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ABSTRACT

T he epigenetic events that occur during the
development of the mammalian embryo are essential
for correct gene expression and cell-lineage

determination. Imprinted genes are expressed from only one
parental allele due to differential epigenetic marks that are
established during gametogenesis. Several theories have been
proposed to explain the role that genomic imprinting has
played over the course of mammalian evolution, but at
present it is not clear if a single hypothesis can fully account
for the diversity of roles that imprinted genes play. In this
review, we discuss efforts to define the extent of imprinting in
the mouse genome, and suggest that different imprinted loci
may have been wrought by distinct evolutionary forces. We
focus on a group of small imprinted domains, which consist
of paternally expressed genes embedded within introns of
multiexonic transcripts, to discuss the evolution of
imprinting at these loci.

Introduction

The process of sexual reproduction dictates that mammals
inherit two copies of every gene, one from the mother and
one from the father. At most loci, both alleles are actively
transcribed and functionally equivalent. Imprinted genes
represent an exception to this rule, as the transcriptional
activity of each allele is determined by the gender of the
parental germ line to which it was most recently exposed.
This parental legacy is initiated by epigenetic modifications
such as DNA methylation, which is established in the parental
germ line and maintained throughout somatic development
in the offspring. Individual germ-line marks can control the
allele-specific silencing or activation of multiple
neighbouring genes, which leads in many instances to clusters
of imprinted transcripts. Such loci represent an attractive
paradigm for the study of epigenetic transcriptional
regulation, as both the active and silent allele are present in
the same cell nucleus, and therefore potentially exposed to
the same trans-acting regulatory factors. Epigenetic
abnormalities at imprinted loci have been observed in cloned
mammals [1], and their disruption has been reported in a
number of human developmental disorders and cancers [2].

Defining the Extent of Imprinting

Since the identification of the first autosomal imprinted
genes in the early 1990s [3–5], much speculation has
surrounded the question of how many exist. Attempts to
count the exact number have been complicated by difficulties
in defining exactly what constitutes a gene, as in several cases
multiple functional components are derived from a single
core of genetic information [6]. A recent census identified 96

imprinted functional components (54 maternally expressed,
42 paternally expressed) arising from 71 transcriptional units
[7], and the relevant literature is summarised on the Harwell
and University of Otago online databases [8,9].
A number of different approaches have been employed to

define the extent of imprinting in the mouse genome. Mouse
stocks carrying translocation chromosomes were used to
define chromosomal regions that show parent-of-origin
effects on phenotype when uniparentally inherited, and at
least 13 distinct regions on eight chromosomes have been
identified by this approach (C. V. Beechey, personal
communication; [8]). The phenotypes range from early
embryonic lethality to postnatal effects on growth and
development, and are likely to result from the misexpression
of imprinted genes situated within the uniparentally
duplicated region [10]. The subsequent identification of
imprinted genes on chromosomes without obvious
uniparental effects [11–13] suggests that imprinting may be
more widespread than initially thought, and not limited to
genes that are vital for development. This conclusion is
supported by the involvement of imprinted genes in
behavioural traits in the mouse [14,15].
A number of more recent technologies have identified

imprinted genes, and these are covered in detail elsewhere
[16–18]. Early estimates put the total number of imprinted
loci between 100 and 200 [19,20]. A more recent study based
on sequence features in the region of known imprinted
promoters identified 600 genes that are potentially imprinted
[21]. This survey is a valuable resource, particularly when used
in combination with expression screens, but this informatic
approach suffers from several drawbacks. A number of genes
undergo imprinting as a result of epigenetic modifications
established on sequences that are situated several hundred
kilobases away [22,23]; hence, the regions flanking their
promoters may not directly provide the information required
for imprinting. Some imprinted genes exhibit monoallelic
expression in a limited number of cell lineages, and therefore
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the verification of these 600 candidates is problematic
without information on tissue specificity. If tissue-specific
imprinting is a common theme, as seems to be the case [24],
then the number of known imprinted genes in the mouse is
likely to increase substantially.

