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Abstract 

Phenotypic variation is essential for the selection of new traits of interest. Struc-

tural variants, consisting of deletions, duplications, inversions, and translocations, 

have greater potential for phenotypic consequences than single nucleotide variants. 

Pan-genome studies have highlighted the importance of structural variation in the 

evolution and selection of novel traits. Here, we describe a simple method to induce 

structural variation in plants. We demonstrate that a short period of growth on the 

topoisomerase II inhibitor etoposide induces heritable structural variation and altered 

phenotypes in Arabidopsis thaliana at high frequency. Using long-read sequencing 

and genetic analyses, we identified deletions and inversions underlying semi- 

dominant and recessive phenotypes. This method requires minimal resources, is 

potentially applicable to any plant species, and can replace irradiation as a source of 

induced large-effect structural variation.

Author summary

Improvement of crop species relies on selecting from amongst existing natural 
variation in the traits a species exhibits. However, the standing diversity of a giv-
en crop species is unlikely to encompass all desirable possibilities. Crop breed-
ers therefore often induce new traits by changing DNA sequence at random 
locations. These changes may be either at the scale of single nucleotides in the 
genome or at the scale of tens to millions of bases, depending on the method 
used. Inducing large changes to DNA is desirable because such changes are 
more likely to create new traits. However, current methods to induce such chang-
es require a radiation source and thus may not be accessible to crop breeders 
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world-wide or are tedious to apply. Here we describe a new method that repur-
poses the well-studied cancer drug etoposide to induce large genetic changes to 
plant genomes and demonstrate its efficacy in Arabidopsis thaliana. This method 
is simple, affordable, and potentially applicable to a wide variety of plant species.

Introduction

Genomic structural variations (SVs) – insertions, deletions, duplications, transloca-
tions and inversions – are an important source of genetic and phenotypic novelty. 
Structural variants create genetic novelty by multiple means, including fusing the cod-
ing regions of two genes, altering cis-regulatory environments and gene expression 
patterns, and by altering or suppressing recombination, among other mechanisms. 
In addition, deletions and duplications alter gene or chromatin dosage [1–3]. Novel 
structural variants have larger phenotypic effects per mutation than single nucleotide 
variants [4] and have been selected for when they underlie traits beneficial to the 
organism or desirable to agriculturists [5,6].

Recent pan-genome sequencing of multiple plant species has underscored the 
versatility and significance of structural variation to phenotypic variation, modern crop 
traits, and crop improvement. Lower seed sets in watermelons and grapes, important 
for the development of popular “seedless” varieties, have been linked to large inver-
sions that cause meiotic defects [7,8]. SVs have also been linked to the domestica-
tion of broomcorn millet [9] and sorghum [10]. In pearl millets, gain of heat tolerance 
has been linked to SVs at multiple loci [11]. SVs are also associated with variation 
in immunity and plant defense responses [12–14]. In Arabidopsis, a multi-enzyme 
pathway synthesizes the glucosinolate family of defense compounds. SVs that 
either delete or fuse enzyme-encoding paralogs modify enzymatic pathways and are 
responsible for ecotype-specific variation in glucosinolates [15]. Studies of Oryza 
sativa provide numerous examples of how SVs influence phenotypes. Change in 
copy number of VIL1 is associated with changes to flowering time and grain number 
variation [16]. In addition, duplications of the KALA4 gene – a regulator of the antho-
cyanin biosynthesis pathway – create a novel cis-regulatory region that promotes 
ectopic expression of anthocyanins and causes a “black pericarp” phenotype [17]. 
In peaches, fruit flesh color around the stone and fruit shape are dependent on a 
deletion and a megabase scale inversion [18]. Modern varieties of sweet corn were 
created by selecting for an inversion that creates a loss-of-function mutation in the 
shrunken-2 gene, which encodes the first enzyme of the starch biosynthesis pathway 
[19,20]. In tomatoes, a duplication of a cytochrome P450 gene is linked to increased 
fruit weight [5].

Extant crop genetic diversity is unlikely to provide all possible SV diversity that 
could impact crop improvement. Induced structural variation can therefore provide 
novel germplasm for breeding programs, information that can be used for targeted 
CRISPR-mediated restructuring of crop genomes, and novel genetic variants for 
understanding fundamental aspects of plant biology. The most common method 
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employed to induce random structural variation is exposure to ionizing radiation, including X-rays, gamma irradiation, and 
heavy ions [21–26]. Since the 1960’s, irradiation has been used to induce structural variation in model organisms and 
in numerous crops including, more recently, rapeseed [27], wheat [28], cotton [29], rice [23,30], poplar [22,31], soybean 
[32,33], and buckwheat [34]. Populations carrying such structural variation have been used for the isolation of mutations 
that abolish hybrid sterility in rice [35] and the creation of seeds differing in oil composition [21,27].

