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Abstract

During the last few centuries D. melanogaster populations were invaded by several trans-

posable elements, the most recent of which was thought to be the P-element between 1950

and 1980. Here we describe a novel TE, which we named Spoink, that has invaded D. mela-

nogaster. It is a 5216nt LTR retrotransposon of the Ty3/gypsy superfamily. Relying on

strains sampled at different times during the last century we show that Spoink invaded

worldwide D. melanogaster populations after the P-element between 1983 and 1993. This

invasion was likely triggered by a horizontal transfer from the D. willistoni group, much as

the P-element. Spoink is probably silenced by the piRNA pathway in natural populations

and about 1/3 of the examined strains have an insertion into a canonical piRNA cluster such

as 42AB. Given the degree of genetic investigation of D. melanogaster it is perhaps surpris-

ing that Spoink was able to invade unnoticed.

Author summary

Horizontal transfer of transposable elements (TE) is a major factor driving genome evolu-

tion. Yet well documented cases of such horizontal transfer events are rare. Most evidence

is indirect, relying on sequence similarity of TEs between species. Based on strains sam-

pled during the last decades we provide direct evidence that the retrotransposon Spoink
was absent in worldwide D. melanogaster populations before 1983 but present in popula-

tions after 1993. We suggest that the Spoink invasion was triggered by a horizontal transfer

from a Drosophila species of the willistoni group.

Introduction

Transposable elements (TEs) are short genetic elements that can increase in copy number

within the host genome. They are abundant in most organisms and can make up the majority

of some genomes, i.e. maize where TEs constitute 83% of the genome [1]. There are two classes

of TEs which transpose by different mechanisms—DNA transposons which replicate by
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directly moving to a new genomic location in a ‘cut and paste’ method, and retrotransposons

which replicate through an RNA intermediate in a ‘copy and paste’ method [2–4]. From

humans to flies, more genetic variation (in bp) is due to repetitive sequences such as transpos-

able elements than all single nucleotide variants combined [5]. Although some TEs, such as R1
and R2 elements, may benefit hosts [6, 7] most TE insertions are thought to be deleterious [8,

9]. Host genomes have therefore evolved an elaborate system of suppression frequently involv-

ing small RNAs [10]. Suppression of TEs in Drosophila relies upon small RNAs termed

piRNA, which are cognate to TE sequences [11–13]. These small RNAs bind to PIWI clade

proteins and mediate the degradation of TE transcripts and the formation of heterochromatin

silencing the TE [11, 14–19]. However, while host defenses quickly adapt to new transposon

invasions, TEs can escape silencing through horizontal transfer to new, defenseless, genomes

[20–23]. This horizontal transfer allows TEs to colonize the genomes of novel species [20, 23–

26]. The first well-documented instance of horizontal transfer of a TE was the P-element,

which spread from D. willistoni to D. melanogaster [27]. Following this horizontal transfer the

P-element invaded natural D. melanogaster populations between 1950 and 1980 [28, 29]. It

was further realized that the I-element, Hobo and Tirant spread in D. melanogaster populations

earlier than the P-element, between 1930 and 1960 [29–31]. The genomes from historical D.
melanogaster specimens collected about two hundred years ago, recently revealed that Opus,
Blood, and 412 spread in D. melanogaster populations between 1850 and 1933 [21]. In total, it

was suggested that seven TEs invaded D. melanogaster populations during the last two hun-

dred years where one invasion (the P-element) was triggered by horizontal transfer from a spe-

cies of the willistoni group and six invasions by horizontal transfer from the simulans complex

[21, 27, 31–34].

It was, however, widely assumed until now that the P-element invasion, which occurred

between 1950–1980, was the last and most recent TE invasion in D. melanogaster [21, 29, 31,

35, 36]. Here we report the discovery of Spoink, a novel TE which invaded worldwide D. mela-
nogaster populations between 1983 and 1993, i.e. after the invasion of the P-element. Spoink is

a LTR retrotransposon of the Ty3/gypsy group. We suggest that the Spoink invasion in D. mel-
anogaster was triggered by horizontal transfer from a species of the willistoni group, similarly

to the P-element invasion in D. melanogaster. In a model species as heavily investigated as D.
melanogaster it is perhaps surprising that Spoink was able to invade undetected.

Materials and methods

Discovery of the recent Spoink invasion

We identified TE insertions in different long-read assemblies using RepeatMasker [37] and the

TE library from [5]. When comparing the TE composition between strains collected in the

1950’s and 1960’s [38, 39] and more recently collected strains (� 2003 [40] we noticed an ele-

ment labeled ‘gypsy-7_DEl’ which was only present in short degraded copies in the older

genomes but was present in full length copies in the more recent genomes (S1 Table).

Structure and classification of Spoink
To generate a consensus sequence of Spoink we extracted the sequence of full-length matches

of ‘gypsy-7_DEl’ plus some flanking sequences from long-read assemblies [Ten-15, RAL91,

RAL176, RAL732, RAL737, Sto-22; [40]] and made a consensus sequence by performing mul-

tiple sequence alignment (MSA) with MUSCLE (v3.8.1551) [41] and then choosing the most

abundant nucleotide in each position of the MSA with a custom Python script

(MSA2consensus).
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The consensus sequence of the LTR was used to identify the TSD with our new tool

LTRtoTE (https://github.com/Almo96/LTRtoTE). We used LTRdigest to identify the PBS of

Spoink [42].

We picked several sequences from each of the known LTR superfamily/groups using the

consensus sequences of known TEs [2, 43] (v9.44). We performed a blastx search against the

NCBI database to identify the RT domain in the consensus sequences of the TE [44]. We then

performed a multiple sequence alignment of the amino-acid sequences of the RT domain

using MUSCLE (v3.8.1551) [41]. We obtained the xml file using BEAUti2 [45] (v2.7.5) and

generated the trees with BEAST (v2.7.5) [45]. The maximum credibility tree was built using

TreeAnnotator (v2.7.5) [45] and visualized with FigTree (v1.4.4, http://tree.bio.ed.ac.uk/

software/figtree/).