Imprinted genes that have been identified in the mouse are
distributed unevenly throughout the genome [8].
Approximately half of the total number is situated on
Chromosome 7, clustered into at least five distinct imprinted
domains (Figure 1 and [25–28]). Additional genome-wide
screens will help determine whether this reflects a sampling

bias in the methods that have been employed to identify these
genes, or a genuine predisposition to imprinting in certain
genomic regions.
Imprinted genes can occur in isolation but are frequently

found in clusters that share common cis-regulatory elements
that can act over distances of a megabase or more [23]. The
DNA sequences responsible for the establishment of
imprinting are termed imprinting control regions (ICRs) and
undergo differential patterns of methylation at CpG
dinucleotides when passing through thematernal and paternal
germ line [29,30]. In some instances, these epigeneticmarks act
after fertilisation to mediate the establishment of additional
marks at adjacent loci, conferring imprinting on neighbouring
genes [31]. As an increasing number of imprinted
chromosomal domains have been studied, it has become clear
that monoallelic expression is achieved in different ways at
different loci. A large body of work has focused on dissecting
themechanisms bywhich this coordinate epigenetic regulation
is achieved, and this topic has been the subject of a number of
reviews in recent years [32,33]. Some of the well-characterised
regulatory models are illustrated in Figure 2.

Trends and Mechanisms

The paternally methylated ICR at Igf2/H19 is situated
several kilobases upstream of the H19 gene [34], and this
intergenic location is seen at the other two known paternally
methylated ICRs at Dlk1/Gtl2 [35] and Rasgrf1/A19 [36,37]. The
CCCTC-binding factor (CTCF) mediates methylation-
sensitive insulator activity on the unmethylated maternal
allele for both the Igf2 [38] and Rasgrf1 [39] ICRs, and has also
been shown to bind at the human DLK1/GTL2 locus [40].
These paternally methylated sequences may therefore
commonly act as insulators on the unmethylated maternal
allele. Recent work at the Igf2 locus has highlighted the
importance of intrachromosomal and interchromosomal
chromatin structure facilitating interactions between
regulatory regions [41,42].
Although the total number of maternally and paternally

expressed genes is approximately even, differences exist in
the proportion of those controlled by maternal and paternal
methylation marks. Oocyte-derived methylation marks at
imprinted regions are overrepresented relative to their
paternal counterparts, and it has been suggested that this may
result from the active and widespread demethylation of the
paternal pronuclear genome that occurs following
fertilisation in several mammalian species [43–45]. Although
germ-line methylation marks have not yet been identified for
all of the known imprinted loci, of the 15 that have been
found, 12 are of maternal origin, while only three are
paternally derived [29,30,46–49].
All of the sequences associated with imprinted loci that are

known to undergo methylation during oogenesis also possess
promoter activity on the unmethylated paternal allele, and at
least three of these promoters give rise to noncoding RNAs and
can confer epigenetic silencing on neighbouring genes in cis
[22,50–52] (Figure2).These andother sexually dimorphic trends
in the nature of ICR function have been discussed in [53,54].

Microimprinted Domains

DNA methylation marks of maternal germ-line origin are
also seen at microimprinted domains, a term used to describe

doi:10.1371/journal.pgen.0020147.g001

Figure 1. Imprinting on Mouse Chromosome 7

Maternally expressed genes are shown in red, paternally expressed in
blue. Individual clusters are controlled by oocyte-derived (red) or sperm-
derived (blue) methylation marks.
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paternally expressed transcripts with few or no introns that
are situated entirely within introns of other genes (Figure 2
and Table 1). Here, maternal germ-line methylation in the
region of a promoter brings about highly localised silencing
on the maternal allele by facilitating the formation of
repressive chromatin structures [55,56]. The minimal nature
of this mechanism has led to the proposal that it represents a
primordial imprint, and that additional complexity may
evolve over evolutionary time [54,57]. The observation that at
least four of the five known microimprinted domains arose
specifically in eutherian mammals appears to support these
ideas ([57,58]; A. J. Wood, unpublished data), and three of this
number (Inpp5f_v2, U2af1-rs1, and Nap1l5) bear the hallmarks
of retrotransposition.

Randomly inserted transgenes carrying retroviral and
bacterial sequences can also undergo differential patterns of
gametic methylation [59,60], and the site of integration is
critical in determining whether the inserted sequences are
imprinted [60]. Retrogenes can be considered as naturally
occurring transgenes, and appear to be subject to similar
types of position-dependent epigenetic effects at the site of
integration. In contrast, transgenes carrying endogenous ICR
sequences and their flanking regions can undergo imprinting
regardless of their chromosomal location [61,62]. The
targeted deletion of specific sequences within these
transgenes indicates that the sequences flanking the
differentially methylated regions were necessary for the
consistent establishment of imprinted methylation [62]. The
sequences flanking ICRs often consist of short direct repeats,
which might act to guide the establishment of CpG
methylation in the germ line (see below).

