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Abstract

TOP2 inhibitors (TOP2i) are effective drugs for breast cancer treatment. However, they can

cause cardiotoxicity in some women. The most widely used TOP2i include anthracyclines

(AC) Doxorubicin (DOX), Daunorubicin (DNR), Epirubicin (EPI), and the anthraquinone

Mitoxantrone (MTX). It is unclear whether women would experience the same adverse

effects from all drugs in this class, or if specific drugs would be preferable for certain individ-

uals based on their cardiotoxicity risk profile. To investigate this, we studied the effects of

treatment of DOX, DNR, EPI, MTX, and an unrelated monoclonal antibody Trastuzumab

(TRZ) on iPSC-derived cardiomyocytes (iPSC-CMs) from six healthy females. All TOP2i

induce cell death at concentrations observed in cancer patient serum, while TRZ does not.

A sub-lethal dose of all TOP2i induces limited cellular stress but affects calcium handling, a

function critical for cardiomyocyte contraction. TOP2i induce thousands of gene expression

changes over time, giving rise to four distinct gene expression response signatures, denoted

as TOP2i early-acute, early-sustained, and late response genes, and non-response genes.

There is no drug- or AC-specific signature. TOP2i early response genes are enriched in

chromatin regulators, which mediate AC sensitivity across breast cancer patients. However,

there is increased transcriptional variability between individuals following AC treatments. To

investigate potential genetic effects on response variability, we first identified a reported set

of expression quantitative trait loci (eQTLs) uncovered following DOX treatment in iPSC-

CMs. Indeed, DOX response eQTLs are enriched in genes that respond to all TOP2i. Next,

we identified 38 genes in loci associated with AC toxicity by GWAS or TWAS. Two thirds of

the genes that respond to at least one TOP2i, respond to all ACs with the same direction of

effect. Our data demonstrate that TOP2i induce thousands of shared gene expression

changes in cardiomyocytes, including genes near SNPs associated with inter-individual var-

iation in response to DOX treatment and AC-induced cardiotoxicity.
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Author summary

Anthracycline drugs such as Doxorubicin are effective treatments for breast cancer; how-

ever, they can cause cardiotoxicity in some women. It is unclear whether women would

experience the same toxicity for all drugs in this class, or whether specific drugs would be

better tolerated in specific individuals. We used an in vitro system of induced pluripotent

stem cell-derived cardiomyocytes from six healthy females to test the effects of five breast

cancer drugs on cell heath and global gene expression. We identified a strong shared cellu-

lar and gene expression response to drugs from the same class. However, there is more

variation in gene expression levels between individuals following treatment with each

anthracycline compared to untreated cells. We found that many genes in regions previ-

ously associated with Doxorubicin-induced cardiotoxicity in cancer patients, respond to

at least two drugs in the class. This suggests that drugs in the same class induce similar

effects on an individual’s heart. This work contributes to our understanding of how drug

response, in the context of off-target effects, varies across individuals.

Introduction

Globally, breast cancer is the most common cancer in women [1]. 13% of women in the

United States will be diagnosed with breast cancer during their lifetime [2]. While the number

of deaths attributed to the disease is decreasing, and the 5-year survival rate is 90.8%, there are

an estimated 3.8 million women living with breast cancer [2]. Breast cancer survivors are now

more likely to suffer from secondary conditions such as cardiovascular disease (CVD) than

tumor recurrence [3]. This is likely due to shared risk factors for breast cancer and CVD, and

the cardiotoxic side effects induced by chemotherapeutic agents [4].

Anthracyclines (ACs) such as Doxorubicin (DOX), which is prescribed in ~32% of breast

cancer patients, can cause left ventricular dysfunction and heart failure both during treatment,

and years following treatment [5]. The risk of adverse cardiovascular events increases with

higher doses of DOX [4]. DOX-induced congestive heart failure has been observed in 5% of

patients treated with 400 mg/m2 of the drug, 26% of patients treated with 550 mg/m2, and 48%

of patients treated with 700 mg/m2 [6]. However, patients with CVD risk factors treated at low

doses are also at risk for cardiotoxicity [6], suggesting inter-individual variation in response to

drug treatment. Indeed, genome-wide association studies (GWAS) have implicated a handful

of genetic variants in AC-induced cardiotoxicity that are close to genes including RARG,

SLC28A3, UGT1A6 and GOLG6A2/MKRN3 [7–10].

Breast cancer survivors are more likely to suffer from heart failure and arrhythmia than

ischemic heart disease, suggesting that the heart muscle itself is affected by the treatment [11].

Cardiomyocytes make up 70–85% of the heart volume [12], and are the target of DOX-induced

toxicity given their high mitochondrial content and metabolic activity [13]; however these cells

are challenging to obtain from humans. With the advent of iPSC technology, we are now able

to acquire easily accessible cell types from blood from humans, and reprogram these cells into

iPSCs, which can subsequently be differentiated into cardiomyocytes (iPSC-CMs). This in
vitro iPSC-CM system has been shown to recapitulate the clinical effects of DOX-induced car-

diotoxicity including apoptosis, DNA damage, and oxidative stress in cells from breast cancer

patients treated with DOX [14]. iPSC-CMs generated from 45 healthy individuals and treated

with DOX revealed hundreds of genetic variants that associate with the gene expression

response to DOX treatment (eQTLs) [15]. These studies suggest that there is a genetic basis to

DOX-induced cardiotoxicity, and highlight the need, and potential, for personalized medicine

to reduce side effects of chemotherapeutic agents.
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The precise mechanistic basis of DOX-induced cardiotoxicity is unclear. DOX intercalates

into DNA forming a complex with DNA topoisomerase II (TOP2), which results in double-

stranded breaks [16]. This leads to the aberrant activation of the p53 stress response pathway,

mitochondrial dysfunction and apoptosis [17]. There are two TOP2 isoforms in humans–

TOP2A and TOP2B. TOP2A expression is regulated in a cell cycle-dependent manner and is

essential for cell division, while TOP2B contributes to transcriptional regulation in mitotic and

post-mitotic cells [18]. TOP2B is essential for the cardiotoxicity observed in mice [19] and dis-

ruption of TOP2B in iPSC-CMs decreases the sensitivity to DOX [20]. In addition to inducing

DNA damage, DOX has been shown to evict histones and initiate chromatin damage [21].

Indeed, in breast cancer patients, sensitivity to ACs is mediated through chromatin regulators

[22]. It has been proposed that ACs, which have only chromatin-damaging activity and not

DNA damage activity, do not induce cardiotoxicity [23].

The National Cancer Institute has approved tens of drugs for use in the treatment of breast

cancer. This list includes ACs that are structural analogs of DOX, such as Epirubicin (EPI),

which is an epimer of DOX, Daunorubicin (DNR), which differs from DOX by a hydroxyl

group, and Mitoxantrone (MTX), which is an anthracenedione that is structurally related to

ACs. All of these drugs are considered to be intercalating TOP2 poisons and show evidence of

cardiotoxicity [24–26].

There is conflicting evidence about whether analogs such as EPI are equally or less likely to

cause cardiotoxic effects than DOX [27,28]. Cardiomyopathy incidence based on pediatric

cancer patient follow-up has shown that for every case of cardiomyopathy in patients treated

with DOX, there are 0.8 cases for patients treated with EPI, 0.6 for DNR, and 10.5 for MTX

[29]. However, clinical trials in breast cancer patients suggest that MTX is less cytotoxic than

DOX [30]. Unrelated breast cancer drugs such as the HER2 receptor agonist Trastuzumab

(TRZ) have also been shown to induce cardiotoxicity in as many as 6% of patients [31]; how-

ever these effects appear to be reversible [32]. It is challenging to compare drug-induced cardi-

otoxicity across different populations of individuals where each individual is administered a

different treatment.

We thus designed a study to compare the cardiomyocyte response to five different breast

cancer drugs in the same set of individuals. To do so, we established an in vitro model of cardi-

otoxicity using iPSC-CMs from a panel of six healthy female individuals and drugs that inhibit

TOP2 (TOP2i) including the ACs DOX, EPI and DNR, the anthracenedione MTX, and TRZ.

We collected data for cell viability, calcium handling, and global gene expression to understand

the gene regulatory response to these drugs over time. This framework allowed us to identify a

gene expression signature associated with the TOP2i response and gain insight into expression

variability across individuals in response to different TOP2i.

Results

We obtained iPSCs from six healthy female individuals in their twenties and thirties with no

known cardiac disease or cancer diagnoses and differentiated these cells into cardiomyocytes.

iPSC-CMs were metabolically selected and matured in culture for ~28 days post initiation of

differentiation (See Methods). The purity of the iPSC-CM cultures was determined as the pro-

portion of cells expressing cardiac Troponin T by flow cytometry. The median iPSC-CM

purity was 97% (range 63–100%) across individuals (S1 Fig).

TOP2-inhibiting breast cancer drugs decrease iPSC-CM viability

We studied the response of iPSC-CMs to a panel of drugs used in the treatment of breast can-

cer (Fig 1A). Specifically, we chose drugs belonging to AC and non-AC classes that inhibit

PLOS GENETICS Anthracyclines and cardiotoxicity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011164 February 28, 2024 3 / 36

https://doi.org/10.1371/journal.pgen.1011164


Fig 1. TOP2i drugs affect cardiomyocyte viability in a dose-dependent manner. (A) Experimental design of the study. iPSCs derived from six healthy

women aged 21 to 32 were differentiated into cardiomyocytes (iPSC-CMs) and exposed to a panel of drugs used in the treatment of breast cancer. The response

to TOP2i Doxorubicin (DOX), Epirubicin (EPI), Daunorubicin (DNR) and Mitoxantrone (MTX) is compared to the non-TOP2i Trastuzumab (TRZ) and a

water vehicle (VEH). Effects on cell viability, cellular stress, cell function, and gene expression are measured. (B) Proportion of viable cardiomyocytes following

exposure to increasing concentrations of each drug. Cell viability in each individual (colored line) was assessed following 48 hours of drug treatment. Dose-

response curves were generated using a four-point log-logistic regression with the upper asymptote set to one. Each data point reflects the mean viability from

two independent differentiations per individual where each is measured in quadruplicate. (C) LD50 values for each drug treatment for each individual. Each

value is calculated as the mean across two independent experiments. LD50 values could not be calculated for TRZ and VEH treatments. (D) EC50 values for

each drug treatment in ten breast cancer cell lines were obtained from the Depmap portal (https://depmap.org) using the PRISM [33], CTRP CTD2 [34], and

GDSC2 [35] databases. Asterisk represents a statistically significant change in LD50 (C) or EC50 (D) values between each drug and DOX treatment (*p< 0.05,

**p< 0.01, ***p< 0.001).

https://doi.org/10.1371/journal.pgen.1011164.g001
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TOP2: DOX, EPI, DNR and MTX, and TRZ as an unrelated monoclonal antibody. Given the

reported cytotoxic effects of several of these drugs, we first sought to measure iPSC-CM viabil-

ity across six individuals following drug and vehicle (VEH) exposure at a range of drug con-

centrations (0.01–50 μM) for 48 hours. We observe a dose-dependent decrease in viability

following DOX, EPI, DNR, and MTX treatments and no effects on viability for TRZ and VEH

(Fig 1B and S1 Table). These effects are consistent across independent differentiations from

the same individuals (S2 Fig), as well as across individuals (Fig 1B). Following analysis of the

dose-response curves, we extracted the concentration which resulted in 50% cardiomyocyte

cell death (LD50) for each drug, across each replicate, in each individual, and calculated the

median value across all six individuals. We find that the median DNR LD50 and MTX LD50

values are significantly lower than those for DOX (T-test; P< 0.05; median LD50 in μM:

DOX = 14.02, DNR = 0.98, EPI = 3.79, MTX = 0.98; Fig 1C and S2 Table).