Distribution of Spoink insertions

Genes were annotated in each of the 31 genomes from [40] using the annotation of the refer-

ence genome of D. melanogaster (6.49; Flybase) and liftoff 1.6.3 [46, 47]. The 1kb regions

upstream of each gene were classified as putative promotors. The location of canonical D. mel-
anogaster piRNA clusters was determined using CUSCO, which lifts over the flanks of known

clusters in a reference genome to locate the homologous region in a novel genome [48]. The

location of Spoink insertions within genes or clusters was determined with bedtools intersect

[49]. To determine if genic insertions were shared or independent, the sequence of the inser-

tion was extracted from each genome along with an extra 1 kb of flanking sequence on each

end. Insertions purportedly in the same gene were then aligned, and if the flanks aligned they

were considered shared insertions. To determine if cluster insertions were shared the flanking

TE regions were aligned using Manna, which aligns TE annotations rather than sequences, to

determine if there was any shared synteny in the surrounding TEs [50].

Abundance of Spoink insertions in different D. melanogaster strains

We investigated the abundance of Spoink in multiple publicly available short-read data sets

[31, 40, 51–53]. These data include genomic DNA from 183 D. melanogaster strains sampled

at different geographic locations during the last centuries. For an overview of all analysed

short-read data see S5 Table. We mapped the short reads to a database consisting of the con-

sensus sequences of TEs [43] (v9.44), the sequence of Spoink and three single copy genes (rhi,
tj, RpL32) with bwa bwasw (version 0.7.17-r1188) [54]. We used DeviaTE (v0.3.8) [55] to esti-

mate the abundance of Spoink. DeviaTE estimates the copy number of a TE (e.g. Spoink) by

normalizing the coverage of the TE by the coverage of the single copy genes. We also used

DeviaTE to visualize the abundance and diversity of Spoink as well as to compute the fre-

quency of SNPs in Spoink (see below).

To identify Spoink insertions in 49 long-read assemblies of D. melanogaster strains collected

during the last 100 years we used RepeatMasker [37] (open-4.0.7; -no-is -s -nolow). For an

overview of all analysed assemblies see S6 Table [39, 40, 48, 56]. For estimating the abundance

of Spoink in the long-read assemblies we solely considered canonical Spoink insertions (> 80%

of length, < 5% sequence divergence).

Population frequency of Spoink insertions

For every putative Spoink insertion (including degraded ones) in the eight long-read assem-

blies of individuals from Raleigh [40], we extracted the sequence of the insertion plus 1 kb of

flanking sequence with bedtools [49]. The sequence of the Spoink insertion was removed with

seqkit [57] and the flanking sequences were mapped to the AKA017 genome (i.e. the common
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coordinate system) with minimap2 allowing for spliced mappings [40, 57, 58]. The mapping

location of each read was extracted and if they overlapped between strains they were consid-

ered putative shared sites. Regions with overlapping reads were visually inspected in IGV

(v2.4.14) and if the mapping location was shared they were considered shared insertions sites

[59, 60].

PCR

To validate whether Spoink is absent in old D. melanogaster strains but present in recent strains

we used PCR. We designed two primers pairs for Spoink and one for vasa as a control. We

extracted DNA from different strains of D. melanogaster (Lausanne-S, Hikone-R, iso-1, RAL59,

RAL176, RAL737) using a high salt extraction protocol [61]. We designed two primers pairs

for Spoink (P1,P2) and one for the gene vasa (P1 FWD TCAGAAGTGGGATCGGGCTCGG,

P1 REV CAGTAGAGCACCATGCCGACGC, P2 FWD ATGGACCGTAATGGCAGCAGCG,

P2 REV ACACTCCGCGCCAGAGTCAAAC, Vasa FWD AACGAGGCGAGGAAGTTTGC,

Vasa REV GCGATCACTACATGGCAGCC). We used the following PCR conditions: 1 cycle

of 95˚C for 3 minutes; 33 cycles of 95˚C for 30 seconds, 58˚C for 30 seconds and 72˚C for 20

seconds; 1 cycle of 72˚C for 6 minutes.

Small RNAs

To identify piRNAs complementary to Spoink we analysed the small-RNA data from 10 GDL

strains [62]. The adaptor sequence GAATTCTCGGGTGCCAAGG was removed using cuta-

dapt (v4.4 [63]). We filtered for reads having a length between 18 and 36nt and aligned the

reads to a database consisting of D. melanogaster miRNAs, mRNAs, rRNAs, snRNAs, snoR-

NAs, tRNAs [64], and TE sequences [43] with novoalign (v3.09.04). We used previously devel-

oped Python scripts [65] to compute ping-pong signatures and to visualize the piRNA

abundance along the sequence of Spoink.

UMAP

We used the frequencies of SNPs in the sequence of Spoink to compute the UMAP. This fre-

quencies reflect the Spoink composition in a given sample. For example if a specimen has 20

Spoink insertions and a biallelic SNP with a frequency of 0.8 at a given site in Spoink than

about 16 Spoink insertions will have the SNP and 4 will not have it. The frequency of the

Spoink SNPs was estimated with DeviaTE [55]. Solely bi-allelic SNPs were used and SNPs only

found in few samples were removed (�3 samples). UMAPs were created in R (umap package;

v0.2.10.0 [66]).

Origin of horizontal transfer

To identify the origin of the horizontal transfer of Spoink we used RepeatMasker [37] (open-

4.0.7; -no-is -s -nolow) to identify sequences with similarity to Spoink in the long-read assem-

blies of 101 drosophilid species and in 99 different insect species [67, 68] (S8 Table). We

included the long-read assembly of the D. melanogaster strain RAL737 and of the D. simulans
strain SZ129 in the analysis [23, 40]. We used a Python script to identify in each assembly the

best hit with Spoink (i.e. the highest alignment score) and than estimated the similarity

between this best hit and Spoink. The similarity was computed as s = rmsbest/rmsmax, where

rmsbest is the highest RepeatMasker score (rms) in a given assembly and rmsmax the highest

score in any of the analysed assemblies. A s = 0 indicates no similarity to the consensus

sequence of Spoink whereas s = 1 represent the highest possible similarity. To generate a
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phylogenetic tree we identified Spoink insertions in the assemblies of the 101 drosophilid spe-

cies and RAL737 using RepeatMasker. We extracted the sequences of full-length insertions

(> 80% of the length) from species having at least one full-length insertion using bedtools [49]

(v2.30.0). A multiple sequence alignment of the Spoink insertions was generated with MUS-

CLE (v3.8.1551) [41] and a tree was generated with BEAST (v2.7.5) [45].

