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Transcriptional Profiling of Aging in Human
Muscle Reveals a Common Aging Signature
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We analyzed expression of 81 normal muscle samples from humans of varying ages, and have identified a molecular
profile for aging consisting of 250 age-regulated genes. This molecular profile correlates not only with chronological
age but also with a measure of physiological age. We compared the transcriptional profile of muscle aging to previous
transcriptional profiles of aging in the kidney and the brain, and found a common signature for aging in these diverse
human tissues. The common aging signature consists of six genetic pathways; four pathways increase expression with
age (genes in the extracellular matrix, genes involved in cell growth, genes encoding factors involved in complement
activation, and genes encoding components of the cytosolic ribosome), while two pathways decrease expression with
age (genes involved in chloride transport and genes encoding subunits of the mitochondrial electron transport chain).
We also compared transcriptional profiles of aging in humans to those of the mouse and fly, and found that the
electron transport chain pathway decreases expression with age in all three organisms, suggesting that this may be a
public marker for aging across species.
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Introduction

Aging is marked by the gradual decline of a multitude of
physiological functions leading to an increasing probability
of death. Some aging-related changes affect one’s appear-
ance, such as wrinkled skin, whereas others affect organ
function, such as decreased kidney filtration rate and
decreased muscular strength. At the molecular level, we are
just beginning to assemble protein and gene expression
changes that can be used as markers for aging. Rather than
search for molecular aging markers by focusing on only one
gene or pathway at a time, an attractive approach is to screen
all genetic pathways in parallel for age-related changes by
using full-genome oligonucleotide chips to search for gene
expression changes in the elderly. A genome-wide transcrip-
tional profile of aging may identify molecular markers of the
aging process, and would provide insight into the molecular
mechanisms that ultimately limit human lifespan.

Molecular markers of aging must reflect physiological
function rather than simple chronological age because
individuals age at different rates [1]. In the mouse, changes
in the levels of CD4 immunocytes and changes in the
expression of cell-cycle genes such as [)I6INK4“ are molecular
markers of aging, as they predict both the remaining lifespan
and the physiological age of the mouse [2-4]. In the human,
gene expression profiling experiments identified 447 age-
regulated genes that could predict the physiological age of
the kidney [5]. Whole-genome expression profiling has also
been used to identify genes that change expression with
chronological age in the brain [6], skeletal muscle [7,8], and
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dermal fibroblasts [9], but changes in expression of these
marker genes have not yet been shown to correlate with
physiological aging.

In this paper, we have performed a genome wide analysis of
gene expression changes in the human skeletal muscle. As age
increases, skeletal muscle degenerates, loses mass, loses total
aerobic capacity, and becomes markedly weaker [10]. One
measure of muscle physiology is the ratio of the diameters of
the type I and type II muscle fibers. A decrease in the size of
type II muscle fibers (fast twitch) has been found to be
correlated with decline in muscle function in both human
[11] and rat [12]. Type II muscle fibers are known to atrophy
and become smaller with age in the human, partially
accounting for decreased muscle strength and flexibility in
old age. As type II muscle fibers become smaller with age, the
ratio of the diameters of type II fibers to type I fibers becomes
smaller.
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Synopsis

Aging is a complex phenomenon characterized by the decay of
biological function over time, eventually leading to death. High-
throughput methods for examining changes in the expression of
genes, such as DNA microarrays, have been successful in elucidating
some of the genome-wide changes that occur with age in several
human tissues. The authors profiled gene expression changes in the
muscles of 81 individuals with ages spanning eight decades. They
found 250 genes and 3 genetic pathways that displayed altered
levels of expression in the elderly. The transcriptional profile of age-
regulated genes was able to discern elderly patients with severe
muscle aging from those that retained high levels of muscle
function; that is, the gene expression profiles reflected physiological
as well as chronological age. In order to find genetic changes that
might affect most or all tissues during aging, the authors compared
genome-wide profiles of aging in the muscle to those in the kidney
and the brain, and found a common signature for aging shared
among these three tissues consisting of six genetic pathways. One
of these aging pathways (the electron transport chain pathway) is
age regulated not only in humans but also in two model organisms
(mice and flies), providing insights about shared age-related
changes in animals with vastly different lifespans.

The extent to which age regulation of genetic pathways is
specific to a particular tissue or common across many tissues
is unknown. Age regulation of gene expression between the
cortex and medulla regions of the human kidney was found to
be highly correlated [5]. There was a high correlation in gene
expression changes with age in different regions of the brain
cortex, but no similarity was found between the cortex and
the cerebellum [13]. Thus, there are similarities in patterns of
age regulation between different areas of the kidney and
between different areas of the brain cortex, but a common
signature for aging across many diverse tissues has not been
found.

Another key issue is whether there are genetic pathways
that are commonly age regulated in different species with
vastly different lifespans, such as human, mouse, fly, and
worm. Transcriptional profiles of aging have been performed
on both skeletal muscle and brains in the mouse [14,15], in
Drosophila melanogaster [16,17], and in Caenorhabditis elegans [18].
A comparison of the patterns of gene expression changes
during aging in the fly and the worm concluded that genes
encoding mitochondrial components decreased expression
with age in both species [19].

In this work, we present a transcriptional expression profile
of 81 human skeletal muscle samples as a function of age. The
symporter activity, sialyltransferase activity, and chloride
transport pathways all decrease expression with age in human
muscle. The age-regulated genes were found to be markers of
physiological age, not just chronological age. By comparing
our results on aging in muscle to previous transcriptional
profiles of aging in the kidney and the brain, we found a
common signature for aging across different human tissues
consisting of six genetic pathways that showed common
patterns of age regulation in all three tissues. Finally, by
comparing the signature for aging in humans to transcrip-
tional profiles of aging in mice, flies, and worms, we found
that expression of the electron transport chain decreases with
age in humans, mice, and flies, constituting a public signature
for aging across species with extremely different lifespans.
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Results

A Global Gene Expression Profile for Aging in Human
Muscle

In order to study the effects of aging in human muscle, we
obtained 81 samples of human skeletal muscle from individ-
uals spanning 16 to 89 y of age (Table 1). Sixty-three samples
were obtained from the abdomen, 5 were obtained from the
arm, 2 were obtained from the deltoid muscle, 2 were
obtained from the inner thigh, and 9 were obtained from the
quadriceps (Table S1). We used Affymetrix DNA arrays to
generate a transcriptional profile of aging in human muscle.
We isolated total RNA from each muscle sample, and
synthesized biotinylated cRNA from total RNA. We then
hybridized the cRNA to Affymetrix 133 2.0 Plus oligonucleo-
tide arrays, representing nearly the entire human genome
(54,675 individual probe sets corresponding to 31,948
individual human genes). We plotted the expression of each
gene as a function of age, resulting in a dataset that shows the
expression of nearly every gene in the genome as a function
of age in human muscle (data are publicly available on the
Gene Expression Omnibus at http:/[lwww.ncbi.nlm.nih.gov/
geo).

We used a multiple regression technique on each gene to
determine how its expression changes with age, as had been
done previously for age regulation in the kidney (Materials
and Methods) [5]. We analyzed age regulation in skeletal
muscle in two ways. In the first way, we found individual genes
that met a stringent statistical significance threshold for
correlation with age. In the second way, we found groups of
genes (defined by the Gene Ontology consortium) in which
there is subtle but consistent age regulation.

