loss of CTCF binding may

permit spreading of heterochromatin to adjacent genes, accounting

for the mental retardation phenotype in congenital DM1 [23]. As

DNA structural conformation and transcription activity are two

highly intertwined processes that appear fundamental to the

instability of expanded tandem repeats [10,11], CTCF appears a

likely candidate for modulation of trinucleotide repeat instability.

At the SCA7 locus, a pronounced tendency for repeat

expansion has been associated with transmission through the

male germ line [3,4,34]. Although we have hypothesized that

CTCF is principally responsible for modulating SCA7 CAG

repeat instability both in the germ line and in the soma, we

considered a possible role for the related CTCF-like factor

BORIS. BORIS and CTCF share identical 11 zinc-finger

domains for DNA binding [19]; hence, both CTCF and BORIS

can bind to the CTCF binding sites at the SCA7 locus. Upon

mutation or methylation of the CTCF binding site 39 to the SCA7

CAG repeat, neither CTCF nor BORIS can bind (Figure 1C;

Figure 4A; Figure S8). As BORIS can bind to the H19

differentially methylated domain even when it is methylated

[35], our results suggest that the methylation dependence of

BORIS binding is locus specific. BORIS and CTCF expression

patterns overlap very little, if at all, and in the male germ line,

BORIS appears restricted to primary spermatocytes, while CTCF

occurs almost exclusively in post-meiotic cells, such as round

spermatids [19]. Interestingly, neither BORIS nor CTCF could be

detected by immunostaining proliferating spermatogonia. In

human HD patients and transgenic mouse models of CTG/

CAG instability, large repeat expansions have been documented in

spermatogonia, but not in post-meiotic spermatids or spermatozoa

[36–39]. Thus, absence or low levels of BORIS or CTCF in

spermatogonia — the cells in which the largest and most frequent

repeat expansions occur — may contribute to the paternal parent-

of-origin expansion bias common to most CAG/CTG repeat

diseases. In spermatocytes, BORIS may stabilize expanded CAG

repeats, just as CTCF binding appears to promote repeat stability

in somatic tissues. Thus, in the SCA7-CTCF-I-mut mice, abrogated

binding of BORIS may contribute to increased repeat instability

and expansion bias in the male germ line.

Our findings suggest that CTCF is a trans-acting factor that

specifically interacts in a methylation-dependent manner with the

adjacent cis-environment to prevent hyper-expansion of disease

length CAG repeats. In a Drosophila model of polyglutamine repeat

disease, expression of the mutant gene product modulated repeat

instability by altering transcription and repair pathways [10].

Similarly, uninterrupted repeat sequences, and in particular, runs

of CG-rich trinucleotide repeats, can affect replication machinery,

DNA repair pathways, and nucleosome positioning, though in cis,

by altering the structure and conformation of the DNA regions

within which they reside [40,41]. Association of adjacent CTCF

binding sites with repeat loci is a common feature of unstable

microsatellite repeats [14]. We propose that acquisition of CTCF

binding sites at mutational hot spots represents an evolutionary

strategy for insulating noxious DNA sequences [42], and our

findings indicate that CTCF binding site utilization at a

mutational hot spot is subject to epigenetic regulation. We thus

envision a predominant role for CTCF in modulating genetic

instability at DNA regions containing variably-sized repeats,

unstable sequence motifs, or other repetitive sequence elements.

Materials and Methods

Generation of SCA-CTCF-I-mut Transgenic Mice
To derive the SCA7-CTCF-I-mut transgenic construct, we

synthesized a PCR primer with randomly mutated nucleotides

introduced at the CTCF-I contact sites for recombineering into

the RL-SCA7-92R (SCA7-CTCF-I-wt) construct [13], and then

confirmed loss of CTCF binding by the mutated fragment by

electrophoretic mobility shift assay (protocol provided below).

Using a standard recombineering approach [43], we PCR-

generated a SCA7-CTCF-I targeting cassette containing a Chlor-

Table 1. Repeat sizes of cortex DNA: CAG tract length - Small-
pool PCR.

