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Abstract

Explicitly sharing individual level data in genomics studies has many merits comparing to

sharing summary statistics, including more strict QCs, common statistical analyses, relative

identification and improved statistical power in GWAS, but it is hampered by privacy or ethi-

cal constraints. In this study, we developed encG-reg, a regression approach that can

detect relatives of various degrees based on encrypted genomic data, which is immune of

ethical constraints. The encryption properties of encG-reg are based on the random matrix

theory by masking the original genotypic matrix without sacrificing precision of individual-

level genotype data. We established a connection between the dimension of a random
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matrix, which masked genotype matrices, and the required precision of a study for

encrypted genotype data. encG-reg has false positive and false negative rates equivalent

to sharing original individual level data, and is computationally efficient when searching rela-

tives. We split the UK Biobank into their respective centers, and then encrypted the geno-

type data. We observed that the relatives estimated using encG-reg was equivalently

accurate with the estimation by KING, which is a widely used software but requires original

genotype data. In a more complex application, we launched a finely devised multi-center

collaboration across 5 research institutes in China, covering 9 cohorts of 54,092 GWAS

samples. encG-reg again identified true relatives existing across the cohorts with even dif-

ferent ethnic backgrounds and genotypic qualities. Our study clearly demonstrates that

encrypted genomic data can be used for data sharing without loss of information or data

sharing barrier.

Author summary

Estimating pairwise genetic relatedness within a single cohort is straightforward. How-

ever, in practice, related samples are often distributed across different cohorts, making it

challenging to estimate inter-cohort relatedness. In this study, we propose a method called

encrypted genotype regression (encG-reg), which provides an unbiased estimation of

inter-cohort relatedness using encrypted genotypes. The genotype matrix of each cohort

is masked by a random matrix, which acts similarly to a private key in a cryptographic

scheme. This masking process produces encrypted genotypes, which are a projection of

the original genotype matrix. We derive the expectation and particularly the sampling var-

iance for encG-reg, the latter involves eighth-order moments calculation. encG-reg allows

us to accurately identify relatedness across cohorts, even for large-scale biobank data. To

demonstrate the efficacy of encG-reg, we verified it in a multi-ethnicity UK Biobank data-

set comprising 485,158 samples. For this case, we successfully tracked down to the 1st-

degree relatedness (such as full sibs and parent-offspring). Furthermore, we used encG-
reg in a collaboration involving 9 Chinese cohorts, encompassing a total of 54,092 samples

from 5 genomic centers. It is worth noting that if the number of effective markers is suffi-

cient encG-reg has the potential to detect even more distant degrees of relatedness beyond

what we demonstrated.

Introduction

Genomic datasets have reached millions of individuals, and are often encapsulated in well-pro-

tected cohorts, in which relatives more than often, given increasing genotyped individuals,

spread across cohorts and can be identified once the genomic data are compared [1]. Estimat-

ing genetic relationship often has clear scientific reasons, such as controlling false positive

rates in genome-wide association studies (GWAS) or reducing overfitting in polygenic risk

score prediction [2–4]. Social benefits are recently promoted for available individual genomic

data such as relativeness testing and forensic genetic genealogy [5]. However, direct-to-con-

sumer (DTC) genetic testing activities along with third-party services pose new privacy and

ethical concerns [6]; law enforcement authorities have exploited some of the consumer geno-

mic databases to identify suspects by finding their distant genetic relatives, which has brought
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privacy concerns to the attention of the general public [7,8]. For regulating forensic genetic

genealogy, laws, policies, and privacy-protection techniques are in parallel development

[9–11].

The above progress, nevertheless, often requires individual-level data to be shared which

may often be beyond the permitted range of data sharing [12]. The encryption methods for

genotypes have gone through from the initial one-way cryptographic hashes, to random

matrix multiplication, and recently to homomorphic encryption (HE). One-way hashes are

leveraged to detect overlapping samples, but it fails if the test genotypes differ, which can be

caused by genotyping or imputation errors, even when they are minor [13,14]. Privacy-pre-

serving protocols for multi-center GWAS have been brought to public recently [15–20], on

which HE is mostly based. HE provides high precision for results for certain kinds of computa-

tional tasks in genetic studies. However, as it is computationally substantial, often one or two

orders of magnitude larger than that of the original cost, its application has been limited to

small sets of data, at the scale of several hundreds of samples.

In this study, random matrix theory has been adopted to detect relatedness based on our

previous study [21]. We developed a novel mitigation strategy called “encrypted genotype

regression”, hereby encG-reg, which does not require original genotype data to be shared but

is capable of identifying relatedness with highly controllable precision of balanced Type I and

Type II error rates. Since only encrypted genotype data is exchanged in performing encG-reg,

collaborators from different cohorts are able to minimize their concerns about data confidenti-

ality. We explore the statistical properties of encG-reg in theory, simulations, and application

of 485,158 UK Biobank (UKB) samples of various ethnicity. In a real-world collaboration that

includes 5 genomic centers from north to south China (Beijing, Shanghai, Hangzhou, Guang-

zhou, and Shenzhen) totaling 54,092 genetically diverse samples were genotyped based on dif-

ferent platforms, and intriguing relatedness was identified between cohorts by encG-reg.

Privacy-preserving is context-dependent and is still in development under a particular sce-

nario. Throughout this study, when summary information is exchanged, such as allele fre-

quencies and variant positions, we apply the practical guideline in GWAS meta-analysis

(GWAMA), which defines a novel strategy we established for data safety.

Description of the method

In this section, we will first present an analogous sketch of our thinking. Imagine a Go-like

board with dimensions n1×n2, where each square contains a particle of size θs or θl, and we

assume θs<θl. Additionally, it is often the case that there is a significantly large number of par-

ticles of small size θs compared to those of larger size θl. Each particle is imperfect because of

the handcraft variance of the particle size. Intuitively, criteria are required if we want to cor-

rectly pick a particle of size θl, which is sampled from a normal distribution Nðyl; s2
yl
Þ, out of

many particles of size θs, which are sampled from Nðys; s2
ys
Þ. These criteria include the expecta-

tion and sampling variance of the particle sizes θl we want to pick up, the number of squares

on the board (n1×n2), the probability that we would accept for incorrectly picking up a particle

of size θs (Type I error rate α), and the probability that we would miss a real particle of size θl
(Type II error rate β). All these criteria need to be balanced to find a solution that allows us to

distinguish θl from θs under an acceptable cost, say computational cost and storage cost.

It is evident that the described question fits into the conventional statistical testing scenario,

which is “null hypothesis H0 : Nðys; s2
ys
Þ vs alternative hypothesis H1 : Nðyl; s2

yl
Þ”. Further-

more, expressions for the minimum size of the testing sample can be given by a power calcula-

tor that brings out the required Type I and Type II error rates. In our study, θ refers to the

relatedness between a pair of individuals and m refers to the number of markers and is related
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to the sampling variance of relatedness scores. A slightly upscaled concept of m is the effective

number of markers me, which takes into account the squared correlation between m markers,

and consequently me�m. Given these considerations, a smaller m is preferred to minimize the

data cost. Other technical march in S1 Text primarily focused on deriving the sampling vari-

ance. The variance is approximated using fourth-order moment computation for a fundamen-

tal pairwise relatedness estimator, the genetic relationship matrix (GRM). It is further refined

through an eighth-order moment computation after multiplying the source genotype matrix

by an S matrix (m rows and k columns). Here, the S matrix acts analogously to the private key

in a cryptographic scheme. The ground truth is that a larger value of k facilitates better identifi-

cation between θl and θs. However, in line with the approach for determining a small yet suffi-

cient value of m, we also aim to identify the smallest value of k that balances precision and

cost. Consequently, the primary objective of this study is to establish a lower bound for m (or

me) and k. These two values will enable us to determine the minimum conditions required for

detecting relatedness.