To identify individual genes showing strong age regulation,
we examined the slope with respect to age for each gene, and
identified 250 genes in which the slope was significantly
positive or negative (p < 0.001) (Figure 1, Table S2, and
Materials and Methods). At this statistical threshold, we would
expect only 32 genes by chance, suggesting a false discovery
rate of 13% or less. Furthermore, we randomly permuted the
ages of the muscle samples, keeping the gene expression, sex,
and anatomy variables fixed, and counted the number of
genes that were significantly age regulated, again at p < 0.001.
In 1,000 such permutations we found fewer than 107
significant genes 95% of the time. Thus, we are confident
that most of the 250 age-regulated genes are not sampling
artifacts. Of the 250 age-regulated genes, 125 genes increase
expression, and 125 genes decrease expression with age.

We considered the possibility that some of the 250 genes
might not be age regulated per se, but rather might appear to
be age regulated because they are associated with a
pathological condition that increases with age. For example,
the incidence of diabetes is known to increase with age in the
general human population [20]. Our selection of patients
might show a bias of diabetes in the elderly, in which case
genes that change expression in response to diabetes might
appear to be age regulated in our study. In addition to
diabetes, we considered thirteen other factors that might also
confound our study on aging, such as whether the patient was
male or female, the anatomical origin of the muscle sample,
the type of pathology associated with the patient, and types of
medication taken by the patient (Table S1).

With the exception of hypothyroidism, none of the medical
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Table 1. Patients Recruited by Age Group

Age, y Number
<21 1
21-30 8
31-40 12
41-50 14
51-60 16
61-70 9
71-80 15
81+ 6

DOI: 10.1371/journal.pgen.0020115.t001

factors showed a strong association with age, and so it is
unlikely that these confounding factors would cause genes to
appear to be age regulated (Figure S1). Hypothyroidism was
absent in the young and present in about half of the elderly.

We used two methods to test whether any of the factors
affected the slope of gene expression with respect to age of
the 250 age-regulated genes. First, we used a multiple
regression model that included a fourth term representing
the medical factor (such as hypothyroidism) in addition to
age, sex, and anatomy. We then compared the aging
coefficient using this new model with the one from the
original model that did not include the term. If any of the 250
genes were regulated by the medical factor and not by age per
se, we would expect marked differences in the aging
coefficients generated by the two multiple regression models.
None of the fourteen medical factors, including hypothyroid-
ism, had a significant effect on age regulation (Figure S2).
Second, we performed an unsupervised hierarchical cluster
analysis of the 250 age-regulated genes. If our analysis of age
regulation were confounded by a medical factor, we would
expect that the presence of the medical factor would be
clustered when we sorted the 81 patients according to their
patterns of gene expression. None of the pathological or
pharmaceutical factors showed clustering (Figure S3). Most of
the nonabdominal samples were from young patients, and
there was some clustering of the muscle samples according to
their anatomical origin as expected. This clustering does not
affect our analysis of age regulation because anatomical
origin was included as a term in the multiple regression
model. Thus, these two methods showed no evidence that
anatomical, pathological, or pharmaceutical factors confound
the results of our aging study.

In summary, we have generated a global profile of changes
in gene expression during aging in human muscle (Figure 1).
It is well established that aging has many effects on muscle,
such as decrease in physiological performance, changes in
morphology, and increased susceptibility to disease. The data
from Figure 1 extend our understanding of muscle aging to
the level of specific genes and genetic pathways, providing
insight into possible mechanisms underlying overall decline
of muscle function in old age. Overall, the difference in gene
expression between young and old muscle tissue is relatively
small. Specifically, only 250 genes show significant changes in
expression with age (p < 0.001), and the large majority of
these age-regulated genes change expression less than two-
fold in 50 y. These results are consistent with a model in
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Figure 1. Expression of 250 Age-Regulated Genes in Muscle

Rows correspond to individual genes, arranged in order from greatest
increase in expression with age at top to greatest decrease in expression
with age at bottom. Columns represent individual patients, from
youngest at left to oldest at right. Ages of certain individuals are
marked for reference. Scale represents log, expression level (Exp). Genes
discussed in the text are marked for reference. A navigable version of this
figure showing identities of specific genes can be found at http://cmgm.
stanford.edu/~kimlab/aging_muscle.

DOI: 10.1371/journal.pgen.0020115.g001

which age-related decline in cellular functions is caused by
the accumulation of multiple, minute changes in the
regulation of genes and pathways.

The genetic functions of many of the 250 genes shown in
Figure 1 are known, and some suggest biological mechanisms
that could cause age-related decline in muscle physiology. For
example, CYP26B1 shows an average increase in expression of
90% in 50 y. CYP26BI is a member of the cytochrome P450
family, which are monoxygenases used to metabolize toxic
substances. Increased expression of CYP26B1 in old age could
help eliminate toxins that accumulate with age.

LASS5 decreases expression approximately 25% in 50 y.
LASS5 is the human ortholog of the yeast lagl longevity
assurance gene. In yeast, lagl expression decreases in older
yeast cells [21] similar to our results showing decreased
expression in old age in human muscle. LASS5 is involved in
the ceramide signaling pathway, which plays important roles
on several lifespan-associated processes, such as stress
resistance and apoptosis [22]. Reduced expression of LASS5
in old age could impair cell function by reducing ceramide
signaling.

In addition to searching for age regulation one gene at a
time, we also screened known genetic pathways for those
showing an overall change with age. With this approach, age
regulation for every gene in a pathway is combined to
determine whether there is an overall regulation of the entire
pathway. Screening for coordinated age regulation of genetic
pathways increases the sensitivity of our analysis, as the
combined effects of small regulation of many genes in a
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63 Symporter Activity Genes

19 Sialyliransferase Activity Genes

35 Chloride Transport Genes

P -0.05 0 +0.05

Figure 2. Three Gene Sets Are Regulated with Age in Muscle

Rows represent the symporter activity, sialyltransferase activity, and
chloride transport gene sets. Columns correspond to individual genes
within a given gene set. Scale represents the slope of the change in log,
expression level with age (B;)). A navigable version of this figure showing
identities of specific genes can be found at http://cmgm.stanford.edu/
~kimlab/aging_muscle.

DOI: 10.1371/journal.pgen.0020115.9002

pathway can be significant. For example, in a previous study
of type 2 diabetes, screening genetic pathways for changes in
expression provided key insights that were not possible from
analyzing genes individually [23].

We developed a variant of gene set enrichment analysis
(GSEA) to determine whether a genetic pathway shows
evidence for age regulation [23]. We assayed 624 gene sets
defined by the Gene Ontology consortium [24] (Table S3). We
modified the original GSEA paradigm because it was
intended for datasets with two categories of sample, and we
were instead fitting regression models to continuously
varying independent and dependent variables. Accordingly,
we replaced the two-sample test statistic in GSEA with an
estimated regression slope for age. We also replaced the
Kolmogorov-Smirnov statistic with a van der Waerden
statistic because we prefer the type of dependence that the
van der Waerden statistic captures. Finally, we replaced the
permutation strategy with a bootstrap in order to better
handle covariates (Materials and Methods).

