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Abstract

Polygenic scores (PGS) are measures of genetic risk, derived from the results of genome

wide association studies (GWAS). Previous work has proposed the coefficient of determi-

nation (R2) as an appropriate measure by which to compare PGS performance in a valida-

tion dataset. Here we propose correlation-based methods for evaluating PGS performance

by adapting previous work which produced a statistical framework and robust test statistics

for the comparison of multiple correlation measures in multiple populations. This flexible

framework can be extended to a wider variety of hypothesis tests than currently available

methods. We assess our proposed method in simulation and demonstrate its utility with

two examples, assessing previously developed PGS for low-density lipoprotein cholesterol

and height in multiple populations in the All of Us cohort. Finally, we provide an R package

‘coranova’ with both parametric and nonparametric implementations of the described

methods.

Author summary

Polygenic scores (PGS) are measures of genetic risk of disease that have been widely

embraced by the scientific community. While there are many methods available to

develop PGS, we have limited tools by which to compare PGS performance. Previous

work has proposed an R2-based approach which appropriately accounts for the correla-

tion between PGS when comparing their performance. Here, we propose correlation-

based tests which can assess multiple scores in multiple populations while accounting for

the correlation between the scores. Our method is highly flexible and can be used by

researchers to test any linear hypothesis of PGS performance, though we suggest three

ANOVA-like tests as a starting point. We apply our method to PGS developed for LDL

cholesterol and height in the All of Us cohort. In these examples, we demonstrate how our

method can be used by researchers to compare and evaluate PGS in multiple populations.

This approach will be particularly useful as we look to improve PGS performance in
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underrepresented populations in genetic research and need to evaluate PGS in multiple

populations to appropriately assess PGS performance.

Introduction

The rise of large genome wide association studies (GWAS) has enabled researchers to build

models for individual genetic risk prediction, called polygenic scores (PGS) [1]. Polygenic

scores predict genetic risk for a given trait with a weighted sum of relevant risk alleles. The risk

allele weights are derived from GWAS effect estimates. There are many different methods

available for PGS development. At minimum, PGS methods require a GWAS from which to

derive the weights, and most also require a linkage disequilibrium (LD) reference and training

data to optimize parameters [2]. Thus, for any given trait, many different polygenic scores can

be derived. Further, the PGS once developed can also be applied to different populations, with

varying performance due to factors like differences in allele frequencies and LD patterns [3].

With many possible PGS to choose from, there is a need to develop methods to assess and

compare the performance of polygenic scores.

A popular measure of assessment for polygenic scores is the R2 from a linear regression

model fit in a validation dataset with the PGS as the primary predictor and the trait of interest

as the dependent variable, adjusting for relevant covariates. The R2 of a linear regression model

is the proportion of variance explained by covariates in the model, also called the coefficient of

determination [4]. Thus, the R2 from such a model can be interpreted as the proportion of vari-

ance explained by the PGS. This approach is appealing because of the connection to heritabil-

ity. The heritability of a trait is the proportion of phenotypic variation that is explained by

additive genetic variation [5]. The R2 of a polygenic score is limited by the snp-based heritabil-

ity, or the proportion of phenotypic variation that is explained by SNPs, of its associated trait.

The closer the R2 of a proposed PGS is to the snp-based heritability, the better the score [2, 6].

Momin et al. proposed a formal statistical framework for comparing polygenic scores with

R2, called R2 Redux [7]. Using results from Olkin & Finn to generate asymptotic distributions

of R2, they devised methods to compute the variance and generate confidence intervals for the

difference between the R2 of two polygenic scores [8]. They also proposed methods for deter-

mining the difference in R2 for nested models, for independent groups, and for genomic parti-

tioning analysis.

While Momin et al.’s R2-based approach [7] is ideal in the applications for which it was

designed, R2Redux was not designed for testing multiple scores in multiple populations simul-

taneously. To address this gap, we propose using correlation-based methods to assess the per-

formance of polygenic scores by adapting the work of Olkin & Finn [9] and Bilker et al. [10].

Olkin & Finn derived the asymptotic joint distribution of sample correlations between contin-

uous predictors and continuous outcomes, when the predictors themselves are correlated, like

in the case of polygenic scores. Further, they demonstrate how to derive linear hypothesis tests

of the correlation measures. Bilker et al. adapted this work of Olkin & Finn and proposed an

ANOVA-like testing framework for assessing correlation, called Coranova. They proposed

specific hypothesis tests researchers can perform on correlated predictors in multiple indepen-

dent population samples, applying the method to neurological exams.