Ethic statement

For SBWCH cohort, the protocol and written consent were approved by the Institutional

Review Board of Shenzhen Baoan Women’s and Children’s Hospital (LLSC-2021-04-01-

10-KS); For CAS cohort, the protocol and written consent were approved by the Institutional

Review Board of Beijing Institute of Genomics and Zhongguancun hospital (No.2020H020,

No.2021H001, and No.20201229); For ZOC cohort, a written informed consent was obtained

from the parents or guardians of the young twins. Ethical approval and DNA data using

approval were obtained from the Ethical Committee of Zhongshan Ophthalmic Center; For

Fudan cohort, the protocol and written consent were approved by the College of Life Science

Fudan University Ethical Review Board; For WBBC cohort, the protocol and written consent

were approved by the Westlake University Ethical Review Board.

Overview of the method

Using SNPs, inter-cohort relatedness for pairs of individuals can be inferred from genetic rela-

tionship matrix, which is G12 ¼
1

mX1X
T
2
¼ fgijgn1�n2

. X1 is a matrix of n1 individuals (rows)

and m markers (columns), and so is X2. This GRM definition is identical to Eq 9 in Speed and

Balding’s review paper for GRM (X are standardized by SNP allelic frequencies and its

expected sampling variance) [22]. The expectation and variance of gij are

E gij
� �

¼ yr and var gij
� �

¼
1þ y

2

r

m
ðEq1Þ

We can express yr ¼
1

2

� �r
for the rth degree relatives, so θr has the expected values of 1, 0.5,

0.25, and 0.125 for the zero (clonemate), first (full sibs, or parent-offspring), second (half sibs,

or grandparent-grandchildren), and third degree (first cousins, or great grandparent-great

grandchild) of relatives, respectively. Obviously, when there is an inbred or population struc-

ture, or a loop in marriage, the realized value of θr covers a continuous range [23].

Let S be an m×k matrix and its entries are independently sampled from N(0,σ2). X̂1 ¼ X1S
presents an ideal one-way encryption technique in private genetic data sharing, and we call X̂1

“encrypted genotype”, hereby encG. When s2 ¼ 1

k, we have EðX̂1X̂T
2
Þ ¼ X1X

T
2
, the approxi-

mated precision of which relies on the sampling variance of S matrix (S1 Fig). The relationship

is clear: as the value of k increases, the approximation approach to the optimum becomes

more accurate. In this study, we ask whether there are relatedness existing between X1 and X2,
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and how large k should be in order to reduce the noise and meanwhile is still able to identify

the relatives of certain degree.

Based on encG, it is now trustworthy to construct Ĝ12 ¼
1

k X1Sð Þ STXT
2

� �
¼ fĝ ijgn1�n2

, the

encrypted GRM. In terms of the matrix element ĝ ij, its expectation and variance are Eðĝ ijÞ ¼

yr and var ĝ ij

� �
’

1þy2
r

k þ
1þy2

r
m , respectively, in which the term

1þy2
r

k is crept into varðĝ ijÞ in com-

paring with its counterpart in Eq 1. As SNPs are often in linkage disequilibrium (LD), we

introduce the effective number of markers (me), which is a population parameter engaged in

various genetic analyses [24]. The variances of gij and ĝ ij then become
1þy2

r
me

and
1þy2

r
k þ

1þy2
r

me
,

respectively.

encG regression (encG-reg)

Another interpretation of encGRM is from the perspective of linear regression, which we

regress the ith row of X̂1ðx̂ iÞ against the jth row of X̂2ðx̂ jÞ to estimate the relatedness. We call

this procedure the encG regression (encG-reg). The slope bij of a simple regression model x̂ j ¼

bijx̂ i þ e indicates the relatedness score between these two individuals. The expectation and

the sampling variance of b̂ij ¼
covðx̂ i;x̂ jÞ
varðx̂ iÞ

can be approximated by

E b̂ij

� �
¼ yr and var b̂ij

� �
’

1 � y
2

r

k
þ

1 � y
2

r

me
ðEq2Þ

Compared with encGRM, encG-reg generates a smaller sampling variance and improves

statistical power in identifying relatives.

Minimum numbers of me and k
Given a pair of individuals I) whose relatedness is estimated by GRM and follows the distribu-

tion of N yr;
1þy2

r
me

� �
, we ask how to identify them from unrelated pairs with a distribution of

N 0; 1

me

� �
; II) whose relatedness is estimated by encG-reg and follows the distribution of

N yr;
1� y2

r
k þ

1� y2
r

me

� �
, we ask how to differentiate them from unrelated individual pairs as sam-

pled from N 0; 1

k þ
1

me

� �
. This question is analogous to the conventional pattern recognition,

which can be solved under the power calculation in the statistical test framework for null verse

alternative hypotheses. We consequently need to determine two key parameters. I) the effec-

tive number of markers, me, a population statistic that sets the resolution of GRM itself in

detecting relatives. II) the column number of the random matrix, k, an iteration dimension

that sets the precision of encG-reg. To determine me and k, upon Type I error rate (α, false pos-

itive rate as aforementioned) and Type II error rate (β, false negative rate), me should satisfy

the below inequality

me ja;b;yr
>

z1� b

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y
2

r

q

þ z1� a

yr

0

@

1

A

2

ðEq3Þ

Similar to me, the minimum number of k is also determined by a certain Type I and Type II

error rates, the degree of relatives to be detected, as well as the parameter me. k should follow
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the below inequality

kja;b;yr ;me
>

1

yr

z1� b

ffiffiffiffiffiffiffi
1� y2

r

p
þz1� a

� �2

� 1

me

ðEq4Þ

In particular, α should be under experiment-wise control, say after Bonferroni correction,

and consequently upon the total comparisons N ¼
PC

i<j ninj, where there are C cohorts and ni
samples in cohort i. Of note, Eq 3 gives a lower bound of the number of markers, while in prac-

tice we often have genome-wide SNPs in surplus, such as the case in the UKB example below.

As a larger me leads to a smaller k, it is upon the data to choose a large me but a small k, or a

minimum me but a large k. Fig 1 provides a phenomenological illustration of how me and k are

weaved together. A simulation R code for Fig 1 can be found at https://github.com/qixininin/

encG-reg/blob/main/1-Simulations/Figure1-resolution.R.

The conceptual layout of the method is as described above. The technical details of sam-

pling variance at Eqs 1–2 and statistical power calculation for Eqs 3–4 can be found in S1 Text

and the corresponding annotations are given in S1 Table. The properties of all three methods,

including GRM, encGRM, and encG-reg, are summarized in Table 1. For a pair of cohorts of

sample n1 and n2, the computational time complexity of encG-reg is about

Oððn1 þ n2Þmkþ n1n2kÞ: the first term occurs at the local site of each cohort and the second

term occurs at an entrusted computational server for a pair of cohorts. Furthermore, after

local encryption by multiplication of S, the size of the X̂1 that is sent to the central analyst is of

dimension n1×k, which approximately represents the space complexity. Although the values of

m and k are as determined by Eq 3 and Eq 4, but in practice we may pick a slightly larger m,

say 2m, so as to balance time complexity and space complexity.