In order to understand the cell-type specificity of the drug responses, we extracted high

confidence EC50 values following treatment with the same drugs in a panel of ten breast cancer

cell lines from the PRISM, GDSC2 and CTRP databases [33–35]. Interestingly, we find that

DNR is less cytotoxic in breast cancer cell lines than DOX and MTX (T-test; P< 0.05), and

that MTX is the most cytotoxic drug in the panel (Fig 1D). This indicates that cancer drug

doses tested on breast cancer cell lines may not be predictive of cardiotoxicity. To determine

the physiological relevance of our model, we collated observed plasma concentrations of these

drugs in patients being treated for cancer. We find the blood serum levels range from 0.002–

1.73 μM, indicating that the concentrations we identified in vitro could be observed in vivo
and therefore warrant further study (S3 Table).

To determine whether the effects on viability are associated with cellular stress we measured

activity of secreted lactate dehydrogenase. We observe a significant inverse correlation

between cell viability and cellular stress across TOP2i concentrations (DNR rho = -0.54; DOX

rho = -0.35; EPI rho = -0.34; MTX rho = -0.64; P< 0.05) and no correlation in TRZ- and

VEH-treated cells (S3 Fig and S4 Table). This suggests that samples with lower viability have a

higher level of cellular stress as expected given that cardiomyocytes are post-mitotic.

Moving forward, we were interested in understanding the direct effects of these drugs on

cardiomyocytes prior to the initiation of secondary effects leading to cell death. We used our

dose response curve data at 48 hours (S4 Fig), together with the collated clinical serum drug

concentration data, and published dose response data for DOX treatment in iPSC-CMs over

time [36], to select a dose for deep characterization within the first 24 hours of treatment. We

chose a treatment concentration of 0.5 μM, which is below the LD50 calculated 48 hours post

drug treatment for all drugs.

TOP2-inhibiting breast cancer drugs affect iPSC-CM calcium handling

To elucidate the impact of cancer drugs on the calcium handling mechanism of cardiomyo-

cytes, a fundamental determinant of cardiomyocyte contraction, we used the Fluo-4 AM fluo-

rescent calcium indicator for real-time imaging and quantification of calcium transients. We

randomly selected three individuals and treated these iPSC-CMs for 24 hours with each drug

at 0.5 μM and quantified the calcium-associated fluorescence over time using spinning disc

confocal microscopy (Fig 2A). We observe a significant decrease in peak amplitude for DNR,

EPI and MTX compared to VEH (T-test; P< 0.05; Fig 2B and S5 Table), indicating decreased

cytoplasmic calcium entry and therefore decreased contractility.

To estimate the rate of calcium influx and efflux from the cytosol, we examined the rising

and decay slopes of the calcium transients. A reduced rate of cytosolic calcium influx during

contraction was observed in DOX, EPI, and MTX samples compared to VEH (T-test;
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P< 0.05; Fig 2C). We observed a more gradual decay slope during the relaxation phase of con-

traction for DNR, DOX, EPI, and MTX samples compared to VEH (T-test; P< 0.05; Fig 2D).

These data therefore suggest potential dysfunction in both cytosolic calcium entry and clear-

ance. We did not observe effects of drug treatment on the duration of calcium transients, as

determined by measurements of the full width of the calcium transient at half-maximum fluo-

rescence intensity (Fig 2E). However, we did observe a significant increase in the rate of cardi-

omyocyte contraction in DNR-treated cells compared to VEH (T-test; P< 0.05; Fig 2F).

Notably, contraction rate did not change in response to other drug treatments suggesting

potential alterations in cardiac rhythm associated with DNR specifically.

In order to determine the overall similarity in drug effects on calcium handling, we per-

formed principal component analysis on the data obtained for the five calcium transient fea-

tures described above. PC1 which accounts for 54% of the variation, separates the VEH- and

TRZ-treated samples from the TOP2i-treated samples (Fig 2G). Taken together, these findings

Fig 2. Calcium dysregulation occurs in iPSC-CMs post exposure to sub-lethal concentrations of TOP2i. (A) Schematic representation of the features

measured to assess intracellular calcium flux in beating iPSC-CMs from three individuals treated with DOX, EPI, DNR, MTX, TRZ and VEH. Fluorescent

intensity of the calcium-sensitive fluorescent dye Fluo-4 AM was measured over time by spinning disc confocal microscopy. (B) Mean amplitude of calcium

peaks in each individual (orange dot: Individual 2, blue dot: Individual three, green dot: Individual 5) in response to DOX (mauve), EPI (pink), DNR (yellow),

MTX (blue), TRZ (dark green), VEH (light green). (C) Mean rising slope of calcium peaks. (D) Mean decay slope of calcium peaks. (E) Mean peak width at half

maximum peak height. (F) Mean contraction rate over ten seconds. (G) PCA representing five calcium flux features. TOP2i drugs are represented as triangles

and non-TOP2i drugs as circles. Colors represent the specific drug treatment. Asterisk represents a statistically significant change in calcium flux

measurements between drug treatments and vehicle (*p< 0.05, **p< 0.01, ***p< 0.001).

https://doi.org/10.1371/journal.pgen.1011164.g002
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reveal that TOP2-inhibiting drugs at sub-lethal doses can significantly impact calcium han-

dling in cardiomyocytes, which may contribute to cardiomyocyte dysfunction.

AC treatments converge on a shared gene expression response over time

We were next interested in determining the gene expression changes that may lead to drug-

induced effects on cardiomyocyte contraction and cell viability. To do so, we collected global

gene expression measurements by RNA-seq following treatment of 80–99% pure iPSC-CMs

with the five drugs at 0.5 μM, and a vehicle control, in six individuals. We assessed two time-

points to capture early (3 hours) and late (24 hours) effects on gene expression. We processed

the 72 high quality RNA samples in treatment and time-balanced batches (S5 Fig). Sample pro-

cessing and sequencing metrics are described in S6 Table. Following sequencing, we aligned

reads to the genome (S5 Fig), counted the number of reads mapping to genes and removed

genes with low read counts (See Methods), leaving a final set of 14,084 expressed genes. Corre-

lation of read counts followed by hierarchical clustering across samples identifies two distinct

clusters, which primarily separates the 24-hour AC treatments from the other samples (S6

Fig). Principal component analysis reveals that PC1 accounts for 29.06% of the variation in the

data, and associates with treatment time and type, while PC2, accounting for 15.76% of the

variation, associates with the individual from which the samples came (Figs 3A and S7).

Together, these results indicate that treatment with TOP2 inhibitors affects global gene expres-

sion in cardiomyocytes.

We next sought to identify gene expression responses to each drug treatment compared to

vehicle at each timepoint using pairwise differential expression analysis. Following treatment

for three hours we find tens to hundreds of differentially expressed (DE) genes at 5% FDR for

the TOP2i drugs and no response to TRZ (DOX vs VEH = 19; EPI vs VEH = 210; DNR vs

VEH = 532; MTX vs VEH = 75; TRZ vs VEH = 0; S8 Fig and S7–S11 Tables). The number of

genes differentially expressed in response to TOP2i increases to thousands at the 24-hour time-

point, while there are still no gene expression changes in response to TRZ treatment (DOX vs

VEH = 6,645; EPI vs VEH = 6,328; DNR vs VEH = 7,017; MTX vs VEH = 1,115; TRZ vs

VEH = 0).

Analyzing the overall magnitude of the effect of response to treatment, regardless of a p-

value threshold, similarly reveals greatest responses amongst AC-treated cells at 24 hours (S9

Fig). When comparing the magnitude of the effect across all drug treatments and time by hier-

archical clustering, we observe three predominant treatment clusters corresponding to the two

treatment times of the TOP2i, and a TRZ treatment cluster including both timepoints (Fig

3B). We find a generally low correlation in the individual drug responses over time (DOX 3 vs

24 hour r2 = 0.27; EPI r2 = 0.35; DNR r2 = 0.28; MTX r2 = 0.23). Within the 3-hour treatment

cluster, the response to DOX is moderately correlated with EPI (r2 = 0.68), DNR (r2 = 0.61)

and MTX (r2 = 0.54). The similarity between drug responses increases at the 24-hour time-

point where the DOX response is highly correlated with EPI (r2 = 0.97) and DNR (r2 = 0.98),

and moderately so with MTX (r2 = 0.70).

We next compared drug responses within a timepoint by overlapping the sets of DE genes

for each drug. After three hours of treatment, we find that out of 566 genes that respond to at

least one TOP2i, 1% of genes respond to all four drugs and 2% respond to all three ACs (Fig

3C). After 24 hours of treatment, of the 8,188 genes that respond in at least one treatment, 11%

are shared across TOP2i and 54% are shared across ACs suggesting a convergence in the

response over time (Fig 3D).

While most genes respond similarly across TOP2i after 24 hours of exposure, we were inter-

ested in investigating the subset of genes that respond specifically to one drug. There are 356
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Fig 3. TOP2i induce global gene expression changes in iPSC-CMs over 24 hours. (A) PCA of RNA-seq-derived expression measurements (log2 cpm)

across 72 samples representing six individuals (1,2,3,4,5,6), the length of exposure (three hours: circles; 24 hours: triangles), and six treatments (DOX

(mauve), EPI (pink), DNR (yellow), MTX (blue), TRZ (dark green), VEH (light green)). Data is representative of 14,084 expressed genes. (B) Correlation

between drug responses across drugs. The log2 fold change of expression between each drug treatment and VEH was calculated for all 14,084 expressed

genes at each time point. These values were compared across 12 treatment-time groups by hierarchical clustering of the pairwise Pearson correlation
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PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011164 February 28, 2024 8 / 36

https://doi.org/10.1371/journal.pgen.1011164


drug-specific response genes at 3 hours (DOX = 0; EPI = 18; DNR = 322; MTX = 16) and

1,536 at 24 hours (DOX = 355; EPI = 444; DNR = 615; MTX = 122) at 24 hours. However, this

approach for identifying drug-specific responses with a significance threshold in each drug

treatment is affected by incomplete power to detect responses in a single drug treatment.