SCA7-CTCF-I-wt SCA7-CTCF-I-mut SCA7-CTCF-I-mut SCA7-CTCF-I-mut

(10.5 months) (2 months) (8 months) * (12 months) *

39 98 91 103 2 109 26

78 98 91 103 75 109 36

83 101 91 110 79 109 111

83 101 91 130 90 109 119

83 104 92 90 112 129

83 104 92 91 112 129

86 107 95 95 112 134

86 107 95 95 112 134

86 107 95 96 112 134

86 111 95 96 112 140

86 114 95 96 116 144

86 114 96 96 118 144

86 114 96 96 118 145

86 117 96 96 120 145

89 117 96 99 120 148

92 117 96 100 120 150

92 117 96 100 120 152

92 121 96 100 120 154

92 121 96 100 122 158

92 121 96 103 125 160

95 121 98 103 125 162

95 124 98 103 125 165

95 128 98 103 129 165

95 136 98 103 131 172

95 136 99 103 131 177

95 136 99 103 131 177

95 139 99 104 138 199

95 144 99 104 152 245

95 152 99 104 155

95 101 104 176

95 101 104

95 101 107

95 103 107

95 103 107

98 103 107

98 103 107

*Results for individuals from the two different SCA7-CTCF-I-mut lines are shown
here.

doi:10.1371/journal.pgen.1000257.t001
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amphenicol resistance gene and Cla I restriction site flanked by

SCA7-CTCF-I region sequences with the following primer set:

hSCA7-wt-CAM-F, 59-tcccccctgcccccctcctgtatcgatgtttaagggcac-

caataactgc-39 & hSCA7-mut-CAM-R, 59-catctctgcccctcgatttt-
tatcgatatcgataatgatgagcacttttcgaccg-39. After recombineering

the SCA7-CTCF-I-mut targeting cassette into the SCA7-CTCF

genomic fragment carried on a plasmid, selection, and PCR

screening, we deleted the Chloramphenicol gene by Cla I digestion

and ligation. We verified the sequence of the SCA7-CTCF-I-mut

construct prior to linearization with Sal I – Spe I digestion, gel

purification, and microinjection into C57BL/6J6C3H/HeJ oo-

cytes. Transgene-positive founders were backcrossed onto the

C57BL/6J background for more than 12 generations to yield

incipient congenic mice before repeat instability analysis com-

menced. All experiments and animal care were performed in

accordance with the University of Washington IACUC guidelines.

Figure 4. Epigenetic regulation of CTCF binding modulates instability at the SCA7 locus. (A) CpG methylation prevents binding of CTCF
to SCA7-CTCF-I site. Electrophoretic mobility shift assays with un-methylated (control) or methylated SCA7-CTCF-I fragments, using CTCF with no
antisera (CTCF), CTCF with anti-CTCF antisera (CTCF+a-CTCF), or CTCF with pre-immune sera (CTCF+pI). Arrow indicates CTCF-bound probe. (B)
Prominent somatic instability in kidney DNA (black arrowheads) from a SCA7-CTCF-I-wt mouse with CTCF-I site methylation (SCA7-CTCF-I-wt*)
contrasts with somatic stability in SCA7-CTCF-I-wt mice with un-methylated CTCF-I sites. Note that SCA7-CTCF-I-wt lines display bimodal CAG repeat
alleles. Prominent somatic instability is apparent in kidney DNA (gray arrowhead) from a SCA7-CTCF-I-mut mouse. All mice were 6 months of age. (C)
Kidney DNAs from the SCA7-CTCF-I-wt* mouse are highly methylated. Circles, CpG dyads; open circles, unmethylated; filled circles; methylated. Box
highlights core CTCF binding site contact residue, based upon footprinting analysis. Diagrammed epigenotypes summarize results for five SCA7-
CTCF-I-wt mice, eight SCA7-CTCF-I-mut mice, and the SCA7-CTCF-I-wt* mouse, and were consistent for at least 75% of all sequenced clones
(n = 10212/sample). (D) Liver DNAs from control SCA7-CTCF-I-wt mice are methylated. Bisulfite sequencing of the SCA7-CTCF-I region was performed
upon liver DNAs from three SCA7-CTCF-I-wt mice at one year of age (n = 17 clones/mouse), and CpG methylation determined for the 13 CpG dyads in
the SCA7-CTCF-I region. A number of CpG dyads, including the CpG-4 CTCF contact site, exhibit moderate to high levels of methylation.
doi:10.1371/journal.pgen.1000257.g004
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Electrophoretic Mobility Shift Assays
We amplified a 161 bp DNA fragment (SCA7-CTCF-I) from the