Molecular Events and Selective Forces

The process of evolution involves Darwinian selection
acting on random molecular events such that when new
alleles are generated that confer positive fitness, they are
preferentially maintained in a population. For a complete
understanding of the evolution of genomic imprinting, it is
therefore necessary to consider both the molecular events
that generate novel imprinted alleles and the selective forces
that might act to maintain those epialleles [63] (Figure 3).

Several lines of evidence point to the role of germ-line
DNA methylation at ICRs as the primary mark that leads to
the establishment of imprinting in the embryo [64–66]. It is
therefore instructive to consider what other types of sequence
share this property. Differences in gametic methylation
patterns are certainly not unique properties of ICRs, as the
genome as a whole is more heavily methylated in mature
spermatozoa than in oocytes [67]. These differences diminish
soon after fertilisation, when the male pronucleus undergoes
active demethylation prior to the first zygotic cell division
[43]. Paternally methylated ICRs are therefore unusual in
their ability to resist this demethylation process [68], although
the factors that confer this resistance remain unclear.

Sequence classes such as the primate-specific Alu subfamily
of short interspersed elements undergo methylation
preferentially in the maternal germ line [69,70]. This
differential methylation at Alu elements is relatively short-
lived, since they become methylated on both alleles in
somatic tissues. Maternally methylated ICRs therefore differ
from Alu elements in their ability to resist de novo

methylation on the paternal allele during somatic
development. All known maternally methylated ICRs have
promoter activity on the paternal allele [53], and it is
tempting to speculate that transcriptional activity might
contribute to this resistance in some way.

doi:10.1371/journal.pgen.0020147.g002

Figure 2. Regulatory Models at Imprinted Loci

Blue boxes represent paternally expressed alleles, red boxes maternally
expressed alleles, black boxes silenced alleles, and grey boxes
nonimprinted genes. Arrows on boxes indicate transcriptional
orientation.
(A) The enhancer–blocker model (also known as the boundary model) is
well studied at the Igf2/H19 locus and consists of an ICR located between
a pair of reciprocally expressed genes that controls access to shared
enhancer elements [38,116]. On the paternal allele, the differentially
methylated domain (DMD) acquires methylation (black circles) during
spermatogenesis, which leads to repression of the H19 promoter [117].
The hypomethylated maternal DMD acts as an insulator element,
mediated through binding sites for the methylation-sensitive boundary
factor CTCF (shaded ellipse). When CTCF is bound, Igf2 promoter access
to the enhancers (E) distal to H19 is blocked.
(B) At the Igf2r locus on Chromosome 17, the paternally expressed,
noncoding RNA Air acts to induce bidirectional cis-mediated silencing
(black curved lines) on neighbouring protein-coding genes (maternally
expressed Igf2r, Slc22a3, and Slc22a2) [50]. The grey ellipses are the
intronic imprint control elements that are maternally methylated (black
circles) and contain the promoter of the Air RNA.
(C) At microimprinted domains, oocyte-derived methylation in the
promoter region of a protein-coding gene is likely to be the primary
epigenetic mark leading to monoallelic silencing. With the exception of
the U2af1-rs1 locus, the multiexonic genes within which the paternally
expressed transcripts are embedded, escape imprinting (Table 1). The
paternally expressed Nap1l5 is situated within intron 22 of Herc3, which is
expressed from both alleles.
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Short direct repeat motifs have been identified in
proximity to both maternally and paternally methylated ICRs
[71], and their potential role in the mechanisms of imprint
establishment has been the subject of ongoing debate. Direct
repeats at the Rasgrf1 ICR are required for imprint
establishment at this locus [36], whereas the repeat motifs
adjacent to the Igf2 and Kcnq1 ICRs are dispensable for
imprinting at these loci [52,72]. A recent systematic sequence
analysis of the CpG islands associated with known imprinted
promoters in human and mouse found that they were indeed
enriched for direct repeats [73]. Few of these motifs were
conserved at the sequence level between the two species,
suggesting that secondary DNA structures, rather than
specific nucleotide sequences, may provide the target for de
novo methylation in the germ line.

While retrogene and transgene insertions can generate
alleles that attract methylation [58–60,74], it is also possible
that imprinted alleles arise due to germ-line-specific, trans-
acting factors protecting certain sequences from methylation
[44] (Figure 3). Random molecular events such as these could
potentially create the allelic raw material on which natural
selection can then act.

What Good Does Imprinting Serve?