After the assembly of cohorts, there are options for choosing SNPs upon the experimental

design. An exhaustive design denotes the use of intersected SNPs between each pair of cohorts,

thus a specific random matrix will be shared with each pair of cohorts. Given C cohorts, there

are CðC � 1Þ=2 S matrices generated and each cohort is likely to receive C � 1 different S

matrices that matches to C � 1 cohorts. Adopting exhaustive design is possible to maximize

the statistical power with the maximized number of SNPs, but the computational, as well as

communicational, efforts may overwhelm the organization of a study. In contrast, a parsimony

design denotes the use of intersected SNPs among all assembled cohorts, as long as the number

of SNPs satisfies the resolution in Eq 3 and Eq 4. Exhaustive design and parsimony design are

both validated in the 19 UKB cohorts, each of which had sample sizes greater than 10,000, and

parsimony design is further tested in the real world for 9 Chinese cohorts in this study.

Protocol for encG-reg for biobank-scale application

We now sketch a detailed technical protocol with security concern for encG-reg into four steps

and two interactions. For the four steps, steps 1 and 3 are performed by each collaborator, and

steps 2 and 4 are performed by a central analyst (Fig 2A). For the two interactions, exchanged

information, possible attacks, and corresponding preventative strategies are given in examples

(Fig 2B). We have provided comprehensive details and practical commands for each step at

https://github.com/qixininin/encG-reg. The repository includes two main folders: “Simula-

tion” and “Protocol”. The “Simulation” folder includes code and resources for all simulations

in this study. The “Protocol” folder contains a user-friendly protocol that outlines the step-by-

step process for a group of collaborators using encG-reg. These commands and scripts have

been utilized during interactions with our collaborators in multi-center Chinese datasets

application.
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Step 1 Cohort assembly and intra-cohort quality controls. Basic intra-cohort QCs should

be conducted. Summary information such as SNP ID, reference allele, and its frequency are

then requested by the central analyst.

Step 2 Inter-cohort quality controls and parameter setup. Using the “geo-geno” relation-

ship often observed in genetic data [25,26], we suggest two inter-cohort QCs. One is called fre-

quency-principal component analysis (fPCA) and another is called fStructure. The technical

details of the employed fPCA and fStructure methods can be found in our previous study [21]

and is described in the following subsection. The central analyst determines m and k by Eq 3

and Eq 4 based on survived SNPs and passes parameter information to each collaborator

along with a SNP list.

Step 3 Encrypt genotype matrix. The m-by-k random matrix, or matrices when an exhaus-

tive design is chosen, is generated and sent to each collaborator. As a positive control,

Fig 1. Resolution for varying relatedness using GRM, encGRM and encG-reg. The figure shows the resolution for detecting relatives or overlapping samples with

respect to varying number of markers at every row (for better illustration me was twice that of Eq 3) and the degree of relatives to be detected (r = 0, 1, and 2). The y axis is

the relatedness calculated from GRM and the x axis is the estimated relatedness calculated from encG-reg (A) and encGRM (B). Each point represents an individual pair

between cohort 1 and cohort 2 (there are 200 × 200 = 40,000 pairs in total), given the simulated relatedness. The dotted line indicates the 95% confidence interval of the

relatedness directly estimated from the original genotype (blue) and the encrypted genotype (red). The table provides how m and k are estimated. The columns “under

minimal me” provide benchmark for a parameter, and it is practically to choose 2×me and then estimate k as shown under the column “practical me”.

https://doi.org/10.1371/journal.pgen.1011037.g001
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Table 1. Statistical properties of conventional genetic relationship matrix (GRM), encrypted GRM (encGRM), and encG regression (encG-reg).

GRM encGRM encG-reg
Matrix form G12 ¼

X1XT
2

m ¼ fgijgn1�n2

Ĝ12 ¼
ðX1SÞðSTXT

2
Þ

k ¼ fĝ ijgn1�n2

B̂12 ¼ fb̂ ijgn1�n2

Expectation E(gij) = θr Eðg îjÞ ¼ yr Eðb̂ijÞ ¼ yr

Variance var gij
� �

¼
1þy2

r
me

var ĝ ij

� �
�

1þy2
r

k þ
1þy2

r
me

var b̂ij

� �
�

1� y2
r

k þ
1� y2

r
me

Time complexity Oðn1n2mÞ Oððn1 þ n2Þmkþ n1n2kÞ Oððn1 þ n2Þmkþ n1n2kÞ
Space complexitya OðnikÞ OðnikÞ

Table notes: This table compares the definition and properties, such as expectation, variance and time complexity between three important matrices, GRM, encGRM,

and encG-reg, mentioned in the article. Note that, each element of the random matrix Sm×k = {sij} follows a normal distribution N(0, 1/m); m is the number of markers,

also represents the number of rows for random matrix S; k is the number of columns for random matrix S; me is the number of effective markers, an advanced concept

that takes the squared correlation between markers into account; r is the degree of a pair of relatives and θr is their relatedness score; n1 and n2 are the sample sizes of

two cohorts.

aSpace complexity refers to the dimension of X̂ i ¼ XiS, which should be transported to the central analyst.

https://doi.org/10.1371/journal.pgen.1011037.t001
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cohort 1

Original genotype matrix Encrypted genotype matrix

S

Central analyst

The first interaction

The second interaction

CHR SNP A1 A2 MAF

1 rs1 G A 0.39

1 rs2 T G 0.22

1 rs3 G T 0.47

… … … … …

CHR SNP A1 A2

1 rs21 G A

1 rs55 T G

1 rs98 G T

…. … … …

Variants selection
&

Key generator

+ Seed number: XXXX

ID K1 K2 K3 ...

U1-1 0.037 -0.050 0.039 ...

U1-2 -0.013 0.043 -0.006 ...

U1-3 -0.019 -0.009 0.042 ...

ID1 ID2 Kinship Degree

U1-21 U2-13 0.995 0

U1-33 U3-90 0.520 1

U2-42 U3-50 0.249 2

…. … … …

Attacks

e.g. re-identification

e.g. PCA-attack

Choose common
variants

(MAF>0.05)

Choose 
independent

variants

Central analyst

Perform encG-reg

A B

User 1

User 2

User 3

User 1

User 2

User 3

Attacks

Fig 2. Workflow of encG-reg and its practical timeline as exercised in Chinese cohorts. The mathematical details of encG-reg are simply algebraic, but its

inter-cohort implementation involves coordination. (A) We illustrate its key steps, the time cost of which was adapted from the present exercise for 9 Chinese

datasets (here simplified as three cohorts). Cohort assembly: It took us about a week to call and got positive responses from our collaborators (See Table 3),

who agreed with our research plan. Inter-cohort QC: we received allele frequencies reports from each cohort and started to implement inter-cohort QC

according to “geo-geno” analysis (see Fig 6). This step took about two weeks. Encrypt genotypes: upon the choice of the exercise, it could be exhaustive design

(see UKB example), which may maximize the statistical power but with increased logistics such as generating pairwise Sij; in the Chinese cohorts study we used

parsimony design, and generated a unique S given 500 SNPs that were chosen from the 7,009 common SNPs. It took about a week to determine the number of

SNPs and the dimension of k according to Eq 3 and 4, and to evaluate the effective number of markers. Perform encG-reg and validation: we conducted inter-

cohort encG-reg and validated the results (see Fig 7 and Table 4). It took one week. (B) Two interactions between data owners and central analyst, including

example data for exchange and possible attacks and corresponding preventative strategies.

https://doi.org/10.1371/journal.pgen.1011037.g002
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reference samples will be merged into each cohort. Genotype encryption is realized by the

matrix multiplication between the standardized genotype matrix and S.

Step 4 Perform encG-reg. Inter-cohort computing for relatedness will be conducted by the

central analyst. A successful implementation will lead to at least positive controls consistently

identified as inter-cohort “overlap” and if possible, various sporadic relatedness.

In the above steps, there are two interactions between collaborators and the central analyst:

The first interaction. Collaborators send over a list of variants including their allele fre-

quencies. After doing variants selection, central analyst returns a list of intersected variants,

together with a randomly generated seed. Re-identifications based on allele-frequency may

occur, but a suggested choice of common variants (MAF>0.05) can mostly dispel these

misgivings.