Although radiation-induced structural variation remains an important element of modern plant breeding, there are logis-
tical challenges. In contrast to the induction of single nucleotide variants that researchers can conveniently pursue in their 
own labs using ethyl methanesulfonate (EMS) or sodium azide [36], the induction of structural variants requires access to 
radiation sources. Radiation sources are heavily regulated and access to nuclear reactors, particle accelerators, and other 
sources of radiation is a bottleneck in the creation of structural variant libraries [26]. Additionally, application of irradiation 
can be tedious. For example, the creation of a mutant population in poplar required irradiation of collected and dried pol-
len [22]. One alternative is the extended TAQing approach, in which a transgene expresses a restriction enzyme to induce 
conditional double-stranded DNA breaks, which then leads to shuffling of the plant genome [37]. However, this approach 
can be challenging as the commercial varieties of many crops are not easily transformed.

To surmount the current challenges of creating SVs in plants, we sought a simple method that could be applied to any 
plant species of interest to induce SVs with high frequency. We drew inspiration from the ubiquity and ease of EMS chem-
ical mutagenesis to induce single nucleotide variants. One possible class of mutagens for SV induction is DNA topoisom-
erase II (Topo II) inhibitors. Topo II relaxes torsional stress from DNA supercoiling generated during DNA replication or 
transcription by transiently breaking both strands and then ligating them after passing a DNA segment through the break. 
Between strand breakage and ligation, Topo II is covalently linked to DNA via a tyrosine residue, forming a topoisomerase 
cleavage complex [38]. This complex is stabilized by the inhibitor etoposide. A collision between covalently-linked Topo II 
and DNA polymerases during DNA replication, or with RNA polymerases during transcription, leads to removal of the Topo 
II enzyme, which results in the generation of double-stranded breaks (DSBs) [39–42]. The imprecise repair of DSBs leads 
to genomic rearrangements and structural variation in mouse spermatocytes, fibroblasts, and in human cells [43–45]. 
Previously, it was shown that treatment with etoposide impacts genome stability and inhibits plant growth in Arabidopsis 
thaliana, Allium cepa, and Lathyrus sativus [46–49] and causes chromosomal fragmentation during meiosis in Arabidopsis 
[48]. However, its potential as a mutagen that can induce structural variation in plants has not been investigated. Here, we 
provide proof-of-principle that the chemotherapeutic drug etoposide efficiently generates novel genomic structural varia-
tion in Arabidopsis thaliana.

Description of the method

In brief, the procedure was to germinate and grow seeds on media containing etoposide for 2–3 weeks until multiple true 
leaves developed. Etoposide-treated seedlings were then transferred to soil for the remainder of the life-cycle (Fig 1A). 
Progeny of these plants were screened for phenotypes of interest (Figs 1B–F, S1).

Etoposide (Abcam AB120227) stock was created by dissolving etoposide salt in DMSO to obtain a 100 mM solu-
tion. This stock was added to 0.5x Murashige and Skoog (MS) media supplemented with 1% sucrose and Phytoagar 
to final etoposide concentrations in the 0–640 µM range. Etoposide solubility in aqueous solutions decreased beyond 
concentrations of 160 µM. We found that the efficiency of etoposide varied by batch and by the species to which 
etoposide was applied. It is therefore prudent to identify the highest concentration of etoposide resulting in reduced 
seedling growth without lethality (Fig 1A). Wild-type Col-0 seeds were sterilized by incubating in 2% (v/v) plant pre-
servative mixture (Plant Cell Technologies) for three days at 4°C and sowed on MS media plates supplemented 
with sucrose and differing concentrations of etoposide (0 µM i.e. DMSO only, 20 µM, 40 µM, 80 µM, 160 µM, 320 
µM, or 640 µM) for up to two weeks (Fig 1A). Plants grown on DMSO alone or 20 µM etoposide showed no observ-
able growth defects (Fig 1A). Two-week-old seedlings grown on 40 µM etoposide exhibited gnarled leaves but no 
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differences in size. Seedlings grown on 80 µM etoposide showed marginally reduced growth (Fig 1A). Of the seed-
lings grown on 160 µM of etoposide, less than half (75/184) developed true leaves. In addition, these plants displayed 
stunted root growth (Fig 1A). Seedlings grown on 320 µM or 640 µM etoposide showed little root or shoot growth and 
exhibited high seedling lethality. Seedlings grown on DMSO only, 80 µM, and 160 µM etoposide (referred to as M1 
plants) were transplanted to soil and compared at maturity. Those exposed to 160 µM etoposide exhibited significantly 
more abnormal phenotypes than DMSO only or 80 µM etoposide plants, including loss of apical dominance, gnarled 
leaves, reduced plant size, seed abortion, and lower seed number at maturity (Fig 1A). M2 seeds were collected from 
mature M1 plants treated with 160 µM etoposide.