Our version of the GSEA algorithm scores a gene set
according to how the genes in it show coordinated increase
(or decrease) on average in response to increasing age. The
increase is measured by a van der Waerden statistic. To judge
whether a specific van der Waerden statistic is significant, we
used bootstrap resampling. Each bootstrap sample was drawn
by resampling the arrays and keeping the gene expression
measurements linked with the age, sex, and anatomy
variables. The 624 van der Waerden scores for the gene
groups were recomputed for each of the 1,000 bootstrap
samples. Six gene sets were found to have statistically
significant van der Waerden scores (p < 0.001) in this
resampling. At this p value threshold, we would only expect
to find 0.6 gene sets by chance alone. We also required the
gene groups to show some practical significance by rejecting
groups with a van der Waerden score smaller than 3.1 in
absolute value. We found three pathways that passed both
criteria: symporter genes, sialyltransferases, and chloride
transporters showed decreasing expression with age (Figure
2 and Table 2). Aging coefficients for all genes in these
pathways are listed in Table S4.

Symporter genes (63 genes) and chloride transporters (35
genes) are necessary for transporting solutes during muscle
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Table 2. Age-Regulated Gene Sets in Muscle

Age-Regulated Gene Set Z° (pP <)

Symporter activity (63 genes) —4.95 (0.001)
Sialyltransferase activity (19 genes) —3.51 (0.001)
Chloride ion transport (35 genes) —3.21 (0.001)

“Van der Waerden score, calculated by modified GSEA.
®p value calculated by resampling with replacement.
DOI: 10.1371/journal.pgen.0020115.t002

contraction [25]; the decreased expression levels of these
transporters may be associated with weakness of old muscle.
Genes with sialyltransferase activity (19 genes) mediate
glycosylation by transferring sialic acid groups to secreted
molecules. Decreases in sialyltransferase activity have been
previously detected in aging human serum [26], neurons [27],
and lymphocytes [28].

Molecular Markers of Physiological Aging

Some people age slowly and remain strong and fit in their
70s, whereas others age rapidly, becoming frail and suscep-
tible to age-related disease. We wanted to determine whether
the expression profile for the 250 aging-regulated genes
correlated with physiological in addition to chronological
aging. For example, patient V17 was 41 y old but expressed
his age-regulated genes similarly to patients who were 10 to
20 y older, and we would like to determine whether this
patient had poor muscle physiology for his age (Figure 1).
Conversely, patient M73 was 64 y old but had a molecular
profile similar to other patients that were 30 y younger, and
we wanted to determine whether this patient had relatively
good muscle physiology for his age. Our list consists of 250
genes that correlate significantly with chronological age. We
sought to determine whether they also correlate with
physiological age, as measured by the type Il/itype I diameter
ratio. We prepared histological sections for all 81 skeletal
muscle samples, and were able to reliably measure the
diameters of the type I and type II muscle fibers for 32
samples (Figure 3A and 3B; Table S5).

A simple correlation of gene expression with muscle type
ratio would not be sufficient for our purposes. Such a
correlation could arise simply because the gene expression
and muscle type ratio are both correlated with age.
Accordingly, we employed partial correlations of gene
expression with muscle type ratios after adjusting for the
effect of chronological age. To do this, we regressed type 11/
type I muscle fiber diameter ratio on age, regressed gene
expression on age, and finally correlated residuals from both
regressions to obtain partial correlation coefficients. The
partial correlations for the 250 age-related genes are shown
in Figure 3C.

If a gene correlates with muscle diameter ratio only
because both it and muscle diameter are correlated with
age, then the partial correlation described above should be
close to zero. We found that a large number of the genes in
our list had a statistically significant relationship with type II/
type I ratio after adjusting for age. However, many of the
genes not on our list were also related to type Ilitype I ratio
adjusted for age. We were able to show that genes with large
partial correlations were significantly overrepresented in our
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Figure 3. Gene Expression Predicts Physiology of Aging

(A) Cross-section of histologically unremarkable deltoid muscle from a 48-y-old woman demonstrating relatively equivalent sizes of types | and Il muscle
fibers. Arrows denote fibers types as distinguished by enzyme histochemistry (cryosection, 200X, myosin ATPase at pH 9.4).

(B) Cross-section of deltoid muscle from an 88-y-old woman demonstrating selective atrophy of type Il muscle fibers that stain darkly by ATPase enzyme
histochemistry (cryosection, 200X, myosin ATPase at pH 9.4).

(C) Histograms showing a correlation between muscle physiology and gene expression for age-regulated genes. Top panel: for each of the 250 age-
regulated genes, we calculated the partial correlation coefficients between the type Il/type | muscle fiber diameter ratio and gene expression excluding
age variation (x-axis). Bottom panel: same as top panel, except that correlation coefficients were calculated for all 31,948 genes. The squared partial
correlation coefficient denotes the amount that changes in gene expression account for variance in type Il/type | muscle fiber diameter ratios while
excluding the effects of age.

(D) Histogram showing the likelihood of finding 92 genes with |r| > 0.2 from a set of random genes. We performed a Monte Carlo experiment by
randomly selecting sets of 250 genes from the genome, and calculating how many genes in the set had |r| > 0.2 as in (C). The procedure was repeated
1,000 times and the histogram shows the number of genes from each random selection that have |r| > 0.2. The arrow shows the number of genes
exceeding this threshold (92) from the set of 250 age-regulated genes (p < 0.001). We also determined the total number of genes in the genome with
|r| > 0.2, and then showed that 92 genes from a set of 250 is significant (hypergeometric distribution; p < 1 X 107%).

DOI: 10.1371/journal.pgen.0020115.9003
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Table 3. Age Regulation of Gene Sets in Three Human Tissues

Age-Regulated Gene Set Muscle Z* Kidney Z Brain Z

(p° <) p <) (p <)
Extracellular matrix (152 genes) 3.70 (0.007) 7.05 (0.002)  3.65 (0.004)
Cell growth (29 genes) 4.20 (0.04) 3.27 (0.002)  2.28 (0.001)
Complement activation (22 genes) 3.15 (0.027) 5.21 (0.001) 3.17 (0.01)
Cytosolic ribosome (85 genes) 4.00 (0.03) 10.85 (0.008)  3.70 (0.06)
Chloride transport (35 genes) —3.21 (0.001) —3.40 (0.003) —1.78 (0.008)

(

Electron transport chain (95 genes) —5.10 (0.04) —10.10 (0.008) —4.80 (0.008)

?Van der Waerden score in a human tissue, calculated by modified GSEA.
°p value of age regulation, calculated by resampling with replacement.
DOI: 10.1371/journal.pgen.0020115.t003

list of 250 age-regulated genes. We counted 92 of 250 age-
related genes for which the (absolute) partial correlation was
more than 0.2 (Table S6). There were only 7,768 of 31,948
genes not in the list with a partial correlation this large. Using
a hypergeometric distribution, we found a p value below
0.0001 and concluded that the age-related genes are more
likely than other genes to have some partial correlation with
muscle diameter ratio. To illustrate this effect, we also
sampled 250 genes from the genome 1,000 different times,
each time counting how many had a partial correlation larger
than 0.2 in absolute value. None of the samples had a count
larger than 92 (Figure 3D).

Our result indicating that the 250 age-regulated genes are
enriched for genes regulated by type Il/type I muscle fiber
diameter ratio is valid even when we use other selection
thresholds for muscle physiology (i.e., other than the absolute
of r > 0.2). We compared the distribution of partial
correlations of the 250 age-regulated genes with type Il/itype
I ratios to the distribution of partial correlations of the rest of
the genes in the genome using nonparametric methods
(Figure 3C). Using a Kolmogorov-Smirnov goodness-of-fit
test, we found that the distribution of the 250 age-regulated
genes is wider than the total distribution in a two-sided test (p
< 1 X 107", with D = 0.27). This result indicates that the
apparent physiological basis of our gene set is not a
consequence of our having chosen 0.2 as a threshold.