The second interaction. Collaborators send over a matrix of encrypted genotypes. After

performing encG-reg between each two pairs of cohorts, the central analyst returns identified

relatedness or returns relatedness scores directly, based on pre-agreed requests. PCA-attack

based on encrypted genotypes may occur, if the correlation structure of variants being approx-

imated in a proper reference population, but one straightforward defense is to use variants that

are in linkage equilibrium, and it ensures that the correlation matrix closely approximates to

the identity matrix.

Cohort-level quality control using fPCA and fStructure

In this study, we use fPCA and fStructure to examine the data quality at the cohort-level using

summary statistics. Both fPCA and fStructure have been previously used in The Genetic Inves-

tigation of Anthropometric Traits (GIANT) Consortium [21], and GWAMA for educational

attainment [27]. fPCA is a principal component analysis based on summary data at the popula-

tion level, rather than individual-level data. It uses the allele frequency of common markers

across all cohorts, which is constructed into matrix P ¼ fpijgC�M
. Here, C represents the num-

ber of cohorts and M represents the number of common markers, while pij denotes the allele

frequency for the jth marker in the ith cohort. Using the differences in marker frequencies,

fPCA can effectively capture the population structure in PC1 and PC2. fStructure explores the

genetic composition of the target cohorts by comparing with reference populations using Fst.
Again, Fst is calculated based on allele frequency of common markers among all cohorts and

the reference populations. Suppose there are C cohorts and three reference population. The

average Fst using common markers (Fref1
st ; Fref 2

st , and Fref3
st ) between ith cohort and the given ref-

erence populations are calculated. Finally, a bar plot is employed to show the ratio of

1=Fref1
st ; 1=Fref2

st , and 1=Fref3
st , providing a clear visualization of the genetic composition of the

testing cohorts against the reference populations.

Calculate the number of effective markers

The corresponding me will be estimated from, 1KG-EUR and 1KG-CHN as the reference pop-

ulations for validation in the UKB cohorts and the Chinese cohorts, respectively. According to

its definition, me ¼
m2Pm

l1 ;l2
r2
l1 l2

¼ m2

mþ
Pm

l1 6¼l2
r2
l1 l2

, in which ρ2 is the squared Pearson’s correlation

for a pair of SNPs, and me can be empirically estimated as 1

varðGoff Þ
, where Goff denotes the off-

diagonal elements of GRM [24,28,29]. 1

me
describes the global LD for all the included SNPs. For

more technical details about me, please refer to Huang et al [30]. Since me is asymptotically dis-

tributed as N me;
4m2

e
n2

� �
according to the Delta method, the sampling variance of me is negligi-

ble as long as the studying populations are from similar ancestries, such as the case for
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Manchester and Oxford cohorts in UKB and the Chinese datasets employed in this study

(S2 Table). For a single-ethnicity population, when SNPs are randomly sampled from the

genome, with m<50,000, me is approximately equal to m, as demonstrated in Chinese cohorts.

In the case of a multi-ethnicity population like UKB, the use of encG-reg is when SNPs of eth-

nicity-insensitive frequencies are employed.

Verification and comparison

Simulation validation. For a conceptional exploration, we illustrated how m and k would

affect the identification of various relatedness. In this case, we ignored the difference between

m and me because SNPs were generated independently. We simulated 200 individuals each for

cohort 1 and cohort 2 (n1 = n2 = 200). Between cohort 1 and cohort 2, we generated 10 pairs of

related samples at a variety of relatedness, i.e., zero-degree/identical, 1st-degree, and 2nd-

degree relatives, respectively. For better illustration, we set the desired number of markers (m)

twice as given by Eq 3 and the corresponding size of k as given by Eq 4 at the experiment-wise

Type I error rate of 0.05 (α = 0.05/40,000) and Type II error rate of 0.1 –equivalent to 90% sta-

tistical power. We simulated individual-level genotype matrices with the dimension of n1×m
and n2×m and the encrypted genotype matrices with the dimension of n1×k and n2×k. Related-

ness scores for GRM, encGRM, and encG-reg were calculated accordingly and theoretical dis-

tributions were derived under the assumption of multivariate distribution for each degree of

relatedness. Fig 1 showed that for encG-reg, in each scenario, sufficient k was able to detect a

certain degree of relatedness as long as m could support. Compared with encGRM, encG-reg
had a smaller variance and consequently a larger statistical power in detecting relatives.

We then evaluated the properties and performance of encG-reg, GRM, and encGRM in

more details. We first validated the derived variances of GRM, encGRM, and encG-reg (as

summarized in Table 1). 1,000 pairs of relatives were separated in cohort 1 and cohort 2.

m = 1,000, 1,250, 1,500, 1,750, and 2,000 independent markers were simulated, and their MAF

was sampled from a uniform distribution U(0.05,0.5). Genotype matrices from two cohorts

were encrypted by the same m×k random matrix S, whose elements drew from a normal distri-

bution N 0; 1

m

� �
. We set k to be 1,000, 2,000, 3,000, 4,000, and 5,000, respectively. Both the origi-

nal and the encrypted genotype matrices were standardized based on the description for the

three methods. Observed and theoretical variances were examined among four different

degrees of relatedness (identical, 1st-degree, 2nd-degree, and 3rd-degree). The estimated sam-

pling variances of GRM, encGRM and encG-reg matched with the theoretical variance at each

level of relatedness (Fig 3).

Multi-ethnic samples validation: UKB in exhaustive and parsimony design. Both

exhaustive and parsimony designs were conducted to validate encG-reg on 485,158 UKB

multi-ethnicity samples from 19 assessment centers with a sample size greater than 10,000

(S3 Table), resulting in a total of 110,713,926,381 inter-cohort individual pairs. As the 485,158

UKB samples consist of 94.23% Whites, 1.94% Asian or Asian British, 1.57% Black or Black

British, and 2.27% “Other” or “Unknown”, it is an ideal dataset to validate whether encG-reg is

good to handle diversified samples. Identical/twins, 1st-degree and 2nd-degree relatedness

were aimed to be detected by KING-robust (“the rule of thumb”) using the real genotypes and

by encG-reg using the encrypted genotypes, respectively. We conducted QC on the 784,256

chip SNPs within the 19 cohorts, and the inclusion criteria for autosome SNPs were: (1) minor

allele frequency (MAF) > 0.01; (2) Hardy-Weinberg equilibrium (HWE) test p-value> 1e-7;

and (3) locus missingness < 0.05. An averaging number of 578,543 SNPs survived from 19

cohorts. In addition, taking account of the multi-ethnicity nature of UKB samples, only SNPs

of ethnicity-insensitive frequency, which have indifferent allele frequencies statistically, were
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included. Therefore, we selected ethnicity-insensitive SNPs based on three reference popula-

tion representing European (99 CEU and 107 TSI samples), African (107 YRI samples), or

East Asian (103 CHB and 105 CHS samples) background in 1000 Genome Project. We first

performed SNP quality control on three reference population, using the following inclusion

criteria: (1) minor allele frequency (MAF) > 0.01; (2) Hardy-Weinberg equilibrium (HWE)

test p-value > 1e-7; and (3) locus missingness < 0.05. Next, we conducted association studies

on two reference populations at a time, selecting SNPs with a p-value greater than 0.05 (con-

sidered insignificant). Once insignificant SNPs were identified between each pair of reference

population, we took the intersection between those SNPs to establish the ethnicity-insensitive

SNP pool, which contained a total of 299,835 SNPs. These SNPs exhibit consistent allele fre-

quency across different ethnic backgrounds. For more details see S1 Text.