We can use the Coranova framework to compare multiple PGS in multiple populations

with the three Coranova hypothesis tests. We can assess whether the scores have the same cor-

relation with the outcome of interest within population samples, whether the mean score cor-

relation with the outcome differs between population sample and finally whether the pattern
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of score performance differs by population sample. The Coranova hypothesis tests are an ideal

starting point for researchers to analyze the performance of multiple PGS in multiple popula-

tions. However, crucially, researchers can also devise contrast matrices to implement correla-

tion-based hypothesis tests specific to their research interests.

Correlation measures the linear relationship between two random variables, ranging

between -1 and 1. For two random variables X and Y, their correlation is equal to their covari-

ance divided by their standard deviations (corrðX;YÞ ¼ covðX;YÞ
sdðXÞsdðYÞ). In the case of a polygenic

score and its associated outcome, this correlation is typically positive, ranging from 0 (the PGS

is completely independent of its outcome), to 1 (the PGS is perfectly linearly associated with its

outcome). PGS that have higher correlations with their outcomes are better and will be more

predictive of their outcomes. The tests we introduce here are designed to compare the correla-

tions of multiple polygenic scores and their associated outcome in multiple populations.

To demonstrate the connection between using correlation to evaluate PGS and more com-

monly used metrics, we consider a linear model,

Y ¼ Xbþ � ð1Þ

with a single polygenic score, X, the quantitative, normally distributed trait that it predicts, Y,

and � is the vector of residuals. We assume both outcome and PGS have been adjusted for

appropriate factors, such as genetic principal components. We further assume outcome and

PGS have been standardized to mean 0 and standard deviation 1. The regression model will

yield the estimate of β, b̂ ¼

P
ðxi � �xÞðyi � �yÞ
P
ðxi � �xÞ2

which is equal to
covðx;yÞ
varðxÞ : The sample correlation

rxy ¼
P
ðxi � �xÞðyi � �yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðxi � �xÞ2

P
ðyi � �yÞ2

p , is equal to
covðx;yÞ
sdðxÞsdðyÞ : Rearranging we can see that b̂ ¼ rxy

sdðyÞ
sdðxÞ, and thus

in the case of standardized Y and X, b̂ ¼ rxy. Further, in this case r2
xy is equal to the coefficient

of determination (R2) of the linear model (1). Thus, while the correlation-based tests we intro-

duce here are not the same as R2-based tests, they will generally lead to the same conclusions as

R2-based tests when performing pair-wise comparisons in samples of size 1000 or larger.

Importantly, correlation-based tests also provide the opportunity to test more complex

hypotheses about the performance of polygenic scores in multiple populations.

We have built an R package with both parametric and nonparametric implementations of

the methods proposed by Olkin & Finn and Bilker et al. for polygenic score evaluation and

comparison. With simulations we show that our correlation-based tests have well-controlled

type 1 error rates and power greater than 80% to detect differences in polygenic score perfor-

mance in multiple populations at typical sample sizes under reasonable assumptions of param-

eter values. Finally, we demonstrate our proposed methods with two real world applications to

polygenic scores for low-density lipoprotein (LDL) cholesterol and height in the All of Us

cohort (AoU) and provide examples for researchers interested in applying our methods.

Description of the method

Correlation-based tests

To define our correlation-based tests, we will first define our parameters. Let ρi,j be the popula-

tion Pearson correlation of PGS i with outcome Y in population j. Let μ denote the vector of

these population correlations of P PGS with outcome Y in population j, μ = (ρ1,j, ρ2,j, . . .ρP,j)

and let u be the vector of sample estimates of μ, u = (r1,j, r2,j, . . .rP,j).

Olkin & Finn defined the asymptotic covariance matrix of u, S1(u) (see Section A in S1

Appendix), and thus we can model u − μ as a multivariate normal random variable: u − μ* N
(0, S1(u)). Further, they argued with this distribution defined, we can construct hypothesis
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tests using contrast matrix A, where A is a m x P matrix of rank m where H0 : Aμ = μ0. Then,

the test-statistic S is a χ2 random variable with m degrees of freedom:

S ¼ ðAu � m0Þ
0
ðAŜ1ðuÞA

0

Þ
� 1
ðAu � m0Þ � w

2
df¼m ð2Þ

The covariance matrix of the sample correlations u, ŜðuÞ, can be also be estimated by boot-

strapping as suggested by Bilker et al. We have provided the option to use either the parametric

derivation by Olkin & Finn or bootstrapping in our R package. To compare the correlation of

P PGS in K populations, we can define u = (r1,1, r2,1, . . .rP,1, r1,2, r2,2, . . .rP,2, . . .., r1,K, r2,K, . . .rP,

K). Under the parametric derivation of Ŝ1ðuÞ, we assume that the correlations are indepen-

dent across populations. The bootstrap derivation of ŜðuÞ does not make this assumption.

Coranova hypotheses

Bilker et al. introduced three types of hypothesis tests which enable ANOVA-like testing of

correlated variables, like polygenic scores, in multiple population groups by specifying three

contrast matrices that can be used in Eq (2).

