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Abstract

Long interspersed element 1 (LINE-1; L1) are a family of transposons that occupy ~17% of

the human genome. Though a small number of L1 copies remain capable of autonomous

transposition, the overwhelming majority of copies are degenerate and immobile. Neverthe-

less, both mobile and immobile L1s can exert pleiotropic effects (promoting genome instabil-

ity, inflammation, or cellular senescence) on their hosts, and L1’s contributions to aging and

aging diseases is an area of active research. However, because of the cell type-specific

nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we

employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVA-

DIS and 1000Genomes projects to computationally identify new candidate regulators of L1

RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regula-

tion, we experimentally modulate the levels of top candidates in vitro, including IL16,

STARD5, HSD17B12, and RNF5, and assess changes in TE family expression by Gene

Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregula-

tion of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-

term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce sub-

tle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expres-

sion-associated genetic variants are co-associated with aging traits across genome-wide

association study databases. Our results expand the catalogue of genes implicated in L1

RNA control and further suggest that L1-derived RNA contributes to aging processes. Given

the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this
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new approach to be a starting point for more comprehensive computational scans for regu-

lators of transposon RNA levels.

Author summary

Transposable elements, or jumping genes, are fragments of DNA that have or once had

the ability to mobilize to a new location within our genome. In humans, the most abun-

dant transposable element is LINE-1 (L1), accounting for ~17% of our total DNA. Though

L1 is generally repressed in healthy human cells, derepression of transposable elements

(including L1) has been observed in aging and in aging-associated diseases. Additionally,

there is increasing evidence that L1 transcriptional levels may promote features of aging,

highlighting the importance of understanding the mechanisms that regulate L1 RNA lev-

els. Here, we computationally identify new candidate regulators of L1 RNA levels, provide

experimental evidence that candidate regulators influence L1 RNA levels, and demon-

strate that genetic variants associated with differences in L1 RNA levels are co-associated

with aging phenotypes. Our approach expands the toolkit that can be used to characterize

transposable element regulation and highlights specific genes for further study. Impor-

tantly, our results reiterate the notion that L1 levels are linked with aging phenotypes and

represent a potential therapeutic target for age-related decline.

Introduction

Transposable elements (TEs) constitute ~45% of the human genome [1]. Among these, the

long interspersed element-1 (LINE-1 or L1) family of transposons is the most abundant,

accounting for ~16–17% [1,2], and a tiny fraction remain autonomously mobile, with humans

harboring an estimated 80–100 transposition-competent L1 copies [3]. These transposition-

competent L1s belong to the evolutionarily younger L1Hs subfamily, are ~6 kilobases long,

carry an internal promoter in their 5’-untranslated region (UTR), and encode two proteins—

L1ORF1p and L1ORF2p —that are necessary for transposition [4]. In contrast, the remaining

~500,000 copies are non-autonomous or immobile because of the presence of inactivating

mutations or truncations [1] and include L1 subfamilies of all evolutionary ages, including the

evolutionarily older L1P and L1M subfamilies. Though not all copies are transposition compe-

tent, L1s can nevertheless contribute to aspects of aging [5,6] and aging-associated diseases [7–

10].

Though mechanistic studies characterizing the role of L1 in aging and aging-conditions are

limited, its effects are pleiotropic. For example, L1 can contribute to genome instability via

insertional mutagenesis. Indeed, an expansion of L1 copy number with organismal aging [11]

and during cellular senescence [12] have been documented, though many of these copies are

likely cytosolic or extra-chromosomal. L1 can also play a contributing role in shaping inflam-

matory and cellular senescence phenotypes. The secretion of a panoply of pro-inflammatory

factors is a hallmark of cell senescence, called the senescence associated secretory phenotype

(SASP) [13]. Importantly, the SASP is believed to stimulate the innate immune system and

contribute to chronic, low-grade, sterile inflammation with age, a phenomenon referred to as

“inflamm-aging” [13,14]. During deep senescence, L1 are transcriptionally de-repressed and

consequently generate cytosolic DNA that initiates an immune response consisting of the pro-

duction and secretion of pro-inflammatory interferons [15]. Finally, L1 is causally implicated
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in aging-associated diseases, including cancer. L1 may contribute to cancer by (i) serving as a

source for chromosomal rearrangements that can lead to tumor-suppressor gene deletion [16]

or (ii) introducing its active promoter next to normally silenced oncogenes [17]. Thus, because

of the pathological effects L1 can have on hosts, it is critical that hosts maintain precise control

over L1 activity.

Eukaryotic hosts have evolved several pre- and post-transcriptional mechanisms for regu-

lating TEs [18,19]. Nevertheless, our knowledge of regulatory genes remains incomplete

because of cell type-specific regulation and the complexity of methods required to identify reg-

ulators. Indeed, one clustered regularly interspaced short palindromic repeats (CRISPR)

screen in two cancer cell lines for regulators of L1 transposition identified>150 genes involved

in diverse biological functions (e.g. chromatin regulation, DNA replication, and DNA repair)

[20]. However, only about ~36% of the genes identified in the primary screen exerted the same

effects in both cell lines [20], highlighting the potentially cell type-specific nature of L1 control.

Moreover, given the complexities of in vitro screens, especially in non-standard cell lines or

primary cells, in silico screens for L1 regulators may facilitate the task of identifying and cata-

loguing candidate regulators across cell and tissue types. One such attempt was made by gener-

ating gene-TE co-expression networks from RNA sequencing (RNA-seq) data generated from

multiple cancer-adjacent tissue types [21]. Although co-expression modules with known TE

regulatory functions, such as interferon signaling, were correlated with TE modules, it is

unclear whether other modules may harbor as of now uncharacterized TE-regulating proper-

ties, since no validation experiments were carried out. Additionally, this co-expression

approach is limited, as no mechanistic directionality can be assigned between associated gene

and TE clusters, complicating the prioritization of candidate regulatory genes for validation.

Thus, there is a need for the incorporation of novel “omic” approaches to tackle this problem.

Deciphering the machinery that controls TE activity in healthy somatic cells will be crucial, in

order to identify checkpoints lost in diseased cells.

The 1000Genomes Project and GEUVADIS Consortium provide a rich set of genomic

resources to explore the mechanisms of human TE regulation in silico. The 1000Genomes

Project generated a huge collection of genomic data from thousands of human subjects across

the world, including single nucleotide variant (SNV) and structural variant (SV) data [22,23].

To accomplish this, the project relied on lymphoblastoid cell lines (LCLs), which are generated

by infecting resting B-cells in peripheral blood with Epstein-Barr virus (EBV). Several proper-

ties make them advantageous for use in large-scale projects (e.g. they can be generated rela-

tively noninvasively, provide a means of obtaining an unlimited amount of a subject’s DNA

and other biomolecules, and can serve as an in vitro model for studying the effects of genetic

variation on phenotypes of interest) [24,25]. Naturally, the GEUVADIS Consortium generated

transcriptomic data for a subset of subjects sampled by the 1000Genomes Project and carried

out an expression quantitative trait locus (eQTL) analysis to define the effects of genetic varia-

tion on gene expression [26]. Later, in a series of landmark studies on TE biology, this collec-

tion of data was reanalyzed (i) to characterize the effects of polymorphic TE structural

variation on gene expression (TE-eQTLs) [27–29] and (ii) to explore the potential impact of

TE polymorphisms on human health and disease through genome-wide association study

(GWAS) analysis [30]. These results highlight the value of this data and the power of eQTL

analysis in identifying genetic factors implicated in gene expression control and, potentially,

disease susceptibility. Together, these resources provide a useful toolkit for investigating the

genetic regulation of TEs, generally, and L1, specifically.

Much work on the mechanisms of L1 regulation has been carried out by looking exclusively

at full-length, transposition-competent L1 elements, as this has allowed for the study of the

whole L1 replication lifecycle, starting from transcription at the internal promoter and ending
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with transposition into a new genomic site [20,31]. However, the total L1 RNA pools can be

influenced by a number of other sources, including L1 copies residing in introns, L1 copies

that are exonized, L1 copies that are co-transcribed because of nearby genes, and L1 copies

that are independently transcribed from their own promoter regardless of their ability to

mobilize. Thus, cellular L1 RNA levels are likely to be modulated by a number of transcrip-

tional and post-transcriptional processes, including promoter-dependent transcription, RNA

turnover, exonization, and/or intron retention (among others). However, the control mecha-

nisms for non-full-length and transposition-incompetent L1 elements remain incompletely

characterized, even though there is increasing evidence that these can have important regula-

tory and functional potential. For example, one study suggested that intronic L1s are part of an

important regulatory network maintaining T-cell quiescence [32]. This is consistent with the

increasing appreciation for the importance of alternative splicing in immune regulation and

cell death pathways [33] and with another pair of studies highlighting the importance of TE

exonization and intronic TE co-option in interferon signaling [34,35]. Additionally, L1 RNA

may be sufficient to induce an interferon response and alter cellular viability, even in the

absence of transposition [36,37]. Given these observations, there is a need to characterize the

control mechanisms and functional effects of all L1 RNA sources, including both mobile and

truncated, non-autonomous or transposition-incompetent copies.

In this study, we (i) develop a new pipeline to identify novel candidate regulators of L1

RNA levels in lymphoblastoid cell lines, and we apply it to both transposition-competent and

-incompetent L1 subfamilies across genomic origins (intronic, intergenic, and exon-overlap-

ping L1 RNA levels), (ii) provide experimental evidence for the involvement of top candidates

in L1 RNA level control, and (iii) expand and reinforce the catalog of diseases linked to differ-

ential L1 levels.

Results

In silico scanning for L1 subfamily candidate regulators by eQTL analysis

To identify new candidate regulators of L1 RNA levels, we decided to leverage publicly avail-

able human “omic” datasets with both genetic and transcriptomic information. For this analy-

sis, we focused on samples for which the following data was available: (i) mRNA-seq data from

the GEUVADIS project, (ii) SNVs called from whole-genome sequencing data overlayed on

the hg38 human reference genome made available by the 1000Genomes Project, and (iii)

repeat structural variation data made available by the 1000Genomes Project. This yielded sam-

ples from 358 European and 86 Yoruban individuals, all of whom declared themselves to be

healthy at the time of sample collection (Fig 1A). Using the GEUVADIS data, we obtained

gene and TE subfamily expression counts using TEtranscripts [38]. As a quality control step,

we checked whether mapping rates segregated with ancestry groups, which may bias results.

However, the samples appeared to cluster by laboratory rather than by ancestry (S1A Fig). As

additional quality control metrics, we also checked whether the SNV and SV data segregated

by ancestry following principal component analysis (PCA). These analyses demonstrated that

the top two and the top three principal components from the SNV and SV data, respectively,

segregated ancestry groups (S1B and S1C Fig).

We then chose to do a three-part integration of the available “omic” data (Fig 1B). Since

TEtranscripts quantifies total TE RNA levels aggregated at TE subfamily resolution and dis-

cards TE position information, we chose to carry out a trans-eQTL analysis [39] against global

RNA levels of each L1 subfamily. We note here that we were interested in understanding the

genetic basis for variation in global L1 subfamily RNA levels. Thus, we did not carry out

genetic association analysis against single insertion events, but against global RNA levels of
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Fig 1. Overview of the pipeline developed to scan for L1 transcriptional regulators in silico. (A) An illustration of the samples and

“omic” data used in this study. Of the 358 European individuals, 187 were female and 171 were male. Of the 86 African individuals,

49 were female and 37 were male. (Note that Utah subjects are of Northern European ancestry, and thus part of the European cohort

for analytical purposes). (B) A schematic illustrating how genetic variants, gene expression, and TE expression can be integrated to

identify highly correlated SNV-Gene-TE trios. (C) A Manhattan plot for the L1 subfamily trans-eQTL analysis in the European

cohort. The genes that passed our three-part integration approach are listed next to the most significant trans-eQTL SNV they were
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each L1 subfamily. We reasoned that there would have to be factors (i.e., miRNAs, proteins,

non-coding RNAs) mediating at least a subset of the effects of SNVs on L1 subfamily RNA lev-

els. Thus, to identify candidate genic mediators, we scanned for genome-wide gene cis-eQTLs,

and then overlapped these with L1 trans-eQTLs. We note that Lappalainen et al. characterized

gene cis-eQTLs in the original publication. However, we repeated the analysis using our pipe-

line and newer genome-wide SNV calls and annotations that were not available at the time, in

order to obtain a homogenous and up-to-date set of cis- and trans-eQTL annotations that we

could easily and reliably compare. As a final filter, we reasoned that for a subset of regulators,

L1 subfamily RNA levels would respond to changes in the expression of those regulators. Con-

sequently, we chose to quantify the association between L1 subfamily RNA levels and candi-

date gene expression by linear regression. Importantly, to avoid confounding eQTL

associations with extraneous technical and biological factors, the expression data was corrected

for the following: laboratory, population category, genetic population structure, biological sex,

net L1 and Alu copy number called from the SV data, and EBV expression levels. We hypothe-

sized that this three-part integration would result in combinations of significantly correlated

SNVs, genes, and L1 subfamilies (Fig 1B).

The trans-eQTL analysis for RNA levels against every detected L1 subfamily led to the iden-

tification of 499 trans-eQTLs distributed across chromosomes 6, 11, 12, 14, and 15 that passed

genome-wide significance (Fig 1C and Sheet A in S1 Table). The independent cis-eQTL analy-

sis against all expressed genes led to the identification of 845,260 cis-eQTLs that passed

genome-wide significance (S2A Fig and Sheet B in S1 Table). After integrating the identified

cis- and trans-eQTLs and running linear regression, we identified 1,272 SNV-Gene-L1 trios

that fulfilled our three-part integration approach (Sheet C in S1 Table). Among this pool of

trios, we identified 7 unique protein-coding genes including (i) IL16 and STARD5 which were

correlated with L1P4a levels (we note that some L1P4a fragments can be found in the introns

of IL16), (ii) HLA-DRB5, HLA-DQA2, RNF5, and FKBPL which were correlated with L1MEb
levels, and (iii) HSD17B12 which was correlated with L1MEg2 levels (Fig 1C). Although

EHMT2 did not pass our screening approach, it does overlap EHMT2-AS1, which did pass our

screening thresholds. In contrast, we also identified “orphan” SNVs on chromosomes 12 and

14 which were associated with L1M3c and L1M3de levels in trans but to which we were unable

to attribute a candidate gene. These SNVs resided in intronic regions within NTN4 and

STON2, respectively. We note that detection of these gene and TE associations is unlikely to be

mechanistically related to variations in EBV expression, as expression profiles were corrected

for such differences before downstream analyses (S2B Fig). We also note that several other

unique non-coding genes, often overlapping the protein-coding genes listed, were also identi-

fied (Fig 1C). Finally, we recognize the possibility that unknown covariates, such as B cell acti-

vation state or EBV latency, may drive associations between SNVs and L1 RNA levels. To

mitigate this possibility, we re-ran the trans-eQTL analysis with an additional 10 PEER factors

[40], which can capture unknown drivers of variation. Though the absolute p-values were

altered, this analysis also identified our previous top 3 loci on chromosomes 6, 11, and 15, as

well as several additional peaks (S2C Fig and Sheet D in S1 Table). These results suggest that

unknown covariates are unlikely to trivially explain the associations between SNVs at these

loci and the corresponding L1 RNA levels. For simplicity of interpretation and reproducibility

associated with in cis. The dashed line at p = 3.44E-8 corresponds to an average empirical FDR< 0.05, based on 20 random

permutations. One such permutation is illustrated in the bottom panel. The solid line at p = 2.31E-8 corresponds to a Benjamini-

Hochberg FDR< 0.05. The stricter of the two thresholds, p = 2.31E-8, was used to define significant trans-eQTLs. FDR: False

Discovery Rate. Panels (A) and (B) were created with BioRender.com.

https://doi.org/10.1371/journal.pgen.1011311.g001
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reasons, during downstream experimental validation, we focused on protein-coding genes

identified in the analysis without PEER factors (since the PEER package has not been main-

tained since R version 2.10).