SCA7 locus with primers (59-ctccccccttcaccccctcgagac-39 & 59-

gtgacgcacactcacgcacgcacgg-39) labeled at their 59 ends by c-32P-

ATP. We gel-purified the 59 end-labeled fragment, and used it for

electrophoretic mobility shift assays, with in vitro translated

proteins, as previously described [14]. We synthesized the

CTCF-11 zinc finger (ZF) DNA binding domain, full length

CTCF and full length CTCFL/BORIS proteins using the pCITE-

11ZF, pCITE-7.1, and pCITE-BORIS expression constructs

[14,19,44], with the TnT reticulocyte lysate coupled in vitro

transcription-translation system (Promega). For ‘‘super-shifts’’, we

used an anti-CTCF antibody (Upstate Biotechnology) or anti-

BORIS antibody [19,44]. We methylated the end-labeled SCA7-

CTCF-I fragment with Sss I methyl-transferase (New England

Biolabs) in the presence of 0.8 mM S-adenosylmethionine. We

confirmed the methylation status by restriction enzyme digestion

with Nru I, and used unmethylated fragment as a control [14].

DNase I Footprinting and Methlyation Interference
Analysis

We PCR-amplified the SCA7-CTCF-I fragment and labeled it at

the 59 end on either the coding or anti-sense strand, incubated the

purified probes with CTCF and then partially digested them with

DNase I, or partially methylated them at guanine residues with

dimethyl sulfate, and then incubated them with CTCF. Details of

these protocols, as well as our methods for isolation and analysis of

free probe DNA fragments on sequencing gels, have been

described [14].

DNA Methylation Sequencing
Bisulfite treatment of tissue DNAs was done as previously

described [45], and PCR primers spanning the SCA7-CTCF-I

region were designed so that they excluded CpG dinucleotides

within the binding region. PCR products were then cloned into a

Topo TA vector and sequenced. Sequencing of positive control

samples, treated with Sss I to methylate all cytosines in CpG dyads,

were included in every run, and revealed lack of C to T conversion

at all CpG dyads in all control samples analyzed.

Chromatin Immunoprecipitation (ChIP)
We prepared tissues, cross-linked proteins to DNA, and

processed tissue samples essentially as we have done previously

[46]. However, we doubled the length of the sonication step, and,

prior to immunoprecipitation, we fractionated supernatant DNAs

on agarose gels to gauge the extent of shearing. After confirming

that the bulk of sheared DNAs migrated in the 500–1,000 bp

range, we performed immunoprecipitation with an anti-CTCF

antibody (Upstate Biotechnology), as described [14]. DNAs were

isolated and then subjected to real-time qPCR analysis with

different SCA7 genomic region primer and probe sets (available

upon request) on an ABI-7700 sequence detection system. For

each CTCF ChIP sample, we normalized SCA7 locus occupancy

to a control region of the Myc locus lacking CTCF binding sites

[14]. All primer and probe sequence sets are available upon

request.

Repeat Instability Analysis
We PCR-amplified the SCA7 CAG repeat from genomic DNA

samples in the presence of 0.1mCi of a-32P-ATP, and resolved the

radiolabeled PCR products on 1.8% agarose gels [13]. For small-

pool PCR, dilution of genomic DNA’s, yielding 1–5 genome

equivalents, was performed prior to amplification and sizing [4].

In all experiments, at least three mice/genotype, or three samples/

time point, were analyzed. All primer sequences are available

upon request.

Supporting Information

Figure S1 Sequence of the SCA7-CTCF region. Primary

sequence for the 39 end of intron 2, all of exon 3, and the 59

end of intron 3 are shown. Intron sequence is lowercase; exon

sequence is uppercase. CTCF binding sites are shown in blue.

Note that the CTCF-I binding site is located in intron 3, while the

CTCF-II binding site encompasses intron 2 - exon 3 boundary.

Start site of translation is underlined in blue, and CAG repeat is

shown in red. Mapped contact regions from methylation

interference and DNase I footprinting analysis are indicated by

filled circles, and DNase I hypersensitivity sites are marked by

arrows (see Figure 1C). The primer sequences for generation of the

probe fragment for all electrophoretic mobility shift assays are

underlined in black.