Suppose we have K population samples, and P PGS for a given continuous trait Y. We are

interested in comparing the correlations between the P PGS and the trait Y among the K popula-

tion samples. Specifically, we can 1) test for differences in the correlations between the trait Y and

P PGS 2) test for differences in the associations between trait Y and the P PGS between the K
population samples, and 3) test for an interaction effect between the scores and populations, or

in other words, test for differences within the pattern of correlations in the K population samples.

Let ρi,j be the population correlation between PGS i in population j. We have P PGS and K
population samples. The three hypothesis tests can be written as follows;

Test for a within effect. To test for differences in the correlations between trait Y and the

P PGS within the K population samples, let

H0 : mean(ρi,1, . . ., ρi,k) are equal for all i 2 1, . . ., P
HA : mean(ρi,1, . . ., ρi,k) 6¼mean(ρm,1, . . ., ρm,k) for at least one (i, m) pair of measures.

Test for a between effect. To test for differences in the correlations between the trait Y
and P PGSs between the K population samples, let

H0 : mean(ρ1,j, . . ., ρP,j) are equal for all j 2 1, . . ., K
HA : mean(ρ1,j, . . ., ρP,j) 6¼mean(ρ1,l, . . ., ρP,l) for at least one (j, l) pair of populations.

Test for an interaction effect. To test for a difference in the pattern of correlations

between the trait Y and P PGSs in the K population samples, let

H0 : (ρ1,j − ρi,j) − (ρ1,l − ρi,l) = 0 for all i = 1, . . ., P and j, l 2 1, . . ., k, j 6¼ l
HA : at least one interaction not equal to 0.

Using the contrast matrices provided by Bilker et al. (with a typo corrected, see Section B in

S1 Appendix), we can conduct these tests by generating χ2 test statistics following Eq (2).

Verification and comparison

Description of simulations

To assess our implementation of these correlation-based hypothesis tests we performed simu-

lations with K = 2 independent population samples with p polygenic scores built with different

methods (X1, X2, . . ., Xp) and a continuous outcome Y. We simulated the outcome and poly-

genic scores using a multivariate normal distribution for each population, with a specified

covariance matrix and sample size n.

All variables were simulated as standardized normal random variables with mean 0 and

standard deviation 1. In the case of three polygenic scores (p = 3), the general correlation
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structure for population sample K 2 A, B of the outcome YK and three polygenic scores XK1,

XK2, XK3 is as follows,

CorrðZKÞ ¼ CorrðYK ;XK1;XK2;XK3Þ ¼

1 t1 t2 t3

t1 1 � �

t2 � 1 �

t3 � � 1

2

6
6
6
6
4

3

7
7
7
7
5

For each simulated population sample, τi is the correlation of PGS i with the outcome and ϕ is

the common inter-PGS correlation.

We used the following correlation matrices to generate simulated data to assess our meth-

ods with two populations and three PGS, where correlation matrix Corr(ZA) is used to generate

the first population sample and correlation matrix Corr(ZB) is used to generate the second

population sample.

I. To simulate a difference across polygenic scores within the groups we used the following

correlation matrices:

CorrðZAÞ ¼ CorrðZBÞ ¼

1 t t tþ d

t 1 � �

t � 1 �

tþ d � � 1

2

6
6
6
6
4

3

7
7
7
7
5

Under this setting, in both populations the third polygenic score has correlation with the out-

come Y of τ + δ in comparison with the first two polygenic scores which have the same correla-

tion with Y, τ. Thus, when δ> 0, the null hypothesis of equal correlation of the scores within

the groups does not hold.

II. To simulate a difference across groups we used the following correlation matrices:

CorrðZAÞ ¼

1 t t t

t 1 � �

t � 1 �

t � � 1

2

6
6
6
6
4

3

7
7
7
7
5
;CorrðZBÞ ¼

1 tþ d tþ d tþ d

tþ d 1 � �

tþ d � 1 �

tþ d � � 1

2

6
6
6
6
4

3

7
7
7
7
5

Under this setting, all three polygenic scores in population sample A have correlation τ with

the outcome Y, while all three polygenic scores in population sample B have correlation τ + δ
with the outcome Y. Thus, when δ> 0, the null hypothesis of equal correlation of the scores

with the outcome between the populations does not hold.

III. Finally, to simulate a difference across groups and across polygenic scores with two

samples we used the following correlation matrices:

CorrðZAÞ ¼

1 t t t

t 1 � �

t � 1 �

t � � 1

2

6
6
6
6
4

3

7
7
7
7
5
;CorrðZBÞ ¼

1 t t tþ d

t 1 � �

t � 1 �

tþ d � � 1

2

6
6
6
6
4

3

7
7
7
7
5

Under this setting, all three polygenic scores in population sample A have correlation τ with

the outcome Y, while the first two polygenic scores in population sample B have correlation τ
with the outcome Y and the third polygenic score in population sample B has correlation τ + δ
with Y. Thus, when δ> 0, the null hypothesis of no difference in pattern of score performance
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across the groups does not hold, and there is an interaction between the polygenic scores and

population samples.