Indeed, when we investigate the drug-specific response genes we find evidence of signal in the

other drug treatments, particularly in the ACs, suggesting an underestimate of the degree of

sharing in response to drug treatments (S10A Fig). To identify a high confidence set of drug-

specific response genes we selected genes based on the distribution of all p-values for each

drug. This resulted in selection of a two-step threshold based on an adjusted p-value threshold

of less than 0.01 for the drug of interest, and greater than 0.05 in all other drugs (S10B Fig).

This analysis identified 104 drug-specific response genes at 3 hours (DOX = 0; EPI = 0;

DNR = 100; MTX = 4; 29% of all response genes) and 305 drug-specific response genes at 24

hours (DOX = 68; EPI = 84; DNR = 112; MTX = 41; 4% of all response genes; S12 Table).

Drug-specific response genes at 3 hours include the MAFK transcription factor for DNR, and

the transcriptional regulator ZNF547 for MTX, while 24-hour drug-specific response genes

include the lncRNA gene ZNF793-AS1 for DOX, the SLC16A9 plasma membrane protein for

EPI, the epigenetic regulator gene SMYD4 for DNR, and the rRNA processing gene WDR55
for MTX (S10C Fig). Together, these results suggest that drugs within the TOP2i class induce

minimal drug-specific effects.

To determine the gene pathways responding to drug treatments, we performed KEGG

pathway enrichment analysis on the set of genes DE in response to DOX, EPI, DNR and MTX

at both timepoints and found cell cycle, p53 signaling, DNA replication, and base excision

repair pathways to be amongst the most enriched pathways across drugs (adjusted P< 0.001

relative to all expressed genes; Fig 3E). p53 signaling and base excision repair pathways are

similarly enriched amongst all drugs, while cell cycle and DNA replication genes are most

enriched amongst MTX and TOP2i-shared response genes at 24 hours (Fig 3F). This set of

genes includes CDKN1A, a p53 response gene and cell cycle regulator. These results corrobo-

rate work that investigated the response to 0.05–0.45 μM DOX over time, and identified DNA

damage and cell cycle genes to be affected following treatment [37]. The only pathways

enriched at three hours are p53 signaling for MTX and Herpes simplex infection for EPI, DNR

and MTX. The Herpes simplex infection pathway consists of many genes related to p53 signal-

ing and apoptosis [38], specifically C2H2-type zinc binding domain proteins suggested to be

involved in the DNA damage response [39].

To determine if the stringently-identified drug-specific response genes are enriched for bio-

logical processes, we performed gene ontology analysis rather than KEGG pathway analysis,

given the relatively low number of genes in this set. At three hours we find transcription-

related terms to be most enriched amongst DNR- and MTX-specific response genes as well as

metabolism-related terms for DNR specifically (the only two drugs that initiate a drug-specific

response at this timepoint), while at 24 hours we find enrichment for terms related to cation

values. Color intensity indicates the strength of the correlation. Drug responses are colored by whether the drug is a TOP2i (TOP2i: dark green; non-

TOP2i: light green), whether the drug is an AC (AC: dark orange; non-AC: light orange), and the exposure time (3 hours: pink; 24 hours: brown). (C)

Comparison of differentially expressed genes in response to each drug treatment after three hours of exposure. n = the total number of differentially

expressed genes per drug treatment. N = the total number of differentially expressed genes across drugs. (D) Comparison of differentially expressed genes

in response to each drug treatment after 24 hours of exposure. (E) All biological pathways enriched amongst differentially expressed genes in response to

drug treatments at three hours. Individual drug treatments as well as genes that respond to all ACs and all TOP2i are shown. KEGG pathways that are

significantly enriched in at least one treatment group compared to all expressed genes are displayed (HSV-1 infection and p53 signaling pathways), where

color represents the significance of the enrichment across groups and treatment groups where the pathways that are significantly enriched are represented

with an asterisk. (F) Top biological pathways enriched amongst differentially expressed genes in response to drug treatments at 24 hours. BER: base

excision repair; DNA rep.: DNA replication.

https://doi.org/10.1371/journal.pgen.1011164.g003

PLOS GENETICS Anthracyclines and cardiotoxicity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011164 February 28, 2024 9 / 36

https://doi.org/10.1371/journal.pgen.1011164.g003
https://doi.org/10.1371/journal.pgen.1011164


and calcium channel activity amongst the 68 DOX-specific response genes, and terms related

to DNA replication for the 41 MTX-specific response genes (adjusted P< 0.001 relative to all

expressed genes; S11 Fig).

We further investigated the lack of response to TRZ by using an alternative multiple testing

correction approach, and again did not identify any gene expression changes. We identified

only 36 genes that pass a nominal p-value threshold of 0.05 following either three or 24 hours

of treatment including PHLDA1 and ANKRD2 (S12A and S12B Fig), Nominal TRZ DE genes

at three hours are enriched in pathways related to transcriptional regulation in cancer and p53

signaling, while there are no pathways enriched amongst 24 hour response genes (S12C Fig).

Pairwise comparisons of multiple drugs and treatment times makes it challenging to deter-

mine overall trends in the data, therefore we next sought to jointly model the data to identify

gene expression response signatures that may be shared across drugs or specific to a drug.

AC-sensitive chromatin regulators are enriched amongst early response

genes

To determine the appropriate model for gene expression signature selection, we used Bayesian

information criterion and Akaike information criterion analysis. Using this approach we

determined that there are four gene clusters that explain the major gene expression patterns

across timepoints and treatments (S13A Fig). TRZ treatment did not contribute to any of the

gene expression response patterns and had a probability of differential expression of less than

0.1 at both timepoints. We assigned genes to each of the four clusters based on them having a

probability > 0.5 of belonging to that cluster (Figs 4A and S13B). Using this approach, we

were able to uniquely classify 99.6% of expressed genes into one of the four clusters (S13

Table). We categorized the 7,409 genes, which do not respond to any drug at either timepoint

as non-response genes (NR), the 487 genes that respond to the TOP2i drugs only after three

hours of treatment as early-acute TOP2i response genes (EAR), the 5,596 genes that respond

to the TOP2i drugs only after 24 hours of treatment as late TOP2i response genes (LR), and

the 589 genes that respond to the TOP2i drugs at three and 24 hours as early-sustained TOP2i

response genes (ESR; S14 Table). There are no clusters driven by individual drugs or the AC

drug class at either timepoint. In line with the pairwise differential expression analysis, most

genes that respond to drug treatment, respond specifically at the late timepoint (83%; Fig 4B).

Early-sustained response genes show a heightened response in ACs at 24 hours (Fig 4C). Late

response and early-sustained response clusters show a lower probability of differential expres-

sion in the MTX-treated samples at 24 hours (p = 0.3) compared to the AC drugs (p = 1), sug-

gesting a divergence between AC and non-AC treatments over time (Fig 4C).

Using gene ontology enrichment analysis, we find that early-acute response genes and

early-sustained response genes are enriched in biological processes related to transcription

and the regulation of transcription compared to all expressed genes, while late response genes

are enriched in terms related to mitosis and the cell cycle indicating time-dependent effects of

drug treatment on cellular processes (adjusted P< 0.001; S13C Fig). The non-response cluster

is enriched in terms related to oxidative phosphorylation and metabolism.

ACs inhibit TOP2 proteins and induce damage to both DNA and chromatin. Modified

ACs, such as aclarubicin, that induce only DNA damage, are effective anti-cancer agents that

show limited cardiotoxicity in mice [23], suggesting that it is the damage to chromatin that

affects the heart. In large cohorts of breast cancer patients, and in breast cancer cell lines, chro-

matin regulator expression predicts response to AC treatment [22]. The authors of this study

identified 54 chromatin regulators amongst a curated set of 404 chromatin regulators whose

expression level associated with survival in breast cancer patients treated with ACs. We
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Fig 4. Chromatin regulators that mediate breast cancer sensitivity to ACs are enriched amongst early TOP2i response genes. (A) Gene expression

motifs identified following joint modeling of test pairs. Shades of black represent posterior probabilities of genes being differentially expressed in response to

each drug treatment compared to VEH at each time point. Genes are categorized based on their posterior probabilities: genes with a p> 0.5 in only 24 hour

TOP2i drug treatments are designated as ‘Late response genes’ (LR: blue), genes with a p> 0.5 in only three hour TOP2i drug treatments are designated as

‘Early-acute response genes’ (EAR: red), genes with a p> 0.5 in the three and 24 hour TOP2i drug treatments are designated as ‘Early-sustained response

genes’ (ESR: green), and genes with a p< 0.5 across all tests are designated as ‘Non-response genes’ (NR: purple). (B) The total number of genes that are

assigned to each TOP2i response category. (C) The mean absolute log2 fold change of each gene in response to each drug at each timepoint within each

TOP2i response category. (D) Enrichment of chromatin regulators amongst TOP2i response gene categories compared to the non-response gene category.

A curated list of chromatin regulators (n = 408) and chromatin regulators that are sensitive to ACs in breast cancer patients (n = 54) was obtained from
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therefore investigated whether these regulators respond to TOP2i in cardiomyocytes by testing

for overlap with our TOP2i gene expression response clusters. All three TOP2i response gene

clusters are enriched in the full set of chromatin regulators compared to genes that do not

respond to any treatment (Chi-square P< 0.05; Fig 4D). Genes that respond early in an acute

or sustained manner are also enriched for AC-sensitive chromatin regulators (including

KAT6B for example; P< 0.05) compared to genes that do not respond to any treatment. This

suggests that chromatin regulators involved in AC sensitivity in breast cancer patients are also

involved in mediating the response in cardiomyocytes. Interestingly, the early-acute gene

expression signature is enriched in terms for histone modification, histone lysine methylation,

histone H3K36 methylation, histone H3K36 dimethylation, regulation of chromatin organiza-

tion, and heterochromatin organization from gene ontology analysis (adjusted P< 0.05).

These terms are not enriched amongst the early-sustained and late response genes.

AC treatment induces transcriptional variation over time

To gain insight into inter-individual variation in drug response, we next investigated the varia-

tion in gene expression levels of all 14,084 expressed genes across individuals in response to

different drug treatments at each timepoint. Mean expression levels are largely stable across

treatment groups (Fig 5A and S15 Table). There is a significant reduction in the variation of

gene expression levels across individuals in response to all TOP2i drugs compared to VEH at

three hours, while TRZ-treated cells show no change in variation (P< 0.05; Fig 5B). After 24

hours of treatment, the AC drugs show increased variation in gene expression levels, while

MTX and TRZ show reduced variation (P< 0.005; Fig 5B). Given that all samples were col-

lected and processed in treatment-balanced batches, this suggests that there is a robust

response to drug treatments shortly after exposure, but that expression diverges across individ-

uals over time. EPI shows the greatest increase in variance followed by DOX and DNR. To

determine whether the increase in AC-induced variability following treatment is evident

across a larger panel of individuals, we investigated variance in response to DOX treatment

across iPSC-CMs using published data from 45 individuals [15]. We find that 24 hours of

treatment with 0.625 μM DOX similarly increases variability in gene expression across individ-

uals compared to vehicle treatment (S14 Fig). We next asked how the variation across individ-

uals changes between each drug and vehicle treatment for each gene by calculating the F

statistic. We tested for correlation between the F statistic across drugs and time and observed

two distinct sample clusters based on time (Fig 5C). At three hours the variability is highly cor-

related across all drugs (r2 > 0.47), while at 24 hours the samples cluster based on whether the

drugs are ACs or not. EPI-induced variance is distinct from DNR and DOX but is still highly

correlated (r2 > 0.52 for both) compared to MTX (r2 = 0.39) and TRZ (r2 = 0.28). These results

imply that AC treatment induces variability in expression across individuals after 24 hours of

treatment, and these effects are replicated in a DOX-focused study.