Several theories have been put forward to account for the
spread of imprinted alleles under the forces of natural
selection [7,75,76]. The ovarian time bomb hypothesis states
that imprinting occurs to prevent the parthenogenesis of
unfertilised oocytes, which can lead to malignant
trophoblastic disease [77]. Viable offspring can be generated
by the parthenogenesis of oocytes derived from mice carrying
a deletion of the Igf2/H19 ICR [78], demonstrating the
importance of Igf2 imprinting in this process. The ovarian
time bomb hypothesis predicts that only a small number of
genes vital for early embryonic development would be
imprinted, and cannot readily explain the involvement of
imprinted genes in postnatal traits [14,79]. However, it
remains possible that the action of a small number of
imprinted genes in preventing parthenogenesis has been
advantageous to mammalian populations [80].

The most enthusiastically discussed theory relating to the
nature of these forces is the kinship theory, commonly
referred to as the conflict hypothesis [81,82]. Put simply, the
theory states that when individuals within a litter differ in
their degree of relatedness to one another (due to multiple
paternities), and parental investment in offspring is unequal

(due to maternal provisioning), natural selection would act
differently on alleles of maternal and paternal origin in
offspring. It is predicted that this manifests as parent-of-
origin–specific gene silencing, with paternally derived alleles
favouring maternal investment in their own offspring at the
expense of simultaneously gestated offspring of different
fathers, and with maternally derived alleles serving to
maximize the mother’s reproductive potential over her
reproductive lifespan. The function of many of the first
imprinted genes to be discovered provided striking support
for these ideas, as the two oppositely imprinted genes Igf2 and
Igf2r have strongly opposing roles in fetal growth [3,4].
In mammalian species where offspring continue to acquire

resources from the mother postnatally, the conflict
hypothesis can account for the involvement of imprinted
genes in traits affecting this ongoing acquisition process.
Inactivating mutations in the Gsa and Gnasxl transcripts in
the Gnas imprinted cluster give rise to opposing postnatal
effects on brown fat deposition and metabolic rate [6]. Mice
lacking functional copies of the paternally expressed Gnasxl
gene also demonstrate poor suckling and fail to thrive,
consistent with paternally expressed genes acting to promote
resource acquisition from the mother [79]. Inactivating
mutations in a third gene in the Gnas cluster, the maternally
expressed Nesp transcript encoding the Nesp55 protein, give
rise to a phenotype that cannot be directly accounted for by
the conflict theory. Nesp�/þ individuals show apparently
normal embryonic and postnatal development, but exhibit
altered reactivity to novel environments [14]. While as-yet-
unexplained selective forces may act to maintain the
imprinting of this gene, another possibility is that it may be
an ‘‘innocent bystander’’ [77], undergoing imprinting
serendipitously due to the forces of parental conflict acting
on the epigenetic state of neighbouring promoters.
There is little doubt that the phenotypes from mouse

knockout models for several imprinted genes provide strong
support for the conflict hypothesis in the evolution of parental
origin–specific gene expression. However, it seems
increasingly unlikely that it can account for the selective forces
acting to maintain all imprinted genes [83,84], particularly
those expressed primarily in neural tissues and testes such as
the genes situated within microimprinted domains (Table 1)
([13,26,85]; A. J. Wood, unpublished data). It should be noted
that the conflict hypothesis has been extended to apply to
some behavioural traits such as maternal care [86,87];
therefore, expression in neural tissues does not necessarily
exclude parental conflict as a factor in the imprinting of such

Table 1. Properties of the Five Known Microimprinted Domains in the Mouse.

Mouse

Chromosome

Imprinted

Gene

ORF? Primary Tissues

of Expression

Host Gene Orientation

Relative to Host

Host Gene Imprinted? Reference

2 Nnat Yes Neural Blcap Antisense No [57;105]

6 Nap1l5 Yes Neural and testes Herc3 Antisense No [13;85]

7 Inpp5f_v2 Yes Neural and testes Inpp5f Sense No [26]

11 U2af1-rs1 Yes Neural and testes Murr1 Antisense Yes [104]

15 Peg13 No Neural 1810044A24Rik Sense No [13,85]

In this case, the word host refers to the multiexonic gene within which the microimprinted domain is situated.
ORF, open reading frame.
doi:10.1371/journal.pgen.0020147.t001
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genes. However, the fact that the microimprinted domains are
all maternally silenced in the mouse suggests that molecular
mechanisms, as well as selective pressures, underlie the allelic
expression pattern of these genes.

