
RESEARCH ARTICLE

INSIDER: Interpretable sparse matrix

decomposition for RNA expression data

analysis

Kai ZhaoID
1, Sen Huang2, Cuichan Lin3, Pak Chung ShamID

4,5,6, Hon-Cheong So3,7,8*,

Zhixiang LinID
1*

1 Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,

2 Department of System Engineering and Engineering Management, The Chinese University of Hong Kong,

Shatin, Hong Kong SAR, China, 3 Department of Psychiatry, The Chinese University of Hong Kong, Shatin,

Hong Kong SAR, China, 4 Department of Psychiatry, University of Hong Kong, Pokfulam, Hong Kong, China,

5 Centre for Genomic Sciences, University of Hong Kong, Pokfulam, Hong Kong, China, 6 State Key

Laboratory for Cognitive and Brain Sciences, University of Hong Kong, Pokfulam, Hong Kong, China,

7 School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China,

8 KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming

Institute of Zoology and The Chinese University of Hong Kong, Hong Kong, China

* hcso@cuhk.edu.hk (H-CS); zhixianglin@cuhk.edu.hk (ZL)

Abstract

RNA sequencing (RNA-Seq) is widely used to capture transcriptome dynamics across tis-

sues, biological entities, and conditions. Currently, few or no methods can handle multiple

biological variables (e.g., tissues/ phenotypes) and their interactions simultaneously, while

also achieving dimension reduction (DR).

We propose INSIDER, a general and flexible statistical framework based on matrix fac-

torization, which is freely available at https://github.com/kai0511/insider. INSIDER decom-

poses variation from different biological variables and their interactions into a shared low-

rank latent space. Particularly, it introduces the elastic net penalty to induce sparsity while

considering the grouping effects of genes. It can achieve DR of high-dimensional data (of >
= 3 dimensions), as opposed to conventional methods (e.g., PCA/NMF) which generally

only handle 2D data (e.g., sample × expression). Besides, it enables computing ’adjusted’

expression profiles for specific biological variables while controlling variation from other vari-

ables. INSIDER is computationally efficient and accommodates missing data. INSIDER

also performed similarly or outperformed a close competing method, SDA, as shown in sim-

ulations and can handle complex missing data in RNA-Seq data. Moreover, unlike SDA, it

can be used when the data cannot be structured into a tensor. Lastly, we demonstrate its

usefulness via real data analysis, including clustering donors for disease subtyping, reveal-

ing neuro-development trajectory using the BrainSpan data, and uncovering biological pro-

cesses contributing to variables of interest (e.g., disease status and tissue) and their

interactions.
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Author summary

The RNA-Seq studies aim to understand the contributing role of gene activities to pheno-

types, especially human disorders, reveal important biological processes (BPs) that con-

tribute to phenotypes, and understand the involvement of tissues (e.g., brain structures/

regions) in disease development. However, our ability to understand these key issues in

high-dimensional settings is hampered by the limitations of currently available methods

for analyzing RNA-seq data. To address these issues, we propose a novel statistical method

to jointly model variation from multiple biological variables (e.g., donor, tissue, pheno-

type), to introduce interactions (tissue × phenotype), and to reduce dimensionality. The

favorable properties of our method are discussed below. Its advantages over one closest

existing computational tool and its wide applicability are shown via simulation and appli-

cations. A computationally efficient implementation of our method is provided.

Introduction

RNA Sequencing (RNA-Seq), which has been developed for more than a decade, uses deep

sequencing technology to offer a far more precise measurement of levels of transcripts and

their isoforms than other methods [1]. It is now widely used to measure transcriptome levels

across different tissues from a number of donors and capture transcriptome dynamics across

tissues or biological conditions. For example, the Genotype-Tissue Expression (GTEx) [2]

project offers a valuable data resource to study tissue-specific gene expression and regulation.

Moreover, there are many data resources related to brain development or psychiatric disorders

across brain regions, including the BrainSpan [3], PsychENCODE [4], and ATP (the Autism

Tissue Program) [5]. The primary task of these studies is to link gene activities to phenotypes,

especially human disorders, reveal important biological processes (BPs) that contribute to phe-

notypes, and understand the involvement of tissues (e.g., brain structures/regions) in disease

development.

However, variation in transcript levels due to covariates, such as donor and tissue, makes

the task challenging. Let us take studies of autism spectrum disorder (ASD) as examples. Dif-

ferent brain regions may demonstrate wide differences in gene activities in ASD [6]. On the

other hand, no individuals with ASD have exactly the same genetic expression profiles [7],

which are influenced by individual characteristics such as age, sex, diet, and lifestyle. Thus,

joint analyses of gene expression by RNA-Seq of multiple brain regions from several donors

are hindered by the variation from donors and tissues.

Tools for differential gene expression (DGE) analysis [8, 9], typically built upon generalized

linear models (GLM), have been widely employed to quantify changes in expression levels

across experimental groups or biological conditions in analyzing RNA expression data. Such

methods can also consider confounding variation from covariates, such as donor, and tissue.

However, DGE analysis does not aim for dimension reduction and thus cannot help achieve

the tasks that require reducing high dimensional data onto a low-rank latent space, such as

clustering donors based on low-rank representations of donors (low-rank representations are

preferred as the high dimension of genomic features often makes clustering analysis difficult),

and other downstream analysis with low-rank representations of biological conditions (pheno-

type, tissue, or developmental stage).

Traditional dimension reduction (DR) approaches, such as principal component analysis

(PCA), factor analysis, and matrix factorization, cannot directly handle the variation from

multiple covariates, such as donor, tissue, and other clinical or biological features, to facilitate
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further analysis. One study [10] proposed a PCA-based approach with adjustment for con-

founding variables. Other approaches based on factor analysis have been proposed to adjust

for technical artifacts or confounding variables [11,12]. These studies aim to remove technical

artifacts or control confounding variations rather than interpret variations originating from

biological conditions.

Non-negative matrix factorization (NMF) [13–15] has gained popularity in the analysis of

genomic data. The conventional NMF method cannot be directly employed to model varia-

tions arising frommultiple biological variables and their interactions, and to interpret varia-

tions frommultiple biological features or conditions. Variants of NMF proposed for the

analysis of bulk RNA-Seq data are rather limited, and most of them aim to correct batch effects

in single-cell settings instead of interpreting variation from biological variables [14,15]. On the

other hand, NMF and its variants fail to directly infer down-regulations of elements in biologi-

cal settings [16], so its interpretability is hampered.

To summarize, conventional DR methods such as PCA and NMF can usually only be used

for two-dimensional (2D) data (e.g., sample × expression), and cannot directly handlemultiple
variables or biological conditions (e.g., donor × tissue × expression; donor × time × expression

etc.), or interactions between these conditions. On the other hand, the new methodology we

proposed below (INSIDER) can handle higher-dimensional data (of three or more dimensions),
as well as interactions between the variables of interest, while performing DR simultaneously.

We note that most tensor decomposition approaches [17–19] can achieve DR with high-

dimensional data, however most cannot handle missing data or invoke sparsity in the latent

representations. This may impose limitations in analyzing gene expression data since the func-

tion of a particular biological pathway often only involves a subset of genes, and each latent

dimension only encodes information related to a few pathways. Thus, a sparse Bayesian tensor

decomposition approach [20] (Sparse Decomposition of Arrays [SDA]) was proposed to cap-

ture variation from donor and tissue in analyzing RNA-Seq data. However, Bayesian-based

approaches face a heavy computational burden in analyzing large-scale genomic data, espe-

cially when optimizing with Markov Chain Monte Carlo.

To model variation frommultiple biological variables and to facilitate interpretation of the

variation, we propose a general and flexible statistical framework, INSIDER, based on matrix

decomposition (MF) without non-negative constraints to decompose the variation from

covariates in high dimensional data into a shared low-rank latent space. INSIDER has the fol-

lowing favorable properties:

1. it is a general and flexible framework, in which various covariates and interaction terms can

be defined based on research questions and study design. Importantly, it can accommodate

multiple biological variables simultaneously, and achieve DR of high-dimensional data, as

opposed to other conventional methods such as PCA and NMF which generally can only

handle 2D data (e.g., sample × expression);

2. it is able to consider interactions between different biological/clinical variables, enabling

gaining insights into the effect of one variable on others. For example, modeling gene

expression of various brain regions across neuropsychiatric disorders, the brain

region × disorder interaction, can help understand how brain regions interact with the type

of disorder to influence expression. Intuitively, the same disease may affect expression dif-

ferently in different brain regions; such information may be missed if interactions are not

modeled. Notably, interactions are usually ignored by conventional methods, such as PCA,

NMF, and their variants. Interactions were also ignored in the recently developed SDA

approach [20];
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3. it allows one to compute the ’adjusted’ expression for one variable (e.g., phenotype) that

controls for variation from other variables (e.g., donor). In addition, to consider the group

effect among genes and invoke sparsity in gene expression, it introduces an elastic net pen-

alty (combination of L1 and L2 penalty). Elastic net penalty is widely used in the regression

setting where only a subset of features may contribute to the outcome, but it prefers highly

correlated predictors to be included or excluded from the model together [21] (instead of

arbitrarily selecting one predictor over others as in LASSO);

4. Results from it facilitate different downstream analyses, including clustering donors with

donor representations, temporal dynamic analyses, and uncovering disease mechanisms.