DOX response eQTLs are enriched amongst AC response genes

We were next interested in understanding how the drug response genes relate to genes whose

expression is known to vary across individuals i.e., eQTLs or eGenes. We collated the set of

eGenes in left ventricle heart tissue (q-value < 0.05) identified by the GTEx consortium [40]

and selected those that are expressed in our iPSC-CMs (n = 6,261). We first asked whether

Seoane et al. [22]. Enrichment amongst response categories was calculated by a Chi-square test of proportions. Color represents the -log10 P value for all

tests. Significant tests are denoted with an asterisk.

https://doi.org/10.1371/journal.pgen.1011164.g004
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genes that respond to different drug treatments are likely to vary in their expression level

across individuals in the absence of treatment. We find that following 24 hours of drug treat-

ment DOX and DNR response genes are no more likely to be an eGene in heart tissue than

not, and EPI and MTX response genes are in fact depleted amongst heart eGenes (Fig 6A).

This supports previous studies that suggest that in order to identify genetic effects on gene

expression in disease contexts, one must study the relevant context [41]. To do so, we took

advantage of a study that investigated the association between genetic variants and the

response to DOX in iPSC-CMs treated with a range of DOX concentrations (0.625–5 μM)

Fig 5. AC treatments induce transcriptional variation across individuals over time. (A) Mean expression levels of all 14,084 expressed genes across

individuals for each drug treatment at each timepoint. (B) Variance of gene expression levels of all 14,084 expressed genes across individuals for each drug

treatment at each timepoint. (C) The F-statistic was used to test for differences in the variance between each drug treatment and vehicle for all 14,084 expressed

genes at each timepoint. These values were compared across 12 treatment-time groups by hierarchical clustering of the Spearman correlation values. Color

intensity indicates the strength of the correlation. Drug responses are colored by whether the drug is a TOP2i (TOP2i: dark green; non-TOP2i: light green),

whether the drug is an AC (AC: dark orange; non-AC: light orange), and the exposure time (3 hours: pink; 24 hours: brown). Asterisk represents a statistically

significant change between drug treatment and vehicle (*p< 0.05, **p< 0.005, ***p< 0.0005).

https://doi.org/10.1371/journal.pgen.1011164.g005
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after 24 hours of treatment [15]. The authors identified 417 baseline eGenes in these cells, as

well as 273 response eGenes i.e. eQTLs where the variant associates with the gene expression

response to DOX. Reassuringly, we find that genes that respond to 0.5 μM DOX at 24 hours in

our study are enriched in response eGenes compared to baseline eGenes (142 of the 273

response eGenes; Chi-square test; P< 0.05; Fig 6B). We also find that EPI, DNR and MTX

response genes are enriched in response eGenes compared to baseline eGenes (P< 0.05). Of

the 142 DOX response eGenes, 93% respond to DNR, 83% to EPI and 18% to MTX (14% of all

DOX response genes respond to MTX), corresponding to 96% of DOX response eGenes

responding to at least one TOP2i (Fig 6C). This indicates that most DOX response eGenes

respond to the other AC drugs and have the potential to be DNR and EPI response eGenes.

Only one DOX response eGene is categorized as one of the 68 high-stringency set of DOX-spe-

cific response genes. JPH3, involved in intracellular ion signaling, shows a significant response

to DOX but not to any other drug (Fig 6D).

Fig 6. DOX response eGenes are enriched amongst TOP2i response genes. (A) Proportion of drug response genes amongst eGenes in left ventricle heart

tissue. Heart eGenes (q-value< 0.05) were obtained from the GTEx database [40] and filtered to retain only those genes expressed in our data. All expressed

genes that are not eGenes in heart tissue are denoted as ‘not eGene’. These gene sets were compared amongst genes classified as differentially expressed in

response to a particular treatment (DE: light blue) at 24 hours or not differentially expressed (not DE: dark blue). Asterisk represents drug treatments where

there is a significant difference in the proportion of DE genes amongst eGenes and non-eGenes. (B) Proportion of drug response genes amongst DOX response

eGenes in DOX-treated iPSC-CMs. eGenes identified in iPSC-CMs (base eGenes) and in response to DOX (response eGene) were obtained from Knowles

et al. [15]. (C) Overlap between DOX eGenes identified by Knowles et al. that are responsive to DOX in our data, and genes that are differentially expressed in

response to at least one other TOP2i. (D) Example of one of the five DOX response eGenes that responds to DOX in our cells but not to any other drug

treatment. JPH3 expression levels following 24 hours of treatment are shown. Asterisk represents drug treatments for which this gene is categorized as DE.

https://doi.org/10.1371/journal.pgen.1011164.g006
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Genes in AC toxicity-associated loci respond to ACs

We were interested in determining whether genes in AC-induced cardiotoxicity loci identified

by GWAS respond to different TOP2i. To do so, we obtained genetic variant data from two

GWAS [8,42] and defined a set of genes in these loci as either being the closest gene to the

SNP, or an eQTL identified in any tissue, and then filtered out genes not expressed in our data

(See Methods). We also included a set of four genes prioritized by a TWAS study based on

AC-induced cardiotoxicity genetic data and expression data across human tissues [43]. This

resulted in a set of 38 genes to interrogate for response to three and 24 hours of drug treatment.

We find that only one gene responds at three hours, GIN1, and 22 genes respond to at least

two TOP2i at 24 hours (no genes respond to a single TOP2i), 15 of which respond to all three

ACs (Fig 7). AC-shared cardiotoxicity loci genes with the greatest magnitude of effect include

PELI2 and LGALS3 that are upregulated in response to DOX, DNR and EPI, and TNS2 and

GPSM2 that are downregulated.

We annotated each of the genes in the cardiotoxicity-associated loci with our curated set of

data on response signatures, chromatin regulators, DOX-sensitive chromatin regulators,

eGenes identified in heart left ventricle, and eGenes that respond to DOX in iPSC-CMs. Of the

23 genes that respond to at least one TOP2i at either timepoint, 19 are categorized as late

response genes suggesting that very early response genes are not linked to toxicity. None of

these genes are annotated as chromatin regulators whether AC-sensitive or not, and two genes

are categorized as DOX eGenes by Knowles et al. (ADCY2 and LNPK) [15].

Finally, we selected the set of 20 genes in cardiotoxicity-associated loci that respond to

DOX (16 of these respond to all ACs) and investigated whether these genes are also DOX-

responsive in a prior study [15]. We find that 18 of these genes respond with the same direc-

tion of effect (S15 Fig) indicating that these expression changes are replicated across studies.

Discussion

While it is evident from clinical practice that DOX can induce off-target effects on the heart,

we still have a poor ability to predict cardiotoxicity risk in breast cancer patients treated with

DOX [44]. Similarly, it is unclear whether treatment with related AC drugs will lower the risk

of cardiotoxicity or not. This uncertainty could be due to a variety of reasons including a non-

standard definition of cardiotoxicity, inter-individual differences in susceptibility to a drug or

class of drugs, and the fact that many variables can contribute to the phenotype. In order to

understand how different breast cancer drugs affect the heart in different women, we used an

in vitro iPSC-CM model from six healthy female individuals to control the environmental vari-

ables and measure defined endpoints including global gene expression, calcium handling, cel-

lular stress marker release, and cell viability in response to five drugs. Using this system, we

identified many effects on cardiomyocytes that are consistent following treatment with related

drugs including ACs and TOP2i.

TOP2i treatments in cardiomyocytes can inform on cardiotoxicity

iPSC-CMs have been extensively characterized as a model for studying cardiotoxicity associ-

ated with DOX [14], which has paved the way for application to other drugs such as tyrosine

kinase inhibitors [45], and allowed for the development of high throughput systems to predict

cardiotoxicity of novel compounds using a training set of drugs with known effects [46]. In

our study, all TOP2i used in breast cancer treatment that we tested (DOX, EPI, DNR and

MTX) affected cardiomyocyte viability across individuals at micromolar concentrations.

These concentrations are in range of a previous in vitro study on AC treatments in a single

individual [47], and with what has been observed clinically in cancer patients treated with
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Fig 7. Genes in AC toxicity-associated loci respond to TOP2i. The gene expression response at three (pink) and 24 (brown) hours post drug treatment for

genes in loci associated with AC-induced cardiotoxicity. The log2 fold change for each drug compared to vehicle is shown. Genes that are classified as

differentially expressed in response to a drug treatment are represented with an asterisk. GWAS loci were integrated from two GWAS studies indicated by:

dark red [8], and light red [42], and one TWAS study in purple [43]. SNPs were associated with genes through either the nearest annotated gene (dark purple)

or by being an eQTL in any tissue (dark blue). Each gene is annotated by their 1) response signature (ESR: Early sustained response; green, LR: Late response;

light blue, and NR: Non-response: light purple), 2) chromatin regulator status: (yes: puce, no: pink), and AC-sensitive chromatin regulator status: (yes: dark

yellow, no: yellow) [22], 3) left ventricle heart eGene status (yes: dark grey, no: light grey) [40], and 4) DOX response eGene status (yes: dark green; no: light

green) [15].

https://doi.org/10.1371/journal.pgen.1011164.g007
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these drugs (S3 Table). Interestingly, we observed DNR to be relatively less toxic and MTX to

be more toxic in breast cancer cell lines than iPSC-CMs indicating differences in toxicities

associated with cancerous and non-cancerous cells. Using sub-lethal doses of the drugs, we

observed effects of TOP2i on multiple features related to calcium handling, which can be

inferred to affect cardiomyocyte contraction. This suggests that these drugs affect basic cardio-

myocyte function prior to leading to cell death.

TOP2i treatments at sub-lethal concentrations induce a shared gene

expression signature

We selected a sub-lethal dose of 0.5 μM for each drug to further characterize their effects on

cardiomyocytes over the course of 24 hours. We did so in order to capture primary drug

responses and not secondary effects as the cells succumb to stress. Indeed, it has been shown

that treating iPSC-CMs with ACs at these doses for 48 hours induces the expression of death

receptors [36], and the initiation of necroptosis pathways [47].