Results

Previous work showed that at least seven TE families invaded D. melanogaster populations

during the last two hundred years [21, 29, 31]. To explore whether additional, hitherto poorly

characterised TEs could have invaded D. melanogaster, we investigated long-read assemblies

of recently collected D. melanogaster strains [40] using a newly assembled repeat library [5].

Interestingly we found differences in the abundance of “gypsy_7_DEl” between the reference

strain Iso-1 and more recently collected D. melanogaster strains (S1 Table). To better charac-

terize this TE, we generated a consensus sequence based on the novel insertions and checked if

this consensus sequence matches any of the repeats described in repeat libraries generated for

D. melanogaster and related species [5, 40, 43, 69, 70]. A fragmented copy of this TE, with just

one of the two LTRs being present, was reported by [40] (0.13% divergence; “con41_-

UnFmcl001_RLX-incomp”; S2 Table). The next best hits were gypsy7 Del, gypsy2 DSim, micro-
pia and Invader6 (18–30% divergence; S2 Table). Given this high sequence divergence from

previously described TE families and the fact that this novel TE belongs to an entirely different

superfamily/group than gypsy7 (see below), we decided to give this TE a new name. We call

this novel TE “Spoink” inspired by a Pokémon that needs to continue jumping to stay alive.

Spoink is an LTR retrotransposon with a length of 5216 bp and LTRs of 349 bp (Fig 1A; for

coordinates of the analysed insertions see S3 Table). At positions 4639–4700 Spoink contains a

poly-A tract, which length may differ by a few bases between insertions. Spoink encodes a 695

aa putative gag-pol polyprotein. Ordered from the N- to the C-terminus, the conserved

domains of the polyprotein are: reverse transcriptase of LTR (e-value = 2.2e − 59; CDD v3.20

[71]), RNase HI of Ty3/gypsy elements (e-value = 1.65e − 48;) and integrase zinc binding

domain (e-value = 4.81e − 16). Spoink lacks an env. The order of these domains, with the inte-

grase downstream of the reverse transcriptase, is typical for Ty3/gypsy transposons [72].

A phylogeny based on the reverse transcriptase domain of different TE families suggests

that Spoink is a member of the gypsy/mdg3 superfamily/group of LTR retrotransposons (Fig

1B; [2]). As expected for members of the Ty3/gypsy superfamily, Spoink generates a target site

duplication of 4 bp and it has an insertion motif enriched for ATAT (Fig 1A; [2, 73]). A gag-
pol polyprotein as encoded by Spoink was observed for some Ty3/gypsy transposons [74, 75]

but not for others [72]. However, Spoink differs from what is expected for the Ty3/gypsy super-

family in two ways. First, the predicted primer binding site of Spoink directly follows the LTR,

whereas typically for Ty3/gypsy there is a shift of 5–8nt (Fig 1A; [2]). Second, the LTR motif is

TG. . .TA which is different from the TG. . .CA motif usually reported for gypsy TEs [2].

Finally we investigated the genomic distribution of Spoink insertions in long-read assem-

blies of D. melanogaster strains collected� 2003 [40]. In total, these assemblies contains 481

full-length (> 80% length with at least one LTR) insertions of Spoink (on the average 16 per

genome). Unlike the P-element which has a strong insertion bias into promoters, Spoink inser-

tions are mostly found in introns and intergenic regions (S1 Fig). 54% of the Spoink insertions

are in 201 different genes. Interestingly we found 7 independent Spoink insertions in Myo83F.

To summarize we characterized a novel LTR-retrotransposon of the Ty3/gypsy superfamily

in the genome of D. melanogaster that we call Spoink.
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Spoink recently invaded worldwide D. melanogaster populations

To substantiate our hypothesis that Spoink recently invaded D. melanogaster we used three

independent approaches: Illumina short read data, long-read assemblies, and PCR/Sanger

sequencing. First we aligned short reads from a strain collected in 1958 (Hikone-R) and a strain

Fig 1. Spoink is a novel TE of the Ty3/gypsy superfamily. A) Overview of the composition of Spoink. Features are shown in color and the alignments show the

sequences around the main features of Spoink for two insertions in each of three different long-read assemblies of D. melanogaster. B) Phylogenetic tree based on the

reverse-transcriptase domain of pol for Spoink and several other LTR retrotransposons. Multiple families have been picked for each of the main superfamilies/groups

of LTR transposons [2]. Our data suggest that Spoink is a member of the gypsy/mdg3 group.

https://doi.org/10.1371/journal.pgen.1011201.g001
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Fig 2. Spoink invaded D. melanogaster. A) DeviaTE plots of Spoink for a strain collected in 1954 (Hikone-R) and a strain collected in 2015

(Ten-15). Short reads were aligned to the consensus sequence of Spoink and the coverage was normalized to the coverage of single-copy genes.

The coverage based on uniquely mapped reads is shown in dark grey and light grey is used for ambiguously mapped reads. Single-nucleotide

polymorphisms (SNPs) and small internal deletions (indels) are shown as colored lines. The coverage was manually curbed at the poly-A track

(between dashed lines). B) Insertions with a similarity to the consensus sequence of Spoink in the long-read assemblies of Oregon-R (collected

around 1925) and the more recently collected strain RAL737 (2003). C) PCR results for two Spoink primer pairs (for location of primers see

sketch at bottom) and one primer pair for the gene vasa. Spoink is absent in old strains (Lausanne-S, Hikone-R and Iso-1) and present in more

recently collected strains (RAL59, RAL176, RAL737). D) Population frequency of Spoink insertions in long-read assemblies of strains collected
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collected in 2015 (Ten-15) [31, 40] to the consensus sequence of Spoink using DeviaTE [55].

DeviaTE estimates the abundance of Spoink insertions by normalizing the coverage of Spoink
to the coverage of a sample of single-copy genes. Furthermore, DeviaTE is useful for generat-

ing an intuitive visualization of the abundance and composition (i.e. SNPs, indels, truncations)

of Spoink in samples. We found that only a few degraded reads aligned to Spoink in the 1950’s

strain (Hikone-R) whereas many reads covered the sequence of Spoink in the more recently

collected strain Ten-15 (Fig 2A). There were also very few SNPs or indels in the recently col-

lected strain suggesting that most insertions have a very similar sequence (Fig 2A). This obser-

vation holds true when multiple old and young D. melanogaster strains are analysed (S2 Fig).