To assess the performance of the methods with multiple population samples and polygenic

scores, we simulated one thousand replicates for each hypothesis and combination of τ, ϕ, δ, n.

We simulated τ levels of 0.05, 0.1, 0.2, 0.4, and 0.6, δ levels of 0, 0.01, 0.03, 0.05, 0.075 and 0.1,

and ϕ levels of 0.3, 0.5, 0.7 and 0.9. We simulated population samples of 500, 1000 and 5000,

and assessed the performance our methods under equal and unequal sample sizes.

We also simulated data with a single population and two PGS to compare our method to

the method proposed by Momin et al. with R2 Redux [7]. Performing the Coranova “within”

based hypothesis test on one population with two scores is identical to testing the difference in

correlation between two scores. We simulated τ levels of 0.05, 0.1, 0.2, 0.4, 0.6 and 0.8, δ values

of 0, 0.01, 0.03, 0.05, 0.075 and 0.1, and ϕ levels of 0.5, 0.7 and 0.9. We simulated population

samples of 500, 1000 and 10000.

Simulation results

When applied to two independent population samples and three polygenic scores, we find that

the type I error rate of the proposed method is well controlled for all three Coranova hypothe-

ses at alpha = 0.025 and 0.05 (Fig 1, Figs A-C in S3 Appendix).

As expected, the power of the three Coranova hypothesis tests increases when sample size

increases, and when the magnitude of the difference between the scores’ correlation with the

outcome (δ) increases (Fig 2, Figs D and E in S3 Appendix). We also see an increase in power

Fig 1. Type I error of parametric implementation of Coranova applied to three PGS in two population samples of

size N = 1000. Each point represents the proportion of tests in 1000 simulations in which the null hypothesis was

rejected at the specified alpha level with sample size 1000. Dashed lines indicate 95% confidence interval for specified

alpha given sample size. In all simulations, the three scores have the same correlation with the outcome (τ) in both

population samples; ϕ is the correlation between the scores themselves within the population samples. In the

“between” setting, the null hypothesis is that all the correlation of the scores and outcome is equal across population

samples. In the “within” setting, the null hypothesis being tested is that the scores have the same correlation with the

outcome within the population samples. In the “interaction” setting, the null hypothesis being tested is that the pattern

of score performance is the same across the population samples.

https://doi.org/10.1371/journal.pgen.1011249.g001
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Fig 2. Power of Coranova to detect a difference in performance between three PGS in two population samples of

size N = 1000 under three simulation settings. Each point represents the proportion of tests in 1000 simulations with

parameters ϕ, τ and δ in which the null hypothesis was rejected at significance level alpha = 0.05. A: “Between” setting,
Within each population, the three PGS have equal correlation with outcome Y. This correlation differs between the

two populations; τ: correlation of each PGS with Y in population 1; τ + δ: correlation of each PGS with Y in population

2. B: “Within” setting, Each PGS has the same correlation with Y in the two populations, but the correlation of the third

PGS with Y differs from the other two in the same way in both populations; τ: correlation between first and second

PGS with Y in both populations; τ + δ: correlation of 3rd PGS with Y in both populations. C: “Interaction” setting, One

PGS differs from the other two in only one of the two populations; τ: correlation of each of the three PGS with Y in

population 1. Correlation of PGS 1 and 2 with Y in population 2; τ + δ: correlation of the third PGS with Y in

population 2.

https://doi.org/10.1371/journal.pgen.1011249.g002
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when the PGS are more correlated with the outcome (high τ), due to the inverse relationship

with the test-statistics and the variance terms of the correlations (see section A in S2 Appendix

for further details).

When testing for differences in score performance between groups, power slightly decreases

as correlation between scores increases (Fig 2A). When testing for differences in score perfor-

mance within population groups, we see the opposite relationship; power increases as correla-

tion between scores increases (Fig 2B). The power of the interaction test also increases with

correlation between the scores (Fig 2C). We can understand the relationship between power

and the correlation between scores by considering the covariance terms in the test-statistics.

The between test-statistic (w2
between) is inversely correlated with the covariance terms, while the

within and interaction test-statistics (w2
within; w

2
interaction) are positively correlated with the covari-

ance terms. See section A in S2 Appendix for greater detail.

With a sample size of 1000 we find we have at least 80% power for the within hypothesis

test when testing a difference in correlation of at least 0.075; for the between hypothesis test

when testing a difference in correlation of at least 0.1 for scores with at least 0.4 correlation

with the outcome; and for the interaction hypothesis when testing a difference in correlation

of at least 0.1 for scores with inter-PGS correlation of 0.7 or higher. The power of the tests

increases substantially with a sample size of 5000 (Fig E in S3 Appendix).