Found at: doi:10.1371/journal.pgen.1000257.s001 (0.02 MB PDF)

Figure S2 Mutation of SCA7-CTCF-I site also abrogates

binding by BORIS. Electrophoretic mobility shift assays with

SCA7-CTCF-I-wt and -mut probe fragments were performed with

probe only, the 11 zinc-finger DNA binding domain region of

Figure 5. Model for CTCF regulation of CAG repeat instability. Non-expanded CAG repeat is stable, as CTCF is bound to adjacent site. Upon
repeat expansion, chromatin environment and DNA structure of repeat region is altered, permitting instability. Loss of CTCF binding at adjacent CTCF
binding site, either by CpG methylation or CTCF binding site mutation, further promotes repeat instability.
doi:10.1371/journal.pgen.1000257.g005
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CTCF, full-length CTCF protein, full-length BORIS protein,

BORIS protein with anti-BORIS sera (BORIS+a-BORIS), or

BORIS with pre-immune anti-BORIS sera (BORIS+pI). Arrows

indicate shifted CTCF-DNA complexes, shifted BORIS-DNA

complexes, and super-shifted BORIS-DNA complexes. Addition

of CTCF-DM1 probe as cold competitor prevented CTCF-DNA

and BORIS-DNA complex formation for the SCA7-CTCF-I-wt

fragment, while non-specific cold competitor did not (data not

shown).

Found at: doi:10.1371/journal.pgen.1000257.s002 (0.06 MB PDF)

Figure S3 Increased somatic instability in both SCA7-CTCF-I-

mut transgenic lines. Here, we see representative results for PCR

analysis of somatic repeat instability for aged individuals from each

of the two SCA7-CTCF-I-mut transgenic lines analyzed in this

study. Note that comparable patterns of increased somatic

mosaicism are observed in each lineage.

Found at: doi:10.1371/journal.pgen.1000257.s003 (0.73 MB PDF)

Figure S4 Comparable somatic mosaicism in both SCA7-CTCF-

I-mut transgenic lines. Here, we see representative images for PCR

analysis of somatic repeat instability for 5 month-old individuals

from each of the two SCA7-CTCF-I-mut transgenic lines analyzed

in this study. Note that comparable patterns of increased somatic

mosaicism are again observed at this earlier point.

Found at: doi:10.1371/journal.pgen.1000257.s004 (0.66 MB PDF)

Figure S5 Methylation of SCA7-CTCF-I-wt probe fragment for

gel shift analysis. Sss I was used to methylate cytosine residues in

CpG dyads in the SCA7-CTCF-I-wt probe fragment. Digestion of

control (unmethylated) and Sss I-methylated probe fragments with

the methylation-sensitive restriction enzyme Nru I revealed

complete methylation of Sss I-treated SCA7-CTCF-I-wt probe

fragment.

Found at: doi:10.1371/journal.pgen.1000257.s005 (0.79 MB PDF)

Figure S6 Amplicon for bisulfite sequencing for epigenotype

determination. PCR amplification of bisulfite-converted genomic

DNA for the fragment shown here was performed to derive CpG

methylation status at the SCA7-CTCF-I binding site in murine

tissues. Intron sequence is lowercase; exon sequence is uppercase.

The SCA7-CTCF-I binding site is shown in blue. The thirteen CpG

dyads included in the epigenotyping are shown, and the dyad with

filled circles corresponds to a critical CTCF contact site, based

upon footprinting analysis (see Figure 1C).

Found at: doi:10.1371/journal.pgen.1000257.s006 (0.03 MB PDF)

Figure S7 Epigenotype data for bisulfite sequencing analysis of

the CTCF-I binding site region in SCA7-CTCF-I-wt transgenic

liver. Results of bisulfite sequencing analysis for liver DNAs

obtained from three SCA7-CTCF-I-wt transgenic mice reveal

moderate to high levels of CpG methylation in this tissue,

especially when compared to the completely un-methylated status

of CpG dyads observed in all tail DNAs and kidney DNAs, with

one exception.

Found at: doi:10.1371/journal.pgen.1000257.s007 (0.53 MB PDF)

Figure S8 Methylation of the SCA7-CTCF-I site abrogates

binding of BORIS as well as CTCF. Gel retardation assays with

unmethylated or Sss I-methylated SCA7-CTCF-I-wt probe frag-

ments were performed with probe only, the 11 zinc-finger DNA

binding domain region of CTCF, CTCF with pre-immune anti-

CTCF sera (CTCF+pI), CTCF protein with anti-CTCF sera

(CTCF+a-CTCF), BORIS with pre-immune anti-BORIS sera

(BORIS+pI), or BORIS protein with anti-BORIS sera (BORIS+a-

BORIS). Arrows indicate shifted CTCF-DNA complexes and

shifted BORIS-DNA complexes. Methylation of the SCA7-

CTCF-I probe fragment abrogates all binding. Success of Sss I

methylation was confirmed by Nru I restriction digestion (see

Figure S5).

Found at: doi:10.1371/journal.pgen.1000257.s008 (2.87 MB PDF)
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