In summary, these statistical tests show that the set of age-
regulated genes are markers of the relative level of muscle
function, even among patients that are similar in age. Our
findings are further supported by two additional statistical
tests described in Materials and Methods (Tables S7 and S8).
Thus, the age-regulated genes are enriched for those that
predict physiological, not just chronological, age. The
correlation between gene expression profile and physiolog-
ical age can be seen in patients V17 and M73 in Figure 1.
Although patient V17 is relatively young (41 y old), the gene
expression profile for the 250 age-regulated genes is most
similar to older individuals, and the type Il/type I muscle fiber
diameter ratio is low for his age. Conversely, although patient
M?73 is relatively old (64 y old), the gene expression pattern is
similar to younger individuals, and the type Il/type I muscle
fiber diameter ratio is high for his age (Figure 1).

A Common Signature for Aging in Muscle, the Kidney, and
the Brain

Some aspects of aging affect only specific tissues; examples
include progressive weakness of muscle, declining synaptic
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function in the brain, or decreased filtration rate in the
kidney. Other aspects of aging occur in all cells regardless of
their tissue type, such as the accumulation of oxidative
damage from the mitochondria, DNA damage, and protein
damage. Our genome-wide search for gene expression
changes during aging would include both types of expression
changes, and it would be interesting to discern which
expression changes are muscle specific and which are
common to all tissues. Expression profiles that are common
to aging in all tissues would provide insight into the core
mechanisms that underlie cellular aging. Therefore, we
compared the DNA chip expression data from our studies
on muscle aging to previous DNA chip expression studies on
aging in the brain and the kidney. Rodwell et al. have
characterized gene expression changes with age in the cortex
and the medulla of the kidney from 74 patients, and Lu et al.
have examined gene expression changes in the frontal cortex
of the brain from 30 patients [5,6].

Our initial attempt to compare transcriptional changes
between tissues relied on a Venn analysis, in which we directly
compared the overlap in the lists of the age-regulated genes
from the three tissues. Next, we searched for a common aging
signature by comparing the Pearson correlation of age
regulation between two tissues. Both of these straightforward
methods showed only borderline statistical evidence for
similarities in aging between the three tissues (Materials and
Methods), but neither is expected to be powerful. Ultimately,
we compared tissues using a grouped gene analysis. Grouping
genes can be more powerful if there are small but consistent
effects in each of a number of genes. Furthermore, the
specific biological processes associated with each genetic
pathway provide insights into mechanisms of aging. We used
the modified GSEA described above to analyze previously
published data on age regulation in the kidney and the brain
[6,6]. As before, we considered the possibility that the
observed correlations could be due to the fact that there
might be random sampling differences in the different tissues
that coordinately affect the expression levels of genes in an
entire gene set. To control for this possibility, we resampled
the microarray data 1,000 times (with replacement) and
repeated the analysis of 624 gene sets on every resample. We
selected only gene sets that were statistically significant in all
three tissues at p < 0.05. We then removed any gene set that
did not attain a van der Waerden score of 1.65 or more in
absolute value in all three tissues. From a total of 624 sets of
genes, we found that extracellular matrix genes, cell growth
genes, and complement activation genes significantly increase
expression with age on average in all three human tissues,
whereas chloride transport genes and electron transport
genes significantly decrease expression on average with age in
those same tissues (Table 3). The cytosolic ribosomal pathway
showed increased expression that was significant in the
muscle and kidney, and almost significant in the brain
(bootstrap p < 0.06). Aging coefficients for all genes in each
of these pathways are listed in Table S9. We would expect 0.08
(essentially none) of the 624 pathways to appear commonly
age regulated by chance (p < 0.05 in all three tissues, and
hence a combined p < 1.25 X 1074,

Increased overall expression of the extracellular matrix
gene set (152 genes) with advancing age may contribute to
widespread fibrosis in the elderly (Figure 4). Fibrosis is a
process by which fibrous connective tissue proliferates
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throughout organs and impairs function of many tissues.
TIMP1I, which encodes tissue inhibitor of metalloproteinase 1,
shows the largest increase in expression with age (average of
236% in 50 y).

The cell growth gene set (29 genes) includes genes coding
for growth factors, such as TGFBI and FGFRI. Induction of
genes in this gene set may reflect an attempt to repair tissue
damage that accumulates over lifespan.

Although complement activation genes (22 genes) are
induced in muscle, the kidney, and the brain, they are
expressed primarily in liver [29]. Therefore, unless comple-
ment genes are also age regulated in the liver, the
physiological relevance of age regulation of complement
genes in muscle, the kidney, and the brain is currently
unclear.

Cytosolic ribosomal genes include 85 genes that show a
general increase in expression with age in all three tissues.
This result is interesting because the rate of protein synthesis
is known to decrease in old age [30], and yet our expression
results show an increase in the expression of ribosomal genes.
One possibility is that decreased protein synthesis in old cells
induces expression of ribosomal genes as part of a homeo-
static feedback loop to partially compensate for loss of
translational efficiency.

The chloride transport pathway is composed of 35 genes
that show an overall decrease in expression with age in all
three tissues. Ion transport of many types is important not
only in the contraction of muscle [25], but also for
maintenance of salt balance in the kidney [31] and neuron
function in the brain through GABA-mediated receptors [32].
Decreased transport of chloride with age could lead to many
types of physiological decline linked to ion transport
deficiency.

The mitochondrial electron transport chain was found to
show an overall decrease in expression with age. This group
contains 95 genes, including genes associated with the NADH
dehydrogenase family (complex I), succinate-coenzyme Q
reductase (complex II), ubiquinone-cytochrome c reductase
(complex III), cytochrome c oxidase (complex IV), H™-ATP
synthase (complex V), and the uncoupling proteins. The
finding that expression of genes involved in the electron
transport chain decreases in old age supports the mitochon-
drial free-radical theory of aging [33], as free-radical
generation by mitochondria would preferentially damage
the electron transport chain protein complex. Decreased
expression of the electron transport genes (encoded in the
nucleus) might be caused by feedback regulation from
damage to the electron transport chain protein complex.
Other protein complexes in the mitochondria (such as
mitochondrial ribosomal genes) do not decrease expression
with age. Thus, aging does not have a general effect on genes
encoding mitochondrial components, but rather specifically
affects expression of genes that are part of the electron
transport chain.

The above results show that there is common age
regulation for these six genetic pathways in the Kkidney,
muscle, and the brain. Next, we determined that there was
little statistical evidence for the correlation of age regulation
of individual genes in a pathway in one tissue with their age
regulation in another tissue (Materials and Methods). Thus, it
is unclear whether or not the same genes or different genes
within a pathway show age regulation between different
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Figure 4. A Common Signature for Aging in Muscle, the Kidney, and the
Brain

Shown are expression data from sets of extracellular matrix genes, cell
growth genes, complement activation genes, cytosolic ribosomal genes,
chloride transport genes, and electron transport chain genes. Rows are
human tissues (M, muscle; K, kidney; B, brain). Columns correspond to
individual genes in each gene set. Scale represents the slope of the
change in log, expression level with age (B;;). Gray indicates genes were
not present in the dataset. A navigable version showing identities of
specific genes can be found at http://cmgm.stanford.edu/~kimlab/
aging_muscle.