Briefly, we also found our correlation-based tests perform very similarly to R2 Redux when

assessing the difference in performance between two polygenic scores in a single population

(see section B in S2 Appendix, and Figs I-L in S3 Appendix).

Applications

Examples using All of Us cohort data

Data. Description of the All of Us (AoU) cohort. All of Us is a diverse cohort made up

of people living in the United States established by the National Institutes of Health [11]. Here

we use the whole genome sequencing sample contained in All of Us Controlled Tier Dataset

V6, released in June 2022. In addition to the quality control performed by the All of Us

research team [12], we restricted the set of variants in this analysis to biallelic variants with a

minor allele frequency greater than 0.001. We also restricted our sample to unrelated

individuals.

The individuals in All of Us were grouped according to genetic similarity to the superpopu-

lations in the Human Genome Diversity project (HGDP) [13] and 1000G samples (1KG) [14].

The AoU research team trained a random forest model on chromosomes 20 and 21 from

HGSP and 1KG, and this model was applied to the AoU cohort to generate what we will call

the 1KG genetic-similarity groups, in line with recommendations by the National Academies

of Sciences, Engineering, and Medicine [15].

Description of polygenic scores. To demonstrate the utility of our proposed methods, we

considered previously defined polygenic scores for two outcomes, LDL cholesterol and height.

For both outcomes, we will compare PGS developed with GWAS of varying populations, cor-

responding to genetic-ancestry groups defined in the original papers. Using the language of

the original papers, we will describe scores built with GWAS of a population that is geneti-

cally-similar to a single 1KG-superpopulation as an ancestry-specific PGS, and scores built with

the GWAS results of a meta-analysis of multiple 1KG-superpopulations as multi-ancestry PGS.

We considered 12 polygenic scores for LDL cholesterol developed and made publicly avail-

able by Graham et al. [16]. These PGS were developed by The Global Lipids Genetics Consor-

tium with data from 201 studies. The twelve polygenic scores were optimized using two

methods: PRS-CS [17] and pruning and thresholding (PT) [2] with six GWAS performed on
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samples of varying genetic ancestry, as defined in the original paper. One score for each

method is built using multi-ancestry meta-analysis GWAS results and the other five consist of

ancestry-specific GWASs of samples from populations of African, East Asian, South Asian,

European, and Hispanic ancestry. For the single-ancestry pruning and thresholding scores, a

UK Biobank ancestry-matched sample was used to estimate LD, and for the multi-ancestry PT

score, a mixed ancestry sample of the UKBB was used to estimate LD. For the single-ancestry

PRS-CS scores, the LD reference panels were derived from ancestry-matched samples from

1000 Genomes [14]. A mixed ancestry sample of the 1000 Genomes was used to estimate LD

for the multi-ancestry PRS-CS score. The polygenic scores were downloaded from the PGS

catalog (publication ID: PGP000230).

For height, we considered six polygenic scores developed by Yengo et al, on behalf of the

GIANT consortium [18]. All of Us participants were not included in the discovery sample.

The scores were developed with SBayesR [19]. There are five scores built with ancestry-specific

GWAS and one score built with a multi-ancestry meta-analysis GWAS. Each of the ancestry-

specific scores was built with ancestry-group matched LD matrix, and the multi-ancestry score

was built with LD estimated from a European population sample. The ancestry-specific scores

correspond to European, African, Hispanic, South Asian, and East Asian populations as

defined by the original paper. The scores were downloaded from the PGS catalog (publication

ID: PGP000382).

Score calculation. Polygenic scores were computed in the AoU cohort using the PLINK2

[20] ––score function. The phenotypes for both height and LDL cholesterol was determined

by first computing the mean of the available measurements for each individual and then trans-

forming the values by inverse-rank normalization.

We evaluated the polygenic scores in each AoU 1KG genetic-similarity group separately.

Sample sizes of these genetic-similarity groups are included in Table 1. We computed the LDL

cholesterol scores among the AoU individuals classified as similar to the African, Admixed

American and European 1KG populations. We computed the height PGS among the AoU

individuals classified as similar to the African, admixed American, European and East Asian

1KG populations. The phenotypes and PGS were adjusted for the first 10 ancestry principal

components using linear regression within each genetic-similarity group prior to analysis

using our correlation-based methods.