The potential of INSIDER in facilitating clinical and biological discoveries will be demon-

strated in the Results section;

5. it is computationally efficient and can also handle missing data well. These will be elabo-

rated further in the sections below;

6. it also performed similarly or outperformed one of the closest competing methods, SDA, as

shown in our simulations. Moreover, unlike SDA, it can also be used where the data matrix

cannot be neatly structured into a tensor, as explained below.

To recap the uniqueness of INSIDER, it models variation arising frommultiple biological

variables and their interaction to comprehend their effects on gene expression in a complex

biological setting instead of solely removing technical artifacts or controlling confounding var-

iations. Moreover, it models the effect of specific biological variables while controlling for vari-

ation from other biological variables. Unlike GLM-based methods for DGE analysis, INSIDER

is a statistical approach for dimension reduction, thus enabling performing the tasks that are

challenging using high-dimensional features, such as clustering subjects with donor represen-

tations. In contrast to NMF, INSIDER considers the interaction between biological variables

and does not impose non-negativity constraints on the latent representations, which allows for

capturing down-regulation in gene expression and thus enhances model interpretability. Addi-

tionally, compared with tensor decomposition, it can handle situations where the data matrix

cannot be structured into a tensor. Usually, for tensor decomposition approaches, we assume

one observation/sample per each combination of the three (or more) dimensions, but this is

not always the case in practice. To illustrate with an example, when analyzing the effect of neu-

ropsychiatric disorders on expression in different brain regions, multiple samples may be

taken from a specific brain region from donors with a certain disorder. The number of samples

taken could also differ across donors. This scenario can be challenging for standard tensor

decomposition or SDA [20], but can be handled by our proposed method.

Results

Overview of INSIDER

We propose a novel computational method called INSIDER (interpretable sparse matrix

decomposition for bulk RNA expression data analysis), summarized in Fig 1. INSIDER con-

siders that variation in RNA expression levels originates from several biological variables or

covariates, such as donor, tissue, and phenotype (Fig 1A). The variation is decomposed into a

shared latent space of rank K by matrix factorization, and variation from unknow sources can

also be considered by INSIDER (Fig 1B). The effect of each covariate on expression can be

measured by multiplying the corresponding latent representation with the gene representation

V (Fig 1B). Specifically, the expression level of genem of sample s from tissue h of donor i with
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phenotype j, zijhm, is modelled as

ẑ ijhm ¼ d
T
i vm þ p

T
j vm þ t

T
h vm þ wT

jhvm þ u
T
s vm

where di,pj,th,wjh,us,vm are vectors of length K. us is usually ignored when donor, tissue, and

phenotype information is available and can be included to capture variation from unknown

sources when part or all of the information is unavailable. The interaction effect between tis-

sues and phenotypes is incorporated by introducing wjh on gene expression. For example, a

certain disease may be associated with changes in gene expression, but the degree of change

may differ by the tissue type. Let ZN×M denote the observed data matrix for N samples andM
genes. The above equation can be rewritten in the following matrix representation

Ẑ ¼ XDDþ XPP þ XTT þ XWW þ XUUð ÞV:

We assume there are N1 donors, N2 phenotypes, and N3 tissues. For the purpose of repre-

sentation, XN�N1
D ;XN�N2

P ;XN�N3

T ;XN� N2∗N3ð Þ

W ;XN�NU are introduced to be the indicator matrices for

donors, phenotypes, tissues, phenotype by tissue interactions, and observations, which are the

dummy design matrices for the samples. XU is an identity matrix.

DN1�K ; PN2�K ;TN3�K ;W N2∗N3ð Þ�K ;UN�K are the matrices for latent representations for the effects

of donors, phenotypes, tissues, phenotype by tissue interactions, and observations on the K
latent metagenes, respectively, and VK×M represents Kmetagenes across theM genes, which

capture genes that tend to be co-expressed or work together to induce biological functions.

Fig 1. Overview of INSIDER. A. The RNA-seq data is usually obtained from samples of different tissues from several donors with

different phenotypes. B. The variation in RNA-seq expression data can be decomposed into a shared K-rank latent space by INSIDER. The

latent representation for observations U can be included when the donor, phenotype, and/or tissue information is unavailable. Note that

INSIDER incorporates the interaction between covariates and that the gene representation V is shared. C. Various types of downstream

analysis can be conducted on the result from INSIDER. The donor representations can be utilized for cluster analysis, development

trajectories can be revealed in the analysis of the BrainSpan data, and biological mechanisms behind phenotypes of interest and

interactions between covariates can be revealed. Details on these analyses will be demonstrated in the Result section.

https://doi.org/10.1371/journal.pgen.1011189.g001
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In INSIDER, we seek to minimize the following objective

LðD; P;T;W;U;VÞ ¼
1

2
kZ � XDDþ XPP þ XTT þ XWW þ XUUð ÞVk2

F

þ
1

2
l k D k2

F þ k P k
2

F þ k T k
2

F þ kW k
2

F þ k U k
2

F

� �

þl
1

2
ð1 � aÞ k V k2

F þajVj1

� �

:

Here λ, α are tuning parameters for the elastic net regularization term,||�||F represents the

Frobenius norm. Alternating block coordinate descent (BCD) is utilized to optimize the objec-

tive. INSIDER can incorporate observations with missing values. The technical details of

INSIDER are presented in the Methods section.

INSIDER enables various downstream analyses (Fig 1C). For instance, cluster analysis on

the donor representation can reveal characteristics of the donors and help find patients sub-

groups or disease subtyping, development trajectory can be more readily revealed with ‘meta-

genes’ (low-rank representations of gene expression), which capture the information of genes

that tend to be co-expressed or work together to induce biological functions [22]. Also, biologi-

cal processes (BPs) enriched by results from INSIDER help to gain insights into mechanisms

underlying covariates like phenotype and interactions between covariates. Details of these

analyses are presented below.

Simulation study

To our knowledge, there is no readily available computational tool for modeling the variation

arising frommultiple biological variables and their interactions, while also performing dimen-

sion reduction (and having similar favorable properties as described earlier). Tensor decompo-

sition is the closest existing computational tool to INSIDER. To showcase the advantages of

INSIDER in capturing complex latent structures of gene expression data, it was compared to

SDA[20], a sparse Bayesian tensor decomposition approach. We evaluated their abilities to

accurately recover the underlying latent structures frommultiple biological variables and their

interactions with RMSE (root-mean-squared error).

In our simulation setup, we consider a gene expression matrix Z (250×200), and variation

in the matrix comes from two biological variables (E,F), their interaction, and random noise.

Their relationship is described by Z = T + Θ, where T = (XEE + XFF + XRR)V. The rank of

latent space is set to 5, E and F are matrices of dimensions 50×5 and 5×5, respectively, and the

dimension of R for the interaction between E and F is 250×5. V is a 5×200 matrix for gene

latent representations. These matrices were generated from the standard normal distribution.

The design matrices for {E,F,R} are X250�50
E , X250�5

F , and X250�250
R , respectively. The noise matrix

Θ (250×200) was generated from a normal distribution N(0, δ), and δ is the variance of the dis-

tribution. We considered δ equal to 0.25, 0.5, 0.75, and 1 in our simulations. Meanwhile, to

introduce sparsity in gene expression, we randomly silence the expression of 30% of the genes.

Subsequently, we employed INSIDER with and without considering the interaction

between E and F and SDA to decompose the matrix Z, and then evaluated their abilities to

recover T using RMSE. For the implementation of SDA, the software provided by the original

study [20] was used. When running SDA, the parameters N and num_comps are set to 50 and

5, respectively, and default values are used for other parameters. Results for the comparison

are shown in Table 1.
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From Table 1, we see that SDA fails to capture the underlying relationship across different

noise levels. Moreover, INSIDER without interaction outperforms SDA in recovering T using

RMSE, even though both methods have a similar model complexity. Importantly, when con-

sidering the interactive effects between E and F, INSIDER demonstrates substantially better

performance in recovering T, compared with SDA, even as the level of noise increases.