Fig 1.  Etoposide induces novel heritable phenotypes. (A) Arabidopsis seeds germinated on increasing concentrations of etoposide show a dose- 
responsive growth defect (upper panel). Seedlings grown on 320 μM etoposide did not exhibit true leaves. This generation is referred to as M1. Growth 
defects persisted after transplantation to soil (lower panel). (B) M1 was self-fertilized to give rise to M2. Subsequent rounds of self-fertilization produced 
M3, M4, and M5 generations. A visual examination of M2 generation identified multiple phenotypes, including: (C) a brassinosteroid-like dwarf pheno-
type, (D) a fertile dwarf with short internodes, (E) a virescent phenotype with yellowish leaves, and (F) a variegated phenotype. (G-I) describe crosses to 
the wild-type and subsequent selfing to identify the nature of inheritance of the mutant phenotypes and the number of contributing loci. (G) The BR-like 
dwarf phenotype is incompletely dominant and displays three phenotypic classes. F2 segregation data suggests that this phenotype is caused by muta-
tion at a single locus. (H) The short-internode dwarf phenotype is recessive and is likely caused by more than one locus. (I) The virescent phenotype is 
recessive and caused by a single locus.

https://doi.org/10.1371/journal.pgen.1011977.g001

https://doi.org/10.1371/journal.pgen.1011977.g001
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Verification and comparison

Treatment with etoposide results in mutants with a variety of phenotypes

To test if M1 plants produced progeny with mutant phenotypes, we scored for six visible phenotypes—dwarfism, loss of 
apical dominance, seed size or abortion, leaf shape or size, flowering time, and leaf pigmentation—among the progeny 
(M2 generation) of plants treated with 160 µM etoposide. Of M2 progeny derived from 42 different M1 parents, 29 lines 
exhibited at least one obvious visible phenotype (Figs 1B–F, S1, S1 Table). These phenotypes included: variegated or 
albino plants, altered flowering time, altered leaf shape and size, sterility or seed abortion, and dwarfism (S1 Fig, S1 
Table). The large proportion of plants showing visible phenotypes suggested that etoposide could be an excellent muta-
gen for efficiently creating large-effect mutations.

Etoposide treatment induces a spectrum of structural variation types

To characterize the molecular nature of etoposide-induced mutations, we employed Illumina short-read sequencing tech-
nology to sequence the genomes of 32 M2 or M3 progeny of 15 etoposide-treated M1 plants (S2 Table). To capture the 
full mutational spectrum, we included individuals with and without a scored mutant phenotype (see S3 Table for relation-
ships). To enhance the accuracy of our structural variation (SV) and other mutation calls, we also identified mutations 
segregating in our laboratory Col-0 population by sequencing four M2 plants descended from four control M1 lines treated 
only with DMSO.