DOI: 10.1371/journal.pgen.0020115.g004

tissues. For example, certain genes in the electron transport
pathway might be age regulated in the kidney, whereas other
electron transport genes might be age regulated in the
muscle.

A Public Age-Regulated Pathway in Humans, Mice, and
Flies

Having identified genetic pathways that are commonly age
regulated in different human tissues, we next determined
whether their age regulation is specific for humans (private)
or whether these groups are also age regulated in other
species (public). Genetic pathways that are age regulated in
different species would be of particular interest because they
would identify mechanisms that are inextricably related to
aging, even in animals that have vastly different lifespans.

We compared age regulation in humans to previously
published studies of age regulation in D. melanogaster [16] and
C. elegans [18]. To examine age regulation in aging mouse
kidneys, we collected a kidney sample from ten C57BL/6 mice
at 1, 6, 16, and 24 mo of age for a total of 40 mouse kidney
samples. RNA from each kidney was extracted, labeled with
P33-dCTP, and hybridized to ¢cDNA filter membranes com-
prising 16,896 cDNA clones corresponding to 11,512 unique
genes. We normalized expression values using the Z-score
method [34], and analyzed age regulation of each gene using a
multiple regression model taking into account age and sex of
each mouse donor. Table S10 shows the slope of expression
with respect to age for each gene.

We first identified orthologs of human genes in each of the
other three species. Next, we determined the change in
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Figure 5. The Electron Transport Chain Decreases Expression with Age in
Humans, Mice, and Flies

Rows represent either human tissues or model organisms. Columns
correspond to individual human genes and homologs to human genes
defined by reciprocal best BLAST hits in other species. Scale represents
the normalized slope of the change in log, expression level with age
(Bs;). Data from different species were normalized by dividing the slope
of expression with age by the standard deviation of all similar slopes in
the dataset. Gray indicates genes were not present in that species. A
navigable version of this figure showing identities of specific genes can
be found at http://cmgm.stanford.edu/~kimlab/aging_muscle.

DOI: 10.1371/journal.pgen.0020115.g005

expression with respect to age for each gene in each species,
using multiple regression techniques similar to the ones used
for our studies of aging in human muscle (Material and
Methods). We took the six gene sets shown to be aging-
regulated in diverse human tissues, and then asked whether
they also showed age regulation in any of the other three
species. We analyzed the expression of each of the gene sets
using modified GSEA to determine whether they showed an
overall bias in expression with age in each species. Extrac-
ellular matrix genes, cell growth genes, complement activa-
tion genes, cytosolic ribosomal genes, and chloride transport
genes did not show age regulation in other species.

The electron transport chain genes showed a consistent
overall decrease in expression with age in humans, mice, and
Drosophila, but did not show significant age regulation in C.
elegans (Figure 5 and Table 4). To show that age regulation is
not likely to be due to random biological sampling error, we
resampled the electron transport data set in each species with
replacement and found that the electron transport chain
genes showed significant age regulation in mice (p < 0.02) and
flies (p < 0.001) but not C. elegans. The electron transport
chain gene set also shows a large van der Waerden score in
mice and flies (less than —3.7). In summary, humans, mice, and
flies show decreased expression of the electron transport
chain during aging, defining a public pathway for aging across
species with very different lifespans. In C. elegans, it is unclear
whether the lack of support for age regulation of the electron
transport chain pathway is because the pathway is not age
regulated or because the DNA microarray experiments lack
statistical power to detect age regulation.

Discussion

In this study, we have generated a high-resolution tran-
scriptional profile of aging in the human muscle. Welle et al.
have previously used DNA chips to profile expression changes
during aging for the human muscle [7,8], and this work
extends their previous studies because we used a significantly
larger sample size that enabled much higher statistical
resolution.

People age at different rates, especially with regard to
muscular aging. Some remain fit and strong, whereas other
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Table 4. Age Regulation of the Electron Transport Chain in Three
Species

H.s. Z° M.m. Z¢ D.m. Z* Ce. Z*
(p° <) (p <) (p <) (p <)

Age-Regulated
Gene Set

Electron transport chain  —11.50 (0.01) —3.70 (0.02) —7.00 (0.001) 3.20 (0.27)
(95 genes)

*Combined Van der Waerden score for three human tissues. The Van der Waerden scores
are added together and divided by the square root of three to determine the combined
score.

bp-value of age regulation, calculated by resampling with replacement.

“Van der Waerden score in a model organism, calculated by modified GSEA.

DOI: 10.1371/journal.pgen.0020115.t004

become frail and weak when they are old. The transcriptional
profile for aging in this study reflects the physiological age of
the subjects, as measured by muscle diameter ratio, after
making an adjustment for their chronological ages. Previous
work on age regulation in the kidney also identified
molecular markers that could predict the physiological age
of the kidney [5].

Our results provide the some of the first evidence for a
common signature of changes of gene expression in different
human tissues. Specifically, we found similar patterns of age
regulation for six biological pathways in the muscle, the
kidney, and the brain. Previous studies found similar patterns
of aging between different parts of the same tissue, but not
between entirely different organs (i.e., age regulation was
found to be similar between the cortex and medulla of the
kidney [5] and between the frontal pole and the prefrontal
cortex in the brain [13]).

Except for the complement activation gene set, the path-
ways that show common age regulation in diverse tissues also
function in all cells. Changes in expression of these pathways
in old age may lead to degeneration of not only core cellular
functions (such as ion transport and energy production) but
also to degeneration of tissue-specific functions (such as
kidney filtration and synaptic signaling) that rely on house-
keeping pathways. By identifying a common aging signature
across tissues, we can now focus on aging pathways that are
general instead of tissue-specific. The common aging signa-
ture reflects the age of diverse organs, whereas genes that are
age regulated in just one tissue reflect the age of that tissue.
Finally, treatments or therapies that alter expression of the
four common age-regulated pathways might be expected to
affect diverse tissues instead of a specific tissue, and may
therefore have an overall effect on longevity.

Although some patterns of aging are similar between
different human tissues, much of aging is tissue-specific.
Decreases in expression of the sialyltransferases and sym-
porter genes are changes specific to muscle, and do not
appear to occur in either the kidney or the brain.

Nearly all of the age regulation that we found is specific to
humans, and does not seem to occur in old mice, flies, or
worms. Thus, much of age regulation in humans is species-
specific (private) rather than universal for all animals (public).
This result emphasizes the importance of studying aging in
humans rather than model organisms with short lifespans in
order to understand how people grow old.

Nevertheless, we did find one pathway that was age
regulated in humans, mice, and flies. The electron transport
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chain gene pathway decreases expression with age in all three
species. Previous studies found little or no similarity in age
regulation between humans and mice [5] or primates [13].
These studies might have overlooked public patterns of age
regulation in different species because they searched for
similarities in age regulation at the level of individual genes
rather than of entire genetic pathways (too little sensitivity)
or because the aging experiments involved only a few
individuals (too much experimental noise). Another previous
study compared aging in flies and worms, and reported that
there was a common decrease in expression, seen in young
adulthood, of genes that encode mitochondrial proteins [19].