To show the performance of INSIDER in case of model misspecification, we first included

simulation studies of INSIDER under the situation where the simulation data is generated

according to SDA [20], a tensor decomposition method. Specifically, we consider a tensor of

gene expression Z of dimensions 50×5×200, which is generated according to Z = T + Θ, where

Tnlg ¼
PK

c¼1
EncFlcVcg . Here the rank of latent space K is set to 5, E and F are matrices of dimen-

sions 50×5 and 5×5, respectively, and V is a 5×200 matrix for gene latent representations.

These matrices were generated from the standard normal distribution. The elements of Θ are

generated from N(0, σ). In practice, we consider σ to be 0.25, 0.5, 0.75, and 1. For the applica-

tion of INSIDER to the simulated data, we flat the tensor Z by its first two dimensions and

transform it into a 250×200 matrix. Then, we introduce two design matrices X250�50
E and X250�5

F

for the first two dimensions of Z, and the two design matrices are considered as covariates for

INSIDER. Since SDA only has one hyperparameter, the latent rank K (num_comps), and does

not allow missing entries, we adopt the following procedure in the simulation study. When

running SDA, the parameters N and num_comps are set to 50 and 5, respectively, and default

values are used for other parameters. For INSIDER, we first draw 10% of the elements of Z
without replacement as validation set and consider the left data trainset, select the hyperpara-

meters with which INSIDER trained on the trainset performs the best on the validation set,

and run INSIDER with selected hyperparameters on Z. Then we compared the performance of

INSIDER with and without interactions to SDA in recovering the true pattern T using RMSE.

The results of the simulation studies are presented in Table 2.

From Table 2, we find that INSIDER without interaction did not perform well in the case of

model misspecification. However, INSIDER with interaction demonstrated a performance

similar to SDA, although the simulation data is generated according to the SDA model. This

suggests that INSIDER performs well in the case of model specification when data is generated

according to SDA.

Table 2. Comparison of the performance of INSIDER without or with interaction to that of SDA in recovering T
using RMSE when the data is generated according to SDA.

RMSE noise variance δ

0.25 0.5 0.75 1.0

SDA 0.04 0.08 0.11 0.16

INSIDER without interaction 1.22 1.57 2.10 1.66

INSIDER with interaction 0.05 0.11 0.16 0.21

https://doi.org/10.1371/journal.pgen.1011189.t002

Table 1. Comparison of performance of INSIDER without or with interaction to that of SDA in recovering T
using RMSE when the data is generated according to INSIDER.

RMSE noise variance δ

0.25 0.5 0.75 1.0

SDA 2.21 2.12 1.82 1.84

INSIDER without interaction 1.69 1.69 1.69 1.69

INSIDER with interaction 0.05 0.10 0.16 0.21

https://doi.org/10.1371/journal.pgen.1011189.t001
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To further demonstrate the performance of INSIDER in case of model misspecification, we

conducted further simulation analysis to examine its performance when the data is generated

according to multivariate linear regression models. For illustration, the gene expression matrix

Z of dimensions 100×200 is generated by Z = T + Θ, where T = XEE+XFF, X100�20
E and X100�5

F

are the dummy matrices for two categorical variables, E20×200,F5×200 are matrices for coeffi-

cients of the two categorical variables across 200 genes, and Θ100×200 is the error matrix. In

simulation, E and F are generated from N(0, 1) and Θ is generated from N(0,σ), where σ
denotes the noise level. We consider σ to be 0.25, 0.5, 0.75, and 1. For INSIDER, we incorpo-

rate two categorical variables as covariates without considering their interaction. For linear

regression, we fit ridge regression with the two categorical variables as predictors and Z as

responses. For a fair comparison, we first draw 10% of the elements of Z without replacement

as hold-out set, draw 10% of the elements of the left data without replacement as validation set,

and consider other elements of the left data as trainset. To employ INSIDER and Ridge regres-

sion, we first train them on the trainset with different hyperparameters and select the parame-

ters with which they perform the best on the validation set in terms of RMSE. Then, we fit

them with the chosen hyperparameters on the left data (trainset + validation set) and report

the RMSE of the fitted model on T for the testset. The baseline RMSE is the root-mean-square

difference between T and the average of Z over the trainset and validation set. The results of

the simulation are shown in Table 3.

Table 3 shows that INSIDER performs similarly to ridge regression in terms of RMSE in

recovering T. Moreover, compared with the baseline RMSE, INSIDER captures a large propor-

tion of signals. This suggests that INSIDER performs well under the case of model specification

when the simulated data is generated according to multivariate linear models.

Further, we also explored the ability of INSIDER to handle missing values in simulation set-

tings. There are mainly two types of missing in RNA-Seq studies. The first type is missing sam-

ples. For example, the biosamples of some tissues from donors are not available, and this leads

to missing samples in RNA-Seq data. The second type is missing entries. That is, expression

levels of some genes for samples are missing. In practice, the proportion of missing entries is

usually small in RNA-Seq data. Here we studied the two types of missing in the simulation

below.

In our simulation study, we assume there are 50 donors with 2 different phenotypes, 8 tis-

sues, and 1000 genes. The number of samples for our simulated data matrix is 400 (50×8).

Moreover, we consider the interaction between phenotypes and tissues. In our simulation

setup, we consider a gene expression matrix Z (400×1000), and variation in the matrix comes

from three biological variables (D,P,T), the interaction between P and T, and random noise.

Their relationship is described by Z = R+Θ, where R = (XDD + XPP + XTT + XWW)V. The

rank of latent space is set to 5, D, P, and T are matrices of dimensions 50×5, 2×5, and 8×5,

respectively, and the dimension ofW for the interaction between P and T is 16×5. V is a

5×1000 matrix for gene latent representations. All matrices for latent representation were gen-

erated from the standard normal distribution. The design matrices for {D,P,T,W} are X400�50
D ,

Table 3. Performance of INSIDER in recovering T over the hold-out set using RMSE when the data is generated

according to a multivariate linear model.

RMSE noise variance δ

0.25 0.5 0.75 1.0

Baseline 1.4234 1.4046 1.4005 1.4001

Ridge regression 0.1496 0.2934 0.4257 0.5426

INSIDER 0.1493 0.2950 0.4268 0.5458

https://doi.org/10.1371/journal.pgen.1011189.t003
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X400�2
P , X400�8

T , and X250�16
W , respectively. The noise matrix Θ (400×1000) was generated from a

normal distribution N (0, δ), and δ is the variance of the distribution. In the simulation, we

considered δ equal to 0.25, 0.5, 0.75, and 1.

To better mimic the complex missing samples in real settings, we consider the setting based

on the distribution of brain structures and phenotypes of samples of 50 donors similar to the

ageing, dementia, and TBI data. Among 50 donors, 27 are healthy, and the other 23 are

affected by a specific disease. For each donor, at least 4 out of 8 tissues are available. Then, we

had 229 samples available, and 171 (42.75%) samples were missing. For comparison, we also

conducted simulation studies on the scenario where 42.75% of samples are missing at random.

Further, to introduce missing entries in the data matrix of samples available, we randomly

drew 5% of the elements from it as missing entries. To evaluate the performance of INSIDER

in handling missing, we examined the RMSE between the estimated R̂ by INSIDER and R over

missing entries and samples, and the result is presented in Table 4. In the table, the baseline

RMSE is the root-mean-square difference between R for missing entries or samples and the

average of Z over nonmissing entries. Since the baseline RMSE for missing entries and samples

are roughly the same, we only show the baseline RMSE for missing samples for illustration.

From the table, we see that the RMSE for missing entries and samples increases slightly with

increasing noise levels, and the RMSE for missing entries is slightly higher compared with the

RMSE for missing samples. The RMSE for random missing samples and the designed missing

samples based on the ageing, dementia, and TBI data is roughly the same. The simulation result

suggests that the INSIDER has a good ability to recover underlying true patterns and the ability

decreases slightly with increasing noise levels, even though complex missing exists.

Analysis of the BrainSpan data

The BrainSpan study provides RNA-Seq data profiling up to sixteen cortical and subcortical

structures across the entire course of human brain development [23]. In this analysis, we aim

to explore the development trajectories across human brain development, the BPs that func-

tion in different brain regions, and the involvement of brain regions in different development

stages.

The BrainSpan dataset was downloaded from the website provided in [3]. The dimension

of the data matrix for our analysis is 524×43411. In this analysis, we modeled development

stages and brain regions as covariates but omitted interactions between development stages

and brain regions, because many combinations of development stages and brain regions only

have 1 or 0 RNA-seq sample, so inference of the interaction will be unreliable. For the defini-

tion of development stages, we follow the specifications defined in the original study [3].