We found TOP2i to induce hundreds of gene expression changes following three hours of

treatment, and thousands following 24 hours of treatment. After 24 hours, gene expression

changes are enriched in pathways related to p53 signaling, the cell cycle, DNA replication and

base excision repair. These gene expression changes are shared across TOP2i and can be char-

acterized as TOP2i early-acute response genes, early-sustained and late response genes. Clini-

cal guidelines have suggested that EPI may be better tolerated than DOX and DNR given the

higher maximum recommended cumulative dose (DOX: 400–450 mg/m2, EPI: 900 mg/m2,

DNR: 400–550 mg/m2) [47]. However, we observed similar effects between EPI and DOX and

DNR at this dose. A prior study has indicated that treating iPSC-CMs with a range of DOX

concentrations from 0.625–5 μM for 24 hours yields several different gene expression response

clusters across concentrations, and many of these effects are non-linear [15]. It is therefore

possible that the gene expression changes we observe in response to TOP2i may diverge if dif-

ferent concentrations of drug are used.

We found that the majority of gene expression changes are shared amongst ACs with only

hundreds out of thousands of response genes responding specifically to a single AC. The

increased early response to DNR at three hours is likely due to the fact that the rate of DNR

uptake into iPSC-CMs is approximately twice as fast as that of DOX or EPI because of its rela-

tive lipophilicity [47]. We do not see enrichment of DNR-specific pathways in our transcrip-

tomic data at three hours–these pathways are the same as all enriched pathways in DNR

response genes related to transcriptional regulation. The same is true for MTX-specific

response genes at three and 24 hours. However, interestingly, genes that respond specifically

to DOX at 24 hours are enriched in pathways related to calcium handling and the ryanodine-

sensitive calcium release channel, unlike all DOX response genes. It is well established that

DOX treatment affects calcium handling in cardiomyocytes through a variety of mechanisms

[48]. DOX can bind directly to the ryanodine receptor in its closed state and can increase bind-

ing to ryanodine in a calcium-dependent manner [49]. It could therefore be the case that

DOX, and not EPI or DNR, is able to associate with the ryanodine receptor leading to some

drug-specific effects.

TRZ treatment does not affect viability, calcium handling or gene

expression

We did not find TRZ to have an effect on any of the phenotypes that we measured at the time-

points and concentration that we used (0.5 μM) in our panel of six individuals. We did not

find effects on cell viability after 48 hours of treatment at a range of concentrations up to
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10 μM. This is in line with a previous study that showed that treating iPSC-CMs from breast

cancer patients with 0.5 μM of TRZ for seven days does not affect viability [50]. This study

does identify effects on calcium handling and gene expression after this long treatment period.

We did not identify any gene expression changes in response to TRZ using our pairwise linear

model or joint model across drugs following 24 hours of treatment. The aforementioned study

suggests that gene expression changes induced by TRZ do not occur immediately post treat-

ment. Indeed, a study investigating the response to 0.687 μM TRZ after 48 hours of treatment

similarly did not identify any DE genes following multiple testing correction (517 genes show

evidence for DE at a nominal p-value threshold of 0.05) [51]. Two of the four genes this study

highlights as being downregulated by TRZ, PHLDA1 and SLC6A6, are similarly two of the 36

genes downregulated in our data at a nominal p-value. Our lack of a robust gene expression

response within 24 hours is therefore in line with other molecular studies of TRZ treatment in

iPSC-CMs.

TRZ -induced cardiotoxicity is reported to occur in a subset of breast cancer patients [31],

and to be reversible unlike DOX-induced cardiotoxicity [32] suggesting different molecular

mechanisms between these drugs. It could be the case that TRZ-induced cardiotoxicity is

mediated through post-transcriptional mechanisms that occur over time for example. It has

also been suggested that the combination of AC and TRZ treatment, as is prescribed clinically,

is more cardiotoxic than either treatment alone [52], and reduces resistance to other stress

[53]. Determining transcriptional responses to combination treatments would be a next step

to investigate.

Inter-individual variation in expression increases following AC treatment

In addition to measuring mean gene expression changes in response to treatment, we also

investigated the variability in response to drugs across individuals. We found a decrease in var-

iation following three hours of treatment with all drugs, followed by an increase in variability

in the AC treatments only following 24 hours of treatment. We replicated these results using

data from a study investigating transcriptional changes to 24 hours of DOX treatment in

iPSC-CMs from 45 individuals [15]. Variability in gene expression between individuals is simi-

larly dynamic in the course of development where cells in a pluripotent state have lower levels

of inter-individual variation than cells progressing towards a differentiated state [54,55]. In

plants, highly variable genes are often environmental response genes [56]. The gene expression

variability data is mirrored by the cell viability analysis where inter-individual variability in

LD50 values from MTX-treated samples is lower than AC-treated samples.

Inter-individual susceptibility to cardiotoxicity

We began to gain insight into inter-individual susceptibility to cardiotoxicity by integrating

our response genes from the five drug treatments with data connecting genes to 1) AC sensitiv-

ity in patients, 2) genes whose expression under genetic control is altered specifically following

DOX treatment, and 3) genetic variants associated with cardiotoxicity. Chromatin regulators

mediate sensitivity to DOX when used in the treatment of breast cancer [22]. We find that the

54 AC-sensitive chromatin regulators are enriched amongst the early TOP2i response genes

suggesting that chromatin regulators may be important in inter-individual differences in sus-

ceptibility to cardiotoxicity across drugs. Intriguingly, 1,089 genes that are variable in response

to DOX at a nominal p-value are enriched for pathways related to histone H3 deacetylation

compared to genes that are not classified as variable. This suggests that larger studies, which

include more individuals are warranted.
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To specifically investigate genes whose expression has been linked to genetic variants in the

context of DOX exposure, we retrieved the set of response eGenes from a study of iPSC-CMs

by Knowles et al. [15]. We found that 96% of response eGenes respond to at least one TOP2i

in our study, suggesting that they have the potential to be eGenes in response to the other

drugs, and that the overall response to ACs may be similar for each individual.

Several GWAS have been performed in an attempt to identify genetic variants associated

with AC-induced toxicity. These studies have often not identified genetic variants that meet

the accepted threshold for genome-wide significance, and that are reproducible, possibly due

to small sample sizes and heterogeneity in the definition of the cardiotoxicity phenotype. A

study of ~3,000 breast cancer patients identified nine independent loci associated (P< 5x10-5)

with AC-induced congestive heart failure [8]. The top SNP, which replicated in two cohorts, is

in a GR binding site implying gene regulatory effects. It is located within 20 kb of the

GOLG6A2 and MKRN3 genes that are not expressed in our data. An earlier study of 280

patients treated for childhood cancer identified a single SNP (P< 5.9x10-8) in the RARG gene

associated with cardiotoxicity in the original cohort and two replication cohorts [7]. The

RARG gene product has been suggested to influence cardiotoxicity by binding to the TOP2B
promoter and repressing its activity. The risk SNP is associated with decreased binding, and

higher expression of TOP2B consistent with increased susceptibility to AC toxicity. To further

validate the association, three individuals with risk and non-risk alleles were re-recruited from

the original GWAS study in order to generate iPSCs. The effects of the SNP were recapitulated

in an iPSC-CM model of DOX toxicity in these individuals [57]. Independent genetic manipu-

lation of this susceptibility variant decreases DOX-induced toxicity in iPSC-CMs [58], and

does so through the DNA damage response [59]. This SNP and gene have therefore been the

best characterized cardiotoxicity-associated locus. The SNP is present in ~15% of the popula-

tion [60], and may therefore contribute to cardiotoxicity risk in many individuals. Additional

GWAS studies using pediatric cases have also replicated the association between cardiotoxicity

and SNPs in the SLC28A3 gene (P = 1.9x10-5) and the UGT1A6 gene [9,10]. These initial stud-

ies, that show evidence for replication, led to the recommendation that these three SNPs be

tested in childhood cancer patients being treated with ACs [42]. These recommendations state

that it is unclear whether changing the type of AC will yield lower cardiotoxic effects.

Our study design allowed us to test whether different AC drugs have different cardiotoxic

effects in cardiomyocytes. We therefore investigated the gene expression response to TOP2i in

loci associated with cardiotoxicity [8,42,43]. Given that many GWAS-associated SNPs are in

non-coding regions and have gene regulatory effects, we investigated both genes closest to the

cardiotoxicity-associated SNPs, as well as genes that are associated with the SNP through

eQTL analysis. This approach allowed the identification of potential novel target genes. For

example, we found that ZNF740 and TNS2 in the RARG locus respond to all three ACs, and

the RMI1 gene in the SLC28A3 locus responds to DOX, DNR, and MTX, suggesting that they

too may contribute to the cardiotoxicity observed. TNS2 is a focal adhesion molecule that

binds to actin filaments. ZNF740 is a transcriptional regulator whose DNA binding motifs are

associated with enhancer usage in heart failure suggesting that this gene may indeed play a role

in cardiotoxicity [61]. RMI1 facilitates double-stranded break repair and heterodimerizes with

TOP3A that has topoisomerase activity in both mitochondria and the nucleus, again suggest-

ing a mechanism behind the association [62,63]. From the adult AC-induced cardiotoxicity

GWAS study, our analysis revealed strong effects on the expression of genes including PELI2
and LGALS3. These genes could have clinical implications. For example, LGALS3, which

encodes for galectin-3 has been suggested as an early-stage circulating biomarker for various

diseases including heart disease [64,65]. More broadly we found that genes responsive to DOX

after 24 hours of treatment are often responsive to all other ACs suggesting similar
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cardiotoxicity across these drugs, and similar mechanisms of action (16/20 genes). Notably

there are no DOX-responsive genes in these loci following three hours of treatment suggesting

that genes that are involved in cardiotoxicity are not immediate early response genes.

Potential limitations of our model

In this study we modelled cardiotoxicity by focusing on cardiomyocytes, the cell type ulti-

mately affected by heart failure; however the heart is a complex organ consisting of multiple

different cell types including endothelial cells, fibroblasts and pericytes [66] that likely interact

during the course of drug treatment. Cell type interactions are therefore not captured in our

system.

We generate iPSC-CMs through directed differentiation of iPSCs as it allows us to obtain

cardiomyocytes from multiple individuals, and to use these cardiomyocytes in carefully con-

trolled experiments where we can treat the same batch of cells with all cancer drugs. While

these derived cells resemble ventricular cardiomyocytes, their phenotype is less mature than

adult human cardiomyocytes. We try to mitigate this known limitation of iPSC-derived cell

types by culturing our cells in a glucose-free, galactose-containing media that shifts the

iPSC-CMs away from glycolysis as the primary metabolic pathway [67]. However, it is possible

that our in vitro system may not fully recapitulate the in vivo situation.