Application results

LDL Cholesterol examples. The correlations between the polygenic scores for LDL cho-

lesterol and inverse-rank mean LDL cholesterol in the African, admixed American, and Euro-

pean 1KG genetic-similarity groups in AoU are displayed in Fig 3. To analyze the performance

of the PGS using our proposed methods, we first applied the three Coranova hypotheses to the

12 polygenic scores for LDL cholesterol across the three 1KG genetic-similarity groups. We

find significant evidence that at least one score has higher correlation with LDL cholesterol

than the others (pwithin = 1.9 × e−71, Fig 3C), and significant evidence that the pattern of score

correlation with LDL cholesterol differs across the 1KG genetic-similarity groups (pinteraction =

Table 1. Sample sizes of each 1KG genetic-similarity group available for each trait.

African Admixed American European East Asian

LDL cholesterol 2752 1073 7971 NA

Height 21184 14018 46948 2045

https://doi.org/10.1371/journal.pgen.1011249.t001
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1.5 × e−33). We do not find significant evidence that the mean PGS correlation with LDL cho-

lesterol differs across the 1KG genetic-similarity groups (pbetween = 0.4, Fig 3B).

In addition to the Coranova hypothesis tests, we can use the flexible framework to ask addi-

tional questions about the performance of the 12 PGS. One major question we can use the

framework to assess is how the scores built with pruning and thresholding compare to the

scores built with PRS-CS. We find that the PT PGS have higher correlation with LDL choles-

terol than the PRS-CS scores, and at least one of the pairwise differences between the PT and

PRS-CS scores built with the same GWAS significantly different from 0 (p = 1 × e−30, see sec-

tion E in S1 Appendix). We can also compare the correlation of the multi-ancestry PT PGS to

the ancestry-specific PT PGSs (Fig 4). Using a contrast matrix designed for this comparison,

we fail to reject the null hypothesis that the multi-ancestry PGS and ancestry-specific scores

have equal correlation with LDL (p = 0.16, see section E in S1 Appendix). Finally, we can also

assess whether the multi-ancestry PT PGS differs in correlation with inverse-ranked mean

LDL cholesterol across the three 1KG genetic-similarity groups using the Coranova ‘between’

hypothesis test on just the multi-ancestry PT PGS in the three groups. With this test, we find

that the performance of the multi-ancestry PT PGS varies across the genetic-similarity groups

(pbetween = 0.04).

Height examples. The correlations between the polygenic scores for height and inverse-

rank mean height in the African, admixed American, European, and East Asian 1KG

genetic-similarity groups in AoU are displayed in Fig 5. Considering the six scores in the

four genetic-similarity groups, we find significant evidence that the average score correlation

Fig 3. Correlation of Graham et al. PGS with inverse rank normalized mean LDL cholesterol level in each of the

African, Admixed American and European 1KG genetic-similarity groups in AoU. A: The correlation with LDL

cholesterol for each PGS by 1KG genetic-similarity group, where each PGS is identified by the GWAS base and

method with which it was derived. Sample size of each group specified. B: The average score performance in each AoU

1KG similarity group, corresponding to the “between hypothesis test” in which the null hypothesis is that the scores

perform on average the same in the three groups. C: The performance of each PGS averaged across the AoU 1KG

similarity groups, corresponding to the “within hypothesis test” in which the null hypothesis is that the scores have the

same correlation with the outcome when averaged across populations.

https://doi.org/10.1371/journal.pgen.1011249.g003
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with height differs across the four genetic-similarity groups, (pbetween = 1.4 × e−81, Fig 5B),

that at least one score has higher correlation with height than the others (pwithin = 6.2 × e−166,

Fig 5C), and that the pattern of score correlation with height differs across the genetic-simi-

larity groups (pinteraction< 1 × e−300).

For height, the multi-ancestry score does not outperform the others in all of the 1KG

genetic-similarity groups (Fig 6). We can use the Coranova ‘within’ hypothesis test to compare

the multi-ancestry PGS to the ancestry-specific PGS in each genetic-similarity group sepa-

rately. Among individuals classified as African, the score built with the African GWAS has a

0.115 higher correlation with height than multi-ancestry score, (95% CI: (0.102, 0.127), pwithin
= 4.9 × e−69). Among individuals classified as European, the score built with the European

GWAS has a 0.016 higher correlation with height than the multi-ancestry score (95% CI:

(0.013, 0.018), pwithin = 1.8 × e−36). Among the other genetic-similarity groups the multi-ances-

try score did outperform the corresponding ancestry PGSs. Among individuals classified as

admixed American, the score built with the Hispanic GWAS has a 0.039 lower correlation

with height than the multi-ancestry score (95% CI: (0.025, 0.053), pwithin = 4.5 × e−08). Among

individuals classified as East Asian, the score built with East Asian GWAS had a 0.032 lower

correlation with height than the multi-ancestry score (95% CI: (0.001, 0.062), pwithin = 0.04).