Next, to define first and second tier candidate regulators, we clumped SNVs in linkage dis-

equilibrium (LD) by L1 trans-eQTL p-value to identify the most strongly associated genetic

variant in each genomic region (Figs 2A and S3A). LD-clumping identified the following

index SNVs (i.e. the most strongly associated SNVs in a given region): rs11635336 on chromo-

some 15, rs9271894 on chromosome 6, rs1061810 on chromosome 11, rs112581165 on chro-

mosome 12, and rs72691418 on chromosome 14 (Sheet E in S1 Table). Genes linked to these

SNVs were considered first tier candidate regulators and included IL16, STARD5, HLA-DRB5,

HLA-DQA2, and HSD17B12 (Fig 2B and Sheet F in S1 Table). The remaining genes were

linked to clumped, non-index SNVs and were consequently considered second tier candidates

and included RNF5, EHMT2-AS1, and FKBPL (S3B Fig). For simplicity of interpretation, we

considered only non-HLA genes during downstream experimental validation, since validation

could be complicated by the highly polymorphic nature of HLA loci [41] and their involve-

ment in multi-protein complexes. To gain insight into how index SNVs may influence L1
expression, we compared the number of L1 fragments within 5 kb on either side of each index

SNV and 1000 random SNVs (S3C Fig). We observed no significant difference between the

two groups, suggesting that index SNVs are not in regions enriched for L1 insertions. More-

over, for the IL16/STARD5 index SNV, no L1P4a copy was within the 10 kb window. These

results suggest that differences in L1 expression are unlikely due to differences in proximal L1

copy number.

Finally, to computationally determine whether candidate genes may causally influence L1

subfamily RNA levels, we carried out mediation analysis on all SNV-gene-L1 trios (S4A Fig).

Interestingly, 868 out of the 1,272 (68.2%) trios exhibited significant (FDR< 0.05) mediation

effects (Sheet G in S1 Table). Among the 1st tier candidate regulators, significant, partial, and

consistent mediation effects could be attributed to STARD5, IL16, HSD17B12, and HLA-DRB5
(S4B Fig and Sheet G in S1 Table). To note, while significant mediation could be attributed to

the index SNV for STARD5, significant mediation could only be attributed to clumped SNVs

for IL16 and HSD17B12. Given that STARD5 and IL16 share cis-eQTL SNVs, this suggests that

STARD5 may be the more potent mediator. Among the 2nd tier candidate regulators, signifi-

cant, partial, and consistent mediation effects could be attributed to RNF5, EHMT2-AS1, and

FKBPL (S4C Fig and Sheet G in S1 Table). These results suggest that candidate genes may

mediate the effects between linked SNVs and L1 subfamilies.

In silico scanning for L1 subfamily candidate regulators in an African

population

We sought to assess the cross-ancestry regulatory properties of candidate genes by repeating

our scan using the Yoruban samples as a smaller but independent replication cohort. Here,

rather than conduct a genome-wide scan for cis- and trans- associated factors, we opted for a

targeted approach focusing only on gene cis-eQTLs and L1 subfamily trans-eQTLs that were

significant in the analysis with European samples (S5A Fig). The targeted trans-eQTL analysis

led to the identification of 227 significant (FDR< 0.05) trans-eQTLs distributed across chro-

mosomes 6 and 11 (Sheet A in S2 Table). The targeted cis-eQTL analysis led to the identifica-

tion of 1,248 significant (FDR< 0.05) cis-eQTLs (Sheet B in S2 Table). After integrating the

identified cis- and trans-eQTLs and running linear regression, we identified 393 SNV-Gene-

L1 trios that fulfilled our three-part integration approach (Sheet C in S2 Table). Among this

pool of trios, we identified 2 unique protein-coding genes—HSD17B12 and HLA-DRB6—as
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Fig 2. Identification of 1st tier candidate L1 expression regulators in the European cohort. (A) A schematic for how 1st tier candidate genes were

defined. In short, these were genes in trios with index SNVs that were at the top of their respective peak. (B) The three-part integration results for three

protein-coding genes—STARD5, IL16, HSD17B12—that we considered first tier candidates for functional, in vitro testing. In the left column are the trans-
eQTLs, in the middle column are the cis-eQTLs, and in the right column are the linear regressions for gene expression against L1 subfamily expression.

Expression values following an inverse normal transform (INT) are shown. The FDR for each analysis is listed at the top of each plot. FDR: False

Discovery Rate.

https://doi.org/10.1371/journal.pgen.1011311.g002
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well as several unique non-coding genes (Sheet C in S2 Table). Again, we clumped SNVs in

linkage disequilibrium by L1 trans-eQTL p-value. LD-clumping identified the following index

SNVs: rs2176598 on chromosome 11 and rs9271379 on chromosome 6 (Sheet D in S2 Table).

Genes linked to these SNVs were considered first tier candidate regulators and included both

HSD17B12 and HLA-DRB6 (S5B Fig and Sheet E in S2 Table). Finally, we carried out media-

tion analysis on all SNV-gene-L1 trios; however, no significant (FDR< 0.05) mediation was

observed (Sheet F in S2 Table). These results implicate HSD17B12 and the HLA loci as candi-

date, cross-ancestry regulators of L1 RNA levels.

To assess why some candidate genes did not replicate in the Yoruba cohort, we manually

inspected cis- and trans-eQTL results for trios with those genes (S6A Fig). Interestingly, we

identified rs9270493 and rs9272222 as significant (FDR < 0.05) trans-eQTLs for L1MEb RNA

levels. However, those SNVs were not significant cis-eQTLs for RNF5 and FKBPL expression,

respectively. For trios involving STARD5, IL16, and EHMT2-AS1, neither the cis-eQTL nor the

trans-eQTL were significant. We note that for most of these comparisons, although the two

genotypes with the largest sample sizes were sufficient to establish a trending change in cis or

trans RNA levels, this trend was often broken by the third genotype with spurious sample

sizes. This suggests that replication in the Yoruba cohort may be limited by the small cohort

sample size in the GEUVADIS project.

Stratified in silico scanning for candidate regulators of intronic, intergenic,

or exon-overlapping L1 subfamily RNA levels

One potential limitation with the approach undertaken thus far is the inability to distinguish

different transposon RNA sources. For example, intergenic TEs may be transcribed using their

own promoter or using a nearby gene’s promoter. In contrast, while intronic or exon-overlap-

ping TEs may be independently transcribed if they have retained their promoter, they may

also appear expressed due to intron retention or due to exonization events. To have further

granularity in deciphering L1 RNA level regulators with respect to the genomic provenance of

their RNA sources, we next (i) carried out locus-specific quantification for each TE locus, (ii)

stratified loci by whether they were intronic, nearby intergenic (within 5 kb of a gene), distal

intergenic (>5 kb from a gene) or exon-overlapping, (iii) aggregated counts within each cate-

gory at the subfamily level to compare with our unstratified TEtranscripts results, and (iv)

repeated our eQTL scan using the four stratified TE RNA profiles (Sheets A–D in S3 Table and

S7A–S7D Fig).

First, the eQTL scan using the intronic L1 profiles recapitulated the results of our initial

scan for the IL16/STARD5 and HSD17B12 loci (S7A Fig and Sheet E in S3 Table). Interestingly,

we recovered a dominant, new peak on chromosome 4 that was associated with L1M3a RNA

levels but to which we could not attribute a protein-coding mediator. The index SNV for this

locus, rs6819237, resides within an intron of ZNF141, which has been shown to bind L1PA ele-

ments [42]. Second, the eQTL scan using the nearby intergenic L1 profiles recapitulated the

results of our initial scan for the HLA loci (S7B Fig and Sheet F in S3 Table). Third, for distal

intergenic L1 expression, we identified a cluster of SNVs on chromosome 6 that were co-asso-

ciated with L1MC5 RNA levels and ZSCAN26 expression (S7C Fig and Sheet G in S3 Table).

Interestingly, these SNVs reside in a genomic region with many other ZSCAN genes, including

ZKSCAN4 which is hypothesized to regulate L1PA5/PA6 transcripts [43] and ZSCAN9 which

was shown to bind L1 by MapRRCon [44] analysis. Finally, we also identified several loci asso-

ciated with exon-overlapping L1 RNA levels (S7D Fig and Sheet H in S3 Table).

Since intergenic L1s, as a potential source of independently transcribed L1 RNA, are of spe-

cial interest, we repeated the mediation analysis for the ZSCAN26-associated SNV rs1361387
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(S8A Fig). Alternating the genotype of rs1361387 was associated with an increase in L1MC5
RNA levels and a decrease in ZSCAN26 expression (S8B Fig). Mediation analysis revealed sig-

nificant, but inconsistent mediation of L1MC5 through ZSCAN26 (S8C Fig and Sheet I in S3

Table). This may suggest that rs1361387 may exert both positive and negative control of

L1MC5 through uncharacterized mechanisms. Taken together, these results suggest that our

approach can detect known L1 RNA regulators.

TE families and known TE-associated pathways are differentially regulated

across L1 trans-eQTL variants

Though our eQTL analysis identified genetic variants associated with the levels of specific, evo-

lutionarily older L1 subfamilies, we reasoned that there may be more global but subtle differ-

ences in TE expression profiles among genotype groups, given that TE levels across

subfamilies is highly correlated [21]. Thus, for each gene-associated index SNV identified in

the European eQTL analysis, we carried out differential expression analysis for all expressed

genes and TEs (Fig 3A). At the individual gene level, we detected few significant (FDR< 0.05)

changes: 4 genes/TEs varied with rs11635336 genotype (IL16/STARD5), 4 genes/TEs varied

with rs9271894 genotype (HLA), and 5 genes/TEs varied with rs1061810 genotype

(HSD17B12) (Sheets A–C in S4 Table). Importantly, however, these genes/TEs overlapped the

genes/TEs identified in the cis- and trans-eQTL analyses, providing an algorithm-independent

link among candidate SNV-gene-TE trios.

In contrast to gene-level analyses, Gene Set Enrichment Analysis (GSEA) provides

increased sensitivity to subtle, but consistent and widespread, transcriptomic changes at the

level of gene sets (e.g. TE families, biological pathways, etc.) [45]. Specifically, GSEA was devel-

oped in response to (i) the lack of reproducibility of individual, significant gene changes across

studies and (ii) the need to summarize biological changes in a functionally meaningful way

through the use of gene sets containing biologically-related genes. For the TEs, we opted to

aggregate TE subfamilies into gene sets corresponding to TE families on the basis that (i)

broad changes in individual TE subfamilies may be hard to detect but changes across many

subfamilies would be easier to detect, (ii) the expression of many different TE subfamilies was

previously found to be highly correlated in an analysis of tumor-adjacent tissue [21], (iii) we

were searching for factors influencing global TE RNA levels and not just specific TE loci, and

(iv) GSEA has previously been applied to summarize TE changes [46–48]. We leveraged our

differential expression analysis in combination with GSEA to identify repeat family and bio-

logical pathway gene sets impacted by SNV genotype in the GEUVADIS dataset (Sheets D–O

in S4 Table and Fig 3A). Interestingly, changes in the genotype of rs11635336 (IL16/STARD5),

rs9271894 (HLA), and rs1061810 (HSD17B12) were associated with an upregulation, upregula-

tion, and downregulation, respectively, of multiple TE family gene sets (Fig 3B and Sheet P in

S4 Table). Differentially regulated TE family gene sets included DNA transposons, such as the

hAT-Charlie family, and long terminal repeat (LTR) transposons, such as the endogenous ret-

rovirus-1 (ERV1) family (Fig 3B and Sheet P in S4 Table). Noteworthy, the L1 family gene set

was the only TE gene set whose expression level was significantly altered across all three SNV

analyses (Fig 3B and Sheet P in S4 Table). Consistent with their relative significance in the L1

trans-eQTL analysis, the L1 family gene set was most strongly upregulated by alternating the

IL16/STARD5 SNV (NES = 3.74, FDR = 6.43E-41), intermediately upregulated by alternating

the HLA SNV (NES = 1.90, FDR = 7.19E-5), and least strongly changed by alternating the

HSD17B12 SNV (NES = -1.57, FDR = 2.11E-2) (Fig 3C). Among these changes, both older

(L1M) and younger (L1PA) elements were differentially regulated across all three SNVs (Fig

3D and Sheet Q in S4 Table). Overall, we observed similar effects on TE family RNA levels
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Fig 3. L1 trans-eQTLs are associated with subtle, widespread differences in TE families and known TE-associated pathways. (A) Scheme for

functionally annotating gene-linked index SNVs by GSEA. (B) GSEA analysis for shared, significantly regulated TE family gene sets across genotypes

for rs11635336 (IL16/STARD5), rs9271894 (HLA), and rs1061810 (HSD17B12). (C) GSEA plots for the L1 family gene set results summarized in (B).

For these plots, the FDR value is listed. (D) GSEA analysis for shared, significantly regulated, evolutionary-age-stratified L1 gene sets across genotypes

for rs11635336 (IL16/STARD5), rs9271894 (HLA), and rs1061810 (HSD17B12). L1M subfamilies are the oldest, L1P subfamilies are intermediate, and

L1PA subfamilies are the youngest. GSEA analysis for top, shared, concomitantly regulated (E) MSigDB Hallmark pathway, (F) GO Biological Process,
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when, as an alternative and orthogonal approach, we applied a one-sample Wilcoxon test to

determine whether TE family changes were significantly different than 0 across the three SNV

DESeq2 analyses (S9A–S9C Fig). We briefly note here that rs9270493, a clumped SNV linked

to RNF5, was also linked to upregulation of the L1 family gene set (Sheets R and S in S4 Table).