While our iPSC-CMs are not proliferating during the course of our experiments, we note

that they do express the cell cycle-related TOP2A gene in addition to TOP2B (log2cpm TOP2A
= 6.89, TOP2B = 7.85; TOP2B:TOP2A = 1.23) unlike left ventricle heart tissue (TOP2A = -0.8,

TOP2B = 6.25 log2cpm; TOP2B:TOP2A = 7.81), which is in line with these cells representing a

more fetal state. It is therefore possible that some of the effects we observe in iPSC-CMs are

mediated through inhibition of TOP2A. Indeed, we observe that TOP2i treatment significantly

decreases both TOP2B and TOP2A mRNA expression.

For the bulk of our study, we selected a concentration of each drug that falls within the

range of concentrations observed in patients being treated for cancer; however, the concentra-

tion of drug that the heart would be exposed to in vivo is hard to determine. Similarly, our sin-

gle cell type in vitro approach cannot take into account the processing of these drugs that may

occur in other organs in vivo, or other pharmacokinetic and pharmacodynamic features of the

drugs that might differ between in vivo and in vitro environments.

There is controversy in the literature about the relative effects of different ACs and TOP2i

on the heart [27–30]. In patient cohorts, comparisons across TOP2i are performed across indi-

viduals and studies. Our in vitro iPSC-CM system allowed us to systematically characterize the

effects of multiple breast cancer drugs on cardiomyocytes in the same set of multiple individu-

als over time. Specifically, we profiled the response to DOX, EPI, DNR, MTX and TRZ follow-

ing three and 24 hours of exposure in six individuals and identified a shared gene expression

response signature across TOP2i that includes genes in known AC-induced cardiotoxicity loci.

This work has potential clinical applications as it suggests that DOX, DNR and EPI affect heart

cells similarly and that possible off-target effects on the heart may be induced following treat-

ment with any one of the three ACs. We believe that the data and analysis presented here will

be a resource for further studies into mechanistic and clinical effects of AC-induced

cardiotoxicity.

Materials and methods

Ethics statement

iPSC lines from the iPSCORE resource were generated by Dr. Kelly A. Frazer at the University

of California San Diego as part of the National Heart, Lung and Blood Institute Next
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Generation Consortium [68]. The iPSC lines were generated with approval from the Institu-

tional Review Boards of the University of California, San Diego and The Salk Institute (Project

no. 110776ZF) and informed written consent of participants. Cell lines are available through

the biorepository at WiCell Research Institute (Madison, WI, USA), or through contacting Dr.

Kelly A. Frazer at the University of California, San Diego.

Induced pluripotent stem cell lines

We used iPSC lines from six unrelated, healthy female donors of Asian ethnicity between the

ages of 21 and 32 years with no previous history of cardiac disease or breast cancer from the

iPSCORE resource [68]. The individuals are: Individual 1: UCSD129i-75-1 (iPSCORE_75_1,

Asian-Irani, age 30), Individual 2: UCSD143i-87-1 (iPSCORE_87_1, Asian-Chinese, age 21),

Individual 3: UCSD131i-77-1 (iPSCORE_77_1, Asian-Chinese, age 23), Individual 4:

UCSD133i-79-1 (iPSCORE_79_1, Asian, age 24), Individual 5: UCSD132i-78-1

(iPSCORE_78_1, Asian-Chinese, age 21), and Individual 6: UCSD116i-71-1 (iPSCORE_71_1,

Asian, age 32).

iPSC culture

Cells were cultured at 37˚C, 5% CO2 and atmospheric O2. iPSCs were maintained in feeder-

free conditions in mTESR1 (85850, Stem Cell Technology, Vancouver, BC, Canada) with 1%

Penicillin/Streptomycin (30-002-Cl, Corning, Bedford, MA. USA) on 1:100 dilution of Matri-

gel hESC-qualified Matrix (354277, Corning). Cells were passaged using dissociation reagent

(0.5 mM EDTA, 300 mm NaCl in PBS) every 3–5 days when the culture was ~ 70% confluent.

Cardiomyocyte differentiation from iPSCs

Cardiomyocyte differentiation was performed as previously described [41]. Briefly, on Day 0,

when a 10 cm plate of iPSCs reached 80–95% confluence, media was changed to Cardiomyo-

cyte Differentiation Media (CDM) [500 mL RPMI 1640 (15-040-CM Corning), 10 mL B-27

minus insulin (A1895601, ThermoFisher Scientific, Waltham, MA) USA), 5 mL GlutaMAX

(35050–061, ThermoFisher Scientific), and 5 mL of Penicillin/Streptomycin (100X) (30-

002-Cl, Corning)] containing 1:100 dilution of Matrigel and 12 μM CHIR99021 trihydrochlor-

ide (4953, Tocris Bioscience, Bristol, UK). Twenty-four hours later (Day 1), the media was

replaced with fresh CDM without CHIR99021. On Day 3, after 48 hours, spent media was

replaced with fresh CDM containing 2 μM Wnt-C59 (5148, Tocris Bioscience). CDM was

used to replace media on Days 5, 7, 10, and 12. Cardiomyocytes were purified through meta-

bolic selection using glucose-free, lactate-containing media called Purification Media [500 mL

RPMI without glucose (11879, ThermoFisher Scientific), 106.5 mg L-Ascorbic acid 2-phos-

phate sesquimagenesium (sc228390, Santa Cruz Biotechnology, Santa Cruz, CA, USA), 3.33

ml 75 mg/ ml Human Recombinant Albumin (A0237, Sigma-Aldrich, St Louis, MO, USA), 2.5

mL 1 M lactate in 1 M HEPES (L(+)Lactic acid sodium (L7022, Sigma-Aldrich), and 5 ml Pen-

icillin/Streptomycin] on Days 14,16 and 18. On Day 20, purified cardiomyocytes were released

from the culture plate using 0.05% trypsin/0.53 mM EDTA (MT25052CI, Corning) and

counted using a Countess 2 machine. A total of 1.5 million cardiomyocytes were replated per

well of a six-well plate, 400,000 cardiomyocytes per well of a 12-well plate and 55,000 cardio-

myocytes per well of a 96-well plate in Cardiomyocyte Maintenance Media (500 mL DMEM

without glucose (A14430-01, ThermoFisher Scientific), 50 mL FBS (MT35015CV, Corning),

990 mg Galactose (G5388, Sigma-Aldrich), 5 mL 100 mM sodium pyruvate (11360–070, Ther-

moFisher Scientific), 2.5 mL 1 M HEPES (H3375, Sigma-Aldrich), 5 mL 100X GlutaMAX

(35050–061, ThermoFisher Scientific), and 5 mL Penicillin/Streptomycin). iPSC-CMs were
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matured in culture for a further 7–10 days, with Cardiomyocyte Maintenance Media replaced

on Days 23, 25, 27, 28, and 30.

Cardiac Troponin T staining for iPSC-CM purity determination

After each iPSC differentiation, live cardiomyocyte purity was assessed using flow cytometry.

Between Days 25–27, iPSC-CMs were detached from the plate using 0.05% trypsin/0.53 mM

EDTA (MT25052CI, Corning) for 15 minutes. Trypsin was quenched with Cardiomyocyte

Maintenance Media and cells were strained to remove clumps. One million cells were trans-

ferred into two test wells per sample and 3 control wells on a deep-well u-bottom plate (96

BRAND plates lipoGrade 96-Well Microplates (13-882-234, BrandTech Scientific, Essex, CT,

USA). Test wells and the Zombie-only control wells were incubated with Zombie Violet Fix-

able Dye diluted in PBS (Zombie Violet Fixable Viability Kit (423113, BioLegend, San Diego,

CA, USA) for 15 min at 4˚C in the dark. After incubation, cells were rinsed 1X with PBS and

1X with autoMACS running buffer (MACS Separation Buffer (130-091-221, Miltenyi Biotec,

San Diego, CA, USA). The cardiac Troponin T (TNNT2) antibody (Cardiac Troponin T

Mouse, PE, Clone: 13–11, BD Mouse Monoclonal Antibody (564767, BD Biosciences, San

Jose, CA, USA) was diluted in Permeabilization Buffer (FOXP3/Transcription Factor Staining

Buffer Set, 00–5523, ThermoFisher Scientific) and added to both test wells and the

TNNT2-only control well. Unstained control wells were resuspended in Permeabilization

Buffer only. Cells were stained for 45 minutes at 4˚C in the dark, then rinsed 2X in Permeabili-

zation Buffer and resuspended in autoMACS buffer to be analyzed using flow cytometry. Ten

thousand cells were analyzed per sample on a BD LSR Fortessa Cell Analyzer. To determine

the percentage of live, TNNT2-positive cells, the following gating steps were taken: 1) The FSC

versus SSC density plots were used to exclude cellular debris. 2) Cells were gated on FSC-H

and FSC-A to exclude aggregate cells. 3) Violet laser-excitable cells were excluded as ‘dead’

cells. 4) Unstained iPSC-CMs were used as a negative-TNNT2 control to determine the

TNNT2-positive range. Values reported are the mean of two technical replicates for each dif-

ferentiation of each individual (n = 3).

Drug stocks and usage

The panel of drugs used were Daunorubicin (30450, Sigma-Aldrich), Doxorubicin (D1515,

Sigma-Aldrich), Epirubicin (E9406, Sigma-Aldrich), Mitoxantrone (M6545, Sigma-Aldrich)

and Trastuzumab (HYP9907, MedChem Express). All drugs were dissolved in molecular biol-

ogy grade water to a concentration of 10 mM per stock. DOX, DNR, EPI, and MTX stocks

were stored at -80˚C and working stocks used at 4˚C for up to one week. TRZ was stored at a 1

mM concentration at 4˚C for up to one month.

Cell viability assay

Day 27 +/- 1 day iPSC-CMs were used for all drug treatments. iPSC-CMs were plated into

three 96 well plates, excluding each plate’s outermost rows. Eight concentrations [50 μM,

10 μM, 5 μM, 1 μM, 0.5 μM, 0.1 μM, 0.05 μM, 0.01 μM] were used for DOX, DNR, EPI, and

MTX. The highest concentration (50 μM) was excluded for the TRZ treatments. The vehicle

control (molecular biology-grade water) was used at the same volumes as the corresponding

drug concentrations. Plate layouts were designed with the Well Plate Maker (wpm) package in

R [69] to limit batch effects across plates. Each drug concentration was tested in quadruplicate

per individual. iPSC-CMs were exposed to drug treatments for 48 hours. At the 48-hour time

point, cell media was removed and stored at -80˚C. Cells were washed two times with warm

DPBS to remove any residual drug and dead cells, and cell viability was assessed using the
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Presto Blue Cell Viability assay (A13262, Invitrogen) according to the manufacturer’s instruc-

tions. Plate readings were obtained using a high throughput plate reader (Biotek Synergy H1)

set to an excitation/emission of 460/490 nm. Data were processed following the manufacturer’s

instructions. Briefly, the background fluorescence was measured from wells containing no

cells on each plate (n = 6). These values were averaged and subtracted from all wells of that

plate, yielding a relative fluorescence unit (RFLU) value for each sample. Each RFLU value of

the experiment was then normalized to the average RFLU of the vehicle at the same concentra-

tion (n = 4). This yielded a relative percent cell viability for each sample. The relative percent

viability for each sample (n = 4) was used to generate a dose-response curve with the drc pack-

age in R [70]. LD50 values, the concentration which killed 50% of the cardiomyocytes, for each

drug on the panel was extracted from the model. Each individual had two independent dose-

response curves performed from independent differentiations. The calculated LD50 values for

an individual were averaged from these two results to produce the reported LD50 values. We

were unable to derive meaningful LD50 values for TRZ, due to lack of cell death observed at

the treatment range used in this assay.