Discussion

We propose a flexible formal statistical framework for assessing the performance of two or

more PGS in one or more populations with correlation, which was previously unaddressed by

available methods, and provide an R package to make it easy for users to implement our pro-

posed methods. We use simulations to evaluate our methods when applied to three PGS in

two population samples and find we have well-controlled type I error and power greater than

Fig 4. Performance of multi-ancestry and ancestry-specific PGS for LDL cholesterol. A: Bars represent correlation

between PGS and inverse-rank normalized mean LDL cholesterol in each 1KG genetic-similarity group. B: Dot points

represent difference in correlation between multi-ancestry and ancestry-specific PGSs and error bars indicate 95%

confidence interval of this difference. C: Dot points represent difference in correlation of multi-ancestry PGS between

1KG genetic-similarity groups indicated in x-axis and error bars indicate 95% confidence interval of this difference.

https://doi.org/10.1371/journal.pgen.1011249.g004
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80% for reasonable values to assess between-group and within-group differences in polygenic

score performance as well as differences in the pattern of score performance across groups.

Finally, we highlight the utility of our methods to adapt to researcher interests with two exam-

ples applying PGS for height and LDL cholesterol to the All of Us cohort.

The methods we propose here are uniquely appropriate for the comparison of performance

of polygenic scores. Researchers generally have one of two goals when comparing polygenic

scores: 1) selecting an optimal polygenic score for a specific outcome, or 2) determining an

optimal polygenic score derivation procedure, comparing scores built with different methods,

inputs or both. Both goals often require the comparison of multiple polygenic scores in multi-

ple population samples. Thus, while many methods are available to compare model perfor-

mance, such as those for nested and non-nested models [21], these are not generally

appropriate for the needs of researchers studying polygenic scores, as they implement pair-

wise comparisons. Our proposed methods can be used to compare many scores at one time, as

well as perform pair-wise comparisons as necessary.

The results we present in both our simulations and examples in All of Us employ paramet-

ric implementations of our proposed methods. Bilker et al. advocated for bootstrapping to

derive the covariance matrix of u, ŜðuÞ, and permutation-testing to generate p-values. How-

ever, their work was concerned with analyzing neurological exams of fewer than 75 patients,

so it is not surprising that parametric methods based on asymptotic results did not work well

for their purposes. We provide the option to use bootstrapping and permutation testing in our

R package with the perform_coranova_nonparametric function, but we find that

Fig 5. Correlation of Yengo et al. PGS with inverse rank normalized mean height in each of the African, Admixed

American, East Asian and European 1KG genetic-similarity groups in AoU. A: The correlation with height for each

PGS by 1KG genetic-similarity group, where each PGS is identified by the GWAS base with which it was derived.

Sample size of each group specified. B: The average score performance in each AoU 1KG similarity group,

corresponding to the “between hypothesis test” in which the null hypothesis is that the scores perform on average the

same in the three groups. C: The performance of each PGS averaged across the AoU 1KG similarity groups,

corresponding to the “within hypothesis test” in which the null hypothesis is that the scores have the same correlation

with the outcome when averaged across populations.

https://doi.org/10.1371/journal.pgen.1011249.g005
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parametric implementations of the correlation-based hypothesis tests are appropriate when

working with sample sizes of 500 or more individuals.

In our analysis of the 12 PGS developed by Graham et al. for LDL cholesterol, we apply the

three Coranova hypothesis tests and first determine that the 12 PGS do not have the same cor-

relation with LDL cholesterol when averaged across 1KG genetic-similarity groups (the

“within” hypothesis), the overall the mean of the 12 PGS correlations with LDL does not differ

by 1KG genetic-similarity group (the “between” hypothesis), and the pattern of correlations

between the 12 PGS and the LDL outcome differs across the 1KG genetic-similarity groups

(“interaction” hypothesis). In other words, we find that some PGS perform better than others,

but overall, the PGS on average perform the same across the genetic-similarity groups and the

pattern of the PGS performance differs by genetic-similarity group. We also use our flexible

framework to identify whether we can recommend a single PGS from the 12. First, we con-

clude that the scores built with pruning and thresholding (PT) outperform the scores built

with PRS-CS. We then compare the performance of the multi-ancestry PT PGS with the ances-

try-specific PT scores in each genetic-similarity group and find that the multi-ancestry PGS

does not have a significantly higher correlation with LDL cholesterol than the ancestry-specific

scores. We suspect that if our sample sizes were larger we would be able to detect a significant

difference, however, our results at least show that the multi-ancestry PGS performs as well as

the ancestry-specific scores in each genetic-similarity group, making it an appropriate PGS to

employ in all three groups. When we compare the correlation of the multi-PGS with LDL cho-

lesterol in the three genetic-similarity groups, we find that the score performance varies signifi-

cantly. It is surprising that the score is more highly correlated with LDL in the African genetic-

similarity group than the European genetic-similarity group, considering individuals of Afri-

can and admixed African ancestry made up only 6% of the original GWAS sample [16]. This