Imprinting in the Placenta

As the organ that acts as an interface between mother and
fetus, the placenta is predicted to be the site most affected by
the forces of the conflict theory. The evolution of the placenta
was central to the increased maternal provisioning that
distinguishes mammalian development from that of most
other vertebrates. The prominent role played by imprinted
genes in various aspects of placental physiology [88] suggests
that the acquisition of imprinting may have been vital to the
evolution of this organ [89,90]. While placentation is often
considered amammalian phenomenon, it is interesting to note
that organs of analogous function have evolved independently
in fish, reptiles, amphibians, and plants [91–93]. Parent-of-
origin–specific gene expression has been demonstrated in the
endospermof angiospermplants [94], and studies of viviparous

nonmammalian vertebrate species will determine whether
imprinting is intrinsically linked to the evolution of this organ.
In mammals, the most primitive form of placentation is

thought to have evolved over 150 million years ago, after the
divergence of early placental mammals (the lineage that
would give rise to modern-day marsupials and eutherians)
from the egg-laying monotremes and about the same time
that the first genes acquired imprinting [95]. Inactivation of
one X chromosome is achieved by imprinting in both the
placenta and embryo of female (XX) marsupials, suggesting
that this was the ancestral mechanism by which sex
chromosomal dosage compensation was achieved in early
placental mammals [96]. The acquisition of random X-
inactivation in the embryonic tissues of eutherian mammals
occurred after the marsupial divergence [97], and was
apparently accompanied by mechanistic changes in the
maintenance of monoallelic silencing [98]. In mice, imprinted
X-inactivation and the imprinted silencing of several
autosomal genes is mediated by noncoding RNAs in the
extraembryonic tissues (reviewed in [99]). Many of these genes
are imprinted in the placenta but expressed from both alleles

doi:10.1371/journal.pgen.0020147.g003

Figure 3. Overview of the Evolution of Imprinted Loci

Blue represents paternal or paternally derived alleles, red represents maternal or maternally derived alleles, and yellow represents transposed sequence.
Black lollipops represent methylated CpGs, and the light blue dome represents a trans-acting factor. An asterisk denotes a gene duplicate.
(A) Random molecular events or mutations in the germ-cell lineage generate alleles that undergo differential methylation when passing through the
male and female germ line, which can confer either (B) negative or (C) positive fitness. While most of these alleles would be expected to confer negative
fitness (B), a small proportion are maintained (C). Possible reasons for the spread of these alleles (C) are discussed further in the text and in Figure 4,
which are by no means intended to be exhaustive. F1, first filial generation.
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in embryonic cell lineages. Recent work has suggested that
several genes that undergo imprinting specifically in the
mouse placenta are not imprinted in humans, possibly
reflecting the transition from multiple to singleton births
reducing the potential for intrabrood competition in
primates [100]. Silencing occurs on the paternal allele for the
protein-coding genes that are affected in the mouse, and
some of the placenta-specific, maternally expressed genes in
these regions have potent effects on placental function and
embryonic growth [101–103]. It has been suggested that X-
inactivation and autosomal imprinting both arose out of a
requirement to control the expression of growth-related
genes in ancestral placental mammals [90]. The conservation

of imprinted X-inactivation between marsupials and
eutherians suggests these forces would have been active
during the early stages of the mammalian radiation.
The microimprinted domains appear to have arisen

specifically in the eutherian lineage and are absent in
marsupials ([57,58]; A. J. Wood, unpublished data). As these
genes were not in existence during the time period in which
placentation first arose, their imprinting cannot have been
vital to the early stages of placental evolution. In rodents,
genes within the five known microimprinted domains are
expressed predominantly in neural tissues and testes
([26,85,104,105]; A. J. Wood, unpublished data), which suggests

doi:10.1371/journal.pgen.0020147.g004

Figure 4. Possible Gene Dosage Scenarios before and after the Acquisition of Imprinting

For the two duplication scenarios (A and B), imprinting of the duplicated locus is presumed to arise while functional redundancy exists with the original
copy. For simplicity, each example refers to a paternally expressed imprinted gene. Grey ovals represent autosomes, hatched ovals represent the X
chromosome, red represents maternally derived chromosomes and alleles, and blue represents paternally derived chromosomes and alleles.
(A) A nonimprinted autosomal gene undergoes duplication (i), resulting in a 2-fold (2:4) increase in active gene copy number. Imprinting (ii) reduces this
increase to 1.5-fold (2:3). An example is the Mkrn3 gene on mouse Chromosome 7 [118].
(B) A gene subject to X-inactivation undergoes trans-duplication, resulting in a 3-fold (1:3) increase in active gene copy number. Imprinting reduces this
increase to 2-fold (1:2). An example is the U2af1-rs1 locus [58].
(C) A nonimprinted autosomal gene acquires imprinting without undergoing a recent duplication, resulting in a 50% decrease in active gene copy
number (2:1). This is likely to be the most common scenario, an example being the Igf2 locus [95].
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that tissues other than the placenta may have been primarily
influenced by their formation and subsequent imprinting.