These results suggest that TE subfamily trans-eQTLs are associated with subtle but global dif-

ferences in TE RNA levels beyond a lone TE subfamily.

To determine the origin of these global TE RNA level differences, we repeated our differen-

tial expression analysis and GSEA using the genomic-region-stratified TE RNA profiles. Simi-

lar to the unstratified analysis, changes in the genotype of rs11635336 (IL16/STARD5),

rs9271894 (HLA), and rs1061810 (HSD17B12) were associated with an upregulation, upregula-

tion, and downregulation, respectively, of multiple TE family gene sets of varied genomic ori-

gin (Sheets T–V in S4 Table and S9D–S9F Fig). Across genotype for rs11635336 (IL16/

STARD5), the most upregulated TEs were of intronic origin (S9D Fig). However, distal inter-

genic TE RNA levels, including L1 RNA levels, were also upregulated, suggesting that TE RNA

level differences are not solely due to TE exonization or co-expression with genes. In contrast,

most of the TE upregulation across genotypes for rs9271894 (HLA) was due to intronic TE

RNA, though intergenic TEs near genes were also upregulated (S9E Fig). Finally, L1 RNA lev-

els, and TE RNA levels more generally, were downregulated in the distal intergenic, nearby

intergenic, and exonic categories for rs1061810 (HSD17B12) (S9F Fig). These results suggest

that TE subfamily trans-eQTLs are associated with subtle but global differences in TE expres-

sion of varying genomic origin (intronic, exonic, or intergenic).

Next, we asked if other biological pathways were regulated concomitantly with TE gene sets

in response to gene-linked index SNVs, reasoning that such pathways would act either

upstream (as regulatory pathways) or downstream (as response pathways) of TE alterations.

GSEA with the MSigDB Hallmark pathway gene sets [45,49] identified 5 gene sets fitting this

criterion, including “oxidative phosphorylation”, “mTORC1 signaling”, “fatty acid metabo-

lism”, “adipogenesis”, and “cholesterol homeostasis” (Fig 3E and Sheet W in S4 Table). Inter-

estingly, several of these pathways or genes in these pathways have been implicated in TE

regulation before. Rapamycin, which antagonizes mTORC1 function, has been shown to alter

the expression of L1 and other repeats [32,50]. Specifically, Marasca et al. observed that naive

CD4+ T cells treated with rapamycin had higher L1 RNA levels compared to controls. In con-

trast, Wahl et al. observed a reduction of repeat RNA levels in the livers of mice treated with

rapamycin. These differences highlight the need for more studies to define cell- and tissue-spe-

cific repeat RNA responses to treatments like rapamycin. Estrogens, which are involved in

cholesterol and lipid metabolism, have also been found to drive changes in repeat expression,

and the receptors for both estrogens and androgens are believed to bind repeat DNA [50,51].

Pharmacological inhibition of the mitochondrial respiratory chain and pharmacological

reduction of endogenous cholesterol synthesis have also been shown to induce changes in L1

protein levels or repeat expression more broadly [52,53]. GSEA with the GO Biological Process

gene sets (Fig 3F and Sheet X in S4 Table) and the Reactome gene sets (Fig 3G and Sheet Y in

S4 Table) also identified several metabolism-related pathways including “ATP metabolic pro-

cess”, “Generation of precursor metabolites and energy”, and “metabolism of amino acids and

derivatives”. These results add to the catalogue of pathways associated with differences in L1

expression.

and (G) Reactome pathway gene sets across genotypes for rs11635336 (IL16/STARD5), rs9271894 (HLA), and rs1061810 (HSD17B12). Shared gene sets

were ranked by combining p-values from each individual SNV analysis using Fisher’s method. In each bubble plot, the size of the dot represents the

-log10(FDR) and the color reflects the normalized enrichment score. FDR: False Discovery Rate.

https://doi.org/10.1371/journal.pgen.1011311.g003

PLOS GENETICS An eQTL-based approach reveals candidate regulators of LINE-1 RNA levels in lymphoblastoid cells

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011311 June 7, 2024 12 / 44

https://doi.org/10.1371/journal.pgen.1011311.g003
https://doi.org/10.1371/journal.pgen.1011311


In our eQTL analysis, we also identified two orphan index SNVs, rs112581165 and

rs72691418, to which we could not attribute a protein-coding gene mediator. To determine

whether these SNVs also regulate any transposon families or biological pathways, we repeated

the differential expression analysis (with all expressed genes and TEs) (Sheets A and B in S5

Table) and the GSEA (Sheets C–J in S5 Table) with these SNVs (S10A Fig). At the individual

gene level, we detected 3193 genes/TEs that varied significantly (FDR< 0.05) with

rs112581165 genotype and 1229 genes/TEs that varied significantly with rs72691418 genotype

(Sheets A and B in S5 Table). Similar to above, we next carried out GSEA to identify changes

in functionally relevant gene sets. Like the gene-linked index SNVs, changes in the genotype of

rs112581165 and rs72691418 were both associated with a downregulation and upregulation,

respectively, of 10 TE families (S10B Fig and Sheet K in S5 Table). Noteworthy, the L1 family

gene set was among the most strongly dysregulated TE family gene sets for both rs112581165

(NES = -4.32, FDR = 5.18E-89) and rs72691418 (NES = 4.01, FDR = 5.38E-79) (S10C Fig).

Among L1 changes, older (L1M), intermediate (L1P), and younger (L1PA) elements were dif-

ferentially regulated across both SNVs (S10D Fig and Sheet L in S5 Table).

Overall, we observed similar changes in TE RNA levels when we applied the alternative

one-sample Wilcoxon test approach to determine whether TE family changes were signifi-

cantly different than 0 across both SNV DESeq2 analyses (S11A and S11B Fig). After stratify-

ing TE RNA levels by genomic origin, we observed that intronic TEs were strongly

differentially regulated with genotype for both SNVs. However, differential regulation of inter-

genic TEs (both near and far from genes) and exonic TEs were also observed (Sheets M and N

in S5 Table and S11C and S11D Fig). These results suggest that TE subfamily trans-eQTLs are

associated with subtle differences in TE expression beyond the lone TE subfamily, even in the

absence of a protein-coding gene cis-eQTL. Additionally, the data also suggests that TE RNA

changes are not solely due to exonization or intron retention events.

Like before, we asked if other biological pathways were regulated concomitantly with TE

gene sets in response to orphan index SNVs. The top 10 Hallmark pathway gene sets identified

by GSEA included gene sets that were previously identified (“oxidative phosphorylation”,

“fatty acid metabolism”, and “mTORC1 signaling”), as well as several new pathways (S10E Fig

and Sheet O in S5 Table). Among the new pathways, “DNA repair” [20] and the “P53 pathway”

[37,54] have also been linked to L1 control, and proteins in the “Myc targets v1” gene set inter-

act with L1 ORF1p [36]. GSEA with the GO Biological Process gene sets (S10F Fig and Sheet P

in S5 Table) and the Reactome gene sets (S10G Fig and Sheet Q in S5 Table) identified several

metabolism-related pathways and several translation-related pathways, such as “cytoplasmic

translation”, “eukaryotic translation initiation”, and “eukaryotic translation elongation”.

Importantly, proteins involved in various aspects of proteostasis have been shown to be

enriched among L1 ORF1p-interacting proteins [36]. Again, these results add to the catalogue

of pathways associated with differences in TE expression, even in the absence of a candidate cis
mediator.

Finally, we carried out our DESeq2 and GSEA analysis against the lone index SNV,

rs1361387, associated with distal intergenic L1 RNA levels (S12A Fig and Sheets R–U in S5

Table). For this SNV, we did not detect significant changes in any TE family gene set. How-

ever, GSEA with all three pathway gene sets revealed a strong suppression of immune related

processes, including “interferon gamma response”, “interferon alpha response”, “response to

virus”, and “interferon alpha/beta signaling” (S12B–S12D Fig). These observations are consis-

tent with the role of L1 as a stimulator and target of the interferon pathway [15,36], as well as

the notion that transposons can mimic viruses and stimulate immune responses from their

hosts [55].
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Modulation of top candidate gene activity in a lymphoblastoid cell line

induces small but widespread TE RNA level changes

We decided to validate the L1 regulatory properties of top candidate genes associated with L1

trans-eQTLs. For experimental purposes, we selected the GM12878 lymphoblastoid cell line,

because (i) it is of the same cell type as the transcriptomic data used here for our eQTL analysis,

and (ii) its epigenomic landscape and culture conditions have been well well-characterized as

part of the ENCODE project [56,57]. For validation purposes, we selected IL16, STARD5,

HSD17B12, and RNF5 out of the 7 protein-coding gene candidates. We chose these genes for

validation because the first 3 are associated with top trans-eQTL SNVs and the fourth one had

very strong predicted mediation effects. To note, although GM12878 was part of the

1000Genomes Project, it was not included in the GEUVADIS dataset. However, based on its

genotype, we can predict the relative expression of candidate regulators (S13A and S13B Fig),

which suggest that GM12878 may be most sensitive to modulations in IL16 and STARD5
expression, given their relatively low, predicted endogenous expression. Interestingly, examina-

tion of the ENCODE epigenomic data in GM12878 cells [56] demonstrated that the region near

the IL16/STARD5-linked index SNV (rs11635336) was marked with H3K4Me1 and H3K27Ac,

regulatory signatures of enhancers (S13C Fig). Similarly, the region near the HLA-linked index

SNV (rs9271894) was marked with H3K4Me1, marked with H3K27Ac, and accessible by

DNase, suggesting regulatory properties of the region as an active enhancer (S13C Fig). These

results further highlight the regulatory potential of the IL16-, STARD5-, and HLA-linked SNVs.

First, we tested the transcriptomic impact of overexpressing our top candidates in

GM12878 LCLs. Cells were electroporated with overexpression plasmids (or corresponding

empty vector), and RNA was isolated after 48 hours (Figs 4A and S14A). Differential expres-

sion analysis comparing control and overexpression samples confirmed the overexpression of

candidate genes (S14B Fig and Sheets A–D in S6 Table). We note that no significant differ-

ences in EBV expression were identified in any of the four conditions (all FDR > 0.05; S14C

Fig). Intriguingly, we observed that IL16 was significantly upregulated following STARD5
overexpression (S14D Fig and Sheet B in S6 Table), although the inverse was not observed

(Sheet A in S6 Table), suggesting that IL16 may act downstream of STARD5. We note here

that, consistent with the use of a high expression vector, the IL16 upregulation elicited by

STARD5 overexpression (log2 fold change = 0.45) was weaker than the upregulation from the

IL16 overexpression (log2 fold change = 1.89) (Sheets A and B in S6 Table).

To further assess the biological relevance of each overexpression, we carried out GSEA

using the GO Biological Process, Reactome pathway, and Hallmark pathway gene sets (Sheets

E–P in S6 Table). Importantly, GSEA using GO Biological Process and Reactome pathway

gene sets highlighted differences that were consistent with the known biology of our candidate

genes. Firstly, IL16 is involved in regulating T-cell activation, B-cell differentiation, and func-

tions as a chemoattractant [58–63]. Moreover, it modulates macrophage polarization by regu-

lating IL-10 expression [64]. IL16 overexpressing cells showed upregulation for “phagocytosis

recognition” and “positive chemotaxis”, downregulation for “negative regulation of cell differ-

entiation”, and downregulation for “Interleukin-10 signaling” (Fig 4B and 4C). Secondly,

STARD5 encodes a cholesterol transporter and is upregulated in response to endoplasmic

reticulum (ER) stress [65–67]. STARD5 overexpressing cells showed downregulation of vari-

ous cholesterol-related gene sets such as “sterol biosynthetic process”, “sterol metabolic pro-

cess”, and “regulation of cholesterol biosynthesis by SREBP (SREBF)” (Fig 4D and 4E).

Thirdly, HSD17B12 encodes a steroid dehydrogenase involved in converting estrone into

estradiol and is essential for proper lipid homeostasis [68–70]. HSD17B12 overexpressing cells

showed downregulation of cholesterol-related gene sets, including “sterol biosynthetic
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Fig 4. Impact of IL16 and STARD5 overexpression on LCL gene and TE expression landscapes. IL16 and STARD5
overexpression induce changes consistent with their known biology, as well as subtle but widespread upregulation of TE

families. (A) Scheme for experimentally validating the roles of IL16 and STARD5 in L1 regulation. GSEA analysis for top,

differentially regulated (B) GO Biological Process and (C) Reactome pathway gene sets following IL16 overexpression. GSEA

analysis for top, differentially regulated (D) GO Biological Process and (E) Reactome pathway gene sets following STARD5
overexpression. (F) GSEA analysis for shared, significantly regulated TE family gene sets following IL16 and STARD5
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process” and “sterol metabolic process” (S14E Fig). Finally, RNF5 encodes an ER and mito-

chondrial-bound E3 ubiquitin-protein ligase that ubiquitin-tags proteins for degradation [71–

74]. RNF5 overexpressing cells demonstrated alterations in gene sets involved in proteostasis

and ER biology, including upregulation of “ERAD pathway” and “response to endoplasmic

reticulum stress” (S14F Fig). These results suggest that our approach leads to biological

changes consistent with the known biological impact of the genes being overexpressed.

Next, we sought to determine whether modulation of candidate genes had any impact on

TE RNA levels in general, and L1 in particular. Although there were no significant changes for

individual TE subfamilies following IL16 and STARD5 overexpression (Sheets A and B in S6

Table), we identified subtle but widespread upregulation of various TE families across both

conditions by GSEA (Fig 4F and Sheets Q and R in S6 Table). Interestingly, 7 families, includ-

ing L1, ERV1, ERVL-MaLR, Alu, ERVL, TcMar-Tigger, and hAT-Charlie families, were com-

monly upregulated under both conditions (Fig 4F). In contrast, cells overexpressing

HSD17B12 or RNF5 did not drive widespread changes in L1 family expression as assessed by

GSEA (Sheets S and T in S6 Table), suggesting specificity of the IL16/STARD5-L1 relation-

ships. Noteworthy, the L1 family gene set was more significantly upregulated following

STARD5 overexpression (NES = 2.27, FDR = 1.06E-7) compared to IL16 overexpression

(NES = 2.27, FDR = 4.48E-5) (Fig 4G and Sheets Q and R in S6 Table). Since IL16 is upregu-

lated in response to STARD5 overexpression, this suggests that STARD5 may synergize with

IL16 for the regulation of L1 RNA levels.