To identify etoposide-induced SVs, we first adapted a computational approach that uses genome-wide coverage to iden-
tify large segmental deletions or duplications [50,51]. Using this technique, we identified ten duplications and one deletion, 
which were between 100 kb and 1 Mb in length (Fig 2A, S4 Table). The robustness of this analytical approach was under-
scored by detecting the same duplications in M2 siblings (S2 Fig, S4 Table). Next, we employed LUMPY Express [52] to 
identify structural variants (SVs) in mutant and control plants. This pipeline identified 2,224 variants that included inversions, 
deletions, duplications, and breakends, which were then filtered for high-confidence events. Breakends were excluded from 
further analyses because of the challenges of identifying their molecular nature. A high proportion of predicted SVs mapped 
to Nucleolar Organizer Regions (NOR), plastid genomes, and a small subset of other genomic loci. To test the potential for 
the induction of SVs in difficult-to-map repetitive regions, we measured read depth at rDNA and telomeres and assessed if 
etoposide treatment was linked to a higher degree of repeat copy number variation. Although the number of control plants 
was insufficient to make a definitive statement, we found that the variation in read depth among etoposide-treated lines was 
comparable to that in control lines, suggesting that etoposide treatment likely did not trigger additional genomic instability in 
repetitive DNA (Fig 2B). We also found that these SVs were present in control plants, suggesting that they represent map-
ping artifacts or naturally occurring SVs extant in wild-type plants. Based on these observations, we excluded SVs mapping 
to these regions from further analyses. To further filter out etoposide-independent SVs, those that were found in four or 
more etoposide-derived lineages were excluded, although we cannot exclude the possibility that these represent common 
fragile sites. After applying these stringent filters, we identified 27 unique SVs including 16 deletions and three duplications 
that ranged between 35 bp and 950 bp in size (S3, S4 Figs, S5 Table). We also identified eight inversions that span between 
124 bp and 4 Mb in length (S3, S5 Figs, S5 Table). In sum, the coverage-based approach and LUMPY Express analysis 
suggest that etoposide treatment induces structural variation in Arabidopsis.

The short-read data was also used to test if etoposide treatment resulted in increased single nucleotide variants 
(SNVs), or short indels. SNV and short indel analysis identified a comparable number and spectrum of SNVs in etoposide- 
treated and control lines (Fig 2C, D), suggesting that etoposide did not induce excess SNVs or short indels. Nevertheless, 
we cannot completely rule out the possibility that some SNVs and short indels may arise due to exposure to etoposide. 
Therefore efforts by users of etoposide mutagenesis to identify mutations underlying phenotypes of interest should also 
employ analyses that can accurately identify SNVs and small indels.
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Applications

Novel recessive and dominant phenotypes can be created by etoposide mutagenesis

To assess the applicability of etoposide mutagenesis in creating novel traits and to establish genotype-phenotype  
relationships, we closely examined four M1 lines with visible phenotypes: a dwarf line reminiscent of weak 

Fig 2.  Impact of etoposide on SNVs and repetitive regions. (A) Duplications in etoposide-treated lines as assessed by short-read sequencing. Dos-
age across the indicated chromosome is shown. Chromosomal segments with one extra copy are indicated with *. (B) For lllumina short-read libraries 
of each control and etoposide-treated plant that we sequenced, total number of reads aligning to the telomere (CCCTAAA), NOR2, and NOR4 were nor-
malized to total numbers of aligned reads in each library. Number of thousand reads, per million sequenced reads, for all control and etoposide treated 
libraries are represented in this boxplot. Wilcoxon test shows no statistical difference in the median value of read-depth over repetitive regions in control 
and etoposide-treated plants. (C) Total number of indels and single nucleotide variants (SNVs), genome-wide, identified in etoposide-treated (purple) 
and control lines (blue). (D) Box-plot describes the composition of nucleotide changes in progeny of plants exposed to etoposide and progeny of plants 
exposed to DMSO. All SNVs passing quality filters were included here. REF indicates reference allele and ALT represents the alternate SNV. Wilcoxon 
test was used to determine the significance of differences in SNV numbers between the progeny of etoposide and DMSO treated plant; n.s indicates 
p > 0.05.

https://doi.org/10.1371/journal.pgen.1011977.g002

https://doi.org/10.1371/journal.pgen.1011977.g002
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brassinosteroid-insensitive mutants (Fig 1C) [53], referred to as brassinosteroid-like (BR-like) dwarf (line 1A); a dwarf line 
with short internodes (line 34C), or short-internode dwarf (Fig 1D); a line with delayed greening (line 13B), termed vires-
cent (Fig 1E); and a line with a variegated phenotype (line 5A) (Fig 1F). The semi-sterile BR-like dwarf line (Fig 1C) exhib-
ited short, thick stems that bore fleshy leaves. In contrast, the short-internode dwarf mutant, though short in stature, was 
fertile, produced the same number of nodes on the primary inflorescence as WT plants (S1H, I Fig), and lacked the fleshy 
leaf phenotype observed in the BR-like dwarf (Fig 1D). In the virescent line, juvenile plants exhibited reduced chlorophyll 
pigmentation, whereas adult plants exhibited normal pigmentation (Fig 1E). Variegated mutants displayed light- and  
temperature-dependent variations in the proportions of green and white sectors on cotyledons and true leaves (Fig 1F).