We adopted both exhaustive design and parsimony design in this UKB validation. In the

exhaustive design, intersected SNPs were selected between each pair of cohorts, the average

number of intersected SNPs was 556,929 and the average number of ethnicity-insensitive

SNPs after taking intersection with the ethnicity-insensitive pool was 13,157. In the parsimony

design, a total number of 12,858 intersected and also ethnicity-insensitive SNPs among all 19
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Fig 3. Sampling variance of GRM, encGRM and encG-reg in simulations. The observed and theoretical sampling variance of GRM (A1-A4), encGRM

(B1-B4) and encG-reg (C1-C4) are given in bar plots. Individual genotypes are simulated with m = 1,000, 1,250, 1,500, 1,750, and 2,000 independent markers.

A total number of n1 = n2 = 1,000 pairs of relatives are simulated under each different levels of relatedness (r = 0, 1, 2, and 3). As for the encryption, the column

number of random matrices are k = 4,000, 5,000, 6,000, 7,000, and 8,000 correspondingly.

https://doi.org/10.1371/journal.pgen.1011037.g003
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cohorts were selected. The numbers of ethnicity-insensitive SNPs intersected between each

pair of UKB cohorts in exhaustive design were all given in S4 Table. The number of k for

encG-reg was estimated by Eq 4 at a Type I error rate of 0.05 and a Type II error rate of 0.1. To

note that, experiment-wise Bonferroni correction is based on the number of paired samples

between every two cohorts (N ij ¼ ninj) for exhaustive design and the total number of paired

samples among all cohorts (N ¼
PC

i<j ninj) for parsimony design.

Performance of encG-reg in two UKB cohorts. We investigated more details of encG-reg
at two assessment centers in Manchester (11,502 individuals) and Oxford (12,260 individuals)

from UKB white British, which included over 140 million comparisons. We randomly sampled

SNPs with different ranges of MAF (0.01 to 0.05, 0.05 to 0.15, 0.15 to 0.25, 0.25 to 0.35, 0.35 to

0.5, and a broad range of 0.05 to 0.5) so as to compare the performance of encG-reg and

KING. According to the minimum number of me and k at the experiment-wise Type I error

rate of 0.05 a ¼ 0:05

11;502�12;260
; z1� a ¼ 6:164

� �
and Type II error rate of 0.1 (z1−β = 1.282) based

on Eq 3 and Eq 4 (Table 2), the minimum requirement for me was 283 and 1,104 for detecting

1st-degree and 2nd-degree relatedness, respectively. However, since it is m rather than me that

can be directly determined and interacted with the data, we suggested and empirically chose m
as twice the minimum number of me, in order to ensure that the practical derived me satisfies

Eq 3. We randomly selected 566 SNPs (me = 566, θ1 = 0.45) and 2,209 SNPs (me = 2,023, θ2 =

0.225) for detecting 1st-degree and 2nd-degree relatedness, and the corresponding k were 494

and 2,342, respectively. Against possible noise that may rust statistical power, we also increased

k to 1.2k and denoted it as encG-reg+. The average relatedness score, standard deviation, and

statistical power were calculated for each detected relative pair after resampling SNPs 100

times.

Out of the 11,502×12,260 = 141,014,520 pairs of inter-cohort individuals, 17 pairs of so-

called 1st-degree and 2 pairs of 2nd-degree relatives were found using overall QCed SNPs by

KING. The bar plots in Fig 4 compared relatedness scores of the known 1st-degree (me = 566,

k = 494) and 2nd-degree (me = 2,023, k = 2,342) relatives, estimated by KING, GRM, encG-reg,

and encG-reg+ (using 1.2k). In general, encG-reg and encG-reg+, still showed very similar esti-

mations of relatedness score compared with KING. When SNPs were sampled with MAFs

between 0.05 and 0.5, the average statistical power reached 0.9 and 0.95 for detecting 1st-

degree relatedness by encG-reg and encG-reg+. The overall statistical power was proportional

to the MAF; when the MAF of the sampled SNPs was less than 0.05, the statistical power of

encG-reg was still close to our theoretical benchmark. In a more refined scope, using the con-

ditional binomial distribution, our analytical result showed that the sampling variance of

Table 2. The minimum number of me and k for identifying different relatedness between two UKB cohorts Manchester and Oxford.

Suggested

Relatedness Minimum me (Eq 3) m (empirical me) k (Eq 4) 1.2×k
Identical (θ = 1) 77 154 (157) 87 105

1st-degree (θ = 0.5) 283 566 (566) 494 593

2nd-degree (θ = 0.25) 1,105 2,209 (2,023) 2,342 2,811

Table notes: We used Manchester (11,502 individuals) and Oxford (12,260 individuals) from UKB white British, totaling 11,502×12,260 = 141,014,520 pairs. The

minimum number of me for detecting identical, 1st-degree, and 2nd-degree relatedness are calculated from Eq 3 at the experiment-wise Type I error rate of 0.05 (α =

0.05/141.014,520) and Type II error rate of 0.1. In practice, the suggested number of markers (m) here is twice that of the minimum number of me because it is a surplus

of SNPs. The empirical me is estimated from 1KG-EUR. The minimum number of k is calculated from Eq 4 given empirical me. The column of “1.2×k” is suggested for

improved statistical power.

https://doi.org/10.1371/journal.pgen.1011037.t002
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Fig 4. Influence of minor allele frequencies in detecting relatives in Manchester and Oxford cohorts. The bar plots provide a comparison of relatedness

scores for the known 1st-degree and 2nd-degree relatives estimated by KING, GRM, encG-reg, and encG-reg+ at two representative assessment centers

(Manchester and Oxford). For each assessment centers, 566 and 2,209 SNPs were randomly selected within specific MAF ranges: 0.01 to 0.05, 0.05 to 0.15, 0.15

to 0.25, 0.25 to 0.35, 0.35 to 0.5, and 0.05 to 0.5. Here, encG-reg+ denotes the use of 1.2-fold of the minimum number of k and IBD denotes twice the

relatedness score estimated by KING. After resampling SNPs 100 times, the average GRM score, standard deviation, and statistical power were calculated for

each detected relative-pair. The grey dashed line indicates the expected statistical power of 0.9. The solid colored lines indicate the average relatedness scores for

certain degrees as estimated by the four methods. 17 pairs of so-called 1st-degree and 2 pairs of 2nd-degree relatives were approved using overall SNPs by

KING.

https://doi.org/10.1371/journal.pgen.1011037.g004
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GRM was proportional to 1

m 1 � 2yþ y

2pq

� �
(S1 Text). It was noticeable that larger MAFs

could lead to a smaller variance of GRM score (S2 Fig), which further resulted in a smaller var-

iance and a higher power of detecting relatives for encGRM and encG-reg. This result is con-

sistent with how MAF affects the statistical power in UKB Manchester and Oxford cohorts.

Performance of encG-reg in UKB. We verified the exhaustive design of encG-reg in 19

UKB cohorts (totaling over 100 billion inter-cohort individual pairs) by comparing with the

results from KING up to the 2nd-degree relatedness (Fig 5A). The average number of inter-

sected SNPs between every two pairs of cohorts was 13,157. The same 38 pairs of identical

samples (monozygotic twins in this case) were detected by KING and encG-reg; 7,965, and

6,632 pairs of 1st-degree and 2nd-degree relatedness were inferred by KING, comparing to

7,913 and 7,022 by encG-reg, respectively. It could be seen that encG-reg was quite comparable

to KING in practice. Based on individual ID and their recorded ethnicity, consistent related-

ness scores were estimated by KING and encG-reg (Fig 5B–5D). Combining geographic dis-

tance between 19 cohorts, we discovered that more relatives were detected between adjacent

assessment centers, such as Manchester and Bury, Newcastle and Middlesbrough, and Leeds

and Sheffield. Besides, consistent numbers of relatedness were inferred by the parsimony

design of encG-reg (S5 Table). The decrease in the number of the detected 2nd-degree related-

ness for parsimony design was possibly due to the smaller experiment-wise Type I error rate

and thus a more stringent threshold.