Overall, we observed similar changes in TE RNA levels when we applied the alternative

one-sample Wilcoxon test approach to determine whether TE family changes were signifi-

cantly different than 0 across overexpression conditions (S15A and S15B Fig). Among L1

changes, older (L1M), intermediate (L1P), and younger (L1PA) elements were differentially

regulated across both overexpression conditions (Fig 4H and Sheet U in S6 Table). To gain

insight into the mechanism of IL16/STARD5-mediated TE mis-regulation, we again stratified

the TE expression profiles by genomic origin (Sheets V and W in S6 Table). Though intronic

TEs of various families were strongly upregulated following IL16 and STARD5 overexpression,

distal intergenic L1 RNA levels were also upregulated in both conditions (S15C and S15D Fig).

These results further suggest that IL16 and STARD5 influence the repetitive RNA pools,

including elements that are unlikely to be transcribed by neighboring genes.

Then, we decided to further characterize the impact of IL16 activity on TEs, since (i) its

overexpression led to a global upregulation of TE transcription, and (ii) it was itself upregu-

lated in response to STARD5 overexpression, which also led to increased TE expression. Thus,

since IL16 is a soluble cytokine, we independently assessed its regulatory properties by expos-

ing GM12878 cells to recombinant human IL16 peptide [rhIL16] for 24 hours (Figs 5A and

S16A). Differential gene expression analysis (Sheet A in S7 Table) and comparison with the

IL16 overexpression results demonstrated that differentially expressed genes were weakly but

significantly correlated (S16B Fig). As with the overexpression conditions, no significant dif-

ferences in EBV expression were identified (FDR> 0.05; S16C Fig). Additionally, we carried

out GSEA using the GO Biological Process, Reactome pathway, Hallmark pathway, and TE

family gene sets (Sheets B–E in S7 Table) and compared those results with the GSEA from the

overexpression. (G) GSEA plots for the L1 family gene set results summarized in (F). For these plots, the FDR value is listed.

(H) GSEA analysis for shared, significantly regulated, evolutionary-age-stratified L1 gene sets across IL16 and STARD5
overexpression. L1M subfamilies are the oldest, L1P subfamilies are intermediate, and L1PA subfamilies are the youngest. In

each bubble plot, the size of the dot represents the -log10(FDR) and the color reflects the normalized enrichment score. FDR:

False Discovery Rate. Panel (A) was created with BioRender.com.

https://doi.org/10.1371/journal.pgen.1011311.g004
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Fig 5. rhIL16 treatment is sufficient to transiently upregulate an L1 family gene set. (A) Scheme for experimentally validating the role of rhIL16 in L1

regulation. GSEA analysis for top, shared, concomitantly regulated (B) GO Biological Process and (C) Reactome pathway gene sets following IL16 overexpression

and rhIL16 exposure for 24 hours. Shared gene sets were ranked by combining p-values from each individual treatment analysis using Fisher’s method. (D) GSEA

analysis for top, differentially regulated TE family gene sets following rhIL16 exposure for 24 hours. (E) GSEA analysis for significantly regulated evolutionary-age-

stratified L1 gene sets following rhIL16 exposure for 24 hours. L1M subfamilies are the oldest, L1P subfamilies are intermediate, and L1PA subfamilies are the

youngest. (F) GSEA analysis for top, differentially regulated TE family gene sets in different genomic locations following rhIL16 exposure for 24 hours. In each
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IL16 overexpression (Sheets F–H in S7 Table). Consistent with the known biology of IL16,

GSEA highlighted a downregulation of many immune cell-related gene sets such as “leukocyte

differentiation” and “mononuclear cell differentiation” (Fig 5B and 5C and Sheets F–H in S7

Table). Similar to our overexpression results, exposure of GM12878 to rhIL16 for 24 hours led

to the upregulation of an L1 family gene set by GSEA, although the effect was less pronounced

than with the overexpression (Fig 5D). Again, we observed similar changes in TE RNA levels

when we applied the one-sample Wilcoxon test alternative approach to determine whether TE

family changes were significantly different than 0 following rhIL16 treatment for 24 hours

(S16D Fig). Similar to the overexpression, intermediate (L1P) and younger (L1PA) age L1 ele-

ments were upregulated following rhIL16 treatment for 24 hours (Fig 5E and Sheet I in S7

Table). After stratifying the TE RNA profiles by genomic origin and running GSEA, we again

observed an upregulation of intronic and distal intergenic L1 RNA, as in the overexpression

(Fig 5F and Sheet J in S7 Table). Even though treatment of GM12878 with rhIL16 for 48 hours

exhibited known features of IL16 biology (S16B, S16E and S16F Fig and Sheets K–S in S7

Table), the L1 upregulation was no longer detectable, though other TEs remained upregulated

(S16G Fig and Sheet S in S7 Table). These results further support the notion that IL16 acts as a

modulator of L1 RNA levels, including for both intronic and distal intergenic copies. Impor-

tantly, our initial eQTL analysis identified a strong association between intronic L1 RNA levels

and variants near IL16/STARD5. However, the IL16 overexpression, STARD5 overexpression,

and rhIL16 peptide treatment all independently influenced intergenic L1 expression (in addi-

tion to intronic L1 expression). Since both the overexpression constructs and the peptide lack

the L1P4a intronic sequence, our data suggests that these effects can be attributed to the pro-

tein-coding sequences, specifically. These results provide experimental evidence that IL16 and

STARD5 may broadly impact the levels of both intronic and non-intronic L1 RNA levels.

Finally, we sought to define the biological pathways regulated concomitantly with the L1

family gene set under all experimental conditions where it was upregulated (i.e., IL16 overex-

pression, STARD5 overexpression, and 24 hours of rhIL16 exposure) (Fig 6A and 6B and Sheet

A in S8 Table). Again, we reasoned that such pathways would act either upstream (as regula-

tory pathways) or downstream (as response pathways) of TE alterations. GSEA with the Hall-

mark pathway gene sets identified 7 gene sets fitting this criterion, including “TNFα signaling

via NF-KB”, “IL2 STAT5 signaling”, “inflammatory response”, “mTORC1 signaling”, “estro-

gen response early”, “apoptosis”, and “UV response up” (Fig 6C and Sheet B in S8 Table).

GSEA with the GO Biological Process gene sets (Fig 6D and Sheet C S8 Table) and the Reac-

tome pathway gene sets (Fig 6E and Sheet D in S8 Table) also identified MAPK signaling,

virus-related pathways like “HCMV early events”, pathways involved in cell differentiation,

and pathways involved in cholesterol and steroid metabolism like “signaling by nuclear recep-

tors”. These results further cement the catalogue of pathways associated with differences in TE

RNA levels.

L1 trans-eQTLs are co-associated with aging traits in GWAS databases

Although TE de-repression has been observed broadly with aging and age-related disease

[5,75], whether this de-repression acts as a causal driver, or a downstream consequence, of

aging phenotypes remains unknown. We reasoned that if increased TE expression at least par-

tially drives aging phenotypes, L1 trans-eQTLs should be enriched for associations to aging

bubble plot, the size of the dot represents the -log10(FDR) and the color reflects the normalized enrichment score. FDR: False Discovery Rate. Panel (A) was

created with BioRender.com.

https://doi.org/10.1371/journal.pgen.1011311.g005
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Fig 6. Consistent cellular responses to IL16 overexpression, STARD5 overexpression, and rhIL16 exposure for 24 hours.

IL16 overexpression, STARD5 overexpression, and rhIL16 exposure for 24 hours are associated with subtle but widespread

differences in TE families and known TE-associated pathways. (A) Scheme for assessing concordantly regulated TE family

and pathway gene sets across conditions where an L1 gene set is upregulated. GSEA analysis for top, shared, concomitantly

regulated (B) TE family, (C) MSigDB Hallmark pathway, (D) GO Biological Process, and (E) Reactome pathway gene sets

following IL16 overexpression, STARD5 overexpression, and rhIL16 exposure for 24 hours. Shared gene sets were ranked by
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traits in genome-wide association studies [GWAS] or phenome-wide association studies

[PheWAS].

To test our hypothesis, we queried the Open Targets Genetics platform with our initial 499

trans-eQTL SNVs, mapped traits to standardized MeSH IDs, and then manually curated

MeSH IDs related to aging-related traits (Fig 7A). Consistent with our hypothesis, a large pro-

portion of L1 trans-eQTL SNVs (222/499 or 44.5%) were either (i) associated with an aging

MeSH trait by PheWAS or (ii) LD-linked to a lead variant associated with an aging MeSH trait

(Fig 7B). Moreover, among the 222 SNVs with significant aging-trait associations, we observed

frequent mapping to more than a single age-related trait by PheWAS, with many SNVs associ-

ated with 10–25 traits (Fig 7C and Sheet A in S9 Table). Additionally, many of the 222 SNVs

mapped to 1–5 aging traits through a proxy lead variant (Fig 7D and Sheet A in S9 Table).

Among the most frequently associated or linked traits, we identified type 2 diabetes mellitus,

hyperparathyroidism, thyroid diseases, coronary artery disease, hypothyroidism, and psoriasis,

among many others (Fig 7E and Sheet B in S9 Table).

As a parallel approach, we queried the Open Targets Genetics platform with our L1 trans-
eQTL SNVs, as well as 500 combinations of random SNVs sampled from all SNVs used in the

eQTL analyses. We then leveraged broader phenotype categories annotated by the platform,

including 14 disease categories that we considered aging-related, to determine whether L1

eQTL associations were enriched for any disease categories (S17A Fig). L1 eQTL associations

were significantly enriched (FDR < 0.05 and ES> 1) for 13 out of 14 disease categories,

including cell proliferation disorders, immune system diseases, and musculoskeletal diseases

(S17B–S17N Fig). The cardiovascular diseases category was the only disease category for

which we did not observe a significant enrichment (S17O Fig). The enrichment for cell prolif-

eration disorders is consistent with the associations of L1 activity with cellular senescence

[12,15] and cancer [76,77]. The enrichment for immune system diseases is consistent with the

role of L1 as a stimulator of the interferon pathway, inflammation, and senescence [15], as well

as the more general notion that transposons can mimic viruses and stimulate immune

responses from their hosts [55]. The enrichment for musculoskeletal diseases is consistent

with an increase in L1 expression and copy number with age in muscle tissue from aging mice

[11]. These results reinforce the notion that L1 activity is strongly and non-randomly associ-

ated with an assortment of age-related diseases.

Intriguingly, a large fraction of co-associated SNVs were on chromosome 6 near the HLA

locus, which has previously been shown to be a hotspot of age-related disease traits [78].

Despite its association to our strongest L1 trans-eQTL SNV, little is known about the regula-

tion and impact of IL16 during aging. One study, however, found that IL16 expression

increases with age in ovarian tissue, and the frequency of IL16 expressing cells is significantly

higher in ovarian tissue from women at early and late menopause, compared to premeno-

pausal women [79]. Given these findings, and since L1 expression levels and copy number

have been found to increase with age [reviewed in [5]], we asked whether circulating IL16 lev-

els may also change with age, using C57BL/6JNia mice as a model (Fig 7F and Sheet C in S9

Table). Consistent with the notion that increased IL16 levels may, at least partially, drive age-

related TE de-repression, we observed a significant increase in circulating IL16 levels in female

mice with age, and a trending increase with age in male mice (although the levels showed

more animal-to-animal variability). By meta-analysis, circulating IL16 levels changed

combining p-values from each individual treatment analysis using Fisher’s method. In each bubble plot, the size of the dot

represents the -log10(FDR) and the color reflects the normalized enrichment score. FDR: False Discovery Rate.

https://doi.org/10.1371/journal.pgen.1011311.g006
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Fig 7. L1 trans-eQTLs are co-associated with aging traits in GWAS databases. (A) Scheme for obtaining trans-eQTL SNV-associated aging phenotypes from the

Open Targets Genetics platform. (B) A pie chart representing the number of SNVs (222/499) associated with an aging-related MeSH trait, either by PheWAS or

indirectly linked to the phenotype through a proxy lead SNP in LD with the SNV. (C) Histogram depicting the distribution of number of aging MeSH traits

associated with the 222/499 SNVs by PheWAS. (D) Histogram depicting the distribution of number of aging MeSH traits linked with the 222/499 SNVs through a

proxy lead SNP in LD with the SNVs. (E) A diagram highlighting the organ targets of the top 10 most frequently associated aging traits. (F) The concentrations of

circulating IL16 in aging mice of both sexes was assessed by ELISA. Each dot represents an independent animal, with n = 15–17 per group. Significance across age

in each sex was assessed using a Wilcoxon test. The p-values from each sex (females in pink and males in blue) were combined by meta-analysis using Fisher’s

method. Any p-value< 0.05 was considered significant. Panels (A), (E), and (F) were created with BioRender.com.

https://doi.org/10.1371/journal.pgen.1011311.g007
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significantly with age across sexes (Fig 7F). These results further support the hypothesis that

IL16 is involved in L1 biology and may modulate L1 age-related changes. In sum, our results

provide one of the first pieces of evidence of a causal link between L1 RNA levels and age-

related decline.

Discussion

A new approach to identify regulators of TE expression

In this work, we developed a pipeline to computationally identify candidate L1 RNA level reg-

ulators by eQTL analysis. We provide experimental evidence for the involvement of top candi-

dates in regulating L1 RNA levels, demonstrating as a proof-of-principle that this approach

can be broadly used on other large “omic”-characterized cohorts with human (i.e. GTEx

[80,81] or HipSci [82]) or mouse (i.e. DO mice [83]) subjects to identify other regulators of L1

activity. These datasets, combined with our approach, could be utilized to rigorously character-

ize conserved or group-specific TE regulatory mechanisms on multiple layers, such as across

TE families (like Alu or ERVs), across cell or tissue types, across ancestry groups, and across

species. This approach, which leverages existing datasets to perform in silico screening, could

be a powerful method to expand our knowledge of TE regulation in non-diseased cells and

tissues.

Though our initial scan identified genetic variants associated with expression differences in

specific L1 subfamilies, secondary analyses by GSEA suggest that genetic variants are associ-

ated with subtle but global differences in the expression of many TE families of varying geno-

mic context, including intronic, intergenic, and exonic TE RNA levels. Our pipeline identified

candidate genes, including HSD17B12 and HLA genes, that likely play a conserved role in L1

regulation across human populations of different ancestries. Though some top candidates

from the European cohort scan, such as IL16, STARD5, and RNF5, were not significant in the

African cohort analysis, it is likely that some of these genes would appear in cross-ancestry

scans with larger samples sizes. To note, none of our top candidates were associated with L1

polymorphisms in the landmark TE-eQTL study that first used this data to study TE biology

[27], suggesting that our findings are likely mechanistically independent. Importantly, we rec-

ognize that in projects of the same magnitude as the GEUVADIS consortium’s project, it is

nearly impossible to avoid introducing batch effects and to measure all possible covariates.