Next we investigated the abundance of Spoink in long-read assemblies of a strain collected

in 1925 (Oregon-R) and a strain collected in 2003 (RAL737). We found solely highly diverged

and fragmented copies of sequences with similarity to Spoink in Oregon-R (Fig 2B). These

degraded fragments were mostly found near the centromeres of Oregon-R. Investigating the

identity of these degraded fragments of Spoink in more detail we found that they largely match

with short and highly diverged fragments of Invader6, micropia and the Max-element (S4

Table). In addition to these degraded fragments, the more recently collected strain RAL737
also carries a large number of full-length insertions with a high similarity to the consensus

sequence of Spoink (henceforth canonical Spoink insertions; Fig 2B). The canonical Spoink
insertions are distributed all over the chromosomes of RAL737 (Fig 2B). This observation is

again consistent when several long-read assemblies of old and young D. melanogaster strains

are analysed (S3 Fig).

Finally we used PCR to test whether Spoink recently spread in D. melanogaster. We

designed two PCR primer pairs for Spoink and, as a control, one primer pair for vasa (Fig 2C;

bottom panel). The Spoink primers amplified a clear band in three strains collected 2003 in

Raleigh but no band was found in earlier collected strains, including the reference strain of D.
melanogaster, Iso-1 (Fig 2C). We sequenced the fragments amplified by the Spoink primers

using Sanger sequencing and found that the sequence of the six amplicons matches with the

consensus sequence of Spoink (S4 Fig).

Finally we investigated the population frequency of canonical and degraded Spoink inser-

tions. Using the long-read assemblies of eight strains collected in 2003 in Raleigh we computed

the population frequency of different Spoink insertions. We found that canonical Spoink inser-

tions (< 5% divergence) are largely segregating at a low population frequency, as expected for

recently active TEs (Fig 2D). While several degraded fragments that were annotated as Spoink
are private, there were many at a higher population frequency as expected for older sequences

(Fig 2D).

In summary our data suggest that Spoink recently spread in D. melanogaster and that

degraded fragments with some similarity to Spoink are present in heterochromatic regions of

the centromeres of all investigated D. melanogaster strains. These degraded fragments may be

the remnants of more ancient invasions of TEs sharing some sequence similarity with Spoink.

Timing the Spoink invasion

Next we sought to provide a more accurate estimate of the time when Spoink spread in D. mel-
anogaster. First we generated a rough timeline of the Spoink invasion using D. melanogaster
strains sampled during the last two hundred years. We estimated the abundance of Spoink in

in 2003 from Raleigh [40]. Note that highly diverged insertions are largely segregating at a high frequency while canonical Spoink insertions

mostly segregate at a low frequency.

https://doi.org/10.1371/journal.pgen.1011201.g002
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these strains using DeviaTE [55]. As reference we also estimated the abundance of the P-ele-

ment, which is widely assumed as to be the most recent TE that invaded D. melanogaster popu-

lations [28, 31]. Spoink was absent from all strains collected�1983 but present in strains

collected�1993 (Fig 3A). By contrast our data suggest that the P-element was absent in the

strains collected� 1962 but present in strains collected�1967 (Fig 3A). This is consistent

with previous works suggesting that the P-element invaded D. melanogaster between 1950 and

1980 [21, 29, 35, 36]. Our data thus suggest that Spoink invaded D. melanogaster after the P-ele-

ment invasion. To investigate the timing of the invasion in more detail we estimated the abun-

dance of Spoink in short-read data of 183 strains collected between 1960 and 2015 from

Fig 3. Spoink invaded D. melanogaster between 1983 and 1993 after the invasion of the P-element. A) Rough

timeline of the Spoink and P-element invasion based on different strains sampled during the last two hundred years.

The numbers represent the estimated copy number of Spoink and P-element based on DeviaTE. B) Timeline of the

Spoink and P-element invasion based on 183 strains sampled between 1960 and 2015. The intensity of the color varies

due to overlapping dots C) Abundance of canonical Spoink insertions (> 80% length and< 5% divergence) in long-

read assemblies of D. melanogaster strains collected between 1925 and 2018.

https://doi.org/10.1371/journal.pgen.1011201.g003
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different geographic regions using DeviaTE (S5 Table; data from [31, 40, 51–53]). The analysis

of these 183 strains supports the view that Spoink was largely absent in strains collected� 1983

but present in strains collected� 1993 (Fig 3B). However there are two outliers. Spoink is pres-

ent in one strain collected in 1979 in Providence (USA), which could be due to a contamina-

tion of the strain. On the other hand Spoink is absent in one strain collected in 1993 in

Zimbabwe (Fig 3B). As Spoink was present in six other strains collected in 1993 from Zimba-

bwe, it is feasible that Spoink was still spreading in populations from Zimbabwe around 1993.

The strains supporting the absence of Spoink prior to 1983 were collected from Europe, Amer-

ica, Asia and Africa while the strains supporting the presence of Spoink after 1993 were col-

lected from all five continents (S5 Table).

Finally we estimated the abundance of Spoink in 49 long-read assemblies of strains collected

during the last 100 years (S6 Table; [39, 40, 48, 56]). We used RepeatMasker [37] to estimate the

abundance of canonical Spoink insertions (> 80% length and< 5% divergence) in these strains.

Canonical Spoink insertions were absent in strains collected before 1975 but present in all long-

read assemblies of strains collected after 2003 (Fig 3C). The strains of the assemblies supporting

the absence of canonical Spoink insertions were collected from America, Europe, Asia, and

Africa whereas the strains showing the presence of Spoink were largely collected from Europe,

though genomes from North America and Africa are also represented (S6 Table).

In summary we conclude that Spoink invaded worldwide populations of D. melanogaster
approximately between 1983 and 1993. Moreover, the Spoink invasion is more recent than the

P-element invasion.