As aforementioned the computational time complexity was Oððn1 þ n2Þmkþ n1n2kÞ. For

the example of 19 UKB cohorts, with an average cohort size of n = 25,537, an average of m =

13,157 intersected ethnicity-insensitive markers, and an average of k = 1,381 columns for ran-

dom matrix, the average time required for each pair-wise encG-reg computation was

9.682 ± 2.700 minutes (S4 Table). The computations were performed using one thread on an

Intel(R) Xeon(R) CPU E7-4870 @ 2.40GHz. The average storage space of data, which was sup-

posed to be transported to the center analyst but not for the UKB in-house demonstration, was

proportional to n � k. Both the computational time and the storage space was affordable even

for biobank-scale data such as the UKB.

Applications

9 multi-center Chinese datasets. We launched a national-scale application for encG-reg
in 9 Chinese datasets under the parsimony design to avoid possible computational and com-

municational costs. Four out of nine datasets were publicly available, while the remaining data-

sets were recruited from 5 research centers, located in from north to south China, including

Beijing, Shanghai, Hangzhou, Guangzhou, and Shenzhen (Table 3). Serving as a proof-of-con-

cept and brief validation of encG-reg in civilian and complex environments, collaboration was

organized to detect identical or 1st-degree relatedness samples but without revealing personal

medical information.

1KG-CHN (public): We considered two Chinese subpopulations in 1000 Genome Project

(1KG) [31], CHB (Han Chinese in Beijing, 103 individuals) and CHS (Southern Han Chinese,

105 individuals) as the reference population and also as a positive control in the cross-cohort

test in Chinese datasets. Individuals in the project were genotyped by either whole-genome

sequencing or whole-exome sequencing platform.

UKB-CHN (UKB application 41376): The UKB includes 1,653 individuals of self-reported

Chinese [32]. After genomic assessment, 1,435 were considered as Chinese origin. Individuals

in the project were genotyped using the Applied Biosystems UK BiLEVE Axiom Array by

Affymetrix, followed by the genotype imputation.
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CONVERGE (public): The CONVERGE consortium aimed to investigate major depressive

disorder (MDD) [33]. It included 5,303 Chinese women with recurrent MDD and 5,337 con-

trols, who were genotyped with low-coverage whole-genome sequencing followed by

imputation.

MESA (accessible after dbGAP application): The Multi-Ethnic Study of Atherosclerosis

(MESA), which investigates subclinical cardiovascular disease [34], includes 653 Chinese sam-

ples, who were genotyped using Affymetrix Genome-Wide Human Single Nucleotide Poly-

morphism array 6.0, followed by genotype imputation.

SBWCH Biobank: The Shenzhen Baoan Women’s and Children’s Hospital (Baoan district,

Shenzhen, Guangdong province) Biobank aims to investigate traits and diseases during

Fig 5. Resolution for detecting relatives in UKB cohorts by KING and encG-reg under exhaustive design. (A) Chord diagrams show

the number of inter-cohort identical/twins, 1st-degree, and 2nd-degree relatedness across 19 UKB assessments with over 10,000 samples.

Relatedness was detected and compared between KING and encG-reg under an exhaustive design, encompassing a total of 171 inter-

cohort analyses. In each chord plot, the length of the side edge is proportional to the count of detected relatives between the focal cohort

and other cohorts. (B) The scatter plot shows the estimated relatedness score by KING and encG-reg for inter-cohort relative pairs,

including identical, 1st-degree, and 2nd-degree pairs. (C) The histogram shows the distribution of relatedness scores estimated by encG-
reg. (D) The histogram shows the distribution of relatedness scores estimated by KING.

https://doi.org/10.1371/journal.pgen.1011037.g005
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pregnancy and at birth. 30,074 women were included in this study. Maternal genotypes were

inferred from the non-invasive prenatal testing (NIPT) low depth whole genome sequencing

data using STITCH [36] following the methodological pipeline that we previously published

[35]. The average genotype imputation accuracy reaches 0.89 after filtration of INFO score 0.4.

CAS and ZOC: The Chinese Academy of Sciences (CAS) cohort is a prospective cohort

study aiming to identify risk factors influencing physical and mental health of Chinese mental

workers via a multi-omics approach. Since 2015, the study has recruited 4,109 CAS employees

(48.2% male) located in Beijing, China. All participants belong to the research/education sec-

tor, and are characterized by a primary of Chinese Han origin (94.1%). DNA was extracted

from peripheral blood samples and genotyped on the Infinium Asian Screening Array + Multi-

Disease-24 (ASA+MD) BeadChip, a specially designed genotyping array for clinical research

of East Asian population with 743,722 variants. For validation purpose, samples were ran-

domly split into CAS1 and CAS2. According to their records, ZOC was consisted of 19 homo-

zygotic and heterozygotic siblings, who were evenly split into CAS1 and CAS2 as internal

validation of the method. ZOC is part of the Guangzhou Twin Eye Study (GTES), a prospective

cohort study that included monozygotic and dizygotic twins born between 1987 and 2000 as

well as their biological parents in Guangzhou, China. Baseline examinations were conducted

in 2006, and all participants were invited to attend annual follow-up examinations. Non-fast-

ing peripheral venous blood was collected by a trained nurse at baseline for DNA extraction,

and genotyping was performed using the Affymetrix axiom arrays (Affymetrix) at the State

Key Laboratory of Ophthalmology at Zhongshan Ophthalmic Center (ZOC) [37]. CAS and

ZOC cohorts were deeply collaborated for certain studies, and consequently merged to fit this

study.

Fudan: A multistage GWAS of glioma were performed in the Han Chinese population,

with a total of 3,097 glioma cases and 4,362 controls. All Chinese Han samples used in this

study were obtained through collaboration with multiple hospitals (Southern population from

Huashan Hospital, Nanjing 1st Hospital, Northern population from Tiantan Hospital and

Tangdu Hospital). DNA samples were extracted from blood samples and were genotyped

using Illumina Human OmniExpress v1 BeadChips [38]. 2,008 samples were included for this

study.

Table 3. Summary information for the cohorts participated in this study.

Cohort ID Genotyping platform Sample

size

SNPs (after QC) Description

1KG-CHN NGS (WGS/WES) 208 5,578,934 Chinese in 1000 Genome Project [31]

UKB-CHN Affymetrix Chip + imputation 1,435 5,033,920 Chinese in UK Biobank [32]

CONVERGE Low-coverage WGS + imputation 10,640 5,215,820 Chinese women in study of major depression [33]

MESA Affymetrix Chip + imputation 653 4,950,239 Chinese samples in the multi-ethnic study of atherosclerosis [34]

SBWCH Noninvasive prenatal testing (low-coverage

WGS + imputation)

30,074 1,237,941 Chinese pregnancies recruited from the Shenzhen Baoan Women and

Children’s Hospital [35,36]

CAS &

ZOC

CAS1 Illumina Chip; Affymetrix Chip 1,497 288,684 Chinese samples mainly collected in Beijing, with which 19 pairs of

twins (ZOC) were mixed in separately [37]CAS2 1,497 288,539

Fudan Illumina Chip 2,008 311,384 Chinese samples in the study of glioma [38]

WBBC Illumina Chip 6,080 319,930 The Westlake BioBank for Chinese pilot project [39–41]

54,092

(all)

7,009

(intersection)

Table Notes

NGS: Next-generation sequencing; WGS: Whole-genome sequencing; WES: Whole-exome sequencing; WGA: Whole-genome amplification.

https://doi.org/10.1371/journal.pgen.1011037.t003
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WBBC: The Westlake BioBank for Chinese (WBBC) cohort is a population-based prospec-

tive study with its major purpose to better understand the effect of genetic and environmental

factors on growth and development from youngster to elderly [39]. The mean age of the study

samples were 18.6 years for males and 18.5 years for females, respectively. The Westlake Bio-

Bank WBBC pilot project has finished whole-genome sequencing (WGS) in 4,535 individuals

and high-density genotyping in 5,841 individuals [40,41].