Thus, one caveat with the eQTL approach is that unknown factors, such as B cell activation

state or EBV latency, may confound SNV-L1 expression relationships. We attempted to miti-

gate this by employing PEER factors to account for unknown drivers of variation. Importantly,

this analysis recovered the same top 3 loci as the analysis without PEER factors. Thus, the

SNV-L1 associations are likely real and not due to external, unknown trivial factors.

After repeating our computational scan using the TE profiles stratified by genomic context,

we made a number of additional insights, such as (i) the association of IL16 and STARD5 with

intronic L1 RNA levels, (ii) the association of HLA with nearby intergenic L1 RNA levels, (iii)

the identification of an additional candidate regulator, ZSCAN26, which may influence distal

intergenic L1 RNA levels, and (iv) a number of SNVs associated with exon-overlapping L1

RNA levels. Moreover, the secondary GSEA analyses suggest that the SNVs tested exert broad

effects on TE family RNA levels, regardless of genomic context.

As an important aspect of this study, we experimentally validated our top candidate genes.

We detected subtle but global differences in L1 family RNA levels following IL16 overexpres-

sion, STARD5 overexpression, and rhIL16 treatment for 24 hours, further suggesting that our

top candidates have regulatory potential. Although IL16/STARD5 were mainly associated to

intronic L1 levels in our trans-eQTL analysis, these treatments affected both intronic and distal
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intergenic L1 RNA levels, suggesting that these differences are not solely due to intron reten-

tion or co-expression with neighboring genes. Surprisingly, our treatments exerted effects on

other TE families as well, suggesting broad alterations that promote TE RNA differences.

Thus, IL16 and STARD5 are likely to be bona fide regulators that can be prioritized for follow-

up study.

Much of the work on L1 regulation relies on overexpressing full-length L1 elements in cell

lines that can tolerate these manipulations [20,31]. However, there are some approaches aimed

at characterizing transcription factors that bind endogenous L1 promoters [44,84], in addition

to those that implement gene network approaches to find potential regulators that may act

through alternative mechanisms [21]. These, in our view, complement plasmid-based

approaches through a more physiological study of L1 regulators. We think that our approach,

which relies on endogenous TE profiles, adds to this category of tools.

New candidate L1 regulators are involved in viral response

As another, theoretical line of evidence for the potential involvement of our top candidate

genes in L1 regulation, we highlight known interactions between tested candidate genes and

viral infections, which may be relevant under conditions where transposons are recognized as

viral mimics [55]. Indeed, IL16 has been extensively studied for its ability to inhibit human

immunodeficiency virus (HIV) replication, partly by suppressing mRNA expression [85–87].

Additionally, but in contrast to its HIV-suppressive properties, IL16 can enhance the replica-

tion of influenza A virus (IAV) and facilitate its infection of hosts, potentially through its

repression of type I interferon beta and interferon-stimulated genes [88]. IL16 can also con-

tribute to the establishment of lifelong gamma herpesvirus infection [89]. STARD5 is another

candidate implicated in the influenza virus replication cycle [90]. HSD17B12 promotes the rep-

lication of hepatitis C virus via the very-long-chain fatty acid (VLCFA) synthesis pathway and

the production of lipid droplets important for virus assembly [91,92]. Additionally, HSD17B12

has been found interacting with the coronavirus disease 2019 (COVID-19) protein nonstruc-

tural protein 13 (NSP13), which is thought to antagonize interferon signaling [93]. Finally,

RNF5 has been implicated in both promoting and antagonizing severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) by either stabilizing the interactions of membrane pro-

tein (M) [94] or inducing degradation of structural protein envelope (E) [95], respectively.

Fundamentally, RNF5 regulates virus-triggered interferon signaling by targeting the stimulator

of interferon genes (STING) or mitochondrial antiviral signaling protein (MAVS) for ubiqui-

tin-mediated protein degradation [73,74]. These studies reinforce the roles of tested candidate

regulators in virus-associated processes, including interferon-mediated signaling.

Future considerations for the use of trans-eQTL analysis in identification

of L1 regulators

While we believe this approach can readily be applied to other datasets, we would like to note

potential further considerations with the approach implemented here, some of which were

simply beyond the scope of this paper. Firstly, though it is common to use probabilistic estima-

tion of expression residuals (PEER) [40] to enhance detection of cis-eQTLs, PEER was not

implemented in our main analyses as a precautionary measure, in order to avoid potentially

blurring global TE signals, which likely led to a more conservative list of candidate cis gene

mediators. Second, given the technical complexity in generating the vast amount of mRNA-

seq data used for the eQTL analysis, it is possible that technical covariates introduced non-lin-

ear effects that would not be easily removed by approaches like PEER or SVA [96]. For that

reason, we opted to supplement our computational predictions with experimental data. Third,
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the L1 trans-eQTLs identified were specific to older L1 subfamilies (L1P and L1M) and were

not shared across subfamilies. One factor that may partially explain this is the heightened diffi-

culty of quantifying the expression of evolutionarily younger L1 subfamilies using short-read

sequencing [97].

More generally, significant single gene differences are often difficult to reproduce across

studies, and it is for this reason that methods like GSEA were developed, to robustly identify

broader changes in sets of genes [45]. Consistently, GSEA suggests that many TE families,

beyond the single L1 subfamilies identified in the eQTL analysis, are differentially regulated

among samples with different genotypes for trans-eQTL SNVs and among samples where

IL16/IL16 and STARD5 were manipulated. We note that although HLA and HSD17B12 loci

were significant in both the European and African cohorts, we were not able to independently

identify all of the same candidate regulators. This is likely due to a combination of small sam-

ple size for the African cohort and the existence of population-specific L1 regulation. Future

studies with larger sample sizes may be useful for expanding the catalogue of loci that are bio-

logically meaningful for L1 expression across more than one population. Importantly, our

computational scan is limited to loci exhibiting genomic variation among tested individuals.

This will vary with factors like the ancestry groups of the populations being studied. Moreover,

variants that confer extreme fitness defects may not exist at a sufficiently high level in a popula-

tion to allow for an assessment of their involvement as eQTLs.

Finally, although we focused on protein-coding candidate regulators, it is possible that the

non-coding genes identified in our scan may also causally drive differences in L1 expression.

Though not explored here, other regulatory factors like small RNAs may also act as partial

mediators. Since the GEUVADIS Consortium generated small RNA data in parallel to the

mRNA data used in this study [26], a future application of our pipeline could be to scan for cis
small RNA mediators in the same biological samples. These unexplored factors may explain

the associations between orphan SNV genotypes and TE family gene set changes.

L1 trans-eQTLs are enriched for genetic variants linked to aging and age-

related disease

Consistent with the notion that L1 is associated with aging and aging phenotypes [5,75], we

observed that L1 trans-eQTL SNVs were associated with aging phenotypes in GWAS/PheWAS

databases. This is very surprising, but interesting, given that all 1000Genomes Project partici-

pants declared themselves to be healthy at the time of sample collection. Assuming this to be

true, our results suggest that L1 RNA level differences exist in natural, healthy human popula-

tions, and these RNA level differences precede onset of aging diseases. Importantly, we note

that the SNVs tested were associated with intronic and nearby intergenic L1 subfamily RNA

levels, which may have been discarded in studies focusing on full-length, distal intergenic L1

elements. Thus, these results reiterate the notion that intronic L1s and intergenic L1s near

genes can potentially exert functional consequences on hosts and therefore merit further

study. Though it is often unclear whether L1 mis-regulation is a consequence or driver of

aging phenotypes, our results suggest that L1 RNA levels may drive aging phenotypes. As we

continue to expand the catalogue of L1 regulators, especially in healthy cells and tissues, the L1

regulatory processes that are disrupted over the course of aging will become increasingly clear.

To that end, this work may serve as a guide for conducting more comprehensive scans for can-

didate TE regulators.

In summary, we developed an eQTL-based pipeline that leverages genomic and transcrip-

tomic data to scan the human genome for novel candidate regulators of L1 subfamily RNA lev-

els. Though the initial scan identified genetic variants associated with RNA level differences in
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specific L1 subfamilies, secondary analyses by GSEA suggest that genetic variants are associ-

ated with subtle but global differences in the RNA levels of many TE families. Our pipeline

identified candidate genes, including HSD17B12 and HLA genes, that likely play a conserved

role in L1 regulation across human populations of different ancestries. Though some top can-

didates from the European cohort scan, such as IL16, STARD5, and RNF5, were not significant

in the African cohort analysis, it is likely that some of these genes would appear in cross-ances-

try scans with larger samples sizes. We detected subtle but global differences in L1 family RNA

levels following IL16 overexpression, STARD5 overexpression, and rhIL16 treatment for 24

hours, further suggesting that some candidate genes have regulatory potential. We generate a

list of pathways, such as mTORC1 signaling and cholesterol metabolism, that may act

upstream of L1 regulation. Finally, the co-association of some genetic variants with both L1

RNA level differences and various age-related diseases suggests that L1 differences may pre-

cede and contribute to the onset of disease. Our results expand the potential mechanisms by

which L1 RNA levels are regulated and by which L1 may influence aging-related phenotypes.

Materials and methods

Ethics statement

All animals were treated and housed in accordance with the Guide for Care and Use of Labora-

tory Animals. All experimental procedures were approved by the University of Southern Cali-

fornia’s Institutional Animal Care and Use Committee (IACUC) and are in accordance with

institutional and national guidelines. Samples were derived from animals on approved IACUC

protocol #20770.

Publicly available data acquisition

The eQTL analysis was carried out on 358 European (EUR) individuals and 86 Yoruban (YRI)

individuals for which paired single nucleotide variant, structural variant, and transcriptomic

data were available from Phase 3 of the 1000Genomes Project [22,23] and from the GEUVA-

DIS consortium [26]. Specifically, Phase 3 autosomal SNVs called on the GRCh38 reference

genome were obtained from The International Genome Sample Resource (IGSR) FTP site

(http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000_genomes_project/release/

20190312_biallelic_SNV_and_INDEL/). Structural variants were also obtained from the IGSR

FTP site (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/integrated_sv_map/). mRNA-

sequencing fastq files generated by the GEUVADIS consortium were obtained from ArrayEx-

press under accession E-GEUV-1.

Aggregating and pre-processing genotype data for eQTL analyses

To prepare SNVs for association analyses, all SNVs were first annotated with rsIDs from

dbSNP build 155 using BCFtools v1.10.2 [98]. VCFtools v0.1.17 [99] was then used to remove

indels and keep variants with the following properties in each of the two populations: pos-

sessed a minimum and maximum of two alleles, possessed a minor allele frequency (MAF) of

at least 1%, passed Hardy-Weinberg equilibrium thresholding at p< 1e-6, with no missing

samples, and located on an autosome. We note here that sex chromosomes were not included

in the analysis since (i) Y chromosome SNVs were not available and (ii) analyses with X chro-

mosome SNVs require unique algorithms and cannot simply be incorporated into traditional

association pipelines [100,101]. VCF files containing these filtered SNVs were then converted

to PLINK BED format using PLINK v1.90b6.17 [102], keeping the allele order. PLINK BED

files were subsequently used to generate preliminary 0/1/2 genotype matrices using the ‘—
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recodeA’ flag in PLINK. These preliminary matrices were manipulated in terminal, using the

gcut v9.0 function to remove unnecessary columns and datamash v1.7 to transpose the data, to

generate the final 0/1/2 matrices used for the eQTL analyses. Finally, PLINK was used to prune

the list of filtered SNVs, using the “—indep-pairwise 50 10 0.1” flag, and to generate principal

components (PCs) from the pruned genotypes.

To control for inter-individual differences in genomic transposon copy number load, we

applied 1 of 2 approaches, depending on the analysis. For approach 1, the net number of L1 and

Alu insertions was quantified across the 444 samples. We chose to aggregate the L1 and Alu copy

numbers, since Alu relies on L1 machinery for mobilization [103], and so the aggregate number

may provide a finer view of L1-associated copy number load. Briefly, VCFTools was used to

extract autosomal structural variants from the 1000Genomes structural variant calls. L1 and Alu

insertions and deletions were then extracted with BCFtools by keeping entries with the following

expressions: ‘SVTYPE = “LINE1”‘, ‘SVTYPE = “ALU”‘, ‘SVTYPE = “DEL_LINE1”‘, and

‘SVTYPE = “DEL_ALU”‘. The resulting VCF files were then transformed to 0/1/2 matrices in

the same manner as the SNVs. A net copy number score was obtained for each sample by adding

the values for the L1 and Alu insertions and subtracting the values for the L1 and Alu deletions.

For approach 2, the complete structural variant matrix was filtered with VCFtools using the

same parameters as with the SNV matrices. The filtered structural variant matrix was then

pruned with PLINK, and these pruned structural variant genotypes were used to generate princi-

pal components, in the same fashion as with the SNV matrix. The net copy number score or the

structural variant principal components, depending on the analysis, were included as covariates.

mRNA-seq read trimming, mapping, and quantification

Fastq files were first trimmed using fastp v0.20.1 [104] with the following parameters: detect_a-

dapter_for_pe, disable_quality_filtering, trim_front1 17, trim_front2 17, cut_front, cut_-

front_window_size 1, cut_front_mean_quality 20, cut_tail, cut_tail_window_size 1,

cut_tail_mean_quality 20, cut_right, cut_right_window_size 5, cut_right_mean_quality 20,

and length_required 36. Read quality was then inspected using fastqc v0.11.9.

Next, the GRCh38 primary human genome assembly and comprehensive gene annotation

were obtained from GENCODE release 33 [105]. Since LCLs are generated by infecting B-cells

with Epstein-Barr virus, the EBV genome (GenBank ID V01555.2) was included as an addi-

tional contig in the human reference genome. The trimmed reads were aligned to this modi-

fied reference genome using STAR v2.7.3a [106] with the following parameters:

outFilterMultimapNmax 100, winAnchorMultimapNmax 100, and outFilterMismatchNo-

verLmax 0.04. The TEcount function in the TEtranscripts v2.1.4 [38] package was employed to

obtain gene and TE counts, using the GENCODE annotations to define gene boundaries and a

repeat GTF file provided on the Hammell lab website (downloaded on February 19 2020 from

https://labshare.cshl.edu/shares/mhammelllab/www-data/TEtranscripts/TE_GTF/GRCh38_

GENCODE_rmsk_TE.gtf.gz) to define repeat boundaries.