Fig 6. Performance of multi-ancestry and ancestry-specific PGS for height. A: Bars represent correlation between

PGS and inverse-rank normalized mean Height in each 1KG genetic-similarity group. B: Dot points represent

difference in correlation between multi-ancestry and ancestry-specific PGSs and error bars indicate 95% confidence

interval of this difference. C: Dot points represent difference in correlation of multi-ancestry PGS between 1KG

genetic-similarity groups indicated in x-axis and error bars indicate 95% confidence interval of this difference.

https://doi.org/10.1371/journal.pgen.1011249.g006
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finding may not replicate in other cohorts with different context characteristics [22]. Still, we

conclude multi-ancestry PT PGS is an optimal choice for a LDL PGS when working with a

multi-ancestry population.

In contrast, in our analysis of the six PGS developed by Yengo et al. for height, we cannot

make such a case for the multi-ancestry PGS, or any of the six PGS. When we apply the three

Coranova hypothesis tests, we reject all three null hypotheses and find that the PGS do not

have the same correlation with height, the mean correlation of the PGS with height is not con-

sistent across the 1KG genetic-similarity groups, and that the pattern of score performance dif-

fers by genetic-similarity group. When we consider the pairwise differences between the

multi-ancestry and ancestry-specific PGS in each genetic-similarity group, we find that in the

AoU European and African genetic-similarity groups, the ancestry-specific PGS have a higher

correlation with height than the multi-ancestry PGS, and in the AoU Admixed American and

East Asian genetic-similarity groups, the reverse is true and the multi-ancestry PGS outper-

form the ancestry-specific scores. Thus, we cannot recommend a single score be used for all

populations and recommend that the ancestry-specific PGS are used when working with indi-

viduals classified as similar to the 1KG European or African populations, and that the multi-

ancestry PGS is used when working with individuals classified as similar to the 1KG admixed

American or East Asian populations.

Our two examples comparing PGS performance in AoU highlight the strengths and weak-

nesses of our proposed approach. One of the main advantages to our proposed method is the

ability to assess the performance of multiple PGS in multiple population samples simulta-

neously before testing more specific hypotheses. In each example, we were able to ask high-

level questions about the PGS performance in multiple populations, like whether there was

one score that outperformed the others and whether mean PGS correlation with the phenotype

of interest differed by genetic-similarity group. Based on the results from the initial hypothesis

tests, we then assessed more specific questions like whether the multi-ancestry scores outper-

formed the ancestry-specific scores. Our framework is highly flexible and can be employed to

assess a variety of hypotheses. The hypotheses of interest will be dependent on specifics of the

analysis.

However, considering the LDL cholesterol results comparing the multi-ancestry PGS to the

ancestry-specific PGS, we can see our methods are sensitive to sample size. The confidence

interval around the estimate of the difference between the multi-ancestry PGS and European-

specific PGS is much smaller than the confidence interval around the estimate of the difference

between the multi-ancestry PGS and admixed American-specific PGS (Fig 4B) because there

are over seven times as many people classified as European with LDL cholesterol levels in AoU

than there are people classified as admixed American with LDL cholesterol levels in AoU.

Thus, while our methods can be used to assess PGS performance in different populations, if

sample sizes differ, caution must be used when interpreting results.

We also advise caution when performing the between group hypothesis test when compar-

ing many polygenic scores at once, since these tests are designed to detect a difference in mean

polygenic score correlation across population groups. Additionally, when applying these tests

to multiple genetic-similarity populations, we recommend that both outcome and polygenic

score are adjusted for genetic principal components (PCs) with a linear model prior to analysis.

This step is important to ensure that the relationship between the polygenic score and outcome

is not confounded by population structure [23]. For this reason, we do not recommend utiliz-

ing this method to compare polygenic scores for disease traits, as it is not possible to adjust a

binary outcome for covariates with a linear model. If researchers have reason to believe con-

founding by population structure is not a concern, we have implemented a nonparametric ver-

sion of Coranova available with the perform_coranova_nonparametric function
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which does not assume the data is normally distributed (see section D of S1 Appendix and sec-

tion C of S2 Appendix for more details). Finally, the correlation between a polygenic score and

its intended outcome is typically positive. If the correlation is not positive, this may indicate an

error in designated effect allele in the polygenic score computation. We provide recommenda-

tions for implementation of these methods and substantive examples of application in our user

manual available on github.

If polygenic scores are ever to be employed in a clinical setting, it is imperative that we have

models that can perform well in all groups [3]. A necessity for the development of PGS for

diverse populations is methodology to assess PGS performance in multiple populations. As

more data becomes available, and researchers have greater access to GWAS results from varied

populations, our proposed methods will be an important tool in the effort to ensure that PGS

perform well in all populations.
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