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Abstract

Identifying regions of the genome that act as barriers to gene flow between recently

diverged taxa has remained challenging given the many evolutionary forces that generate

variation in genetic diversity and divergence along the genome, and the stochastic nature of

this variation. Progress has been impeded by a conceptual and methodological divide

between analyses that infer the demographic history of speciation and genome scans

aimed at identifying locally maladaptive alleles i.e. genomic barriers to gene flow. Here we

implement genomewide IM blockwise likelihood estimation (gIMble), a composite likeli-

hood approach for the quantification of barriers, that bridges this divide. This analytic frame-

work captures background selection and selection against barriers in a model of isolation

with migration (IM) as heterogeneity in effective population size (Ne) and effective migration

rate (me), respectively. Variation in both effective demographic parameters is estimated in

sliding windows via pre-computed likelihood grids. gIMble includes modules for pre-pro-

cessing/filtering of genomic data and performing parametric bootstraps using coalescent

simulations. To demonstrate the new approach, we analyse data from a well-studied pair of

sister species of tropical butterflies with a known history of post-divergence gene flow: Heli-

conius melpomene and H. cydno. Our analyses uncover both large-effect barrier loci

(including well-known wing-pattern genes) and a genome-wide signal of a polygenic barrier

architecture.

Author summary

As a fundamental process generating biological diversity, speciation involves the evolution

of reproductive isolation and thus the build-up of barriers to genetic exchange among

organismal groups. While population genomic data are arguably the only source of infor-

mation we have about most recent speciation events, the way such data are analysed

remains depressingly superficial: population genomic studies of speciation are phrased

either as scans for outliers of genetic differentiation, or are based on models of neutral

evolution under the constraint of a single genome-wide demography. Here we introduce

a new statistical framework called gIMble to estimate the effective rate of gene flow and
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the effective population sizes along the genome from population genomic data. By captur-

ing genome-wide variation in these two effective demographic parameters, gIMble dis-

entangles the genomic footprints of different modes of selection and provides a direct

quantification of the species barrier. To illustrate this framework, we analyse a classic spe-

ciation genomic dataset fromHeliconius butterflies. We show that barriers to gene flow in

this system include both large effect loci—most, but not all, of which were known from

functional work—as well as a genome-wide signature of weak-effect polygenic barriers.

Introduction

How reproductive isolation between species builds up at the genomic level remains a major

question in evolutionary biology [1]. Population genomic studies inferring explicit demo-

graphic models of speciation for an increasing number of taxa suggest that species divergence

in the face of gene flow is common. This poses a conundrum: gene flow homogenizes popula-

tions and—in the presence of recombination—leads to the breakdown of co-adapted combina-

tions of alleles, which directly opposes divergent selection [2]. However, divergent selection

for locally beneficial alleles, if sufficiently strong, may overcome the influx of maladapted

migrant alleles [3, 4] at specific loci in the genome. It has been suggested that such barrier loci

of large effect may act as nuclei around which further barriers can accumulate [5, 6]. The clus-

tered genetic differentiation that may result from this feedback between migration, local selec-

tion and linkage has been referred to using metaphors of “speciation islands” [7] or “genomic

islands of divergence” [6, 8]. Despite the fact that we now have access to vast volumes of whole

genome sequence (WGS) data, it remains an open question whether the clustered genomic

barriers envisaged by these verbal models are important in generating and maintaining new

species in nature and, if so, how exactly they arise. More generally, it remains unclear how

often species barriers are due to a few loci of large effect and how often they have a polygenic

architecture. Progress on these questions has been stymied by a lack of methods that can

extract from WGS data the relevant information about the population processes involved in

the build up of barriers. Current speciation-genomic inference approaches can be classed into

three broad categories [9]: summary statistics scans, model-based demographic inference,

and analyses of the relationship between recombination and divergence. These have proven

to be challenging to connect.

Summary statistics scans

The search for speciation islands has led to an industry of genomic outlier scans that initially

interpreted regions of increased differentiation between species as “speciation islands” [7, 8,

10, 11]. Outlier scans are generally based on summary statistics, in particular differentiation as

measured by FST [1, 12]. However, despite their conceptual appeal, genome scans in general

and FST scans in particular have been criticised on several grounds. Since FST is a relative mea-

sure of divergence, it is sensitive to any force that locally reduces diversity. Thus, even in the

absence of gene flow, FST may be increased simply as a result of past positive selection [13, 14]

and/or background selection (BGS) [13, 15] on linked sites [16, 17]. In fact, outlier scans trace

back to Lewontin and Krakauer [18] who proposed a test for divergent selection based on the

variance in FST. While a number of other summary statistics have been developed to overcome

the limitations of FST [19, 20], the fundamental problem of any scan based on a one-dimen-

sional summary statistic is that it cannot distinguish between the alternative population genetic

processes we wish to learn about [14, 21, 22]. In other words, it is unclear how often one
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expects outliers in a summary statistic to arise simply by chance due to genetic drift or under

scenarios that have nothing to do with the establishment of barriers to gene flow. As a result,

distinguishing interesting outliers from noise has remained a major challenge [22].