Similarly, the TElocal v1.1.1 package (https://github.com/mhammell-laboratory/TElocal),

from the same software suite as TEtranscripts, was employed to obtain gene and TE locus-spe-

cific counts using the same GENCODE annotations and a repeat file provided on the Hammell

lab website (downloaded on October 31 2023 from https://labshare.cshl.edu/shares/

mhammelllab/www-data/TElocal/prebuilt_indices/).

Gene cis-eQTL and L1 trans-eQTL analyses

Gene and TE count files were loaded into R v4.2.1. Lowly expressed genes were first filtered

out if 323/358 European samples and 78/86 Yoruban samples did not have over 0.44 counts
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per million (cpm) or 0.43 cpm, respectively. These fractions were selected because they cor-

responded to expression in ~90% of samples and thus helped maintain maximal statistical

power by focusing on genes ubiquitously expressed across each entire population. The cpm

thresholds were selected because they corresponded to 10 reads in the median-length library

within each set of samples. For the locus-specific quantifications, repeat counts were loaded

into R and stratified into the following categories: (i) ‘distal intergenic’ TEs that were >5 kb

from a gene, (ii) ‘nearby intergenic’ TEs that were within 5 kb of a gene, (iii) ‘exonic’ TEs

that overlapped any annotated exon, and (iv) ‘intronic’ TEs for TEs that were in a gene but

did not overlap an annotated exon. The stratification was carried out in order to separately

characterize the influences and responses of each TE type to our analytical groups. After

stratifying, repeat counts were aggregated at the subfamily level in order to compare results

with the unstratified TEtranscripts results. After aggregating, lowly expressed genes were fil-

tered as specified above.

Then, counts underwent a variance stabilizing transformation (vst) using DESeq2 v1.36.0

[107]. The following covariates were regressed out from vst normalized expression data

using the ‘removeBatchEffect’ function in Limma v3.52.2 [108]: lab, population category,

principal components 1–2 of the pruned SNVs, biological sex, net L1/Alu copy number, and

EBV expression levels. Since the Yoruban samples were all from the same population, the

population variable was omitted in their batch correction. Here, we note several things. First,

EBV expression was included as a covariate because heightened TE expression is often a fea-

ture of viral infections [109]. Secondly, although PEER [40] is often used to remove technical

variation for cis-eQTL analysis, this can come at the expense of correcting out genome-wide

biological effects. This can be problematic in some settings, such as trans-eQTL analysis.

Thus, PEER factors were not included in the main analysis. However, in a supplemental anal-

ysis, 10 PEER factors, in addition to the previously listed known covariates, were also

regressed out from the gene expression profiles to determine whether unknown factors

could explain the associations between top loci and L1 RNA levels (see below). The batch-

corrected data in both cases underwent a final inverse normal transformation (INT), using

the RankNorm function in the R package RNOmni v1.0.1, to obtain normally distributed

gene expression values.

The INT expression matrices were split into genes and L1 subfamilies, which were used to

independently identify gene cis-eQTLs and L1 subfamily trans-eQTLs in the European super-

population using MatrixEQTL v2.3 [110]. For gene cis-eQTLs, SNVs were tested for associa-

tion with expressed genes within 1 million base pairs. We opted to use a trans-eQTL approach

using aggregate subfamily-level TE expression since the trans approach should allow us to

identify regulators of many elements rather than one. The Benjamini-Hochberg false discovery

rate (FDR) was calculated in each analysis, and we used the p-value corresponding to an FDR

of< 5% as the threshold for eQTL significance. In addition, the cis-eQTL and trans-eQTL

analyses were also repeated using 20 permuted expression datasets in which the sample names

were scrambled, and the p-value corresponding to an average empirical FDR of< 5% was

used as a secondary threshold. To note, we calculated the average empirical FDR at a given p-

value pi by (i) counting the total number of null points with p� pi, (ii) dividing by the number

of permutations, to obtain an average number of null points with p� pi, and (iii) dividing the

average number of null points with p� pi by the number of real points with p� pi. eQTLs

were called as significant if they passed the stricter of the two thresholds. SNV-gene and

SNV-L1 associations that were significant in the European superpopulation were then targeted

and tested in the Yoruban population using R’s built-in linear modelling functions. In this

case, only the Benjamini-Hochberg FDR was calculated, and significant eQTLs were called if

they possessed an FDR< 0.05.
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Defining SNV-gene-L1 trios and mediation analysis

For each population, the independent cis- and trans-eQTL results were integrated to identify

SNVs associated with both gene and L1 subfamily expression. We reasoned that L1 expression

would respond to differences in expression of bona fide regulators. Consequently, gene expres-

sion and L1 subfamily expression associations were assessed by linear regression, and the p-

values from this analysis were Benjamini-Hochberg FDR-corrected. Candidate SNV-gene-L1

trios were defined as those with cis-eQTL, trans-eQTL, and expression regression

FDRs < 0.05. To identify top, index SNVs in regions of linkage disequilibrium (LD), SNVs

within 500 kilobases of each other with an R2 > 0.10 were clumped together by trans-eQTL p-

value using PLINK v1.90b6.17. To determine whether index SNVs were in regions enriched

for L1 fragments, we used the Hammell lab repeat annotation file to identify the number of L1

fragments within 5 kb on either side of each index SNV or 1000 random SNVs. We assessed

the statistical significance of the difference with a two-sample Wilcoxon test. Mediation analy-

sis was carried out using the ‘gmap.gpd’ function in eQTLMAPT v0.1.0 [111] on all candidate

SNV-gene-L1 trios. Empirical p-values were calculated using 30,000 permutations, and Benja-

mini-Hochberg FDR values were calculated from empirical p-values. Mediation effects were

considered significant for trios with FDR < 0.05.

Differential expression analysis across trans-eQTL SNV genotypes

Transcriptomic changes associated with alternating the allele of each SNV of interest were

evaluated using DESeq2 v1.36.0. Using the same filtered counts prepared for the eQTL analy-

sis, a linear model was constructed with the following covariates for each SNV: SNV genotype

in 0/1/2 format, biological sex, lab, population category, principal components 1–2 of the

pruned SNVs, and principal components 1–3 of the pruned SVs (to account for structural vari-

ant population structure). As before, the population label was omitted from the Yoruban pop-

ulation analysis. Significant genes and TEs were those with an FDR< 0.05.

Functional enrichment analyses

We used the Gene Set Enrichment Analysis (GSEA) paradigm as implemented in the R pack-

age clusterProfiler v4.4.4 [112]. Gene Ontology, Reactome, and Hallmark pathway gene sets

were obtained from the R package msigdbr v7.5.1, an Ensembl ID-mapped collection of gene

sets from the Molecular Signature Database [45,49]. Additionally, TE subfamilies were aggre-

gated into TE family gene sets using the TE family designations specified in the TE GTF file

(downloaded on February 19 2020 from https://labshare.cshl.edu/shares/mhammelllab/www-

data/TEtranscripts/TE_GTF/GRCh38_GENCODE_rmsk_TE.gtf.gz) or index file (down-

loaded on October 31 2023 from https://labshare.cshl.edu/shares/mhammelllab/www-data/

TElocal/prebuilt_indices/) used during the RNA-seq quantification step. The DESeq2 v1.36.0

Wald-statistic was used to generate a combined ranked list of genes and TEs for functional

enrichment analysis. All gene sets with an FDR< 0.05 were considered significant. For plots

with a single analysis, the top 5 downregulated and top 5 upregulated gene sets were plotted, at

most. For plots with multiple analyses, shared gene sets with the desired expression patterns in

each individual analysis were first identified. Then, the p-values for shared gene sets were com-

bined using Fisher’s method, and this meta-analysis p-value was used to rank shared gene sets.

Finally, the top 5 gene sets with one expression pattern and the top 5 gene sets with the oppo-

site expression pattern were plotted. If there were less than 5 gene sets in either group, those

were replaced with gene sets exhibiting the opposite regulation, in order to plot 10 shared gene

sets whenever possible.
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Cell lines and cell culture conditions

GM12878 (RRID: CVCL_7526) lymphoblastoid cells were purchased from the Coriell Insti-

tute. We opted to use GM12878 as a well-characterized representative cell line for candidate

validation, given that (i) it is of the same cell type as the transcriptomic data used here for our

eQTL analysis, and (ii) its epigenomic landscape and culture conditions are well-characterized

as part of the ENCODE project [56,57].

GM12878 cells were maintained in RPMI (Corning cat. 15-040-CV) containing 15% FBS

and 1X Penicillin-Streptomycin-Glutamine (Corning cat. 30-009-CI). Cells were cultured in a

humidified incubator at 37˚C and 5% CO2, subculturing cells 1:5 once cells reached a density

of ~106 mL-1. All cells used were maintained below passage 30 and routinely tested for myco-

plasma contamination using the PlasmoTest Mycoplasma Detection Kit (InvivoGen).

Plasmids

The empty pcDNA3.1(+) backbone (Invitrogen cat. V79020) was a kind gift from the lab of

Dr. Changhan David Lee at the University of Southern California Leonard Davis School of

Gerontology. Overexpression vectors for IL16 (CloneID OHu48263C), STARD5-FLAG (Clo-

neID OHu07617D), HSD17B12-FLAG (CloneID OHu29918D), and RNF5-FLAG (CloneID

OHu14875D) on a pcDNA3.1 backbone were purchased from GenScript. Plasmid sequences

were verified for accuracy using Plasmidsaurus’s whole plasmid sequencing service.

Transfections

Escherichia coli were cultured in LB Broth (ThermoFischer Scientific) supplemented with

50 μg/mL carbenicillin to an optical density 600 (OD600) of 2–4. Plasmid extractions were car-

ried out using the Nucleobond Xtra Midi Plus EF kit (Macherey-Nagel) following manufac-

turer recommendations. Plasmids were aliquoted and stored at -20˚C until the time of

transfection. On the day of transfection, GM12878 cells were collected in conical tubes, spun

down (100xG, 5 minutes, room temperature), resuspended in fresh media, and counted by try-

pan blue staining using a Countess II FL automated cell counter (Thermo Fisher). The number

of cells necessary for the experiment were then aliquoted, spun down, and washed with Dul-

becco’s phosphate-buffered saline (DPBS)(Corning, cat. #21-031-CV).

GM12878 cells were transfected by electroporation using the Neon Transfection System

(Invitrogen) with the following parameters: 1200 V, 20 ms, and 3 pulses for GM12878 cells in

Buffer R. Per reaction, we maintained a plasmid mass:cell number ratio of 10 μg: 2*106 cells.

For mRNA-sequencing, 8*106 GM12878 cells were independently transfected for each biologi-

cal replicate, with 4 replicates per overexpression condition, and cultured in a T25 flask. Imme-

diately after transfection, cells were cultured in Penicillin-Streptomycin-free media for ~24

hours.

Afterwards, to promote selection of viable and healthy transfected GM12878 cells, we

enriched for viable cells using the EasySep Dead Cell Removal (Annexin V) Kit (STEMCELL

Technologies) before seeding 2*106 live cells in the same media used for cell maintenance.

After another 24 hours, cell viability was measured by trypan blue staining on a Countess auto-

mated cell counter and cells were spun down (100xG, 5 min, room temperature) and lysed in

TRIzol Reagent (Invitrogen) for downstream total RNA isolation (see below).

Recombinant human IL16 (rhIL16) peptide treatment

Human rIL16 was obtained from PeproTech (cat. #200–16) and resuspended in 0.1% bovine

serum albumin (BSA) solution (Akron, cat. #AK8917-0100). GM12878 cells were seeded at a
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concentration of 500,000 live cells per mL of media on 6-well suspension plates with 3 inde-

pendent replicates per condition. Cells were exposed to 0, 24, or 48 hours of 100 ng mL-1 of

rhIL16. To replace or exchange media 24 hours after seeding, cells were transferred to conical

tubes, spun down (100xG, 5 min, room temperature), resuspended in 5 mL of the appropriate

media, and transferred back to 6-well suspension plates. After 48 hours, cell viability was mea-

sured by trypan blue staining and cells were spun down (100xG, 5 min, room temperature)

and lysed in TRIzol Reagent (Invitrogen).

RNA extractions and mRNA sequencing

RNA was extracted using the Direct-zol RNA Miniprep kit (Zymo Research) following manu-

facturer recommendations. The integrity of RNA samples was evaluated using an Agilent

High Sensitivity RNA ScreenTape assay (Agilent Technologies), ensuring that all samples had

a minimum eRIN score of 8 before downstream processing. We then submitted total RNA

samples to Novogene (Sacramento, California) for mRNA library preparation and sequencing

on the NovaSeq 6000 platform as paired-end 150 bp reads.

Analysis of overexpression and rhIL16 exposure mRNA-seq

mRNA-seq reads were trimmed, mapped, and quantified like for the eQTL analysis, except for

the overexpression sample data. For this data, one modification was made: the EBV-inclusive

reference genome was further modified to include the pcDNA3.1 sequence as an additional

contig. Lowly expressed genes were filtered using a cpm threshold as in the eQTL processing,

but that cpm threshold had to be satisfied by as many samples as the size of the smallest biolog-

ical group. For the overexpression data, surrogate variables were estimated with the ‘svaseq’

function [96] in the R package ‘sva’ v3.44.9, and they were regressed out from the raw read

counts using the ‘removeBatchEffect’ function in the R package Limma v3.52.2. DESeq2 was

used to identify significantly (FDR< 0.05) differentially expressed genes and TEs between

groups. Functional enrichment analysis was carried out as previously described.

PheWAS analysis

To gather the known associated traits for the 499 TE-related SNVs, we used Open Targets

Genetics (https://genetics.opentargets.org/), a database of GWAS summary statistics [113].

First, we queried the database using the 499 TE-related SNVs and collected traits that were

directly associated (with P < 5x10-8) with the SNVs, as well as traits associated with lead vari-

ants that were in linkage disequilibrium (LD) with the queried SNPs (with R2 > 0.6). For age-

related traits (ARTs), we used the comprehensive list of 365 Medical Subject Headings

(MeSH) terms reported by [114] (downloaded from https://github.com/kisudsoe/Age-related-

traits). To identify known age-related traits, the known associated traits were translated into

the equivalent MeSH terms using the method described by [114]. Then, the MeSH-translated

known associated traits for the 499 TE-related SNVs were filtered by the MeSH terms for age-

related traits.