Geographic heterogeneity in the Spoink sequence variation

Previous work showed that the composition of TEs within a species may differ among geo-

graphic regions [21, 31]. Such geographic heterogeneity could result from founder effects

occurring during the geographic spread of a TE. For example, a TE spreading in a species with

a cosmopolitan distribution such as D. melanogaster may need to overcome geographic obsta-

cles such as oceans and deserts. The few individuals that overcome these obstacles, thereby

spreading the TE into hitherto naive populations, may carry slightly different variants of the

TE than the source populations. These distinct variants will then spread in the new population.

Such founder effects during the invasion may lead to a geographically heterogeneous composi-

tion of a TE within a species. For example, for the retrotransposon Tirant, individuals sampled

from Tasmania carry distinct variants [31], while for 412 and Opus individuals from Zimba-

bwe are distinct from the other populations [21]. To investigate whether we find such geo-

graphic heterogeneity we analysed the Spoink composition in the Global Diversity Lines

(GDL), which comprise 85 D. melanogaster strains sampled after 1988 from five different con-

tinents (Africa—Zimbabwe, Asia—Beijing, Australia—Tasmania, Europe—Netherlands,

America—Ithaca; [51]). Except for a single strain from Zimbabwe all GDL strains harbour

Spoink insertions (S5 Fig). We estimated the allele frequency of SNPs in Spoink, where a SNP

refers to a variant among dispersed copies of Spoink. The allele frequency estimate thus reflects

the composition of Spoink within a particular strain. To summarize differences in the compo-

sition among the GDL strains we used UMAP [76]. We found that the composition of Spoink
varies among regions where three distinct groups can be distinguished: Tasmania, Bejing/Ith-

aca and Netherlands/Zimbabwe (S5 Fig). It is interesting that clusters are formed by geograph-

ically distant populations such as Bejing (Asia) and Ithaca (America). We speculate that

human activity, where flies might for example hitchhike with merchandise, could be responsi-

ble for this pattern. In summary, we found a geographically heterogeneous composition of

Spoink which is likely due to founder effects occurring during the spread of this TE.
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Spoink is silenced by the piRNA pathway in natural populations

The host defence against TEs in Drosophila is based on small RNAs termed piRNAs. These

piRNAs bind to PIWI clade proteins and silence a TE at the transcriptional as well as the post-

transcriptional level [11, 12, 14, 77]. To test whether Spoink is silenced in D. melanogaster pop-

ulations we investigated small RNA data from the GDL lines [62]. Small RNA were sequenced

for 10 out of the 84 GDL lines such that two strains were picked from each of the five conti-

nents [62].

We find piRNAs mapping along the sequence of Spoink in the GDL strain I17 which was

collected in 2004 but not in the strain Lausanne-S which was sampled around 1938 (Fig 4A;

[78]). piRNAs mapping to Spoink were further found for all 10 GDL strains (S6 Fig).

An important feature of germline piRNA activity in D. melanogaster is the ping-pong cycle

[11, 12]. An active ping-pong cycle generates a characteristic overlap between the 5’ positions

of sense and antisense piRNAs, i.e. the ping-pong signature. Computing a ping-pong signature

thus requires several overlapping sense and antisense piRNAs. Since the amount of piRNAs

was too low we could not compute a ping-pong signature for the strain Lausanne-S (collected

in 1938; see above). However we found a pronounced ping-pong signature in all 10 GDL sam-

ples (Fig 4B and S6 Fig).

It is an important open question as to which events trigger the emergence of piRNA based

host defence. The prevailing view, the trap model, holds that the piRNA based host defence is

initiated by a copy of the TE jumping into a piRNA cluster [17, 25, 79–81]. If this is true we

expect Spoink insertions in piRNA clusters in each of the long-read assemblies of the recently

collected D. melanogaster strains [40]. We identified the position of piRNA clusters in these

Fig 4. A piRNA based defence against Spoink emerged in D. melanogaster A) piRNAs mapping to Spoink in a strain sampled 1938 (Lausanne-S) and

2004 (I17). The transposon HMS Beagle is included as reference. Solely the 5’ positions of piRNAs are shown and the piRNA abundance is normalized

to one million piRNAs. Sense piRNAs are shown on the positive y-axis and antisense piRNAs on the negative y-axis. B) Ping-pong signature for the

piRNAs mapping to Spoink and HMS Beagle in the D. melanogaster strain I17 (2004).

https://doi.org/10.1371/journal.pgen.1011201.g004
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long-read assemblies based on unique sequences flanking the piRNA clusters [48]. Interest-

ingly, we found an extremely heterogeneous abundance of Spoink insertions in piRNA clus-

ters, where some strains (e.g. RAL176) have up to 14 cluster insertions whereas 18 out of 31

strains did not have a single cluster insertion (S7 Table). Three of the cluster insertions were

into 42AB, which usually generates the most piRNAs [11, 69]. It is an important open question

whether such a heterogeneous distribution of Spoink insertions in piRNA clusters is compati-

ble with the trap model [82, 83]. In summary we found evidence that Spoink is silenced by the

piRNA pathway but the number of Spoink insertions in piRNA clusters is very heterogeneous

among strains.

Origin of Spoink
The invasion of Spoink in D. melanogaster was likely triggered by horizontal transfer from a

different species. To identify the source of the horizontal transfer we investigated the long-

read assemblies of 101 Drosophila species [67] (and D. simulans strain SZ129) and of 99 insect

species [23, 67, 68] (S8 Table). We did not consider short-read assemblies, as TEs may be

incompletely represented in them [48]. Apart from D. melanogaster we found insertions with a

high similarity to Spoink in D. sechellia, in one out of two D. simulans assemblies (in SZ129 but

not in 006), and species of the willistoni group, in particular D. willistoni (Fig 5A). In agree-

ment with this, a sequence from D. willistoni with a high similarity to Spoink can be found in

RepBase (Gypsy-78_DWil; I: 99.73% similarity, LTR: 93.54% similarity [84]). Spoink insertions

with a somewhat smaller similarity were found in D. cardini and D. repleta. No sequences sim-

ilar to Spoink were found in the 99 insect species (S7 Fig). To further shed light on the origin

of the Spoink invasion we constructed a phylogenetic tree with full-length insertions of Spoink
in D. melanogaster, D. sechellia, D. simulans (SZ129) D. cardini and species of the willistoni
group (Fig 5B and for a star phylogeny see S8 Fig). We did not find a full-length insertion of

Spoink in D. repleta. This tree reveals that Spoink insertions in D. sechellia and D. simulans
have very short branches. Furthermore, in D. simulans just one out of the two analysed assem-

blies has Spoink insertions. We thus suggest that the Spoink invasion in these two species is

also of recent origin (manuscript in preparation).