In the application, even though the development stages are in chronological order, we con-

sider development stages as unordered categorical variables. The main reason is that human

brain development is nonlinear, so some metagenes may only be highly active in certain devel-

opmental stages and then are leveled down or turned off. For example, the study [24]

Table 4. The baseline RMSE and RMSE of the estimated R̂^ by INSIDER against R on missing entries and samples across different simulation settings.

RMSE

Noise

Baseline Missing entries Random missing samples Missing samples (real)

0.25 4.5308 0.0460 0.0394 0.0401

0.50 4.6308 0.0907 0.0780 0.0803

0.75 4.5998 0.1397 0.1207 0.1206

1.00 4.4998 0.1827 0.1553 0.1581

https://doi.org/10.1371/journal.pgen.1011189.t004
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systematically discussed the development of different brain structures across developmental

stages, suggesting that the development of brain structures is specific to certain development

stages. For illustration, we denote DN1�K ;TN2�K ;VK�Mas the latent representations for develop-

ment stages, brain regions, and genes, respectively. There are N1 development stages and N2

brain regions, andM is the number of genes included. The rank K of latent space selected by

hyperparameter tuning is 19.

Metagenes reveal development trajectories

We adopt the convention to consider the rows of V as metagenes [22]. We first looked at

DN1�K , which are the levels of expression of Kmetagenes across N1 developmental stages, and

computed the variance of the expression levels of each metagene across N1 developmental

stages (the variances are computed with the columns in D). We chose the most variable (16th),

2nd, and 17th metagenes. We visualized the trajectories of the selected metagenes across human

brain development (Fig 2A). The expression level of the most variable metagene is high before

late fetal stages and decreases to a low level after early childhood (Fig 2A). Meanwhile, we see a

rapid surge in the level of the 2nd metagene between late fetal and childhood (Fig 2A). Addi-

tionally, the loading of the 17th metagene is high at the early fetal and fluctuates around zero at

later stages (Fig 2A).

To decode biological mechanisms behind these metagenes, we carried out enrichment anal-

yses to find up- (Fig 2B) and down-regulated (Fig 2C) biological processes (BPs) encoded by

them. Specifically, for a given metagene Vi, the i-th row of V, we examine the BPs enriched by

genes with large effects, that is, the genes with large absolute values for Vi, since these genes

encode primary biological functions of the metagene. Therefore, enrichment analyses were

conducted on the set of genes in the upper or lower 2.5% quantile of Vi to explore up- or

down-regulated BPs encoded by the metagene, respectively. Here up- or down-regulated BPs

refer to BPs enriched by up- or down-regulated genes. Throughout our work, we use them to

convey the meaning without loss of clarity. Other technical details for the enrichment analysis

are presented in the Supplementary Content (S1 Text). The up- and down-regulated BPs for

the 2nd (S1A and S1B Fig) and 17th (S1C and S1D Fig) metagenes are also provided in S1 Fig.

On the one hand, a joint analysis of the trajectories of the (16th, 17th) metagenes (Fig 2A)

with their corresponding up-regulated BPs shows that the embryo is under rapid differentia-

tion and development at the early fetal (S1C Fig) and that developments of brain regions, such

as the hippocampus, pallium, and forebrain, are high before the mid-fetal period (Fig 2B). As

core systems of the brain are established before birth [25], levels of BPs involved in cell devel-

opment, axonogenesis, myelination, and gliogenesis fall rapidly after the late fetal period (Figs

2A and 2B and S1C). The basic structure of human brains does not undergo substantial

changes after birth, so we observed a decline in levels of BPs related to the development of

brain regions, such as the forebrain, telencephalon, pallium, and hippocampus (Fig 2A and

2B). With its continued development, human brains mature well into the 20s [26], correspond-

ing to a relatively low level of these BPs in young adulthood (Fig 2A and 2B).

On the other hand, we observed that the BPs involved in learning, memory, and cognition

are relatively low in fetal stages (Figs 2A and 2C and S1D). With the development of human

brains, we also noticed a rapid surge in the level of BPs related to learning, memory, and cogni-

tion during infancy (Figs 2A and S1A) and a stable rise in levels of these BPs after mid-fetal

stages (Fig 2A and 2C). After the maturation of human brains, these BPs maintain a high level

(Fig 2A and 2C). During the development of learning, memory, and cognition, new neural

networks form in the brain [27], and the level of neurotransmitters increases simultaneously

[28]. Our findings also show that the BPs involved in synaptic functions and neurotransmitter
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activities follow a similar trajectory as those of learning, memory, and cognition (Figs 2A and

2C, S1A and S1D).

The trajectory of the least variable metagene is highly negative and flat across human brain

development (S2A Fig). Subsequent enrichment analysis revealed that the down-regulated BPs

Fig 2. Downstream analyses with results from the application to the BrainSpan data. A. The trajectories of the selected metagene across

human brain development are displayed in the left of panel A. The definition of stages is provided in the table on the right of panel A. B.

The top 30 up-regulated BPs enriched by the most variable (16th) metagene is presented. C. The top 30 down-regulated BPs enriched by the

most variable (16th) metagene is displayed. D. The top 30 up-regulated BPs in the primary motor and somatosensory cortex (M1C-S1C) are

shown in panel D. E. The top 30 down-regulated BPs in the M1C-S1C are shown in panel E. F. Trajectories of the adjusted expression for

the selected genes at the whole brain level are shown in panel F. The definition of stages in the figure is the same as in panel A.

https://doi.org/10.1371/journal.pgen.1011189.g002
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enriched by metagene are involved in cell and ATP metabolism and cell communication (S2B

Fig), which generally maintain a high level during brain development.

Metagenes characterize development stages and brain regions

Previously, metagenes depicted the development trajectories of human brains. Moreover,

metagenes also can characterize development stages and brain regions. This can be achieved

by examining BPs enriched by metagenes with highly distinct values for development stages or

brain regions. We highlighted several metagenes for demonstration (Tabs A and B in

S1 Table).

On the one hand, one metagene was highlighted to characterize development stages for

demonstration. First, we observed that the expression level of the 5th metagene for the early

mid-fetal (the 5th stage in Fig 2A) is highly positive and much greater than for other stages

(Tab A in S1 Table). Subsequently, the top up-regulated BPs by the 5th metagene involve ossifi-

cation and development of bone, muscle, and sensory systems (S2C Fig). The results suggest

that the mid-fetal period is vital for bone and muscle formation and contributes to sensory sys-

tem development.

On the other hand, we also highlighted one metagene to uncover the functions of brain

regions. The loading of the 1st metagene for the striatum is highly positive. Furthermore, the

absolute value of the metagene is much greater for the brain region than for other brain

regions (Tab B in S1 Table). As shown by subsequent enrichment analysis, the top 30 up-regu-

lated BPs by the 1st metagene cover learning or memory, cognition, and hormone (e.g., dopa-

mine, monoamine, and catecholamine) secretion and transport (S2D Fig), suggesting that the

striatum is responsible for human emotion and cognition (e.g., reward system) [29].

Reveal trajectories of genes expression across human brain development at

the whole-brain level

The development of the human brains is heterogenous across different individuals and not lin-

ear across different brain regions. Thus, the confounding variation from donors and tissues

makes it difficult to reveal gene expression changes at the whole-brain level across human

brain development. One can only show trajectories of gene expression in a tissue-wise manner,

as displayed in the study [23].

However, INSIDER allows us to obtain the ‘adjusted’ gene expression profiles across devel-

opment stages by multiplying D with V. Note that variation from tissue and donor is con-

trolled in the adjusted gene expression profiles, which cannot be readily computed from

conventional approaches. Here we showed the trajectories of summarized expression changes

for six selected genes (Fig 2F), which are chosen from genes in the top and bottom of the

expression profile for the most variable (16th) metagene selected previously.

The left panel in Fig 2F showed that the trajectory of DCX, expressed in neuronal progeni-

tor cells and immature migrating neurons, is similar to that of BPs involved in human brain

development discussed previously and consistent with its trend in the hippocampus [23].

Regarding Sox4 and Sox11, known key controllers of embryonic and fetal development, our

results suggested that they are expressed at high levels in the early development stages (left

panel in Fig 2F). Furthermore, they also demonstrate a similar trajectory across human brain

development in the panel.

BothMBP and PLP1 are involved in the myelination in the CNS, which is vital to cognition

development and function and is largely completed in early adulthood [30,31]. Another gene

NRGN regulates synaptic plasticity crucial for synaptic function [32]. The trends of trajectories
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of the three genes are similar and upward (right panel in Fig 2F). This observation is consistent

with the development of cognition discussed previously.