The BR-like dwarf, short-internode dwarf, and virescent phenotypes were transmitted from self-fertilized parents to 
offspring for at least three additional monitored generations, indicating that the phenotype was true-breeding and the 
underlying mutant genotype was stable (Fig 1B). To assess whether these phenotypes were dominant or recessive, 
mutant lines were crossed to wild-type. The resultant F1 progeny from the BR-like dwarf exhibited intermediate dwarfing, 
suggesting that the phenotype was incompletely dominant (Fig 1G). The F1 progeny from the short-internode dwarf line 
and the virescent line displayed a wild-type phenotype, indicating that these mutant phenotypes were recessive (Fig 1H, 
I). Variegated plants did not flower readily, so this phenotype was maintained as a heterozygous stock for the same num-
ber of generations. When self-fertilized, plants from this line either produced all green progeny or one-quarter variegated 
progeny, indicating that this phenotype was recessive (S6 Fig).

To estimate the number of loci contributing to the BR-like dwarf, short-internode dwarf, and virescent phenotypes, we 
examined F2 progeny obtained by self-fertilizing the F1 plants. Of F2 progeny of F1 BR-like dwarf plants with an interme-
diate dwarfing phenotype, 23.4% had a wild-type phenotype, 49.6% exhibited an intermediate phenotype, and 27.0% had 
a severe mutant phenotype (Fig 1G). This result suggested that a single incompletely dominant locus caused the BR-like 
dwarf phenotype (58:123:67 severe:intermediate:wild-type, H

0
 = 1:2:1 ratio, χ2 = 0.669; df = 2, p > 0.5). The short-internode 

dwarf phenotype was observed in 1/8 of progeny obtained by self-fertilizing F1 plants (28:195 short-internode dwarf:wild-
type) (Fig 1H). This ratio is consistent with the recessive phenotype being caused by mutations in two linked loci, among 
other possibilities. For the virescent line, 20.9% of the F2 progeny displayed the mutant phenotype (Fig 1I). This is con-
sistent with the phenotype being caused by mutation of a single locus (29:114 virescent:wild-type, H

0
 = 1:3, χ2 = 1.69; df = 1, 

0.25 > p > 0.1). These observations indicate that etoposide mutagenesis can efficiently create novel recessive and domi-
nant phenotypes caused by alteration to one or more loci.

To further characterize the four phenotypes, we performed mRNA sequencing of rosette leaves for M3 plants of BR-like 
dwarf, short-internode dwarf, virescent, and variegated lines (S6 Table). As controls, we included genetic relatives that 
lacked the phenotype and M3 progeny of DMSO-treated plants. To obtain a broad overview of changes in gene expres-
sion, we performed gene set enrichment analysis (GSEA) for biological process gene ontology (GO) on the full ranked list 
of genes (ranked by log

2
 fold change) for each phenotypic line. We also identified differentially expressed genes for each 

phenotype, defined as genes with an adjusted p-value < 0.01 and a |log
2
(fold change)| > 1 (S7–S9 Tables).

For the BR-like dwarf phenotype, a total of 309 genes were differentially expressed in BR-like dwarf plants compared 
to non-phenotypic plants (114 downregulated and 195 upregulated; Fig 3A, S7 Table). The five most significant GO 
terms that were overrepresented among upregulated genes were: meristem development, anatomical structure formation 
involved in morphogenesis, response to auxin, plant organ formation, and post-embryonic plant morphogenesis (S7A Fig). 
AS1 was a differentially expressed gene (log

2
FC = -2.62, adjusted p-value = 6.37 x 10-16), along with several genes it is 

known to interact with either directly or indirectly such as KNAT1, KNAT2, KNAT6, STM, BOP1, BOP2, and LOB (Fig 3A, 
S7 Table) [54–57]. The phenotypes we observed in the BR-like dwarf plants were strikingly similar to those described for 
as1 mutants, including a compact rosette with lobed and curled leaves [54,58].

In contrast to BR-like dwarf plants, short-internode dwarf plants showed considerably fewer gene expression changes 
in leaves. A total of 44 genes (18 down and 26 up) were differentially expressed in short-internode dwarf leaves compared 
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to control leaves (Fig 3B, S8 Table). GSEA yielded primarily stress-associated GO terms (S7B Fig). Interestingly, both the 
largest subunit of RNA polymerase III, NRPC1, and the repressor of RNA polymerase III, MAF1, were upregulated. It is 
possible that short-internode dwarf plants exhibit changes in gene expression in plant organs other than the leaf, or per-
haps exhibit a global change in gene expression that cannot be detected with standard mRNA-seq approaches.