However, Spoink insertions in D. melanogaster are nested within insertions from species of

the willistoni group (Fig 5B). Our data thus suggest that, similar to the P-element invasion in

D. melanogaster [27], the Spoink invasion in D. melanogaster was also triggered by horizontal

transfer from a species of the willistoni group. The synonymous divergence of Spoink is lower

than for any of 140 single copy orthologous genes shared between D. melanogaster and D. will-
istoni, further supporting the recent horizontal transfer of Spoink (S9 Fig) [20, 85, 86]. Species

of the willistoni group are Neotropical, occurring throughout Central and South America [87–

89]. Therefore horizontal transfer of Spoink only became feasible after D. melanogaster
extended its habitat into the Americas approximately 200 years ago [90–92]. Insertions of D.
cardini are next to species of the willistoni group, suggesting that D. cardini also acquired

Spoink by horizontal transfer from the willistoni group, likely independent of D. melanogaster
(Fig 5B). D. cardini is also a Neotropical species and its range overlaps many species of the will-
istoni group, thus horizontal transfer between the species is physically feasible [93, 94].

In summary, similarly to the P-element, horizontal transfer from a species of the willistoni
group likely triggered the Spoink invasion in D. melanogaster.

Discussion

Here we suggest that the LTR-retrotransposon Spoink invaded D. melanogaster populations

between 1983 and 1993, after the spread of the P-element. Similarly to the P-element, the
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Fig 5. The Spoink invasion in D. melanogaster was likely triggered by a horizontal transfer from a species of the willistoni group. A) Similarity of

TE insertions in long-read assemblies of diverse drosophilid species to Spoink. The barplots show for each species the similarity between Spoink and the

best match in the assembly. For example, a value of 0.9 indicates that at least one insertion in an assembly has a high similarity (� 90%) to the

consensus sequence of Spoink. B) Bayesian tree of Spoink insertions in the different drosophilid species. Only full-length insertions of Spoink (> 80% of

the length) were considered. Node support values are posterior probabilities estimated by BEAST [45]. Note that Spoink insertions of D. melanogaster
are nested in insertions from the willistoni group (blue shades).

https://doi.org/10.1371/journal.pgen.1011201.g005
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Spoink invasion was likely triggered by horizontal transfer from a species in the willistoni
group. Horizontal transfer of a TE is usually inferred from three lines of evidence: i) a patchy

distribution of the TE among closely related species, ii) a phylogenetic discrepancy between

the TE and the host species and iii) a high similarity between the TE of the donor and recipient

species, which is frequently quantified by the synonymous divergence of the TE [95, 96]. All of

these three lines of arguments support a horizontal transfer of Spoink in D. melanogaster, with

a species of the willistoni group being the likely donor. First we found a patchy distribution

among species of the melanogaster group (for D. simulans we even have a patchy distribution

among different strains; Fig 5A). Second Spoink insertions of D. melanogaster (and other spe-

cies that may have gotten Spoink recently) are nested within species of the willistoni group (Fig

5B), a clear phylogenetic discrepancy. Third we found that the synonymous divergence of

Spoink is lower than for all orthologous genes in D. melanogaster and D. willistoni (S9 Fig). In

addition to this classical but indirect lines of evidence, we have however more direct and thus

more compelling evidence for the horizontal transfer of Spoink. Based on strains collected dur-

ing the last hundred years from all major geographic regions we showed that Spoink insertions

were absent in all strains collected before 1983 but present in all strains collected after 1993

(using Illumina short read data, long-read assemblies, and PCR/Sanger sequencing). This

makes Spoink one of the best documented cases of a recent horizontal transfer of a TE, simi-

larly to the P-element where also strains collected during the last 100 years support the recent

horizontal transfer [28, 29].

The abundance of sequencing data from strains collected at different time points during the

last century allowed us to pinpoint the timing of the invasion in a way that would not have

been previously possible. Spoink appears to have rapidly spread throughout global populations

of D. melanogaster between 1983 and 1993. The narrow time-window of 10 years is plausible

as studies monitoring P-element invasions in experimental populations showed that the P-ele-

ment can invade populations within 20–60 generations [65, 97, 98]. Assuming that natural D.
melanogaster populations have about 15 generations per year [99], a TE could penetrate a nat-

ural D. melanogaster population within 1–3 years. Given this potential rapidness of TE inva-

sions it is likely that Spoink spread quickly between 1983 and 1993. Since there is a gap

between strains sampled at 1983 and 1993 we cannot further narrow down the timing of the

invasion. Furthermore, the strains used for timing the invasions were sampled from diverse

geographic regions and Spoink likely spread at different times in different geographic regions.

If horizontal transfer from a willistoni species triggered the invasion, as suggested by our data,

then Spoink will have first spread in D. melanogaster populations from South America (the

habitat of willistoni species), followed by populations from North America and the other conti-

nents. It is also feasible that Spoink invaded D. melanogaster indirectly, for example using D.
simulans as intermediate host, in which case the Spoink invasion in D. melanogaster may have

been triggered in almost any geographic region (both, D. simulans and D. melanogaster, are

cosmopolitan species [100]). Unfortunately, we cannot infer the timing of the geographic

spread of the Spoink invasion in different continents as D. melanogaster strains were not sam-

pled sufficiently densely from different regions. Our work thus highlights the importance of

efforts such as DrosEU, GDL and DrosRTEC to densely sample Drosophila strains in time and

space [51, 101, 102]. It is also interesting to ask as to which extent human activity (e.g. traffick-

ing of goods) contributed to the rapid spread of Spoink. Given that our analysis of the Spoink
composition shows that geographically distant populations (Bejing/Ithaca or Netherlands/

Zimbabwe) cluster together, human activity may have played a role. Increasing human activity

could also explain why Spoink (invasion 1983–1993) seems to have spread faster than the P-

element (1950–1980).
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Our investigation of Spoink insertions in different drosophilid species suggests that the

Spoink invasion in D. melanogaster was triggered by horizontal transfer from a species of the

willistoni group. Although it is possible that we did not analyse the true donor species, we con-

sider it unlikely to be a species outside of the willistoni group given the wide distribution of

Spoink in all species in the willistoni group. In addition, the phylogenetic tree of Spoink has

deep branches within the willistoni group, suggesting that Spoink is ancestral in this group

(S10 Fig).