Uncover biological mechanisms underlying the development of specific

brain regions

The tissue representation from INSIDER enables us to explore BPs in specific brain regions by

computing their adjusted gene expression profiles. Specifically, the adjusted gene expression

profiles for brain regions were obtained by multiplying T with V. In the multiplication, two

metagenes with the least variance across different brain regions were excluded because they

aggregate the expression of cell metabolic and ATP metabolic processes and cell communica-

tion. Thus, excluding them enables us better uncover BPs related to brain development.

Then, we conducted enrichment analyses on the adjusted gene expression profile of

M1C-S1C (primary motor and somatosensory cortex) to explore up- (Fig 2D) and down-regu-

lated (Fig 2E) BPs for the brain region. We have no particular preference for specific brain

region for further analysis; the main reason for choosing M1C-S1C for presentation is that its

function is probably more specific and has less overlap with other regions, so the biological rel-

evance of our approach can be better demonstrated.

The M1C-S1C is mainly responsible for generating signals to direct the body’s movement

and processing somatic sensations. The development of this region involves axonogenesis and

regulation of neuron projection development (Fig 2D) and thus increases connectivity

between synapses. The levels of synaptic activities also increase with the increased connectivity

[33]. Therefore, it is reasonable to observe that BPs involved in synaptic activities, such as

chemical synaptic transmission, trans−synaptic signaling, and synaptic plasticity, are upregu-

lated in this brain region (Fig 2D). However, the levels of gene expression for BPs involved in

the development of human organs, such as the kidney, renal system, spinal cord, and sensory

organ (e.g., inner ear and ear), are low in the brain region (Fig 2E).

In summary, through the analysis of the BrainSpan data, the advantages of INSIDER have

been demonstrated. It enables analyzing gene expression data that cannot be readily formatted

into 3D tensors, as there could be several observations for some combinations of brain regions

and developmental stages. Our approach reveals the brain developmental trajectories by meta-

genes, and up- and down-regulated BPs encoded by the metagenes. Our method also charac-

terizes the molecular basis underlying neurodevelopment for different brain regions and

developmental stages by examining their underlying up- and down-regulated BPs. However,

standard PCA- and especially GLM-based methods are unapplicable for these tasks in RNA-

seq data analysis. Moreover, NMF may not be readily applicable as it is not straightforward to

directly infer down-regulations of gene expression.

Analysis of the aging, dementia, and TBI data

Dementia is a kind of neurodegenerative disorder, and there are various underlying causes.

Traumatic brain injury (TBI) may lead to dementia, but the most common cause is Alzheimer’s

disease (AD). The Aging, Dementia, and TBI Study aims to characterize neuropathologic,

molecular, and transcriptomic changes in the brains of controls and TBI cases from an aged

population-based cohort [34], which offers RNA-Seq data of temporal cortex (TC), parietal cor-

tex (PC), cortical white matter (WM), and hippocampus (HPC) of controls and TBI cases.

We downloaded the aging, dementia, and TBI data from the website provided in [34]. The

dimension of our dataset is 377 × 44,477, and the RNA-seq samples come from 107 donors. In

this analysis, we seek to explore BPs contributing to the progression of dementia and discover

BPs contributing to dementia in specific brain structures. Here we modeled four covariates:
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donor, brain structure, diagnosis of dementia, and gene, and incorporated interactions

between brain structures and phenotype (dementia diagnosis). The number of ranks K of

latent space selected by hyperparameter tuning is 23.

Clustering analysis of donor representations

It is challenging to perform clustering analysis in high-dimensional settings, for example, with

high-dimensional omics data. However, INSIDER enables us to cluster donors with donor rep-

resentations to characterize donors and even identify disease subtypes, which is in line with

personalized treatment delivery. In practice, we performed hierarchical clustering with latent

donor representations (Fig 3A) without the least variable metagene, which encodes BPs related

to ATP metabolic processes. We selected two as the number of clusters. Subsequently, we

examined the clinical or demographic relevance of the clusters. The two-tailed standard

(P = 0.0251) and rank-based ANOVA tests (P = 0.0185) indicate that the clustering member-

ships statistically correlate with donor age distribution. We note that age itself was not

included as an input for clustering, yet our clustering primarily based on expression data is

able to identify subgroups with important clinical differences (e.g., age).

We also explored whether donor representations enable us to reveal subgroups related to

subtypes of dementia. Since not all metagenes are associated with dementia, we filtered off sev-

eral metagenes that have little relevance to dementia by examining the relevance of the top 30

up- and down-regulated BPs to dementia by searching literatures. Then, we performed hierar-

chical clustering on donor representation with these kept metagenes. The dendrogram

(S3A Fig) indicates three subgroups.

Two-tailed standard (P = 0.0205) and rank-based (P = 0.0731) ANOVA tests yielded similar

p-values when we examined the association between the clustering and age distribution. In fur-

ther exploring its relevance to the clinical diagnoses of dementia, Fisher’s exact tests revealed

that clusters have a statistically significant association with the Braak staging of dementia

(P = 0.0025) and showed a trend of association with diagnoses of dementia by the NINCD-

S-ADRDA Alzheimer’s criteria (P = 0.108), one of the most widely used criteria in the diagno-

sis of Alzheimer’s disease. Note that clinical or pathological features related to staging are not

used as input for the clustering, hence this serves as an ‘external validation’ of the validity of

the clusters. In other words, our proposed clustering framework, primarily based on expres-

sion profiles with dimension reduction by INSIDER, might indeed be useful in identifying

clinically distinct and meaningful subgroups, which are consistent with widely used clinical

staging/diagnosis systems.

Metagenes reveal the biological mechanism of dementia

Here we explored the BPs significantly down-regulated in dementia compared with controls

to shed light on the mechanism of dementia. In practice, we selected the top 2 variable meta-

genes in phenotype representation, as they achieved the most significant p-values in the follow-

ing enrichment analysis. Then, the adjusted gene expression profiles for dementia and control

were obtained by multiplying phenotype representations by gene representation with only the

selected metagenes. Subsequently, we examined down-regulated BPs enriched by the differ-

ence in gene expression between dementia and control (Fig 3B).

The top 30 BPs enriched for down-regulated genes are statistically significant at the p<5e-5

level. We observed that expression levels of genes for BPs involved in cognition, learning, and

memory were significantly lower in the dementia brain than in the control brain (Fig 3B). In

addition, significant differences in BPs related to synaptic activities, such as trans-synaptic sig-

naling, and chemical synaptic transmission, were also observed when comparing dementia
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and controls (Fig 3B). This observation is supported by previous studies [35–37], suggesting

that synaptic signaling and transmission play indispensable roles in the nervous system func-

tion, and their dysfunctions might be important contributing factors to dementia.

Interestingly, expression levels of genes involved in ossification (bone tissue formation) are

also significantly different between dementia and control (Fig 3B). The connection between

impaired bone microarchitecture or regeneration and dementia has been reported [38]. More-

over, a degree of comorbidity of AD and osteoporosis is also supported by epidemiological

studies [39]. On the other hand, several BPs related to metal ions are also identified in the

enrichment analysis (Fig 3B), suggesting that expression levels of genes involved in these BPs

are lower in dementia than in normal. Since metal ions play essential roles in neurotransmitter

Fig 3. Downstream analyses with results from the application to the aging, dementia, and TBI data. A. The figure shows the dendrogram of hierarchical clustering

with donor representations. B. The top 30 down-regulated BPs enriched for the difference in gene expression between dementia and control are displayed. C. The top 30

down-regulated BPs enriched by the difference in gene expression of left HPC between dementia and control are presented.

https://doi.org/10.1371/journal.pgen.1011189.g003
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synthesis and energy metabolism, their deficiencies may contribute to cognitive decline and

memory loss [40], which are the most common symptoms of dementia.

Metagenes characterize donors and functions of brain regions

In addition to revealing the mechanism of dementia, metagenes can help us to characterize

donors and reveal functions of brain regions among the aged donors.

We first employed standard two-tailed t-tests to identify metagenes associated with donor

characteristics. Statistical test results showed the most statistically significant difference in

loadings for the 13th metagene between donors who experienced TBI with loss of conscious-

ness (LOC) and those not experiencing TBI (P = 0.0242). Subsequent enrichment analysis

with the 13th metagene reveals that the top 30 down-regulated BPs involve cognitive functions

(S3B Fig), suggesting that experiencing TBI with LOC may be associated with cognitive

dysfunction.