Breast cancer cell line toxicity data

EC50 data for breast cancer cell lines treated with drugs in our treatment panel were obtained

from the DepMap Portal (https://depmap.org/portal/) using the PRISM Repurposing [33],

CTRP CTD2 [34,71], and Genomics of Drug Sensitivity in Cancer 2 (GDSC2) [35] databases.

We selected those cell lines that had reported EC50 values that fell within the ranges that each

study tested (PRISM: 10 μM to 0.61 pM 8-point dilution series; CTRP: 66 μM to 0.65 μM,

16-point dilution series; GDSC2: 1 μM to 0.1 nM, 7-point dilution series). Cell lines are from

invasive breast carcinomas (BT549, CAL51, HCC1143, HDQP1, MCF7, MDAMB231,

MDAMB468, T47D, ZR751) and a breast ductal carcinoma in situ (HCC1806). DOX EC50 val-

ues are reported as an average of EC50 values from the PRISM and CTRP databases, EPI EC50

values are an average from the PRISM and GDSC2 databases, and MTX and DNR EC50 values

are from the PRISM database.

Human in vivo cancer drug concentration data

Clinically-measured human blood serum measurements were obtained from the literature

using PubMed and the search terms "human plasma levels," or "pharmacokinetics in humans,"

and each chemotherapeutic drug by name (Doxorubicin, Epirubicin, Daunorubicin, Mitoxan-

trone, Trastuzumab). Each reference was reviewed to determine the number of individuals

tested, cancer diagnosis, number of treatment cycles, and cumulative dosage for each drug. All

studies obtained which did not include plasma levels for at least one human, or the term phar-

macokinetics were excluded. We collected the lowest and highest serum concentration mea-

surements taken closest to one hour after infusion, and values were transformed to μM, when

needed. If the study did not provide the maximum and minimum concentration, the median

or mean +/- standard deviation, maximum or minimum is reported. The final set of reported

studies are included in S3 Table [35,72–95].

Lactate dehydrogenase activity assay

Lactate dehydrogenase activity (LDH) was measured from 5 μL cell culture media using the

Lactate Dehydrogenase Activity Assay Kit (MAK066, MilliporeSigma) according to the manu-

facturer’s instructions. Each sample was assayed in triplicate. LDH activity was measured as

the change in absorbance of the sample relative to the change in absorbance of the media back-

ground control, calculated relative to a standard curve, before and after incubation for 10 min
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at 37˚C. This value was normalized to the drug concentration-specific VEH sample value for

each individual.

Treatments for gene expression measurements

1.5 million iPSC-CMs were plated in 6-well plates. Between Days 27–29, iPSC-CMs were

treated with 0.5 μM DNR, DOX, EPI, MTX, TRZ, or vehicle in fresh cardiomyocyte mainte-

nance media. iPSC-CMs were collected three and 24 hours post-treatment, resulting in 72

samples from 6 individuals. iPSC-CMs were washed twice with ice-cold PBS and manually

scraped in cold PBS on ice. Cell pellets were flash-frozen and stored at −80˚C.

Calcium imaging and analysis

Day 20 iPSC-CMs from three individuals (Individuals 2, 3, and 5) were plated on Matrigel-

coated 12-well plates, at a density of 400,000 cells/well. Between Days 27–30, the cells were sub-

jected to a 24-hour treatment with 0.5 μM of each drug. Fluorescence measurements of cyto-

solic calcium were obtained using the Fluo-4 AM probe (F14201, Invitrogen, Waltham, MA,

USA), with the protocol as specified by the manufacturer. The probe was prepared in DMSO

and subsequently applied to each well to achieve an 8 μM final concentration. Cells were incu-

bated at 37˚C in the dark for 25 min, rinsed twice with Hank’s Balanced Salt Solution (HBSS;

14025092, ThermoFisher) and protected from light. Imaging of Fluo-4 AM-treated iPSC-CMs

was performed at 37˚C on an Olympus spinning disc confocal microscope, using a 488 nm

excitation wavelength at 20% power. Fluorescence intensity values were captured at a frame

rate of 31.34 frames per second for approximately 10 seconds.

Calcium transient recordings were archived as .avi files and processed with CALIMA [96]

to obtain 500–1,000 regions of interest for calcium transient recordings. The resultant

CALIMA output was further processed using Clampfit (Axon pCLAMP 10 Electrophysiology

Data Acquisition & Analysis Software, Molecular Devices), employing Gaussian curve fitting

to analyze the calcium transients, which enabled the computation of parameters such as ampli-

tude, rising slope, decay slope, and full-width-at-half-maximum for each calcium transient

within the recording space. This process was carried out for each drug treatment in each

individual.

Individual peaks from the CALIMA output were subsequently analyzed in R. A representa-

tive trace from the ensemble of all measured traces per individual was computed to represent

the amplitude of the calcium signal, termed "Intensity". These average traces were then utilized

to detect calcium transient peaks following signal noise removal. Peaks were defined as

instances where Intensity[i] > (Intensity[i + 1] & Intensity[i—1]) & (Intensity[i] > quantile

(Intensity, 0.6)). Beat rate was calculated by dividing the total number of detected peaks by the

duration of the recording.

For PCA clustering analysis, Mean Amplitude, Rising Slope, Decay Slope, Contraction

Rate, and Full-Width-at-Half-Maximum parameters were averaged across individuals for each

drug condition.

RNA extraction

RNA was extracted from the flash-frozen cell pellets using the Zymo dual DNA/RNA extrac-

tion kit (D7001, Zymo, Irvine, CA, USA). Extractions were performed in batches of 12 where

all treatments and timepoints per individual were extracted in the same batch. RNA concentra-

tion and quality was measured using the Agilent 2100 Bioanalyzer. RIN scores were greater

than 7.5 for all samples with a median of 9.35, 9.6, 9.3, 9.6, 9.65, and 9.55 across treatments for

individuals 1–6, respectively.
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RNA-seq library preparation

RNA-seq libraries were generated using 250 ng of RNA using the NEBNext Poly(A) mRNA

Magnetic Isolation Module kit (E7490L, Ipswich, MA, USA), NEBNext Ultra II RNA library

prep with Sample Purification Beads kit (E7775K) and the NEBNext Multiplex Oligos for Illu-

mina (96 Unique Dual Index Primer Pairs) kit (E6440S). Libraries were prepared in time and

treatment balanced batches of 12 for each individual, following the manufacturer’s protocol.

RNA-seq library sizes were determined using the Agilent 2100 Bioanalyzer DNA chip before

quantification and sequencing on the NextSeq 550 using 75 bp single-end reads. All samples

(n = 72) were pooled and sequenced together on four lanes for a total of five runs to generate a

minimum of 20 million reads per sample (median = 31,666,884).

RNA-seq analysis

Reads were assessed for quality using the MultiQC package [97] in Linux. Subread [98,99] was

used to align the reads to the hg38 reference genome, with the featureCounts function within

the package used to quantify the read number across annotated genes in R. We transformed

the counts to log2 counts per million with the edgeR package [100] and excluded genes with a

mean log2 cpm< 0 across samples, leaving 14,084 expressed genes for downstream analysis.

Differential expression analysis

We performed pairwise differential expression analysis using the edgeR-voom-limma pipeline

[101], contrasting each treatment against the vehicle at each timepoint. DE genes are defined

as those genes for each treatment-vehicle pair that meet an adjusted P value threshold

of< 0.05.

We jointly modeled pairs of tests with the Cormotif package in R [102]. Cormotif imple-

ments a Bayesian clustering approach that identifies common expression patterns (or correla-

tion motifs) that best fit the given data. We used TMM-normalized log2 cpm values as input

and paired each drug treatment with the VEH at the corresponding timepoint. Using the BIC

and AIC, we found that the best fit model to the data was four motifs. A gene was considered

to belong to one of the four motifs when it had > 0.5 probability of belonging to the motif

and< 0.5 probability of being in any of the other motifs. This threshold yields assignment of

99.6% of genes to a single motif.

Expression variance analysis

Gene expression variance was analyzed using the log2 cpm counts in R as has been previously

described [55]. The mean and variance were calculated by treatment (n = 6) and time (n = 2)

across individuals for each expressed gene. The function var.test was used to assess the vari-

ance of each gene of each treatment compared to vehicle at each timepoint.

To assess gene expression variance following AC treatment in a larger number of individu-

als, we obtained gene expression measurements for vehicle and 0.625 μM DOX-treated

iPSC-CMs from 45 individuals from Knowles et al. [15].

Gene ontology and pathway analysis

Gene set enrichment analysis was performed on each gene set and a background set of all

expressed genes using the gProfiler2 tool in R [103,104]. Significance of pathway enrichment

was determined at an FDR < 0.05.
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Comparison with published data

AC-sensitive chromatin regulators. A list of 408 curated chromatin regulator genes and 54 AC-

sensitive chromatin regulator genes were obtained from Seoane et al. [22]. We intersected

these sets with our response categories to determine the enrichment of chromatin regulators

within the early-acute, early-sustained, and late response sets with respect to the no-response

set. The chi-square test of proportions was used to test for enrichment. A P< 0.05 was consid-

ered a significant difference in proportions, and the transformed -log10 P values are reported

as heatmaps using ComplexHeatmap [105,106] in R.

eGenes in heart. We obtained a list of 9,642 eGenes (q value< 0.05) from the GTEx v8

human heart:left ventricle data (http://www.gtexportal.org). We intersected this list with our

expressed genes (14,084) to obtain a list of 6,261 expressed eGenes and 7,823 expressed genes

that are not eGenes (not eGene category). We then tested for enrichment of proportions of DE

and not DE between the eGene and not eGene sets using the chi-square test of proportions.

P< 0.05 was considered a significant difference in proportions.

DOX response eGenes. A list of 518 marginal effect eQTLs from Knowles et al., and 376

DOX-response eQTLs, were used to intersect with our data [15]. The two eGene sets shared

104 genes, which were excluded from our analysis, leaving 417 genes baseline eGenes, and 273

DOX-response eGenes. A chi-square test was used to test for enrichment of DE genes found in

baseline eGenes and DOX-response eGenes by time and treatment. P< 0.05 was considered a

significant difference in proportions.