In mammals, direct genetic tests of the functional relevance
of reduced expression of the electron transport chain
pathway on lifespan have not yet been reported. However,
in C. elegans, reducing the activity of eight genes involved in
the electron transport chain using RNAi increased lifespan
significantly [35,36]. A gene encoding a subunit of NADH
dehydrogenase (NDUFA10) is one of the genes showing the
largest decrease in expression with age in humans, and its
ortholog in worms, K04G7.4, was also found to cause one of
the largest increases in lifespan using RNAi in C. elegans [36].
Indeed, in these global RNAi screens, the electron transport
chain pathway stands out as the pathway showing the largest
and most consistent effect on extending lifespan in worms
[35]. The genetic results from worms suggest that diminished
expression of the electron transport chain pathway in old age
in humans may be beneficial, contributing toward extending
lifespan.

What types of upstream events might cause a decrease in
expression of the electron transport chain pathway with age?
Other mitochondrial pathways, such as the mitochondrial
ribosome, do not show age regulation similar to the electron
transport chain pathway. One potential cause of decreased
expression of the electron transport chain pathway is that
metabolism may slow in old age, resulting in reduced
expression of the energy producing machinery of the cell.
Another possibility is that oxidative damage to the proteins
in the electron transport chain in the mitochondria may lead
to reduced expression of the corresponding genes in the
nucleus. The electron transport chain creates free radicals in
the process of generating energy that would preferentially
damage protein components of the electron transport chain
[33].

It seems unlikely that common age regulation of the
electron transport chain pathway is directly due to evolu-
tionary conservation. Events in old age are unlikely to have a
significant effect on fitness of a population because old
animals (such as 3-y-old mice and 80-y-old people) are a small
fraction of natural populations (except in recent human
history). It could be that the electron transport chain is
regulated during aging as an indirect consequence of
regulation during development (antagonistic pleiotropy)
[37]. Alternatively, age regulation of this pathway may be an
unavoidable consequence of aging (e.g., oxidative damage to
the electron transport chain in old age may occur in all
animals) [33].

It is interesting that the level of age regulation of the
electron transport chain is nearly the same in each species,
whereas lifespan varies greatly. Compared to humans, mice
age 20- to 30-fold and flies age 400-fold more rapidly. Thus,
the kinetics of the changes in gene expression for the electron
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transport chain genes precisely matches the difference in
lifespan between species. This suggests that decreased
expression of the electron transport chain pathway with age
may be particularly informative as a marker of physiological

aging.

Materials and Methods

Sample collection. The muscle samples were obtained from patient
biopsies collected either during surgery or in an outpatient
procedure, and the medical conditions associated with each biopsy
are listed in Table S1. For example, the abdominal muscle samples
were harvested during surgeries to treat gastrointestinal pathologies.
There was no known pathology associated with the abdominal muscle
samples themselves, except that they were obtained from patients
with various gastrointestinal disorders. In the case of patients with
gastrointestinal cancer, the abdominal muscle samples were har-
vested from regions of the abdomen that were not affected by the
cancer. Each muscle sample was immediately frozen in liquid
nitrogen and subsequently stored at —80 °C. Finally, we checked each
sample by histological staining, and excluded any samples that
appeared abnormal or diseased.

RNA isolation. Frozen muscle samples were weighed (50-100 mg),
cut into small pieces on dry ice, and then placed in 1 ml of TRIzol
Reagent (Invitrogen, Carlsbad, California, United States). The tissue
was homogenized using a PowerGen700 homogenizer (Fisher
Scientific, Pittsburgh, Pennsylvania, United States), and the total
RNA was isolated according to the TRIzol Reagent protocol.

DNA gene chip hybridization. A standard protocol designed by
Affymetrix (Santa Clara, California, United States) for their HG-U133
2.0 Plus high-density oligonucleotide arrays was slightly modified by
the Stanford Genome Technology Center (Stanford, California,
United States), and all samples were processed in their facility (see
Protocol S1). Eight micrograms of total RNA was used to synthesize
cRNA for each sample, and 15 pg of cRNA was hybridized to each
DNA chip. The samples were processed in random order with respect
to age.

Microarray data normalization and analysis. We used the DChip
program [38] to normalize the data and to generate expression levels
for each individual probe set by a perfect-match-only model. All
expression data will be publicly available on the Gene Expression
Omnibus website upon acceptance. When different probe sets
corresponded to the same gene, we averaged the expression levels
together. After averaging, we used logs-transformed expression
values for all subsequent analyses.

Muscle fiber diameter measurement. Cross-sections of muscle
cryosections were photographed at 200X, and the pictures were
either measured digitally (diagnostic muscle biopsy samples, ATPase
preparations) or printed (abdominal muscle samples, combined SDH-
cytochrome ¢ oxidase preparations) and measured by hand. All of the
diagnostic muscle biopsies were considered, and 32 of the 81 muscle
samples were sufficiently intact for measurement, the remainder
being inadequately oriented for cross-sections or too small for
meaningful data. Digital analysis consisted of measuring the shortest
width through the approximate center of the cell. After calibration
with a known length, the diameters were measured and converted to
microns using SigmaScan Pro 5.0 software (SPSS Software, Chicago,
Illinois, United States). Diameters were tabulated by type I and type II
cell types. The counts ranged from approximately 30 cells per type to
more than 100 depending on the sample size. Print analysis was by
similar methodology. Raw measurements in millimeters were used to
calculate the ratio of type II to type I diameters without converting to
microns.

Multiple regression analysis. To determine the change in expres-
sion with age, we used a multiple regression model in which the
change in expression with age takes into account the possibility that
expression levels might differ in men versus women, or in abdominal
muscle versus peripheral muscle. Specifically, we used the following
multiple regression model:

Yy = Boj + BijAge; + BySex; + BgjAnatomy; + &;;. (1)

where Yj; is the expression level of the jth probe set for the ith sample,
Age; is the age in y of the ith sample, Sex; corresponds to the sex of the
ith sample (0 for male, or 1 for female), Anatomy; is the anatomic
location from which the muscle sample was harvested (0 for
abdominal or 1 for peripheral muscle), &; represents an error term,
B; is the change of expression with age, B, is the change of
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expression with sex, B5; is the change of expression with anatomical
origin of sample, and Py, is the regression intercept. For each gene j,
we used least-squares to determine all of its coefficients, with our
primary interest in the one with respect to age (B;). We were
interested in genes that show either a positive or negative value for
B;; indicating either increasing or decreasing expression in old age,
respectively.

For human brain, mouse kidney, and D. melanogaster, we deter-
mined the change in expression with age for each gene using the
following multiple regression model:

Yl] = [30] + Blegei + BQJSEXL‘ + Ejj. (2)
For human kidney, we used the multiple regression model:
Yy = By + BijAge; + BosSex; + By Tissue; + €. (3)

In Equation 3, the tissue term is a binary term scored 0 for cortex
and 1 for medulla. For C. elegans data, we used a simple linear
regression with age:

Yy = Boj + BijAgei + & (4)

The reviewers suggested two additional methods to show that the
age-regulated genes could serve as markers for physiological age.
First, we showed that genes regulated by muscle physiology can also
predict chronological age. We found genes that were significantly
regulated by type Il/type I muscle fiber diameter ratio using the
multiple regression model:

Yy = By + By TypeRatio; + Bo;Sex; + PsjAnatomy; + &;. (5)

Here, TypeRatio is the ratio of type Il to type I muscle fiber
diameters. We found 585 genes with a statistically significant
coefficient for TypeRatio using the threshold p < 0.01. Of these 585
genes, 114 showed partial correlation with age (absolute value of » >
0.2), indicating a significant overlap (p < 0.02; hypergeometric
distribution) (Table S7). The 92 genes found in the analysis shown in
Figure 3 and the 114 genes found in this analysis share a common set
of 7 genes, indicating a statistically significant overlap (p < 1 X 1078;
hypergeometric distribution).