Imprinting of Duplicated Genes

Functional haploidy of imprinted genes is generally viewed
as paradoxical, due to the uncovering of recessive mutations
that would not occur in the biallelic state of expression
(Figure 3). This is true for more ancient vertebrate genes such
as Igf2 and Impact, which performed important roles in
ancestral vertebrates before acquiring imprinting specifically
in the mammalian lineage [106,107]. It is thought that two
rounds of whole genome duplication occurred early in
vertebrate evolution [108], and it is likely that the Igf2 gene
originated from one of these large-scale events [109].
Imprinting of Igf2 did not arise until the emergence of
placental mammals, after their divergence from egg-laying
ancestors [95,106]. Although Igf2 is derived from a gene
duplication event, two key factors distinguish this situation
from that of imprinted retrogenes. First, the transcriptional
profile of the gene duplicate would be expected to mimic that
of the ancestral gene, as the cis-acting regulatory elements
would have been duplicated in addition to the transcribed
sequence. In contrast, the expression pattern of novel
retrogenes is much more difficult to predict, as factors
associated with the site of integration affect the expression
pattern of the gene duplicate [110]. Second, the duplication of
Igf2 is unlikely to have been directly linked to the subsequent
establishment of imprinting at the locus, as several hundred
million years elapsed between the two evolutionary events. It
is likely that the two genes would have undergone functional
divergence during this time period to fulfill distinct roles.

Genes that originated from retrotransposition events that
occurred later in mammalian evolution are likely to have
undergone imprinting soon after their formation, and would
therefore have shown functional redundancy with the parent
copy in tissues in which both are expressed. For these genes,
monoallelic silencing may have been in the immediate
interests of the host. Imprinting would serve to reduce the
potential transcriptional dosage imbalance resulting from the
increase in copy number, while maintaining one active allele
with the potential to evolve novel functions.

Compared with the autosomes, the X chromosome has
generated a disproportionately high number of functional
retrogenes inmammalian species [111], at least three of which
undergo imprinting at their autosomal location in the mouse
genome ([13,26,58]; A. J. Wood, unpublished data). Figure 4
illustrateshowtheprocessofX-inactivationmayhave impacted
the active gene–dosage imbalance associated with these events.
How this theorywould relate to the total transcriptional output
of the gene family is unclear, due to the global upregulation of
the single active X chromosome relative to autosomes [112].

Gene duplications have occurred throughout the course of
evolution, and a weakness of the current argument is that
similar epigenetic effects have not been observed in
nonmammalian vertebrates. However, mammals differ from
other vertebrates in the epigenetic mechanisms that are
employed to defend the genome against transposable
elements, and it has been proposed that imprinting is
mediated by mechanisms that were originally used for this
purpose [113,114]. These ideas are commonly referred to as
the host–defense theory, and may be particularly applicable to

retrogenes situated within microimprinted domains [13,58],
where the retrotransposed sequences themselves are targeted
for methylation in the maternal germ line. By combining the
host–defense theory [113,114] with transcriptional dosage
imbalance resulting from gene duplication [115], it may be
possible to account both for molecular events by which
imprinted alleles can be generated, and for the selective forces
that might favour their spread in a population.

Conclusions

To gain a comprehensive understanding of the function of
imprinting in mammals, it is first necessary to define the full
extent of this phenomenon and the physiological processes
that it affects. Genome-wide screens and knockout studies of
individual genes in the mouse will be key tools in addressing
this goal, and it will be interesting to see the extent to which
existing hypotheses are supported. Much of our current
knowledge of imprinting is derived from the laboratory
mouse, and it is of note that recent work in humans has
highlighted some key differences, particularly in the placenta
[100]. Understanding imprinting in outbred populations will
determine the extent to which these ideas can be
extrapolated to nondomesticated mammalian species.

Supporting Information
Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank/index.html)
accession numbers for the genes listed in Table 1 are as follows:
Inpp5f_v2 (DQ648020), Nap1l5 (NM_021432), Nnat (NM_010923),
Peg13 (AY151253), and U2af1-rs1 (NM_011663). “
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