Genes in AC-induced cardiotoxicity GWAS loci. To investigate the drug-induced gene

expression response in cardiotoxicity-associated loci, we used data from three GWAS-based

studies. First, we selected the 50 SNPs most associated with cardiotoxicity in a cohort of

~3,000 breast cancer patients treated with an anthracycline [8]. The list of SNPs was converted

to .bed format and the closest gene transcription start site to each SNP identified using BED-

tools [107]. We removed genes that were not expressed in our data. We also used the GTEx

eQTL database (https://gtexportal.org) to associate each SNP with genes in any tissue. We fil-

tered out redundant gene names and those genes not expressed in our data. We combined the

closest gene set and eQTL set to generate a list of 30 genes to interrogate from this study.

Second, we included three SNPs associated with AC-induced cardiotoxicity (rs2229774,

rs7853758, rs17863783), which are currently recommend for testing in pediatric patients by

the Canadian Pharmacogenomics Network for Drug Safety [42]. Following the same pipeline

described above, these SNPs, yielded a set of four genes.

Third, we included genes prioritized for their involvement in AC-induced cardiotoxicity by

TWAS [43] and filtered out genes not expressed in our data leaving a set of four genes.

We combined genes identified from all three studies for interrogation of the log fold change

between drug treatment and vehicle at three and 24 hours.

Supporting information

S1 Fig. Cardiomyocytes can be generated at high purity across six individuals. (A) Repre-

sentative image of flow cytometry data indicating the proportion of TNNT2 positive cells in

one differentiation experiment for each individual based on the fluorescent intensity of the

phycoerythrin-labeled TNNT2 antibody and a sample of unlabeled iPSC-CMs (red cell popu-

lation). (B) Percentage of cells that are positive for expression of TNNT2 for each individual.

Data representative of three independent differentiation experiments used for the two drug

dose-response curves, and RNA collection. The dashed line represents high-purity iPSC-CMs

(> 70% TNNT2 positive).

(TIF)
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S2 Fig. Dose-response curves are reproducible across replicate cardiomyocyte differentia-

tions from the same individual. Proportion of viable cardiomyocytes following exposure to

increasing concentrations of each drug. Cell viability in replicate one (solid line) and two

(dashed line) in Individual three (orange), and Individual five (green) was assessed following

48 hours of drug treatment. Viability was determined at each drug concentration in quadrupli-

cate, and the mean value was selected for generation of the dose-response curves using a four-

point log-logistic regression with the upper asymptote set to one. Shading represents the 95%

confidence interval from the regression analysis for Individual three (light orange) and Indi-

vidual five (light green).

(TIF)

S3 Fig. Cancer drugs that decrease cardiomyocyte viability induce cellular stress. Pearson

correlation between cardiomyocyte viability following drug treatment at eight different con-

centrations for 48 hours, and the level of lactate dehydrogenase released into the cell culture

media across individuals. Data points are colored by individual (1,2,3,4,5,6).

(TIF)

S4 Fig. Treatment with ACs at a dose of 0.5 μM for 48 hours induces effects on cardiomyo-

cyte viability. Proportion of viable cells following treatment with each drug (DOX: mauve;

EPI: pink; DNR: yellow; MTX: blue; TRZ: dark green; VEH: light green) in each individual

(1,2,3,4,5,6) at five sub-micromolar drug concentrations.

(TIF)

S5 Fig. RNA-seq sample quality is equivalent across individuals, treatments, and time

points. (A) RNA integrity score for each sample categorized by drug type and drug treatment

time. Data inclusive of six individuals. (B) Total number of RNA-sequencing reads categorized

by treatment type (DOX: mauve; EPI: pink; DNR: yellow; MTX: blue; TRZ: dark green; VEH:

light green). Each drug treatment category includes data from six individuals across two time

points. (C) Total number of RNA-seq reads for each of the 72 samples. Each sample is denoted

by drug.individual.timepoint.

(TIF)

S6 Fig. RNA-seq samples cluster by treatment type, timepoint, and individual. Pearson cor-

relation of log2 cpm values across all pairs of samples.

(TIF)

S7 Fig. PC1 associates with drug treatment and treatment time, while PC2 associates with

individual. Demonstration of variance contributed to the first two principal components from

three major covariates in the study: individual, treatment, and time. (A) Variance of individual

as a function of PC1 and PC2. The correlation between individual and each PC is calculated

using a linear model. P values represent the significance of the F-statistic from the model. (B)

Variance of treatment as a function of PC1 and PC2. (C) Variance of time as a function of PC1

and PC2.

(TIF)

S8 Fig. Thousands of gene expression changes are induced in response to TOP2i treatment

over 24 hours. Volcano plots representing genes that are differentially expressed between drug

and vehicle treatment at each timepoint. Genes that are significantly up-regulated in response

to treatment (adjusted P value < 0.05) are represented in blue, and genes that are significantly

down-regulated are represented in red. The number of genes that are up- and down-regulated
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is given for each plot.

(TIF)

S9 Fig. ACs affect expression of nearly half of all expressed genes after 24 hours of treat-

ment. (A) Percentage of genes that are differentially expressed between each drug treatment

and the vehicle following three and 24 hours of treatment. (B) Log2 fold change between drug-

treated and VEH-treated samples for all 14,084 expressed genes following three and 24 hours

of treatment.

(TIF)

S10 Fig. A small number of genes respond to a single drug only. (A) Distribution of adjusted

P values for all genes classified as drug-specific response genes based on overlap of significantly

differentially expressed genes meeting the adjusted P value cutoff of 0.05 across drugs at three

and 24 hours. P values are shown for all drug treatments for the set of drug-specific genes

(DOX: mauve; EPI: pink; DNR: yellow; MTX: blue; TRZ: dark green; VEH: light green). (B)

The log2 fold change of all genes meeting a stringent adjusted P value cutoff of 0.01 for the

drug of interest &> 0.05 for all other drugs to identify drug-specific response genes at three

and 24 hours. (C) Examples of expression levels of stringently-identified drug-specific

response genes across drug treatments at each time point.

(TIF)

S11 Fig. Stringently-identified drug-specific response genes are enriched in biological pro-

cesses. (A) Biological processes enriched amongst genes classified as stringent DNR-specific

and stringent MTX-specific response genes compared to all expressed genes following three

hours of treatment. The top ten most enriched biological processes from Gene Ontology analy-

sis that meet an adjusted P value cutoff of 0.05 are shown except for MTX-stringent where

only processes to the right of the dashed line are significantly enriched. Dot size represents the

number of stringent drug-specific response genes that are annotated as belonging to the partic-

ular biological process. There are no DOX-specific or EPI-specific response genes that pass the

stringent threshold at three hours. (B) Biological processes enriched amongst genes classified

as stringent DOX-specific and stringent MTX-specific response genes compared to all

expressed genes following 24 hours of treatment. There are no EPI-specific or DNR-specific

response genes that pass the stringent threshold at 24 hours.

(TIF)

S12 Fig. Nominally significant TRZ response genes show enrichment in cancer-related

pathways. (A) Number of TRZ response genes that pass a nominal p-value cutoff (unadjusted

P< 0.05) at three and 24 hours. (B) Expression of PHLDA1, a three hour TRZ response gene,

and ANKRD2, a 24 hour TRZ response gene. (TRZ: dark green; VEH: light green). (C) Top

KEGG pathways represented amongst TRZ response genes at three and 24 hours. Dashed

black line is -log10 P< 0.05.

(TIF)

S13 Fig. Four gene expression signatures capture the response to TOP2i over time. (A)

Bayesian information criterion (BIC) and Akaike information criterion (AIC) at increasing

numbers of Cormotif correlation motifs following joint modeling of pairs of tests. (B) Gene

expression levels of genes assigned to each TOP2i response signature in each drug treatment at

each time point. The AHDC1 gene represents the Early-acute response motif (red), the

MEX3A gene represents the Early-sustained response motif (blue), the MED29 gene represents

the Late response motif (green), and GCNT1 represents the No response motif (purple). (C)

The top ten most enriched biological processes (adjusted P value < 0.05) that are enriched in

PLOS GENETICS Anthracyclines and cardiotoxicity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1011164 February 28, 2024 28 / 36

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011164.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011164.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011164.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011164.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1011164.s013
https://doi.org/10.1371/journal.pgen.1011164


the response gene categories compared to all expressed genes. Dot size represents the number

of correlation motif genes that are annotated as belonging to the particular biological process.

(TIF)

S14 Fig. Gene expression variance across 45 individuals increases in iPSC-CMs treated

with DOX. (A) Mean of 12,317 expressed genes in untreated and 0.625 μM DOX-treated sam-

ples [15]. (B) Variance of gene expression across 45 individuals in untreated and 0.625 μM

DOX-treated samples. Asterisk indicates P< 0.001.

(TIF)

S15 Fig. Replication of gene expression response in AC-induced cardiotoxicity loci. Gene

expression levels of DOX-responsive genes in cardiotoxicity-associated loci in our data (VEH:

light green; DOX: mauve; EPI: pink; DNR: yellow; MTX: blue; TRZ: dark green), and in DOX-

treated samples across 45 individuals (untreated: lime and 0.625 μM DOX: purple) [15].

(TIF)

S1 Table. Average viability for each dose response curve analysis. Data related to Figs 1B,

S2, S3, and S4.

(XLSX)

S2 Table. Estimated LD50 using average viability from both replicates and estimated LD50

for each individual replicate. Data related to Fig 1C.

(XLSX)

S3 Table. Drug concentrations in cancer patient serum based on literature. Data related to

Fig 1D.

(XLSX)

S4 Table. Table of relative LDH values. Data related to S3 Fig.

(XLSX)

S5 Table. Measurements from calcium experiments. Data related to Fig 2B–2F.

(XLSX)

S6 Table. RNA-seq sample metadata. Data related to S1 and S5 Figs.

(XLSX)

S7 Table. Pairwise differential expression analysis for DNR vs VEH. Data related to Figs

3B–3D, 7, S8, S9, and S10.

(XLSX)

S8 Table. Pairwise differential expression analysis for DOX vs VEH. Data related to Figs

3B–3D, 7, S8, S9, and S10.

(XLSX)

S9 Table. Pairwise differential expression analysis for EPI vs VEH. Data related to Figs 3B–

3D, 7, S8, S9, and S10.

(XLSX)

S10 Table. Pairwise differential expression analysis for MTX vs VEH. Data related to Figs

3B–3D, 7, S8, S9, and S10.

(XLSX)

S11 Table. Pairwise differential expression analysis for TRZ vs VEH. Data related to Figs

3B–3D, 7, S8, S9, S10, and S12.

(XLSX)
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S12 Table. Stringently-identified response genes for each treatment. Data related to S10

and S11 Figs.

(XLSX)

S13 Table. Results of Cormotif analysis. Data related to Figs 4A–4C, 7, and S13.

(XLSX)

S14 Table. List of genes assigned to each motif. Data related to Figs 4A–4C, 7, and S13.

(XLSX)

S15 Table. Calculated mean and variance of log2 cpm values. Data related to Fig 5A–5C.

(XLSX)
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