Second, we repeated our age analysis taking into consideration the
effect of type Il/type I muscle fiber diameter ratio on age regulation.
To do this, we used a four-term multiple regression model that
includes terms for both age and type Il/type I ratio:

Yy = Boj + BijAge; + BoSex; + BgjAnatomy; + By TypeRatio; + €. (6)

Using Equation 6, we found 543 genes that were regulated by age
(p < 0.01) and 12,786 genes regulated by type I/type I ratio (p < 0.01;
Table S8). There are 271 genes shared in common between these two
sets of genes, which is a significantly larger number than would be
expected by chance (hypergeometric p < 1 X 1075 Table S8). We
repeated this experiment using a threshold of p < 0.001 and found
similar enrichment, confirming our results. This analysis shows that
the set of genes that are regulated by age is enriched for those that
mark the physiology of aging muscle.

False discovery rate determined by permutation analysis. We used
a permutation analysis to simulate the number of genes that would
pass our cutoff by chance (p < 0.001). We randomized the age
variables of muscle samples 1,000 times while maintaining the sex and
anatomy variables with the sample. Equation 1 was used to recalculate
regression coefficients and p values in every randomization. Theory
predicts, and our simulation verifies, that on average about 32 genes
pass our threshold (p < 0.001) by chance. This result suggests that
there are about 13% false positives in our set of 250 age-regulated
genes in the muscle. In 95% of the permuted datasets, 107 or fewer
genes were significant at the 0.001 level.

Cluster analysis of pathological and pharmaceutical factors. To
examine whether pathological or pharmaceutical factors were
confounding the analysis of age regulation in muscle, we performed
unsupervised, average-linkage hierarchical clustering of the 81
muscle samples using the Cluster software [39]. The 81 muscle
samples were clustered on the basis of the 250 genes previously
determined to be age regulated in human muscle.

Modified gene set enrichment analysis. GSEA [40] uses a non-
parametric test to decide when the n genes in a group G have age
coefficients that differ significantly from the N-n genes that are not in
G. The model is that the n age coefficients in G are sampled from a
distribution G, while the N-n coefficients not in G are sampled from a
distribution F. We then test the null hypothesis that F = G. The
Kolmogorov-Smirnov test is based on counting how many genes from
G are in the top K genes of the combined list of age coefficients and
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comparing it to the number expected when F = G. By letting K vary
from 1 to N, the test is sensitive to any alternative F # G. GSEA
employs a weighted Kolmogorov-Smirnov test obtained by using a
weighted count of genes (with more weight on the extreme ones). In
our analysis, we have replaced the weighted Kolmogorov-Smirnov
test by a weighted sum, the van der Waerden normal scores test.

The van der Waerden test conforms more closely to our
interpretation of what it means for a group G of genes to be age
related than does the weighted Kolmogorov-Smirnov test. When N is
large, then any small group that contains the single most age-related
gene is significantly age related by the weighted Kolmogorov-Smirnov
test. Such a group displays a genuine statistical significance and
comprises strong evidence that ¥ # G, but isn’t necessarily bio-
logically increasing or decreasing expression as a mechanistic unit
with age. For example, a group of 30 genes with two of the most age-
increasing genes and 2 of the most age-decreasing genes could be
found to be both an age-increasing group and also an age-decreasing
group with significance, even when the other 26 genes are not
particularly age related. Here it is clear that F # G, but perhaps it is
simply because G has higher variance than F.

To compute the van der Waerden test, we first find the rank r(j) for
every gene j € G. This rank is the number of the original N genes with
an age coefficient smaller than that of gene j. The raw van der

Waerden score is
_ S k)
r=> o (N - 1) (7)

jeG

where @ is the standard normal cumulative distribution function.
When the N age coefficients are independent with a common
continuous distribution F = G, then the distribution of Y is very
nearly normally distributed with mean 0 and a variance V(Y) close to
N-n. We replaced the GSEA enrichment score by the van der
Waerden statistic, Z=Y/\/V(Y), which is very nearly N(0,1) under the
null hypothesis. When distribution G is shifted left or right relative to
F, then the value of Z tends to increase beyond what we would expect
from the N(0,1) distribution.

Bootstrap test for significance of GSEA. It is better to use
resampling methods instead of the N(0,) null distribution to assess
the significance of the enrichment score Z. The reason is that there
are ordinarily correlations among the expression levels of the genes
in G. When the expression levels of two genes in G are correlated, the
age coefficients for those genes are correlated as well [41]. It then
follows that their ranks are correlated, and this typically increases the
variance of Y so that ultimately Z is no longer N(0,1). The value of Z
can become large either because the genes are age related or because
they are correlated with each other. Both may be biologically real, but
the second is not an interesting finding, except possibly as
confirmation that the group G is well constructed.

The original GSEA [40] randomly permutes the labels of two
groups being tested while keeping the gene expression data intact.
This preserves correlations within the groups so that any significant
findings are relative to a null simulation that includes correlations
among genes. In many random permutations, one gets a histogram of
enrichment scores for age that is centered around zero. If the sample
value is far outside the histogram then that enrichment score is
statistically significant.

We adopted instead a bootstrap approach. We resampled the data
and recomputed enrichment scores, obtaining a histogram roughly
centered over the observed enrichment score. If the null value (zero)
is far outside the resampled histogram, then the enrichment score is
statistically significant. The bootstrap approach also preserves
correlations among genes as well as correlations between genes and
covariates.

The primary motivation for bootstrapping is the presence of
covariates in our problems. Consider for example data with age, sex,
and expression variables. If we permute the ages with respect to the
expression data and repeat the regression, we have to decide whether
the sex variable should be attached to the ages or to the expressions
in the random permutation. Attaching sex to the age variables will
leave us with simulated data sets in which females express Y
chromosome genes as much as males. Because of such artifacts, this
is not a suitable null distribution. Attaching a covariate to the
expression variables is also problematic. Suppose that one of the
covariates is somewhat correlated with age. The effect will be to
increase the variance of the originally sampled age coefficient. In
permutation samples where the covariate is attached to the
expression data, it is resampled independently of age. Such
independence reduces the variance of the age coefficient in the
permutation data. The consequence is that the permutation-based
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histogram of age coefficients is then too narrow and false discoveries
will result.

In the bootstrap approach we generated 1,000 sample datasets. In
each sample dataset we mimicked the sampling process that gave rise
to the data by resampling 81 subjects from the population of 81
subjects. The resampling keeps age, expression, and all covariates of
any given subject together. Bootstrap sampling mimics the random
process that generated the data.

We remark that both bootstrap and permutation sampling of the
van der Waerden scores gave rise to Z scores that were nearly
normally distributed, but not necessarily N(0,1) (unpublished data). In
permutation sampling, the histogram of enrichment scores tended to
have means near zero, but several groups had variances larger than
1.0. In bootstrap sampling, the variances often differed from 1 and
the means were usually between zero and the original enrichment
score.