Virescent plants had more dysregulated genes than either dwarf line, with a total of 1273 differentially expressed genes 
(668 up and 605 down; Fig 3C, S9 Table). The most significant GO terms overrepresented amongst genes with increased 
expression included cell division, plant-type cell wall organization/biogenesis, mitotic cell cycle, microtubule-based pro-
cess, and meiotic cell cycle (S7C Fig). The most significantly overrepresented GO terms among genes with decreased 
expression included response to chitin, response to hypoxia, and response to oxygen levels (S7C Fig). Genes related to 
ethylene synthesis and signaling including ERF022, ERF014, and ACS5 were among the most differentially expressed 
genes (S9 Table). The mis-regulation of these genes might be associated with the virescent phenotype, as ethylene is 
involved in greening of etiolated seedlings after light exposure, and conversely degradation of chlorophyll during leaf 
senescence [59,60]. Other differentially expressed genes of note include several subunits of photosystem I and II and 
GUN4 (S9 Table).

Differential expression analysis could not reliably be conducted for the variegated line, as only one variegated plant 
was evaluated (S6 Table). As an alternative strategy, we examined the expression of 18 genes known to be associated 

Fig 3.  Etoposide-induced mutants exhibit changes in gene expression. Volcano plots summarizing differential expression analysis of pheno-
typic vs. non-phenotypic plants for (A) BR-like dwarf, (B) short-internode dwarf, and (C) virescent mutants. Significantly differentially expressed genes 
(llog

2
FCI > 1 and adjusted p-value < .01) are highlighted in (A) blue, (B) pink, and (C) green. Select genes are labeled in each volcano plot. (D) Heatmap 

of expression of genes known to be associated with variegation, in the variegated line. The most downregulated gene among them, IMMUTANS, is 
annotated with a *.

https://doi.org/10.1371/journal.pgen.1011977.g003

https://doi.org/10.1371/journal.pgen.1011977.g003
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with variegation (Fig 3D). In the one variegated plant we recovered and performed RNA-seq on, the IMMUTANS (IM; 
AT4G22260) gene stood out as having highly reduced expression (Fig 3D). In variegated plants we observed sensitivity of 
the variegation to light and temperature, which is consistent with that displayed in im mutants [61,62].

Long-read sequencing identifies candidate causal mutations

Long-read sequencing can identify structural variants that are not easily resolved or cannot be identified by short-read 
sequencing [63]. Using Nanopore sequencing technology, we sequenced the genomes of two M3 plants with the BR-like 
dwarf, short-internode dwarf, or virescent phenotypes; from each corresponding line an M3 relative that lacked the pheno-
type; and a single M3 plant from the variegated line that was green but produced 25% variegated progeny (S10 Table). To 
control for structural variation already present in our wild-type Col-0 lab stock compared to the reference Col-0 genome, we 
also sequenced two M2 plants that were the progeny of M1 plants grown on DMSO and an untreated Col-0 plant. Reads 
were aligned to the Col-CEN v1.2 reference genome [64] and SVs were called using cuteSV [65,66]. Structural variants 
present in the DMSO and/or Col-0 controls, present in more than one M1 line, or with a quality less than 20 were discarded. 
In total we identified 12 SVs: seven deletions (ranging from 37 bp to 176 bp), two insertions (71 bp and 184 bp), two inver-
sions (1.52 Mb and 3.54 Mb), and one translocation (Fig 4A; S11 Table). We also chose to confirm several of the SVs via 
PCR (S8 Fig): a 184 bp insertion with homology to an intergenic region of chromosome 2 present in the short-internode dwarf 
line (Fig 4B); an 81 bp and a 37 bp deletion present in the variegated line (Fig 4C, D); and a 1.52 Mb inversion present on 
chromosome 2 in the BR-like dwarf line (Fig 4E). Together, these data indicate that etoposide treatment generates a range of 
SV types and sizes.

Finally, we evaluated the relationships between structural variation identified by Nanopore sequencing and gene 
expression in BR-like dwarf, short-internode dwarf, and variegated mutants. Both sequenced BR-like dwarf plants contain 
a 1.52 Mb inversion on chromosome 2 that is not present in non-phenotypic control plants of the same line (Fig 4A, E, 
S11 Table) and we further investigated gene expression surrounding this locus. The 1.52 Mb inversion was significantly 
enriched for differentially expressed genes, as determined by a permutation test (S9A, B Fig). Examining the inversion 
breakpoints more closely, the right breakend separated the first 42 bp of the 5’UTR of ASYMMETRIC LEAVES 1 (AS1; 
AT2G37630) from the rest of the gene (Fig 4E). Near the left breakend of the inversion, the expression of an AP2/B3-like 
transcriptional factor family protein (AT2G33720) was increased in leaves (Figs 3A, 4E, S7 Table). Taken together, these 
data suggest that the 1.52 Mb inversion resulted in altered AS1 transcript abundance, influencing leaf patterning in BR-like 
dwarf plants.