For demonstration, we highlighted one metagene (17th) to reveal the functions of the white

matter (WM) (S2 Table) of the forebrain. The loadings of the 17th metagene are negative only

for WMs of both the left and right forebrain (S2 Table). Subsequent enrichment analysis with

the 17th metagene revealed that the top 30 up-regulated BPs involve learning, memory, cogni-

tion, and synaptic functions (S3C Fig).

This suggests that expression of genes involved in these BPs is relatively low in the WM of

both the left and right forebrains, compared to other brain regions. Moreover, we noticed that

the loading of this metagene is lower in the WM of the left forebrain than in its counterpart.

However, this cannot help us lead to the claim that the WM of the left forebrain is less involved

in these BPs than its counterpart, as a single metagene may not show the whole picture of the

involvement of WMs.

To further clarify the issue, we examined the top down-regulated BPs in WMs of the left

and right forebrain (S3E and S3F Fig, respectively). The BPs down-regulated in WM of the left

forebrain (S3E Fig) are slightly more statistically significant than those in the right counterpart

(S3F Fig). On the other hand, the BPs down-regulated in both areas are basically the same.

Our analysis suggests that both areas of the WM may similarly involve in dementia.

Incorporating the interaction improves INSIDER

To verify that the performance of INSIDER is significantly improved by considering interac-

tion, we conducted the following statistical test. Generally, performance on held-out data is

considered a golden standard to evaluate model performance. Thus, we examine whether

incorporating interaction terms improves the performance of INSIDER on held-out data

using RMSE. First, we randomly drew 10% of the elements without replacement from the data

matrix as testset and considered the left elements as trainset. Second, we followed the same

procedure to select hyperparameters for INSIDER with and without the interaction term.

Then, we ran INSIDER on the trainset with the selected hyperparameters 50 times for 30 itera-

tions with different parameter initializations and reported their RMSE on the testset. Finally,

we examined whether the RMSE of INSIDER with interaction is statistically significantly

lower than that of INSIDER without interaction with a one-sided t-test. The p-value (p-

value < 2.2e-16) from the test suggests that incorporating interaction improves the perfor-

mance of INSIDER. The mean with standard error for INSIDER with and without interaction

are 0.2297+0.0001 and 0.2302+0.0001, respectively. To our knowledge, the relatively small

improvement in RMSE is due to the fact that only a small proportion of genes contribute to

the interaction between dementia and brain structures.
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Discover heterogeneous effects of dementia on brain structures

Here we further show that the interaction term improves model interpretation of INSIDER.

As dementia was shown to have potentially heterogeneous effects on the left and right HPC at

gene levels (Section II in S1 Text and S4 Fig), we seek to compare BPs down-regulated by

dementia in the left and right HPC to clarify the issue further.

Here we will highlight how INSIDER with interaction is useful in unraveling interactions

between biological variables (in this case, dementia diagnosis × brain structure). Compared to

controls, dementia is associated with changes in gene expression, but the degree of change

may not be uniform across different brain structures/regions. For instance, dementia may

increase the expression of gene X by 1 unit, and the expression is also, on average, elevated by

1 unit across brain regions. However, dementia could be associated with a 5-unit increase in

gene X expression in region Y, due to the presence of an interaction.

First, we used the left HPC as an example to show how to obtain BPs down-regulated by

dementia. First, we multiplied the submatrixWk of interaction representation corresponding

to the left HPC by gene representation V. In the operation, several metagenes with the least

variance in the submatrix were excluded. Technical details of metagene selection are provided

in S1 Text. Then, we examined the down-regulated BPs enriched by genes showing significant

differences in expression in the left HPC between dementia and controls (Fig 3C). Similarly,

BPs down-regulated by dementia in the right HPC can be obtained (S3D Fig).

Overall, most down-regulated BPs are more significant in the left HPC (P at 1e-66 in Fig

3C) than in the right (P at 2e-57 in S3D Fig). Moreover, the gene ratio in Fig 3C is also greater

than in S3D Fig. Here gene ratio is the proportion of genes enriched for a BP. Regarding BPs

enriched for the two brain structures, there is little difference in general. This leads to a similar

finding that the left and right HPC may be affected differently by dementia and supported by

previous studies we discussed earlier.

To summarize, INSIDER demonstrates the following advantages over existing methods in

analyzing the aging, dementia, and TBI data. INSIDER enables clustering donors into disease

subtypes. This task is inapplicable to GLM-based methods for DGE analysis. Moreover,

INSIDER reduces dimension with respect to one variable (e.g., donor) while controlling for

variation from other variables (e.g., brain regions) and helps gain insights into the interaction

between brain regions and dementia diagnosis. However, PCA- and NMF-based methods are

also not applicable for these tasks, as they cannot perform dimension reduction with respect to

different covariates separately and consider the interaction between covariates. Moreover, ten-

sor decomposition cannot be employed to explore the interaction, as there are several observa-

tions for different combinations of brain regions and diagnosis of dementia and thus the data

cannot be formatted into order-3 tensors.

Computing time and memory requirements

The computing time of INSIDER varies depending on the stopping criteria and computational

resources allocated. In our study, with the defined stopping criteria, INSIDER takes approxi-

mately 5 hours and 8 hours to run the BrainSpan dataset (524×43,411) and the aging, demen-

tia, and TBI dataset (377×44,477), respectively, when using 30 cores (Intel Xeon Gold 6230

CPU @2.10GHz).

Owing to our implementation with RcppArmadillo for parallel computing, INSIDER has

relatively low memory requirements. It requires less than 5GB of memory for the BrainSpan

dataset and the aging, dementia, and TBI dataset.
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Discussion

We demonstrated the versatility and potential of INSIDER through applications in which vari-

ous downstream analyses were performed. In the first application, the development trajecto-

ries across the human life span were revealed, and up- and down-regulated BPs underlying

them were uncovered. Moreover, the implicated brain regions were characterized. In the other

application, we explored the mechanisms contributing to dementia, identified subgroups

among donors with latent donor representations, and examined the contribution of tissues

(e.g., brain regions) to biological conditions (e.g., dementia). Our results are supported by the

literature. For example, the interpretation of the development trajectories is consistent with

findings from previous studies.

INSIDER has the following advantages. First, it is general and flexible, in which covariates

and interactions in modeling can be adjusted according to research interest. Second, it is versa-

tile and interpretable in terms of downstream analysis. Various downstream analyses were car-

ried out, such as revealing development trajectory, clustering donors, revealing disease

mechanisms, and exploring interactions between covariates. Third, it encourages sparsity in

gene representations by introducing elastic-net regularization, thus facilitating result interpre-

tations. Fourth, it can capture interactions between covariates, common in biological settings.

Finally, it has good scalability and allows missing values.

Moreover, the advantages of INSIDER over existing methods have been demonstrated via

applications. Compared with INSIDER, GLM-based methods for DGE analysis do not aim for

dimension reduction and thus do not enable clustering donors in low-dimension, revealing

developmental trajectories, and characterizing brain regions or development stages. Moreover,

traditional PCA/factor analysis decomposes the variation of ZN×M by ZN×M =HN×K LK×M. Both

HN×K and LK×M are unobserved. The L combines two or more variables into a single compo-

nent/factor. Similarly, INSIDER combines several genes that tend to be co-expressed or work

together to induce biological functions into a single metagene. Thus, V in INSIDER is analo-

gous to L in factor analysis, the elements of V represent the effects of metagenes on individual

genes, and the contribution of individual genes to each metagene is represented by the corre-

sponding row of V. Moreover, INSIDER can be considered a generalization/extension of factor

analysis, where the factors are modelled as being under the influence of some covariates. In

INSIDER, we introduce a model of F in terms of covariates X by F = XB, where X is an indica-

tor matrix of measured covariates and B is a matrix of coefficients. The covariates are classified

into donor (XD), phenotype (XP), tissue (XT), and phenotype-by-tissue interactions (XW).

However, these indicator matrices can be joined into a single matrix X = (XD, XP, XT, XW), if

the coefficient matrices are also joined together into a single matrix B = (D⊺,P⊺,T⊺,W⊺)⊺. Thus,

this gives the overall INSIDER model by Z = XBV + Θ. Different from PCA/factor analysis,

INSIDER directly associates the covariates (XD, XP, XT, XW) with the metagenes through the

matrices D,P,T,W, and this provides insights on how covariates affect the biological pathways.

However, the estimation of V in PCA/factor analysis is not guided by the covariates and thus it

cannot directly associate the components/factors with the covariates. In addition, INSIDER

enables computing adjusted expression profiles for covariates, thus uncovering the effect of

covariates on gene expression. In contrast with INSIDER, standard NMF-based methods can-

not model variation frommultiple variables separately and capture their interaction. and

unable directly infer down-regulation in biological settings, which impairs its interpretability.