As a parallel approach, we mapped the RsIDs for all SNVs used during the eQTL analyses

to their corresponding bi-allelic Open Targets variant IDs, when available. The variant IDs

corresponding to L1 trans-eQTL SNVs were extracted, and 500 different equal-length combi-

nations of random SNVs were generated. Next, we queried the Open Targets database using

the lists of L1-associated and random SNVs and collected the associated traits (with P< 5x10-

8). Importantly, the database assigns traits to broader categories, including 14 disease catego-

ries that we considered age-related. We counted the number of L1-associated or random SNVs

mapping to each category, and we used the random SNV counts to generate an empirical

PLOS GENETICS An eQTL-based approach reveals candidate regulators of LINE-1 RNA levels in lymphoblastoid cells

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011311 June 7, 2024 30 / 44

https://genetics.opentargets.org/
https://github.com/kisudsoe/Age-related-traits
https://github.com/kisudsoe/Age-related-traits
https://doi.org/10.1371/journal.pgen.1011311


cumulative distribution function (ecdf) for each category. We calculated enrichment p-values

using the formula p = 1- ecdf(mapped eQTLs) and then Benjamini-Hochberg FDR-corrected

all p-values. An enrichment score (ES) was also calculated for each category using the formula

ES = number of mapped L1 eQTLs / median number of randomly mapping SNVs. Categories

with an ES> 1 and FDR < 0.05 were considered significantly enriched.

Quantification of mouse serum IL16 by ELISA

Serum was collected from male and female C57BL/6JNia mice (4–6 and 20–24 months old)

obtained from the National Institute on Aging (NIA) colony at Charles Rivers. All animals

were euthanized between 8–11 am in a “snaking order” across all groups to minimize batch-

processing confounds due to circadian processes. All animals were euthanized by CO2 asphyx-

iation followed by cervical dislocation. Circulating IL16 levels were quantitatively evaluated

from mouse serum by enzyme-linked immunosorbent assay (ELISA). Serum was diluted 1/10

before quantifying IL16 concentrations using Abcam’s Mouse IL-16 ELISA Kit (ab201282) in

accordance with manufacturer instructions. Technical replicates from the same sample were

averaged to one value before statistical analysis and plotting. P-values across age within each

sex were calculated using a non-parametric 2-sided Wilcoxon test, and p-values from each

sex-specific analysis were combined using Fisher’s method.

Additional software versions

Analyses were conducted using R version 4.2.1. Code was re-run independently on R version

4.3.0 to check for reproducibility. Since PEER is no longer maintained, a Docker image con-

taining R version 3.4.1 and PEER version 1.3 [quay.io/biocontainers/r-peer:1.3—

r341h470a237_1] were used for the sole purpose of identifying PEER factors for a supplemen-

tal L1 trans-eQTL analysis.

Supporting information

S1 Fig. Quality control of GEUVADIS and 1000Genomes data. (A) Unique and multimap-

ping fractions for the mRNA-sequencing data, color-coded by ancestry group, laboratory, or

biological sex. For visual clarity, the plots were limited to samples with a minimum of 84%

uniquely mapped reads, a limit which still captured the majority of samples analyzed. For

ancestry, the following groups were analyzed: Tuscan (TSI), Northern Europeans from Utah

(CEU), Finnish (FIN), British (GBR), and Yoruba (YRI). (B) PCA plots for pruned SNV geno-

type data from European or African samples, color-coded and shaped according to ancestry

group. (C) PCA plots for pruned SV genotype data from European or African samples, color-

coded and shaped according to ancestry group.

(TIF)

S2 Fig. Annotation of genome-wide SNVs with cis-eQTLs in the European cohort. (A) A

Manhattan plot for the gene cis-eQTL analysis in the European cohort. The dashed line at

p = 4.75E-4 corresponds to an average empirical FDR< 0.05, based on 20 random permuta-

tions. One such permutation is illustrated in the bottom panel. The solid line at p = 4.73E-4

corresponds to a Benjamini-Hochberg FDR < 0.05. The stricter of the two thresholds,

p = 4.73E-4, was used to define significant cis-eQTLs. (B) EBV expression as a function of IL16
expression prior to (left) and after (right) correcting for EBV expression. This correction was

applied prior to the eQTL scan in order to avoid confounding SNV associations with differ-

ences in EBV expression. (C) A Manhattan plot for the L1 subfamily trans-eQTL analysis in

the European cohort, after correcting for known covariates as well as 10 PEER factors. The
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genes and L1 subfamilies identified in the original analysis without PEER are listed next to the

equivalent peaks in this analysis. The solid line at p = 2.44E-7 corresponds to a Benjamini-

Hochberg FDR< 0.05, which was used to define significant trans-eQTLs. FDR: False Discov-

ery Rate.

(TIF)

S3 Fig. Identification of 2nd tier candidate L1 RNA level regulators in the European cohort.

(A) A schematic for how 2nd tier candidate genes were defined. In short, these were genes in

trios with clumped SNVs but not index SNVs at the top of each peak. (B) The three-part inte-

gration results for three genes—RNF5, EHMT2-AS1, FKBPL—that we considered second tier

candidates for functional, in vitro testing. In the left column are the trans-eQTLs, in the middle

column are the cis-eQTLs, and in the right column are the linear regressions for gene expres-

sion against L1 subfamily RNA levels. Expression values following an inverse normal trans-

form (INT) are shown. The FDR for each analysis is listed at the top of each plot. (C) The

number of L1 fragments near 1000 random SNVs or the 5 trans-eQTL index SNVs were calcu-

lated. A two-sample Wilcoxon test was run to determine whether there were significant differ-

ences between the two groups. FDR: False Discovery Rate.

(TIF)

S4 Fig. 1st and 2nd tier candidate regulators are partial mediators of SNV effects on L1

RNA levels. (A) Scheme for the mediation analysis. Mediation analysis tests the mechanistic

model where a given gene, in cis to a given SNV, partially or fully mediates the effect that SNV

has on TE RNA levels in trans. The direct, indirect, and total effects for (B) 1st tier candidate

gene trios and (C) 2nd tier candidate gene trios are shown. Mediation was considered signifi-

cant if the FDR-adjusted empirical p-value, calculated from 30,000 permutations, was < 5%.

FDR: False Discovery Rate.

(TIF)

S5 Fig. In silico scanning for candidate L1 RNA level regulators in an independent, African

population. (A) A scheme for the in silico analysis carried out with an African cohort, which

was similar to the analysis with the European cohort. Since the sample size was smaller than

the European cohort, a targeted eQTL approach was undertaken, where we 1) only checked

for replication of significant L1 trans-eQTLs and 2) only tested significant trans-eQTL SNVs

for cis-association with genes that were L1-linked in the European cohort analysis. (B) The

three-part integration results for two 1st tier candidate regulators in the African cohort—

HSD17B12 and HLA-DRB6. In the left column are the trans-eQTLs, in the middle column are

the cis-eQTLs, and in the right column are the linear regressions for gene expression against

L1 subfamily expression. Expression values following an inverse normal transform (INT) are

shown. The FDR for each analysis is listed at the top of each plot. FDR: False Discovery Rate.

Panel (A) was created with BioRender.com.

(TIF)

S6 Fig. Some European-derived candidate TE-regulator genes do not replicate in the Afri-

can cohort. Many candidate genes from the in silico screen in the European cohort did not

replicate in the African cohort, likely due to the much smaller sample size and relative rarity of

homozygotes carrying 2 alternate alleles. (A) The three-part integration results for 1st and 2nd

tier candidate regulators identified in the European cohort analysis and tested in the African

cohort. In the left column are the trans-eQTLs, in the middle column are the cis-eQTLs, and in

the right column are the linear regressions for gene expression against L1 subfamily expres-

sion. Expression values following an inverse normal transform (INT) are shown. The FDR is

listed for each integration step except for the linear regressions since trios were filtered out
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before the regression step. FDR: False Discovery Rate.

(TIF)

S7 Fig. Scanning for candidate regulators of intronic, intergenic, or exonic L1 RNA levels.

Transposon locus-specific quantifications were obtained using the TElocal package, and these

were stratified by genomic region (i.e. intronic, nearby intergenic for loci< 5 kb from a gene,

distal intergenic for loci > 5 kb from a gene, and exon-overlapping). Counts were then aggre-

gated at the subfamily level, and the L1 eQTL scan was re-run using each of the four L1 expres-

sion profiles using the European cohort. The Manhattan plots for the (A) intronic L1

subfamily, (B) nearby intergenic L1 subfamily, (C) distal intergenic L1 subfamily, and (D)

exon-overlapping L1 subfamily trans-eQTL analyses. For readability, only a subset of associ-

ated genes and L1s are highlighted in each plot. For regions with trans-eQTLs for multiple L1

subfamilies, we used an un-pointed line to depict the association between the listed L1 subfam-

ilies and at least one SNV in that region. The solid red line in each plot corresponds to a Benja-

mini-Hochberg FDR < 0.05. FDR: False Discovery Rate.

(TIF)

S8 Fig. Identifying mediators of SNV effects on distal intergenic L1 RNA levels. (A) Scheme

for the mediation analysis. Mediation analysis tests the mechanistic model where a given gene,

in cis to a given SNV, partially or fully mediates the effect that SNV has on TE expression in
trans. (B) The three-part integration results for one protein-coding gene—ZSCAN26—that we

considered a candidate regulator of distal intergenic L1 RNA levels. In the left column are the

trans-eQTLs, in the middle column are the cis-eQTLs, and in the right column are the linear

regressions for gene expression against L1 subfamily RNA levels. Expression values following

an inverse normal transform (INT) are shown. The FDR for each analysis is listed at the top of

each plot. (C) The ZSCAN26 SNV-gene-TE mediation trio results. Mediation was considered

significant if the FDR-adjusted empirical p-value, calculated from 30,000 permutations,

was< 5%. FDR: False Discovery Rate.

(TIF)

S9 Fig. Total L1 trans-eQTLs alter the expression of TEs in distinct genomic regions.

Box and whisker plots for the log2 fold changes of TE subfamilies (red dots), grouped by TE

family, across genotypes for (A) rs11635336 (IL16/STARD5), (B) rs9271894 (HLA), and (C)

rs1061810 (HSD17B12). A one-sample Wilcoxon test was run to determine whether changes

were significantly different from 0. The FDR values from this test are listed at the bottom.

GSEA analysis for top, differentially regulated TE family gene sets in different genomic regions

(intronic, intergenic, exon-overlapping) across genotypes. The results for (D) rs11635336

(IL16/STARD5), (E) rs9271894 (HLA), and (F) rs1061810 (HSD17B12) are shown. In each

bubble plot, the size of the dot represents the -log10(FDR) and the color reflects the normalized

enrichment score. FDR: False Discovery Rate.

(TIF)

S10 Fig. L1 trans-eQTL orphan SNVs are associated with differences in TE families and

TE-associated pathways. (A) Scheme for functionally annotating orphan index SNVs by

GSEA. (B) GSEA analysis for shared, significantly regulated TE family gene sets across geno-

types for rs112581165 and rs72691418. (C) GSEA plots for the L1 family gene set results sum-

marized in (B). For these plots, the FDR value is listed. (D) GSEA analysis for shared,

significantly regulated, evolutionary-age-stratified L1 gene sets across genotypes for

rs112581165 and rs72691418. L1M subfamilies are the oldest, L1P subfamilies are intermedi-

ate, and L1PA subfamilies are the youngest. GSEA analysis for top, shared, concomitantly reg-

ulated (E) MSigDB Hallmark pathway, (F) GO Biological Process, and (G) Reactome pathway
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gene sets across genotypes for rs112581165 and rs72691418. Shared gene sets were ranked by

combining p-values from each individual SNV analysis using Fisher’s method. In each bubble

plot, the size of the dot represents the -log10(FDR) and the color reflects the normalized

enrichment score. FDR: False Discovery Rate.

(TIF)

S11 Fig. L1 trans-eQTLs, in the absence of a known mediator, alter the levels of TEs in dis-

tinct genomic regions. Box and whisker plots for the log2 fold changes of TE subfamilies (red

dots), grouped by TE family, across genotypes for (A) rs112581165 and (B) rs72691418. A

one-sample Wilcoxon test was run to determine whether changes were significantly different

from 0. The FDR values from this test are listed at the bottom. GSEA analysis for top, differen-

tially regulated TE family gene sets in different genomic regions (intronic, intergenic, exon-

overlapping) across genotypes. The results for (C) rs112581165 and (D) rs72691418 are

shown. In each bubble plot, the size of the dot represents the -log10(FDR) and the color reflects

the normalized enrichment score. FDR: False Discovery Rate.

(TIF)

S12 Fig. Distal intergenic L1 trans-eQTLs are associated with alterations in inflammatory

pathways. (A) Scheme for functionally annotating gene-linked index SNVs for distal inter-

genic L1 expression by GSEA. GSEA analysis for top regulated (B) MSigDB Hallmark path-

way, (C) GO Biological Process, and (D) Reactome pathway gene sets across genotypes for

rs1361387 (ZSCAN26). In each bubble plot, the size of the dot represents the -log10(FDR) and

the color reflects the normalized enrichment score. FDR: False Discovery Rate.

(TIF)

S13 Fig. GM12878 LCLs as a model for assessing the roles of candidate genes in L1 regula-

tion. Though transcriptomic data is not available for these LCLs, the relative expression of can-

didate genes and linked L1 subfamilies can be predicted from GM12878 genotypes at either

(A) index SNVs or (B) clumped SNVs. (C) ENCODE project epigenetic data available for

GM12878 highlights regulatory markers near some trans-eQTL index SNVs. Data is visualized

on the UCSC Genome Browser.

(TIF)

S14 Fig. Though HSD17B12 and RNF5 were overexpressed, no L1 gene set changes were

detected. (A) Scheme for experimentally validating the roles of IL16, STARD5, HSD17B12,

and RNF5 in L1 regulation. (B) VST-normalized log2 counts were quantified by DESeq2 for

each gene being overexpressed. Each dot represents an independent transfection, with n = 4

per condition. The FDR for each comparison is listed at the top. (C) VST-normalized log2

counts for EBV were quantified by DESeq2 for each condition. Each dot represents an inde-

pendent transfection, with n = 4 per condition. The FDR for each comparison is listed at the

top. (D) Expression heatmaps for the four candidate genes tested, under each overexpression

condition. GSEA analysis for top, differentially regulated (E) GO Biological Process gene sets

following HSD17B12 overexpression. GSEA analysis for top, differentially regulated (F) GO

Biological Process gene sets following RNF5 overexpression. In each bubble plot, the size of the

dot represents the -log10(FDR) and the color reflects the normalized enrichment score. FDR:

False Discovery Rate. Panel (A) was created with BioRender.com.