Three SVs were common to the two short-internode dwarf plants that were sequenced via Nanopore: a 176 bp dele-
tion on chromosome 3, a 3.54 Mb inversion on chromosome 4, and a 184 bp insertion on chromosome 5 (Fig 4A, B, S11 
Table). The large inversion on chromosome 4 was not enriched for DEGs, and neither were regions surrounding the dele-
tion on chromosome 3 or the insertion on chromosome 5 (S9C–L Fig). However, since gene expression data was derived 
from only the leaves of short-internode dwarf plants, we cannot exclude the possibility that these structural variants have 
an impact on gene expression in other plant organs. No structural variants were identified in virescent plants utilizing 
either short- or long-read data. Although it is possible that no structural variation is present in this line, it is also possible 
that virescent plants contain an SV that cannot be detected with our methods due to its complexity or genomic location.

Long-read sequencing of the variegated line identified a 37 bp deletion in the third exon of IM; this caused a frame-shift 
resulting in a premature stop codon (Fig 4D). Crossing plants of the variegated phenotype to known immutans mutants 
failed to complement the variegated phenotype (32/32 variegated when crossed to im-spotty CS3639 [67], 34/34 varie-
gated when crossed to im-spotty CS73029 [68], and 42/42 variegated when crossed to im CS3157), indicating that the 
37 bp deletion in IM is indeed the causal mutation for variegation.

In summary, our genomic analyses of mutants shows that etoposide treatment can create novel plant traits via the 
induction of SVs including inversions, deletions, duplications, and translocations.
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Discussion

Etoposide treatment is an efficient method to induce structural variation

We describe a simple and convenient technique that enables researchers or breeders with limited resources to induce struc-
tural variation. We found that early exposure of A. thaliana to the Topo II inhibitor etoposide induces heritable, large- 
effect mutations at high frequency. Examination of M2 plants found that 24/37 mutant lineages had at least one out of six 
assessed phenotypes. By short- and long-read genomic sequencing of mutagenized lines—including those that displayed 

Fig 4.  Whole genome sequencing identifies structural variation in progeny of etoposide treated plants. (A) Nanopore long-read sequencing 
identifies structural variation in lines that show the BR-like dwarf, short-internode dwarf, virescent, and variegated phenotypes. SVs verified via PCR are 
indicated with *. Putative causal mutations were identified by sequencing two plants with a phenotype and one relative without a phenotype. Only one 
mutant plant was sequenced for the variegated phenotype. This plant was green but produced ~25% variegated progeny. Three PCR-verified mutations 
in (A) are described in (B-D). (B) A genome browser snapshot with reads identifying a 184 bp insertion on Chr5 in the short-internode dwarf line. (C) 
Reads in the genome browser snapshot indicate an 81 bp deletion on Chr5 in the variegated line. (D) Snapshot of long-read alignments to reference 
IMMUTANS, showing a 37 bp deletion in the third exon. Deleted sequence shown in grey and coverage is shown above read alignments. The deletion is 
heterozygous in the sequenced plant, which was green and produced ~25% variegated progeny. (E) A ribbon plot with alignments indicating a 1.52 Mb 
chromosome 2 inversion in the BR-like dwarf line (top) and a detailed view of a representative read spanning the right breakend. The right breakend is in 
the 5’UTR of the AS1 gene.

https://doi.org/10.1371/journal.pgen.1011977.g004

https://doi.org/10.1371/journal.pgen.1011977.g004
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novel phenotypes—we identified the full spectrum of structural variations. Analysis of short-read data identified 2.53 SVs per 
mutagenized M1 line whereas long-read data identified 3.25 SVs per mutagenized M1 line, with one event being detected 
in both short and long-read data. The lower number of SVs identified by short-read data is consistent with the poorer per-
formance of short-read SV callers relative to callers using long-reads [63]. Our data suggest that mutation rate and type 
induced by etoposide exposure is comparable to or out-performs mutant populations generated by irradiation. Analysis 
of Arabidopsis seeds irradiated with gamma rays or carbon ions showed mutations occurring at a rate of 0.8-1.6 SVs per 
mutant lineage [69]. While the exact efficacy of irradiation or etoposide-based mutagenesis can vary by experiment, currently 
available data suggests that etoposide treatment exceeds irradiation by producing more than 2.5 events per mutagenized 
plant. A further increase in the number of mutations per M1 parent could perhaps be attained either by prolonging exposure 
to etoposide beyond two weeks or by germinating seeds on media containing a cocktail of etoposide and other drugs that 
induce genomic instability such as topoisomerase I inhibitors [70] or the DNA damage-inducing agent cisplatin [71].