The 9 Chinese datasets were reorganized into 9 cohorts (1KG-CHN, UKB-CHN, CON-

VERGE, META, SBWCH, CAS1, CAS2, Fudan, and WBBC) and to test encG-reg in the real

world. Within CAS1 and CAS2, relatedness if identified by encG-reg would be verified by

CAS. As would have been found, among other pairs of cohorts, sporadic relatedness might

occur.

Performance of encG-reg in Chinese cohorts. As summarized in Fig 2A, the Chinese

cohort study was swiftly organized and completed within about 7 weeks, showing that encG-
reg was an effective strategy with better ethical assurance. Following intra-cohort QCs and

upon received summary information, we examined sample sizes and SNPs in each cohort

(Table 3). In total, it included 54,092 samples and generated about 1 billion (N = 930,140,004)

pairs of tests. When allele frequencies were compared with that in CONVERGE, the majority

of SNPs show consistent allele frequencies across cohorts (S3 Fig and S6 Table). The missing

rates and the intersected SNPs were also examined across cohorts (Figs S4–S5 and S7 Table),

after which a total of 7,009 SNPs were in common among 9 cohorts for the parsimony design

of encG-reg (Fig 6A).

The results of fPCA and fStucture matched with their expected “geo-geno” mirror in Chi-

nese samples [35]. The first eigenvector of fPCA distinguished southern and northern Chinese

samples in this study: the SBWCH Biobank (dominantly sampled from Shenzhen, the south-

most metropolitan city in mainland China) and CAS cohort (dominantly sampled from Bei-

jing) (Fig 6B and 6C). Using a slightly different illustration strategy, the fStructure results, a

counterpart to the well-known Structure plot in population genetics, were also consistent with

the reported Chinese background of the 9 cohorts (Fig 6D and 6E).

We offered a list of 500 SNPs to be shared by the collaborators and estimated me to be 477

(evaluated in 1KG-CHN). The minimum number of k was 710, given the experiment-wise

Type I error rate of 0.05 (a ¼ 0:05

930;140;004
, θ1 = 0.45) and the statistical power of 0.9. Each collabo-

rator then encrypted their genotype matrix by the random matrix S. As foolproof controls,

1KG-CHN samples were consistently identified as “identical” inter-cohort.

Relatives were identified between CAS1 and CAS2, and SBWCH and WBBC (Fig 7A and

7B). The pair-wise encG-reg distributions between cohorts were consistent with our theoreti-

cal expectation (Figs 7C and S6).

For anticipated relatives, as each of the 19 Guangzhou twins was split into CAS1 and CAS2,

18 pairs were identified as monozygotic (MZ) or dizygotic (DZ) by encG-reg and verified by

intra-cohort IBD calculation in CAS Beijing team (Fig 7D). Remarkably, the pair of recorded

twins that was not identified by encG-reg was verified as unrelated by IBD calculation, and

ZOC team is conducting further investigation on potential logistic errors. These results dem-

onstrated that encG-reg was reliable with well-controlled Type I and Type II error rates.

Particularly, we illustrated how sporadically related pairs were captured by encG-reg. We

detected 14 pairs of inter-cohort relatedness, including 4 pairs of identical samples and 10

pairs of 1st-degree relatives (Table 4). For these sporadic related inter-cohort samples, encG-
reg exhibited their relatedness in the forms of regression plots and estimated regression coeffi-

cients, two examples were given in Fig 7E and 7F. Thirteen out of fourteen pairs of sporadic

related pairs were identified between CAS1 and CAS2. This could likely be attributed to the
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Fig 6. Cohort-level genetic background analyses for Chinese cohorts under parsimony encG-reg analysis. (A)

Overview of the intersected SNPs across cohorts, a black dot indicated its corresponding cohort was included. Each

row represented one cohort while each column represented one combination of cohorts. Dots linked by lines

suggested cohorts in this combination. The height of bars represented the cohort’s SNP numbers (rows) or SNP

intersection numbers (columns). Inset histogram plots show the distribution of the 7,009 intersected SNPs and the 500

SNPs randomly chosen from the 7,009 SNPs for encG-reg analysis. (B) 7,009 SNPs were used to estimate fPC from the

intersection of SNPs for the 9 cohorts. Each triangle represented one Chinese cohort and was placed according to their

first two principal component scores (fPC1 and fPC2) derived from the received allele frequencies. (C) Five private

datasets have been pinned onto the base map from GADM (https://gadm.org/data.html) using R language. The size of

point indicates the sample size of each dataset. (D) Global fStructure plot indicates global-level Fst-derived genetic

composite projected onto the three external reference populations: 1KG-CHN (CHB and CHS), 1KG-EUR (CEU and

TSI), and 1KG-AFR (YRI), respectively; 4,296 of the 7,009 SNPs intersected with the three reference populations were

used. (E) Within Chinese fStructure plot indicates within-China genetic composite. The three external references are

1KG-CHB (North Chinese), 1KG-CHS (South Chinese), and 1KG-CDX (Southwest minority Chinese Dai),

respectively; 4,809 of the 7,009 SNPs intersected with these three reference populations were used. Along x axis are 9

Chinese cohorts and the height of each bar represents its proportional genetic composition of the three reference

populations. Cohort codes: YRI, Yoruba in Ibadan representing African samples; CHB, Han Chinese in Beijing; CHS,

Southern Han Chinese; CHN, CHB and CHS together; CEU, Utah Residents with Northern and Western European

Ancestry; TSI, Tuscani in Italy; CDX, Chinese Dai in Xishuangbanna.

https://doi.org/10.1371/journal.pgen.1011037.g006
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Fig 7. Detected identical pairs and 1st-degree pairs between Chinese cohorts. (A) The circle plot illustrates identical pairs and (B)

1st-degree pairs across 9 Chinese cohorts. The solid links indicates anticipated relatedness between the CAS cohorts. The dashed link

indicates relatedness identified across cohorts. The length of each cohort bar is proportional to their respective sample sizes. (C) The

histogram shows all estimated relatedness using encG-reg between CAS1 and CAS2, most of which are unrelated pairs and the
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centralized sampling of the CAS cohort among CAS employees, as it is highly probable that

family members are intended to work in the same company. Moreover, despite the higher

missing rate in SBWCH, which introduced additional noise, encG-reg still managed to cap-

ture one across-cohort relatives between SBWCH and WBBC. To avoid possible breaching

of privacy, we refrained from further exploring their relationship as extensively as we did

for UKB.