A related open question is when Spoink first entered D. melanogaster populations. Since a

TE may initially solely spread in some isolated subpopulations there could be a considerable

lag time between the horizontal transfer of a TE and its spread in worldwide population. The

presence of Spoink in a strain collected around 1979 in Providence (USA; Fig 3B) could be due

to this lag time (or contamination). Nevertheless, the horizontal transfer of Spoink must have

happened between the spread of D. melanogaster into the habitat of the willistoni group, about

200 years ago, and the invasion of Spoink in worldwide populations between 1983 and 1993. In

addition to the P-element, Spoink is the second TE that invaded D. melanogaster populations

following horizontal transfer from a species of the willistoni group. Species from the willistoni
group are very distantly related with D. melanogaster (about 100my [103]) and we were thus

wondering whether it is a coincidence that a species of the willistoni group is again acting as

donor of a TE invasion in D. melanogaster. The recent habitat expansion of D. melanogaster
into the Americas resulted in novel contacts with many species, in addition to species of the

willistoni group, that might have acted as donors of novel TEs such as D. pseudoobscura or D.
persimilis [104]. Why is again a species of the willistoni group and not one of these other spe-

cies acting as donor of a novel TE? Apart from mere chance, there are several, not mutually

exclusive, hypotheses for this observation. First, it is feasible TEs of the willistoni group are

exceptionally compatible with D. melanogaster at a molecular level. Second, some parasites tar-

geting both D. melanogaster and species of the willistoni group could be efficient vectors for

horizontal transfer of TEs. Third, the physical contact between D. melanogaster and some spe-

cies of the willistoni group might be unusually tight, facilitating horizontal transfer of TEs by

an unknown vector. D. willistoni is a common drosophilid in South American forests [105].

Habitat fragmentation caused by human deforestation may thus generate intensive contacts

between human commensal species, such as D. melanogaster, and abundant forest species like

D. willistoni. Fourth, species of the willistoni group might be exceptionally numerous resulting

in elevated probability for horizontal transfer of a TE.

The Spoink invasion is the eighth TE invasion in D. melanogaster that has occurred during

the last 200 year. As we argued previously, such a high rate of TE invasions is likely unusual

during the evolution of the D. melanogaster lineage since the number of TE families in D. mel-
anogaster is much smaller than what would be expected if this rate of invasions would persist

[21]. It is possible that the high rate of TE invasions continues beyond the past 200 years since

many LTR transposons in D. melanogaster are likely of very recent origin

(possibly < 16.000years [85, 106]). One possible explanation for this high rate of recent TE

invasions is that human activity contributed to the habitat expansion of D. melanogaster. Due

to this habitat expansion D. melanogaster spread into the habitat of D. willistoni which enabled

the horizontal transfer of Spoink. This raises the possibility that other species with recent habi-

tat expansions also experienced unusually high rates of TE invasions. It is also interesting to

ask whether the rate of TE invasions differs among species. For example cosmopolitan species,

such as D. melanogaster, may generally experience higher rates of horizontal transfer than

more locally confined species. The cosmopolitan distribution will bring species into contact

with many diverse species, thereby increasing the opportunities for horizontal transfer of a TE.
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The Spoink invasions also opens up several novel opportunities for research. First, the

broad availability of strains with and without Spoink will enable testing whether Spoink activity

induces phenotypic effects, similarly to hybrid dysgenesis described for the P-element, I-ele-

ment and hobo, but not for Tirant [31, 107–109]. Second, it will be interesting to investigate

whether some Spoink insertions participated in rapid adaptation of D. melanogaster popula-

tions, similar to a P-element insertion which contribute to insecticide resistance [110]. Third,

it will enable studying Spoink invasions in experimental populations, shedding light on the

dynamics of TE invasions, much as other recent studies investigating the invasion dynamics of

the P-element [97, 98, 111]. Fourth, investigation into the distribution of species that have

been infected with Spoink will shed light on the networks of horizontal transfer in drosophilid

species. Fifth, the Spoink invasion provides an opportunity to study the establishment of the

piRNA-based host defence [similar to [24, 65]]. For example we found that none of the piRNA

cluster insertions are shared between individuals, suggesting there is no or solely weak selec-

tion for piRNA cluster insertions. Furthermore we found an extremely heterogeneous abun-

dance of Spoink insertions in piRNA clusters where we could not find a single cluster

insertions of Spoink in several strains. It is an important open question whether such a hetero-

geneous distribution is compatible with the trap model [83]. One possibility is that a few clus-

ter insertions in populations are sufficient to trigger the paramutation of regular (non-

paramutated) Spoink insertions into piRNA producing loci [16, 112, 113]. These paramutated

Spoink insertions may then compensate for the low number of Spoink insertions in piRNA-

clusters [112]. Paramutations could thus explain why several studies found that stand-alone

insertions of TEs can nucleate their own piRNA production [69, 83, 114, 115].

The war between transposons and their hosts is constantly raging, with potentially large fit-

ness effects for the individuals in populations. Over the last two hundred years there have been

at least eight invasions of TEs into D. melanogaster, each of which could disrupt fertility for

example by inducing some form of hybrid dysgenesis. TEs are responsible for > 80% of visible

spontaneous mutations in D. melanogaster, and produce more variation than all SNPs com-

bined [116–118]. In the long read assemblies considered here, more than half of insertions of

Spoink were into genes [40]. The recent Spoink invasion could thus have a significant impact

on the evolution of D. melanogaster lineage.

Supporting information

S1 Fig. Abundance of Spoink and P-element insertions in different genomic features. TE

insertions were identified in 31 long-read assemblies of D. melanogaster [40] and the reference

annotation was lifted to each assembly with liftoff [46, 47]. Note that the P-element has a pro-

nounced insertion bias in promoters (defined as 1000bp upstream of the first exon) whereas

Spoink insertions are largely found in introns and intergenic regions.