Venn and correlation analysis of human muscle, the kidney, and
the brain. The most direct way to compare aging in muscle, the
kidney, and the brain is via a Venn analysis: we find which genes
attain a stringent significance level for each tissue and judge whether
the overlap is statistically significant according to a hypergeometric
distribution. We did a pairwise comparison between each tissue to
find genes that are aging-regulated in both sets. There are six aging-
regulated genes in both the muscle and the kidney (p < 0.09,
hypergeometric distribution), five aging-regulated genes in both
muscle and the brain (p < 0.07), and 13 aging-regulated genes in
common between the kidney and the brain (p < 0.29). There were no
genes that were strongly age regulated in all three datasets. The Venn
analysis approach is very interpretable but lacks power because it
replaces actual measured correlations by a less informative notion of
whether they are over a threshold.

A more sensitive comparison can be based on correlating the age
coefficients of genes in two tissues. We selected all genes that are age
regulated in either of two tissues, plotted the age coefficient of each
gene in one tissue versus that gene’s coefficient in the other tissue,
and computed the Pearson correlation (r) of the resulting points
(Table S11). We found the strongest overlap in aging between the
kidney and the brain (r = 0.219), and smaller but positive overlaps in
aging between the muscle and the kidney (r=0.103) or the muscle and
the brain (r = 0.078).

Because the genes are correlated we cannot use textbook formulas
to judge the statistical significance of these Pearson scores. To get a p
value for a Pearson correlation between kidney and muscle, we used
1,000 sets of random genes. The number of genes in each set was the
same as the number we used to compute the correlation in Table S11.
For each random gene group we computed the Pearson correlation
between age coefficients in kidney and muscle. Of the 1,000 samples,
there were six in which the random gene group gave rise to a larger
Pearson correlation than the one we saw in the real data. This
corresponds to a p value of 0.006 for kidney-muscle. We similarly
found a p value of 0.001 for kidney-brain but only 0.058 for muscle-
brain. With the possible exception of the kidney-brain pair, the age-
related genes have more consistent age coefficients across tissues than
randomly selected genes do.

We also ran a bootstrap test of the tissue comparisons. In this test
we resampled the microarray data with replacement 1,000 times.
Each time we recomputed the correlations between age coefficients
for genes in the kidney and muscle. In 1,000 trials we saw 39 in which
the sample correlation was less than or equal to zero. After
converting to a two-tailed test, this corresponds to a p value of
0.078 for kidney-muscle. To save computation, we used the same set
of genes in each bootstrap sample instead of making the age-related
gene set vary with the sample separately. The p value for muscle-
brain was 0.07 while that for kidney-brain was 0.001. Based on these
individual gene-level analyses, the age-related genes in the kidney and
brain tended to be very similar. The muscle-kidney and muscle-brain
comparisons were weaker.

Tests for correlation of tissues within commonly age-regulated
gene sets. To test for the correlation of gene ranks between tissues
within those gene sets found to be commonly age regulated in the
human, we used a two-tailed Spearman correlation method to first
calculate a correlation coefficient for every pairwise combination of
tissues (i.e., muscle-kidney, kidney-brain, muscle-brain) for that age-
regulated gene set (e.g., extracellular matrix genes). In order to test
for the significance of the calculated correlations, we used a
permutation-based Monte Carlo method, randomizing the ranks for
each gene and tissue in the gene set and recalculating Spearman
correlations 1,000 times. We found that most of the correlations
between tissues were not significant (Table S12).

@ PLoS Genetics | www.plosgenetics.org

1068

Aging Human Muscle

Supporting Information

Figure S1. Age Distribution of Anatomical, Medical, and Pharma-
ceutical Factors

Each row denotes a medical or pharmaceutical factor. Age of patients
is shown on the x-axis. Sex, biopsy location, and 12 medical factors
are shown in the legend. Only hypothyroidism shows any overt
association with age.

Found at DOL 10.1371/journal.pgen.0020115.sg001 (253 KB TIF).

Figure S2. Medical and Pharmaceutical Factors do not Affect Age
Regulation

(A) Coronary artery disease was included as an additional term in
Equation 1, and the model was recalculated for the 250 genes that
significantly change expression with age. The slope of expression with
age (age coefficient) from models with (y-axis) and without (x-axis) the
coronary artery disease term was plotted. If coronary artery disease
affected expression, we would expect a large deviation in age
coefficient. No significant deviation was seen for any of the 250
age-regulated genes, indicating that coronary artery disease does not
adversely affect our study of age regulation.

(B-L) Similar to (A) for 11 other medical factors. (B) Coronary artery
disease. (C) Colorectal cancer. (D) End-stage renal disease. (E)
Hyperlipidemia. (F) Hypertension. (G) Hypothyroidism. (H) Pancre-
atic cancer. (I) Prostate cancer. (J) Radiotherapy. (K) Statins. (L)
Villous adenoma.

Found at DOIL 10.1371/journal.pgen.0020115.sg002 (319 KB TIF).

Figure S3. Cluster Analysis of Medical and Pharmaceutical Factors

Samples are clustered on the basis of 250 age-regulated genes in
muscle, shown by the top dendrogram. Columns are individual
muscle samples, marked by age of the patient. Top seven rows
correspond to the expression of the first seven age-regulated genes.
The diagram shows anatomical, medical, and pharmaceutical factors
for each patient. Each row corresponds to one medical or
pharmaceutical factor.

Found at DOI: 10.1371/journal.pgen.0020115.sg003 (1.2 MB TIF).

Table S1. Clinical Data

Found at DOL 10.1371/journal.pgen.0020115.5t001 (2.1 MB XLS).
Table S2. 250 Age-Regulated Genes (p < 0.001), Arranged by Slope
with Age

Found at DOI: 10.1371/journal.pgen.0020115.5t002 (59 KB XLS).
Table S3. 624 Gene Sets Assayed for Age Regulation

Found at DOI: 10.1371/journal.pgen.0020115.5t003 (63 KB XLS).

Table S4. Contributing Genes in Gene Sets Age Regulated in Muscle
Found at DOL 10.1371/journal.pgen.0020115.5t004 (45 KB XLS).

Table S5. Type lI/Type I Muscle Fiber Diameter Ratios of 32 Patients
Found at DOT: 10.1371/journal.pgen.0020115.st005 (16 KB XLS).

Table S6. 92 Age-Regulated Genes that Predict Type Il/Type I Ratio
Found at DOI: 10.1371/journal.pgen.0020115.st006 (27 KB XLS).

Table S7. 114 Type II/Type I-Regulated Genes that Predict Age
Found at DOI: 10.1371/journal.pgen.0020115.st007 (32 KB XLS).
Table S8. Significant Overlap between Sets of Age-Regulated and
Type II/Type I-Regulated Genes

Found at DOI: 10.1371/journal.pgen.0020115.st008 (14 KB XLS).
Table S9. Contributing Genes in Gene Sets Commonly Age Regulated
in Muscle, the Kidney, and the Brain

Found at DOT: 10.1371/journal.pgen.0020115.st009 (101 KB XLS).

Table S10. Aging Coefficients of 11,512 Genes in Mouse Kidneys
Found at DOI: 10.1371/journal.pgen.0020115.5t010 (982 KB XLS).

Table S11. Correlation of Age-Regulated Genes in Three Tissues
Found at DOI: 10.1371/journal.pgen.0020115.5st011 (15 KB XLS).

Table S12. Spearman Correlations between Tissues for Age-Regu-
lated Gene Sets

Found at DOI: 10.1371/journal.pgen.0020115.5t012 (15 KB XLS).
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