Analysis of all detected SVs suggests that etoposide disproportionately impacts genes, although our analytical 
approaches cannot conclusively identify all SVs in heterochromatin. The SVs that we identified disrupt one or more genes 
simultaneously or create novel cis-regulatory regions. The effect of this genic bias is striking; even in our relatively small 
mutant population, multiple potential loss-of-function mutations were identified in a single line. This suggests that etopo-
side treatment can be used to create novel polygenic traits.

What explains this bias for mutations in genes? Topoisomerase II has been shown to associate with actively transcribed 
regions and open chromatin regions [42]. This association with actively transcribed regions suggests a future method to 
enrich for mutations in condition-specific genetic pathways by simultaneously exposing seeds to etoposide and another 
condition. For example, etoposide might promote mutagenesis of immunity genes whose transcription is triggered when 
seeds are germinated in the presence of microbial pathogens. In another scenario, seeds germinated in the presence of a 
hormone and etoposide might accumulate mutations in genes that respond to said hormone.

The inversions and translocations generated by this technique might also disrupt meiosis and distort segregation, but 
this possibility has not been tested. Etoposide also created duplications and deletions that could potentially alter gene 
dosage over megabase scale regions. In allopolyploids, such segmental deletions can provide a deficiency chromosome 
that can be used to assess the relative contribution of homeologs to different traits.

Identifying causal mutations

How do we identify genetic changes that are causative for phenotypes of interest? Future studies will accelerate  
candidate-gene discovery by employing structural-variant callers, de novo genome assembly-based approaches, and RNA-
seq based mapping [63]. Although our study did not aim to use RNA-seq to identify causative mutations, it provides an exam-
ple of how RNA-seq data in tandem with genome sequencing can help shortlist potential causal mutations. In cases where 
a potential causative variant is not obvious, these strategies can be combined with traditional genetic mapping approaches. 
However, mapping-by-sequencing approaches might not be easily applicable to some classes of mutants—for example, 
inversions or translocations can suppress recombination and reduce the efficacy of mapping-by-sequencing.

In our current study, sequencing and close analysis of the genomes and transcriptomes of BR-like dwarf, short-internode 
dwarf, virescent, and variegated plants allowed us to link two of these phenotypes to strong candidate mutations. The BR-like 
dwarf phenotype is likely caused by an inversion that disrupts the expression of ASYMMETRIC LEAVES 1 and the variegated 
phenotype is caused by a 37 bp deletion in IMMUTANS. Strikingly, 60 years ago, the asymmetric leaves and immutans pheno-
types were amongst the first X-ray induced mutations isolated in A. thaliana by Redei [72,73].

Etoposide mutagenesis offers several advantages compared to other methods

At present, the most common way to induce structural variation in plant species is irradiation-based methods. Radiation 
sources are heavily regulated and access to them is a bottleneck in the creation of structural variant libraries [26]. The 
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method described here eliminates this bottleneck by allowing researchers to generate structural variant libraries in their 
home labs without the need to identify a radiation source or send material elsewhere. Additionally, application of irradi-
ation can be tedious, sometimes requiring collecting and irradiating dried pollen [22]. Etoposide treatment is less labo-
rious, and may be used with any species in which seeds can be germinated and grown for a brief period of time on MS 
media.

Prior to the method described here, alternatives to radiation-based mutagenesis (such as the extended TAQing approach 
[37]) required transformation of plant species; however the commercial varieties of many crops are not easily transformed. 
The easy-to-use chemical mutagenesis approach we describe provides a valuable alternative to irradiation-based meth-
ods for difficult to transform varieties and/or species. Our method generates mutant libraries that can be used directly for 
research or breeding, or provide targeting information for CRISPR-based tools that have recently created megabase scale 
SVs in crop species [74–77]. Overall, etoposide-mutagenesis provides plant biologists and breeders with a new tool that can 
replace irradiation and reduce barriers to the creation of structural variation.
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