(AI)

S2 Fig. DeviaTE plots of six D. melanogaster strains collected during the last century. The

short reads were aligned to the consensus sequence of Spoink and the coverage was normalized

to the the coverage of single-copy genes. The coverage was manually curbed at the poly-A

track (indicated by dashed lines). Note that very few reads of old strains (� 1975) align to

Spoink whereas a contiguous coverage of reads along Spoink is observed for more recently col-

lected strains (� 1993).

(AI)

S3 Fig. Abundance of Spoink insertions in six long-read assemblies of D. melanogaster
strains collected during the last century. Note that all strains contain fragmented and
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diverged insertions of Spoink, while solely recently collected strains (�2003) contain canonical

Spoink insertions (i.e. full-length insertions with little divergence from the consensus

sequence).

(AI)

S4 Fig. The Sanger sequence of the six PCR amplicons matches with the consensus

sequence of Spoink. The Sanger sequences of the amplicons of P1 (red) and P2 (green) have

been aligned to the consensus sequence of Spoink (blue, top) and the coordinates of the align-

ments are indicated. The D. melanogaster strain and the sequence similarity between the

Sanger sequence and the consensus sequence of Spoink are provided next to each matching

region.

(SVG)

S5 Fig. Abundance and composition of Spoink insertions in the GDL. A) Abundance of

Spoink in the GDL. Note that one strain from Zimbabwe does not have any Spoink insertion.

B) UMAP summarizing the composition of Spoink among the GDL. Note that Spoink shows a

pronounced population structure, where three main clusters can be discerned: Tasmania, Bej-

ing/Ithaca and Netherlands/Zimbabwe.

(SVG)

S6 Fig. A piRNA based defence against Spoink is active in the 10 GDL strains. Two strains

are analysed for each continent (Bxx Beijing/Asia, Ixx Ithaca/America, Nxx Netherlands/

Europe, Txx Tasmania/Australia, ZWxx Zimbabwe/Africa; the second strain from Ithaca (I17)

is shown in the main manuscript). A) piRNAs mapping to the sequence of Spoink. Solely the 5’

positions of piRNAs are shown and the piRNA abundance is normalized to one million piR-

NAs. Sense piRNAs are shown on the positive y-axis and antisense piRNAs on the negative y-

axis. B) ping-pong signature of Spoink.

(SVG)

S7 Fig. Barplots show the similarity between the consensus sequence of Spoink and the best

match in each of 99 long-read assemblies of diverse insect species. As a reference, two D.
melanogaster assemblies (red) were included, where D.mel.RAL176 has canonical Spoink
insertions while D.mel.Iso1 solely has degraded fragments of sequences having some similarity

with Spoink.

(AI)

S8 Fig. Star phylogeny of Spoink insertions in the different drosophilid species. Only full-

length insertions of Spoink (> 80% of the length) were considered.

(SVG)

S9 Fig. Distribution of synonymous divergence for Spoink and 140 single copy orthologous

genes shared between D. melanogaster and D. willistoni (red). For Spoink we used the shared

part of the longest ORF (green). The red dashed line is the 2.5% quantile of nuclear genes [85].

Note that the dS of Spoink is lower than the dS of any of the orthologous genes shared between

D. melanogaster and D. willistoni, consistent with a horizontal transfer of Spoink between the

two species. The genes were obtained with the software BUSCO [119]. The predicted proteins

were aligned using Clustal Omega [120]. The codons information from the protein alignment

was used for the nucleotide alignment using PAL2NAL [121]. The dS was calculated using the

software PAML.

(PNG)
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S10 Fig. Average distance between 100 pairs of Spoink insertions randomly sampled within

either the melanogaster group (i.e D. melanogaster, D. simulans, D. sechellia) or the willis-
toni group. Distances within the willistoni group are significantly longer than the distances in

the melanogaster group (t = −6.31, df = 193.88, p = 1.762e − 09). Note that this test accounts

for the phylogenetic information of the tree using the distances of the insertions within the

two groups.

(PNG)

S1 Table. Differences in the abundance of Gypsy_7_DEl between the reference genome

Iso1 and a long-read assemblies from a more recently collected strain. The best ten matches

for Gypsy_7_DEl and the consensus sequence of Spoink are shown for both assemblies.

Matches were identified with RepeatMasker [37]. Note that the discrepancy between Iso1 and

TOM007 is more pronounced when the consensus sequence of Spoink is considered.

(XLSX)

S2 Table. Similarity between Spoink and other TEs in the different repeat libraries gener-

ated for D. melanogaster. For each repeat library the best five hits are shown. Solely matches

with a minimum overlap with Spoink of at least 30% are considered. subst. substitions in per-

cent between Spoink and the TE, len. fraction of the length of a TE aligning with Spoink; a [40],

b [43], c [5], d [69], e [70].

(XLSX)

S3 Table. Coordinates of Spoink insertions in the strains RAL091, RAL176 and RAL732

used for Fig 1A of the main manuscript.

(XLSX)

S4 Table. Identity of sequences in Oregon-R having some similarity with the consensus

sequence of Spoink. Solely sequences having a divergence of�25% and minimum overlap of

at least 10% with Spoink are considered. The sequences were extracted from the assembly of

Oregon-R (chromosome:start-end) and aligned against the TE library of D. melanogaster
using blastn [43, 122]. Most of these sequences match TARTC and DMDM11.

(XLSX)

S5 Table. Overview of the short-read data analysed in this work. Data are from [31, 40, 51–

53]).

(XLSX)

S6 Table. Overview of the long-read assemblies of D. melanogaster strains analysed in this

work. For each strain we show the assembly ID, the strain, the sampling location and the sam-

pling date. a [38, 39], b [48], c [56], d [40], e [123].

(XLSX)

S7 Table. Spoink insertions in piRNA clusters of long-read assemblies of different D. mela-
nogaster strains [40]. Note that for several strains we could not find a single Spoink insertion

in a piRNA cluster. On the other hand, some strains, like RAL176, have multiple Spoink inser-

tions in piRNA clusters.

(XLSX)

S8 Table. Overview of the long-read assemblies of diverse insect species analysed in this

work.

(XLSX)
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