(TIF)

S15 Fig. IL16 and STARD5 overexpression alter the levels of TEs in distinct genomic

regions. Box and whisker plots for the log2 fold changes of TE subfamilies (red dots), grouped

by TE family, following (A) IL16 overexpression and (B) STARD5 overexpression. A one-
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sample Wilcoxon test was run to determine whether changes were significantly different from

0. The FDR values from this test are listed at the bottom. GSEA analysis for top, differentially

regulated TE family gene sets in different genomic regions (intronic, intergenic, exon-overlap-

ping) across overexpression condition. The results for (C) IL16 overexpression and (D)

STARD5 overexpression are shown. In each bubble plot, the size of the dot represents the

-log10(FDR) and the color reflects the normalized enrichment score. FDR: False Discovery

Rate.

(TIF)

S16 Fig. The effects of rhIL16 on an L1 family gene set are diminished after 48 hours. (A)

Scheme for experimentally validating the role of rhIL16 in L1 regulation. (B) Spearman rank

correlation between (top) 24-hour rhIL16 treatment differential expression or (bottom)
48-hour rhIL16 treatment differential expression and IL16 overexpression differential expres-

sion. (C) VST-normalized log2 counts for EBV were quantified by DESeq2 for each peptide

treatment condition. Each dot represents an independent exposure, with n = 3 per condition.

FDR> 0.05 at both the 24- and 48-hour treatment time points. (D) Box and whisker plots for

the log2 fold changes of TE subfamilies (red dots) grouped by TE family after treatment with

rhIL16 for 24 hours. A one-sample Wilcoxon test was run to determine whether changes were

significantly different from 0. The FDR values from this test are listed at the bottom. GSEA

analysis for top, shared, concomitantly regulated (E) GO Biological Process, (F) Reactome

pathway, and (G) TE family gene sets following IL16 overexpression, rhIL16 exposure for 24

hours, and rhIL16 exposure for 48 hours. Shared gene sets were ranked by combining p-values

from each individual treatment analysis using Fisher’s method. In each bubble plot, the size of

the dot represents the -log10(FDR) and the color reflects the normalized enrichment score.

FDR: False Discovery Rate. Panel (A) was created with BioRender.com.

(TIF)

S17 Fig. Aging-related disease categories are enriched among L1 trans-eQTL PheWAS

associations. (A) Scheme for assessing enrichment of disease category associations among L1

trans-eQTLs. L1 eQTLs or combinations of random SNVs were queried on the Open Targets

Genetics platform, and the number of SNVs mapping to 14 disease categories annotated by

the platform were calculated. An empirical cumulative distribution function (ecdf) was defined

for each disease category using the associations for the random SNVs, and this function was

used to calculate an enrichment p-value, defined as p = 1 –ecdf(mapped eQTLs). Afterwards,

p-values were FDR-corrected. An enrichment score (ES) was calculated by taking the number

of mapped L1 eQTLs for a category and dividing by the median number of mapped SNVs

among the random SNV combinations. Categories with an ES> 1 and FDR < 0.05 were con-

sidered significantly enriched. The number of mapped SNVs relative to the cumulative proba-

bilities from the simulations are shown for (B) cell proliferation disorders, (C) diseases of the

ear, (D) diseases of the visual system, (E) endocrine system diseases, (F) gastrointestinal dis-

eases, (G) hematologic diseases, (H) immune system diseases, (I) integumentary system dis-

eases, (J) musculoskeletal diseases, (K) nervous system diseases, (L) pancreas diseases, (M)

respiratory diseases, (N) urinary system diseases, and (O) cardiovascular diseases. FDR: False

Discovery Rate. Panel (A) was created with BioRender.com.

(TIF)

S1 Table. Results for eQTL scans and mediation analysis in the European cohort. (A) L1

subfamily trans-eQTLs passing FDR< 0.05 in the European populations. (B) Gene cis-eQTLs

passing FDR< 0.05 in the European populations. (C) SNV-Gene-L1 trios passing FDR< 0.05

in the cis-eQTL, trans-eQTL, and linear regression analyses in the European cohort. (D) L1
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subfamily trans-eQTLs passing Benjamini-Hochberg FDR< 0.05 in the European popula-

tions, after correcting for PEER factors. (E) European L1 trans-eQTLs clumped by p-value. (F)

Significant SNV-Gene-L1 trios that survived clumping in the European populations. (G)

Mediation analysis results for all SNV-Gene-L1 trios in the European cohort. FDR: False Dis-

covery Rate.

(XLSX)

S2 Table. Results for eQTL scans and mediation analysis in the African cohort. (A) L1 sub-

family trans-eQTLs passing FDR < 0.05 in the Yoruban population. (B) Gene cis-eQTLs pass-

ing FDR< 0.05 in the Yoruban population. (C) SNV-Gene-L1 trios passing FDR< 0.05 in the

cis-eQTL, trans-eQTL, and linear regression analyses in the Yoruban population. (D) Yoruban

L1 trans-eQTLs clumped by p-value. (E) Significant SNV-Gene-L1 trios that survived clump-

ing in the Yoruban population. (F) Mediation analysis results for all SNV-Gene-L1 trios in the

Yoruban cohort. FDR: False Discovery Rate.

(XLSX)

S3 Table. Results for eQTL scans using intronic, intergenic, or exon-overlapping L1 sub-

family RNA levels. (A) Intronic L1 subfamily trans-eQTLs passing FDR< 0.05 in the EUR

population. (B) Nearby intergenic L1 subfamily trans-eQTLs passing FDR< 0.05 in the EUR

population. (C) Distal intergenic L1 subfamily trans-eQTLs passing FDR< 0.05 in the EUR

population. (D) Exon overlapping L1 subfamily trans-eQTLs passing FDR < 0.05 in the EUR

population. (E) Significant SNV-Gene-L1 trios for intronic L1 subfamilies. (F) Significant

SNV-Gene-L1 trios for nearby intergenic L1 subfamilies. (G) Significant SNV-Gene-L1 trios

for distal intergenic L1 subfamilies. (H) Significant SNV-Gene-L1 trios for exon-overlapping

L1 subfamilies. (I) Mediation analysis results for distal intergenic L1-SNV-gene trios.

(XLSX)

S4 Table. Results for the differential gene expression analysis and GSEA comparing geno-

types in SNVs with an attributed cis-mediator. (A) All DESeq2 results for alternating the

allele of rs11635336. (B) All DESeq2 results for alternating the allele of rs9271894. (C) All

DESeq2 results for alternating the allele of rs1061810. (D) All GSEA results for rs11635336

using TE family gene sets. (E) All GSEA results for rs9271894 using TE family gene sets. (F)

All GSEA results for rs1061810 using TE family gene sets. (G) All GSEA results for rs11635336

using MSigDB Hallmark gene sets. (H) All GSEA results for rs9271894 using MSigDB Hall-

mark gene sets. (I) All GSEA results for rs1061810 using MSigDB Hallmark gene sets. (J) All

GSEA results for rs11635336 using GO Biological Process gene sets. (K) All GSEA results for

rs9271894 using GO Biological Process gene sets. (L) All GSEA results for rs1061810 using GO

Biological Process gene sets. (M) All GSEA results for rs11635336 using Reactome gene sets.

(N) All GSEA results for rs9271894 using Reactome gene sets. (O) All GSEA results for

rs1061810 using Reactome gene sets. (P) Overlapping TE family gene sets for rs11635336,

rs9271894, rs1061810. (Q) Overlapping age-stratified TE family gene sets for rs11635336,

rs9271894, rs1061810. (R) All DESeq2 results for alternating the allele of rs9270493. (S) All

GSEA results for rs9270493 using TE family gene sets. (T) GSEA results for genomic region-

stratified TE family gene sets for rs11635336. (U) GSEA results for genomic region-stratified

TE family gene sets for rs9271894. (V) GSEA results for genomic region-stratified TE family

gene sets for rs1061810. (W) Overlapping MSigDB Hallmark gene sets for rs11635336,

rs9271894, rs1061810. (X) Overlapping GO Biological Process gene sets for rs11635336,

rs9271894, rs1061810. (Y) Overlapping Reactome gene sets for rs11635336, rs9271894,

rs1061810.

(XLSX)
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S5 Table. Results for the differential gene expression analysis and GSEA comparing geno-

types in orphan index SNVs and distal intergenic-associated SNVs. (A) All DESeq2 results

for alternating the allele of rs112581165. (B) All DESeq2 results for alternating the allele of

rs72691418. (C) All GSEA results for rs112581165 using TE family gene sets. (D) All GSEA

results for rs72691418 using TE family gene sets. (E) All GSEA results for rs112581165 using

MSigDB Hallmark gene sets. (F) All GSEA results for rs72691418 using MSigDB Hallmark

gene sets. (G) All GSEA results for rs112581165 using GO Biological Process gene sets. (H) All

GSEA results for rs72691418 using GO Biological Process gene sets. (I) All GSEA results for

rs112581165 using Reactome gene sets. (J) All GSEA results for rs72691418 using Reactome

gene sets. (K) Overlapping TE family gene sets for rs112581165 and rs72691418. (L) Overlap-

ping age-stratified TE family gene sets for rs112581165 and rs72691418. (M) GSEA results for

genomic region-stratified TE family gene sets for rs112581165. (N) GSEA results for genomic

region-stratified TE family gene sets for rs72691418. (O) Overlapping MSigDB Hallmark gene

sets for rs112581165 and rs72691418. (P) Overlapping GO Biological Process gene sets for

rs112581165 and rs72691418. (Q) Overlapping Reactome gene sets for rs112581165 and

rs72691418. (R) All DESeq2 results for alternating the allele of rs1361387. (S) All GSEA results

for rs1361387 using MSigDB Hallmark gene sets. (T) All GSEA results for rs1361387 using

GO Biological Process gene sets. (U) All GSEA results for rs1361387 using Reactome gene sets.

(XLSX)

S6 Table. Results for the differential gene expression analysis and GSEA assessing the

effects of overexpressing IL16, STARD5, HSD17B12, or RNF5. (A) All DESeq2 results for

IL16 overexpression. (B) All DESeq2 results for STARD5 overexpression. (C) All DESeq2

results for HSD17B12 overexpression. (D) All DESeq2 results for RNF5 overexpression. (E) All

GSEA results for IL16 overexpression using MSigDB Hallmark gene sets. (F) All GSEA results

for STARD5 overexpression using MSigDB Hallmark gene sets. (G) All GSEA results for

HSD17B12 overexpression using MSigDB Hallmark gene sets. (H) All GSEA results for RNF5
overexpression using MSigDB Hallmark gene sets. (I) All GSEA results for IL16 overexpres-

sion using GO Biological Process gene sets. (J) All GSEA results for STARD5 overexpression

using GO Biological Process gene sets. (K) All GSEA results for HSD17B12 overexpression

using GO Biological Process gene sets. (L) All GSEA results for RNF5 overexpression using

GO Biological Process gene sets. (M) All GSEA results for IL16 overexpression using Reactome

gene sets. (N) All GSEA results for STARD5 overexpression using Reactome gene sets. (O) All

GSEA results for HSD17B12 overexpression using Reactome gene sets. (P) All GSEA results

for RNF5 overexpression using Reactome gene sets. (Q) All GSEA results for IL16 overexpres-

sion using TE family gene sets. (R) All GSEA results for STARD5 overexpression using TE

family gene sets. (S) All GSEA results for HSD17B12 overexpression using TE family gene sets.

(T) All GSEA results for RNF5 overexpression using TE family gene sets. (U) GSEA with age-

stratified L1 family gene sets following IL16 and STARD5 OE. (V) GSEA results for genomic

region-stratified TE family gene sets for IL16 OE. (W) GSEA results for genomic region-strati-

fied TE family gene sets for STARD5 OE.

(XLSX)

S7 Table. Results for the differential gene expression analysis and GSEA assessing the

effects of rhIL16 exposure. (A) All DESeq2 results for rhIL16 exposure for 24 hours. (B) All

GSEA results for 24-hour rhIL16 exposure using MSigDB Hallmark gene sets. (C) All GSEA

results for 24-hour rhIL16 exposure using GO Biological Process gene sets. (D) All GSEA

results for 24-hour rhIL16 exposure using Reactome gene sets. (E) All GSEA results for

24-hour rhIL16 exposure using TE family gene sets. (F) Overlapping MSigDB Hallmark gene

sets for IL16 overexpression and rhIL16 24-hour exposure. (G) Overlapping GO Biological
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Process gene sets for IL16 overexpression and rhIL16 24-hour exposure. (H) Overlapping

Reactome gene sets for IL16 overexpression and rhIL16 24-hour exposure. (I) GSEA with age-

stratified L1 family gene sets following rhIL16 24-hour exposure. (J) GSEA results for genomic

region-stratified TE family gene sets for the 24-hour rhIL16 exposure. (K) All DESeq2 results

for rhIL16 exposure for 48 hours. (L) All GSEA results for 48-hour rhIL16 exposure using

MSigDB Hallmark gene sets. (M) All GSEA results for 48-hour rhIL16 exposure using GO Bio-

logical Process gene sets. (N) All GSEA results for 48-hour rhIL16 exposure using Reactome

gene sets. (O) All GSEA results for 48-hour rhIL16 exposure using TE family gene sets. (P)

Overlapping MSigDB Hallmark gene sets for IL16 overexpression, rhIL16 24-hour exposure,

and rhIL16 48-hour exposure. (Q) Overlapping GO Biological Process gene sets for IL16 over-

expression, rhIL16 24-hour exposure, and rhIL16 48-hour exposure. (R) Overlapping Reac-

tome gene sets for IL16 overexpression, rhIL16 24-hour exposure, and rhIL16 48-hour

exposure. (S) Overlapping TE family gene sets for IL16 overexpression, rhIL16 24-hour expo-

sure, and rhIL16 48-hour exposure.

(XLSX)

S8 Table. Shared gene sets that are concomitantly and significantly regulated across all

conditions with upregulation of an L1 gene set. (A) Overlapping TE family gene sets for IL16
overexpression, STARD5 overexpression, and rhIL16 24-hour exposure. (B) Overlapping

MSigDB Hallmark gene sets for IL16 overexpression, STARD5 overexpression, and rhIL16

24-hour exposure. (C) Overlapping GO Biological Process gene sets for IL16 overexpression,

STARD5 overexpression, and rhIL16 24-hour exposure. (D) Overlapping Reactome gene sets

for IL16 overexpression, STARD5 overexpression, and rhIL16 24-hour exposure.

(XLSX)

S9 Table. Age-related associations with L1 trans-eQTLs. (A) Statistics for SNVs mapping to

aging MeSH traits through the Open Targets Genetics platform. (B) Number of SNVs map-

ping to unique MeSH ID disease terms. (C) Circulating IL16 concentrations in aging mouse

serum.

(XLSX)
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