Compared with tensor decomposition, the closest analog of INSIDER, INSIDER also demon-

strates its superiority through simulation studies and is able to handle the situation where the

data matrix cannot be formatted into tensors, as demonstrated via applications. A more
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explicitly comparison of the above capabilities of INSIDER with those of the other methods is

displayed in S3 Table.

Bulk RNA-Seq techniques are popular in studying tissue-specific expression profiles. Usu-

ally, confounding variables (covariates) are inevitably introduced in the RNA-Seq expression

data. For example, GTEx [2] data contains confounding variables and other features leading to

variations in expression, such as donor, gender, and age. However, few studies fully addressed

the issue ofmultiple confounders or covariates while also achieving dimensionality reduction

(DR). Existing approaches such as PCA, factor analysis, and non-negative matrix factorization

only can reduce data dimensionality but have substantial limitations, as described above. The

importance of an improved methodology to perform DR in high-dimensional data withmulti-
ple covariates has become more prominent with the increasing availability of RNA-seq data

and the popularity of joint data analysis from different sources. For example, the PsychEN-

CODE project [4] is composited of several independent projects, such as ATP (the Autism Tis-

sue Program) [5], CMC (the CommonMind Consortium) [41], and BrainGVEX [4], with

different study aims. INSIDER well addresses the challenge and takes account of sparsity in

gene expression and the interaction between covariates simultaneously. More importantly, it

has excellent interpretability and can be applied to large-scale data analysis.

Meanwhile, we notice that the development stages are in chronological order. In practice,

we consider them as unordered categorical variables because human brain development is

nonlinear and the development of brain structures is specific to certain development stages, as

we discussed previously. It is more reasonable to model development stages as unordered cate-

gorical variables. On the other hand, our simulation studies show that INSIDER can recover

the monotonic trend for ordinal variables (Section VI in S1 Text). Therefore, it is a feasible

solution for INSIDER to consider ordinal variables as unordered categorical variables. It is

ideal for INSIDER to consider ordinal variables explicitly. We would like to address this issue

in future.

Future works may also include further analysis of various bulk RNA-seq datasets and

extend it to single-cell data analysis. In addition, further experimental studies to validate the

findings from our applications will be an important future direction. We note that the biologi-

cal findings should be considered tentative until further replicated by further experimental

and clinical studies.

Conclusion

This article proposed a novel statistical approach, INSIDER, based on matrix decomposition,

to model the variation contributed by confounding variables or covariates in bulk RNA-Seq

data and decompose it into a shared low-rank latent space. The variation may originate differ-

ently, such as donor, gender, tissue, or other biological conditions. INSIDER is a general and

flexible framework, which is robust to missing values. In particular, it can capture interactions

between variables or covariates. Moreover, it encourages sparsity in latent representations by

imposing the elastic net penalty, thus facilitating model interpretations. In our applications,

various downstream analyses were carried out based on results from INSIDER. The broad

applicability of INSIDER in biomedical and clinical settings was demonstrated in the

applications.

Methods

Here we propose INSIDER, based on additive matrix factorization, to decompose heteroge-

neous biological variation in RNA-Seq data into a low-rank latent space.
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Model specifications

Denote zijhm as the expression level of genem of sample s from tissue h of donor i with pheno-

type j. We assume that there are N observations, N1 donors, N2 phenotypes, and N3 tissues.

zijhm is modelled as

ẑ ijhm ¼ d
T
i vm þ p

T
j vm þ t

T
h vm þ wT

jhvm þ u
T
s vm ð1Þ

where di, pj, th, wjh, us, vm are vectors of length K, and us is usually ignored when donor, tissue,

and phenotype information is available and can be included to capture variation from

unknown sources when part or all of the source information is unavailable. Note that the

above equation incorporates the interaction effect between tissues and phenotypes via intro-

ducing wjh on gene expression. For example, a certain disease may be associated with changes

in gene expression, but the degree of change may differ by the tissue type. The objective func-

tion that we seek to minimize for Eq 1 is defined as

Lðd; p; t;w; u; vÞ ¼
1

2

X

i;j;h;m

zijhm � di þ pj þ th þ wjh þ us
� �T

vm

� �2

þ
1

2
l
X

i
jjdijj

2

2
þ
X

j
jjpjjj

2

2
þ
X

h
jjthjj

2

2
þ
X

j;h
jjwjhjj

2

2
þ
X

s
jjusjj

2

2

h i
ð2Þ

þl
1

2
ð1 � aÞ

X

m
jjvmjj

2

2
þ a

X

m

jvmj1

" #

The Eq 2 can be represented with matrix notations. Let Z 2 RN×M represent the data matrix

for the expression profile of N samples andM genes. The matrices

DN1�K ;TN2�K ; PN3�K ;W N2∗N3ð Þ�K ;UN�K ;VK�M are the rank K latent representations for N1

donors, N2 phenotypes, N3 tissues, N2 * N3 interactions, N observations, andM genes, respec-

tively. XN�N1
D ;XN�N2

T ;XN�N3
P ;XN� N2∗N3ð Þ

W ;XN�NU are indicator matrices, representing the dummy

design matrices for N samples. XN�NU is an identity matrix, which can be ignored and is added

for the consideration of consistency in notations. Eq 2 can be rewritten as:

LðD; P;T;W;U;VÞ ¼
1

2
kZ � XDDþ XPP þ XTT þ XWW þ XUUð ÞVk2

Fþ

1

2
l k D k2

F þ k P k
2

F þ k T k
2

F þ kW k
2

F þ k U k
2

F

� �
þ

l
1

2
ð1 � aÞ k V k2

F þajVj1

� �

:

Missing entries in Z are removed in the summation in the first line of the equation.

Model fitting

Alternating block coordinate descent (BCD) was employed to optimize Eq 2. In each iteration,

we update all parameters of INSIDER sequentially. We repeat the process until the stop criteria

meets.
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Optimize the objective function

First, we choose to maximize the objective function with respect to pj in Eq 2. By fixing all di,th,
wjh,us,vm and taking the derivative with respect to pj, we can have the update for pj as follows

pj ¼ NjVV
> þ lIK

h i� 1X

k2Sj

V~zk;

where ~Z ¼ Z � XDDþ XTT þ XWW þ XUUð ÞV; Sj is the set of row indices of samples with

phenotype j, and Nj is the number of elements in Sj. Similarly, the update for th can be derived

as

th ¼ NhVV
> þ lIK½ �

� 1
X

k2Sh

V~zk;

where ~Z ¼ Z � XDDþ XPP þ XWW þ XUUð ÞV; Sh is the set of row indices of samples from

tissue h, and Nh is the number of elements in Sh. Likewise, we can have the update for di:

di ¼ NiVV
> þ lIK½ �

� 1
X

k2Si

V~zk;

where ~Z ¼ Z � XTT þ XPP þ XWW þ XUUð ÞV; Si is the set of row indices of samples from

donor i, and Ni denote the number of elements in Si. Besides, the update for wjh can be derived

as follows

wjh ¼ NjhVV
> þ lIK

h i� 1X

k2Sjh

V~zk;

where~Z ¼ Z � XDDþ XTT þ XPP þ XUUð ÞV;, Sjh is the set of row indices of samples of tissue

h with phenotype j, and Njh is the number of elements in Sjh. Finally, the update for us can be

derived as follows

us ¼ VV> þ lIK½ �
� 1V~zs;

where~Z ¼ Z � XDDþ XTT þ XPP þ XWWð ÞV; ~zs is the s-th row of ~zs, and us is latent repre-

sentation for the s-th sample.

In the above, we derived the updates for D,P,T,W,U for categorical covariates. In fact,

INSIDER can also handle continuous covariate. For illustration, let denote q is a vector of

length K for latent representation for a continuous covariate, and xN�1
q is the variable across N

observations.

LðD; q;T;W;U;VÞ ¼
1

2
jjZ � XDDþ xqq

> þ XTT þ XWW þ XUU
� �

Vjj2F

þ
1

2
l k D k2

F þ k q k
2

2
þ k T k2

F þ kW k
2

F þ k U k
2

F

� �

þl
1

2
ð1 � aÞ k V k2

F þajVj1

� �

:

In the equation, the meaning of other notations is the same as in the manuscript. With
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other parameters fixed, the objective function with respect to q can be simplified as follows:

LðqÞ ¼ argminq
1

2
Tr ~Z � xqq

>V
� �>

~Z � xqq
>V

� �� �

þ
1

2
l k q k2

2
;

where ~Z ¼ Z � XDDþ XTT þ XWW þ XUUð ÞV: By minimizing the objective with respect to

q, the update for q can be obtained by

q ¼ x>q xqVV
> þ lIk

� �� 1

V ~Z>xq:

This feature has been incorporated into the software of INSIDER.