Discussion

One of the early attempts on detecting cross-cohort relatives was limited to detecting overlap-

ping individuals by one-way cryptographic hashes, which offered qualitative but not quantita-

tive conclusions on false positive and false negative rates [13]. To settle the question of exact

encryption precision, we focused on investigating the intrinsic consequence after genotype

encryption with a random matrix and proposed encG-reg. We described the properties of

encG-reg in how k and me influence its precision. This property was well testified in both the

UKB example and the collaboration across China. Our investigation led to controllable

theoretical probability density function is given as the normal distribution N 0; 1
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� �
(grey solid curve). The inset histogram on the

left shows the estimated relatedness around 0.5 and the theoretical probability density function is given as the normal distribution
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1
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q
. Here we included 208 controls merged from 1KG-CHN. me ¼ 477; k0 ¼ 70; k1 ¼ 710;N ¼ 930; 140; 004. (D)

Relationship verification for 19 Guangdong twins split in CAS cohorts. Dashed lines indicate inference criteria for detecting relatedness

of different degrees. Solid line of y = x indicates the agreement between encG-reg and IBD. Points are colored with IBD-inferred

relatedness in KING (identical in green, 1st-degree in blue, and unrelated in red) and are shaped according to encG-reg-inferred

relatedness (identical in square, 1st-degree in diamond, and unrelated in circle). (E) and (F) Illustration for encG-reg estimation for

sporadic related inter-cohort samples. The grey line is the criterion for identical pairs (slope of 1) or 1st-degree pairs (slope of 0.5). The

solid lines colored in red are without adjustment for missing values (encG-reg score), and in the bottom (colored in purple) are adjusted

for missing values (encG-reg score*).

https://doi.org/10.1371/journal.pgen.1011037.g007

Table 4. Supporting evidence for sporadic related pairs.

Pair Cohort 1 ID 1 Cohort 2 ID 2 Score (SDa) Adjusted Scoreb (SD) Inferred relatedness

1 CAS1 1912190064 CAS2 211104042 0.999 (0.001) 0.999 (0.001) Identity

2 CAS1 2106190041 CAS2 2009111151 0.999 (0.002) 0.999 (0.002) Identity

3 CAS1 211119018 CAS2 2010130356 0.999 (0.001) 0.999 (0.001) Identity

4 CAS1 20091209 CAS2 2011050139 0.999 (0.001) 0.999 (0.001) Identity

5 CAS1 20090801 CAS2 21110202 0.421 (0.034) 0.421 (0.034) 1st-degree

6 CAS1 20090801 CAS2 2016122301 0.421 (0.034) 0.421 (0.034) 1st-degree

7 CAS1 211029082 CAS2 211029076 0.792 (0.023) 0.792 (0.023) 1st-degree

8 CAS1 1912160050 CAS2 211104131 0.561 (0.031) 0.561 (0.031) 1st-degree

9 CAS1 211104139 CAS2 211104138 0.458 (0.033) 0.458 (0.033) 1st-degree

10 CAS1 211104147 CAS2 211104148 0.513 (0.032) 0.513 (0.032) 1st-degree

11 CAS1 211104174 CAS2 211104173 0.531 (0.032) 0.531 (0.032) 1st-degree

12 CAS1 211104198 CAS2 211104199 0.508 (0.032) 0.508 (0.032) 1st-degree

13 CAS1 211104164 CAS2 211104236 0.415 (0.034) 0.415 (0.034) 1st-degree

14 SBWCH SBWCH_200 WBBC jx3849 0.420 (0.034) 0.524 (0.043) 1st-degree

Table Notes: IDs were de-identified by each cohort.

aStandard deviation (SD) is calculated from SDbij
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
covðx̂ i ;x̂ jÞ
varðx̂iÞ

q

, where x̂ i and x̂ j are the vectors of the encrypted genotypes for two individuals.

bDue to missing data, the corrected score, is adjusted for the genotype missing rate between the pair of individuals

https://doi.org/10.1371/journal.pgen.1011037.t004
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encryption precision even under a variety of genotype platforms and datasets with different

qualities. It should be noticed, as a proof-of-concept, we only studied additive GRM, which

corresponds to IBD1. Obviously, our work can be extended to dominance-GRM (or two-allele

“IBD = 2” scheme), so as to further split 1st-degree relatives into parent-offspring (IBD0 = 0,

IBD1 = 1.0, and IBD2 = 0) and full sibs (IBD0 = 0.25, IBD1 = 0.5, and IBD2 = 0.25). To this

point, we have only presented the outcomes concerning identity, 1st-degree, and 2nd-degree

relatedness in UKB. This is primarily due to the absence of a distinct definition for true relat-

edness. To conduct further examination for the exact inference of distant relatives, a dataset

with more pedigree information should be employed and a study design with more compre-

hensive comparisons should be considered [42].

As demonstrated in UKB multi-ethnicity samples, encG-reg could be applied for biobank-

scale datasets with high precision in comparing with conventional individual-level benchmark

methods such as KING and GRM. The evaluation using Chinese cohorts is the first attempt to

develop an encrypted method that can be applied in large-scale searching relatives with

encrypted genomic data. In this experiment, for convenience and manageability, we only con-

sidered parsimony design by using shared SNPs across the 9 Chinese cohorts. Switching to

exhaustive design will be a better option if each pair of cohorts conducts encG-reg for their

customized degree of relatives.

For either exhaustive design or parsimony design of encG-reg, the core algorithm is alge-

braic and requires little human information in its implementation. Thus, an automatic central

analysis facility that can significantly host and synchronize more cohorts will be attractive. An

exhaustive implementation of encG-reg will search even deeper relatedness across cohorts in a

highly mobilizing nation like China, in which relatives used to live nearby but now are distant

due to industrialization [43]. A much deeper implementation of encG-reg will bring out

unique resource for conducting biomedical research at large scale as including familial infor-

mation as demonstrated [44]. Last but not least, encG-reg is a developed tool that is with much

better protected genomic privacy, and can facilitate necessary relative searching when it is

needed. It is not purposed to penetrate membership or other unethical activities.

An attack on the central site may result in the leak of encrypted genotype matrices and esti-

mated relatedness score, but no raw genotype matrices will be leaked. However, since the indi-

vidual IDs were de-identified by each cohort, such as individual IDs presented in Table 4, no

more information can be traced back by other sites or the central site. Moreover, additional

secure protection can be implemented at the central site (which can be a cloud server), and

this is about the design on an entrusted server. In the worst-case scenario—a colluded central

analyst, both S and XS have been leaked, certain adversary attacks, such as PCA-attack, may be

carried out. In PCA-attack, X can be adversary reconstructed via principal component analysis

on XS, if the correlation structure of SNPs can be approximated in a proper reference popula-

tion [45]. To mitigate the risk of a PCA-attack, one straightforward defence is to use SNPs that

are in linkage equilibrium as much as possible (m�me then), and it ensures that the correlation

matrix closely approximates the identity matrix. As noticed, the strategy of masking the origi-

nal genotype after multiplication of S resembles matrix random projection employed in classi-

fying the transactions as legitimate or fraudulent across financial institutions, and a class of

methods of possibly reconstructing X have been discussed [46]. Consequently, we are confi-

dent for the safety of the whole practice, for now and for the future when the encG-reg grows

to a more broadly utilized application.

The homomorphic encryption such as CKKS scheme [47] and Fan and Vercauteren

(FV) scheme [48] have recently been employed in developing HE-KING [49,50], which are

also applicable to our study. Nevertheless, the computational cost of HE-KING is substan-

tial, for which after encryption the memory cost is often one or two orders of magnitude of
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the original genotypes. Eq 3 provides a lower bound of SNP numbers for detecting related-

ness and consequently can be plugged into HE-KING, a useful quantity that is able to

reduce the SNP number and computational cost in particular when analyzing biobank-scale

data such as UKB.
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S2 Fig. Validation for the sampling variance of GRM (assumption: binomial distribution).

To testify the variance of GRM under the assumption of binomial distribution, we simulated
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onal bin is colored according to the number of markers falling in that bin.

(PDF)
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S6 Fig. Distribution of encG-reg score across Chinese cohorts. The histogram shows all esti-
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ness around 0.5 and the theoretical probability density function is given as the normal
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