When we seek to minimize the objective function defined by Eq 2 with respect to vm, the

m-th column of V, with all the other parameters fixed, the equation can be simplified into the

following elastic net problem

L vmð Þ ¼
1

2
kZm � Evmk

2

2
þ

1

2
lð1 � aÞkvmk

2

2
þ lajvmj1 ð3Þ

Here E ¼ XDDþ XPP þ XTT þ XWW þ XUU;Zm, Zm is the expression levels of them-th

gene across the N samples, and missing entries in Zm are removed in the calculation. The ran-

domized coordinate descent (RCD) algorithm proposed in Algorithm 1 in S1 Text is employed

to optimize each column of V in parallel.

In practice, optimizing the subproblems defined by Eq 3 is computationally intensive. The

safe rules for screening are adopted to accelerate the computation, which discard variables

with coefficients that are shrunk to zero in optimization. To illustrate with Eq 3, the rules

defined by Eq. 24 in the study [42] for discarding predictor j is

juTj Zmj < a 2l � lmaxð Þ; ð4Þ

where lmax ¼ maxjjuTj Zmj; and uj is the j-th column of U.

Initialization, hyperparameter tuning and the stopping criterion

Regarding initialization of D, P, T,W, U, V defined in the Eq 2, they are initiated from normal

distribution N(0, 0.001). We consider the solution from the previous iteration as warm start

for the subproblem defined by Eq 3 in optimization.

In model selection, we use the following procedure to select the hyperparameters {K,λ,α}

for INSIDER. Specifically, we first randomly draw 10% of elements without replacement from

the data matrix as testset and consider the left data as trainset. Only the trainset is used to train

INSIDER, and the testset is independent from model training and utilized for model selection.

Specifically, we first train INSIDER on the trainset and then examine whether our approxima-

tions for the testset by the trained model can well approximate their real values. This practice

is also consistent with the idea of cross-validation, which performs model selection based on

model performance on held-out data. In fact, it is also widely used in recommendation systems

[43] and matrix completion [44]. To evaluate the performance of INSIDER with different

hyperparameters, the root mean squared error (RMSE) on the testset is calculated, which mea-

sures the root averaged squared difference between the approximations from INSIDER and

the real values, so a lower RMSE on the testset corresponds to a better model.

In our applications, K was chosen from a sequence from 10 to 30 with step size 2. The range

of K is enough in general and can be broadened to consider more complex models. For each

try of K from the sequence, we run INSIDER for 30 iterations. In the process, λ is set to 0.1 to

avoid singularity in matrix inverse, and α is fixed to 0. Then, we select the rank K
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corresponding to the lowest RMSE on the testset. Empirical evidence shows that 30 iterations

are sufficient to give consistent selection results, compared with 50 iterations (Section IV in S1

Text). Also, previous studies [14,22] utilized a small number of iterations (e.g., 20 iterations) to

select the rank K for the methods based on matrix factorization. Note that our method for

selecting K is quite computationally efficient, since we set α = 0 and the update for all parame-

ters can be computed in a closed form.

After choosing K, we define a parameter grid for {λ,α}. For each set of candidate hyperpara-

meters {λ,α},we also run alternating BCD for 30 iterations and choose the parameters with the

best performance on the test set.

In our study, the stopping criteria is defined as

jLið�Þ � Li� 1ð�Þj

Li� 1ð�Þ
< d; ð5Þ

where ℒi(�) denotes the loss at the i-th iteration, and δ is a predefined threshold and set to

10−10 in our experiment.

Supporting information

S1 Text. Supplementary Content. It provides technical details on enrichment analysis, gene

selection in comparing expression differences between dementia and control across brain

regions, and metagene selection for discovering heterogeneous effects of dementia on brain

structures. Regarding the model selection of INSIDER, it demonstrates the effect of different

numbers of iterations (e.g., 30, 50) on model selection. It also shows the capability of INSIDER

to handle ordinal variables via simulation studies. Regarding the difference between INSIDER

and PCA/factor analysis or GLM-based approaches, it presents an in-depth discussion on their

differences. To demonstrate its wide applicability, results from analyzing gender differences in

gene expression of the human brain with GTEx using INSIDER are provided. Further, deriva-

tions for random coordinate descent for elastic net problems and the RCD algorithm (Algo-

rithm 1) for the elastic net with screening rules are also presented.

(DOCX)

S1 Fig. The top 30 up- and down-regulated BPs enriched by the 2nd and 17th metages. The

top 30 up-regulated BPs (S1A Fig) enriched by the 2nd metagene and down-regulated BPs

(S1D Fig) by the 17th metagene are related to learning, memory, cognition, and synaptic func-

tions and neurotransmitter activities. The top 30 down-regulated BPs (S2B Fig) enriched by

the 2nd metagene involve axon development, axonogenesis, myelination, and gliogenesis. The

top 30 up-regulated BPs (S1C Fig) by the 17th metagene cover the BPs related to cell develop-

ment and differentiation.

(TIF)

S2 Fig. The trajectory of the least variable metagene and top 30 BPs enriched by meta-

genes. S2A Fig shows that the trajectory of the least variable metagene is negative and basically

flat across human brain development. The top 30 down-regulated BPs (S2B Fig) encoded by

the metagene involve cell and ATP metabolism and cell communication. Moreover, the top 30

up-regulated BPs (S2C Fig) enriched by the 5th metagene involve ossification and develop-

ment of bone, muscle, and sensory systems, and the top 30 up-regulated BPs (S2D Fig) by the

1st metagene cover learning or memory, cognition, and hormone (e.g., dopamine, mono-

amine, and catecholamine) secretion and transport.

(TIF)
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S3 Fig. Supplement Figs for analysis of the aging, dementia, and TBI data. S3A Fig shows

the dendrogram of hierarchical clustering on donor representation with the selected meta-

genes. We selected 3 subgroups for further analysis. The top 30 down-regulated BPs (S3B Fig)

enriched by the 13th metagene involve cognitive functions, and the top 30 up-regulated BPs

(S3C Fig) enriched by the 17th cover learning, memory, cognition, and synaptic functions.

S3D Fig shows the top 30 down-regulated BPs enriched by the difference in gene expression of

right HPC between dementia and control. Overall, the p-values for most down-regulated BPs

in S3D Fig are significant at 2e-57, which are greater than those for the left HPC shown in Fig

3C from the manuscript (P at 1e-66). Moreover, the gene ratio in S3D Fig is also smaller than

in Fig 3C. This leads to the finding that the left and right HPC may be affected differently by

dementia. S3E and S4F Figs show the top 30 down-regulated BPs enriched by the difference in

expression profiles for WM of the left and right forebrain, respectively. The BPs in S3E Fig are

slightly more statistically significant than those in S3F Fig and the BPs in the two figures are

basically the same.

(TIF)

S4 Fig. Comparison of differences in the expression of three selected genes between

dementia and control across brain regions. The figure compares the expression levels of

three selected genes (NRGN, CAMK2A, and SHISA6) between dementia and control across

brain regions, suggesting that dementia has potentially heterogeneous effects on the left and

right HPC at gene levels.

(TIF)

S1 Table. Tab A. The loadings of all metagenes across brain development stages in the

analysis of the BrainSpan dataset. The table shows that the loading of the 5th metagene for

the early-mid fetal stage (the 5th stage) is highly positive, and its absolute value is much larger

than that of the metagene for other developmental stages. Thus, the 5th metagene can be used

to characterize the stage. Tab B. The loadings of all metagenes across all brain regions in the

analysis of the BrainSpan dataset. The table shows that the loading of the 1st metagene for

the striatum is highly positive, and its absolute value is much larger than that of the metagene

for other brain regions. Thus, the 1st metagene can be used to characterize the brain region.

(XLSX)

S2 Table. The loadings of all metagenes across all brain regions in the analysis of the aging,

dementia, and TBI dataset. The table shows that the loadings of the 17th metagene are only

negative for FWM (both left and right) and their absolute value is much larger than those for

other brain regions. Therefore, this metagene can be utilized to reveal the functions of FWM

in the brains of aged donors.

(XLSX)

S3 Table. Comparison of INSIDER with the other methods in their capabilities in accom-

modating different situations in the analysis of gene expression data. In the table, we com-

pare INSIDER with other methods, including PCA/NMF, SDA, and the GLM-based methods

for DEG analysis, in their abilities to handle more than 3-dimensional data, to incorporate

interaction, to allow missing data, to reduce data dimensionality, to perform differential

expression analysis, and to handle multidimensional (> = 3 dimensions) data that cannot fit

into tensors.

(XLSX)
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