Model-based demographic inference

An arguably more successful line of research has been to use genome data to reconstruct the

demographic history of speciation. A range of inference methods exists that fit more or less

complex models of demographic history to whole-genome data (see [23–26] for reviews). An

important starting point for quantifying gene flow during speciation has been the Isolation

with Migration (IM) model [27], which assumes a constant rate of gene flow from the time of

divergence until the present. Estimates of gene flow under the IM and related models have

been obtained for many recently diverged species and have led to a reappraisal of gene flow as

a ubiquitous ingredient of the speciation process [28, 29]. Over the past decade efforts have

been made to extend multilocus demographic inference to model variation in effective migra-

tion rate (me) along the genome. While these methods have made it possible to diagnose het-

erogeneity in introgression globally by assuming that locus specificme are drawn either from

discrete bins or a continuous distribution [30–33], it has remained challenging to identify indi-

vidual barrier regions.

Modelling the relationship between recombination and divergence

A third type of speciation genomic analysis, which has so far only been applied to a small num-

ber of taxa, exploits the genome-wide relationship between genetic divergence and recombina-

tion to extract information about the selection on and density of barrier loci [9]. In contrast to

the positive correlation between genetic diversity and recombination expected under back-

ground selection [15] (and globally positive selection), divergent selection against locally mal-

adapted alleles results in a negative correlation between genetic divergence and recombination

[34]. This prediction is based on theory showing that selection against deleterious immigrant

alleles reduces the effective rate of gene flow at linked neutral sites [2] below the ratem at neu-

tral sites that are not affected by barriers. The extent of this reduction can be captured by the

effective migration rateme, which decreases with the strength of selection and increases with

the map distance from selective targets [2, 35]. Integrating over the unknown genomic posi-

tions of barrier loci and conditioning on a recombination map, Aeschbacher et al. [9] devel-

oped an approach for jointly estimating the aggregate strength of selection against immigrant

alleles in the genome, the divergence time, and the baseline migration rate. However, although

this method uses the expected correlation between recombination and genetic divergence

under a demographically explicit model, it also infers genome-wide parameters, and so it is

uninformative about the genomic locations of barrier loci.

Demographically explicit genome scans

Given the current state of inference approaches, speciation genomic analyses involve an awk-

ward dichotomy: one either infers a demographic history, which—however detailed—is unin-

formative about which genomic regions may act as barriers. Alternatively, one may visualise

the heterogeneity in differentiation along the genome via summary statistics, which partially

sacrifices the ability to learn about the population processes that have given rise to this hetero-

geneity. While it is common practice to analyse speciation genomic data both in terms of

demography and genome scans, these analyses currently remain separate. Thus, interpreting

the results of genome scans in the light of an inferred demography is a qualitative, post hoc step

rather than quantitative exercise.
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Ideally, we would like to reconstruct a fully specified model of the speciation process,

including both the demographic history—parameterised in terms of genetic drift, divergence,

and gene flow—as well as all relevant selective forces (i.e. a plausible null model sensu [36]).

Indeed, since most selection leaving a footprint in genomes is likely unrelated to the emer-

gence of reproductive barriers [37], even a very simple cartoon of the speciation process would

have to capture both selection on variation that is globally beneficial or deleterious, and local

selection that establishes and maintains barriers to gene flow. Unfortunately, it is currently

impossible to infer such a detailed model from genome data.

A simpler approach is to model the selective processes that lead to the establishment of bar-

riers to gene flow via heterogeneity in effective migration rateme. This approach has been pio-

neered by Roux et al. [38] and has been implemented as an approximate Bayesian

computation framework [39] that allows fitting models of heterogeneous gene flow to

genome-wide data. However, while this method estimates variation inme (and Ne) via aggre-

gate genome-wide distributions, it does not estimate localme along the genome.

The motivation of the present study is to fill this gap and develop a framework based on

likelihood calculation that allows interpreting the heterogeneity of divergence and diversity

along the genome through the lens of an explicit, albeit necessarily simple, demographic his-

tory. We approximate the effects of background selection (BGS) and selection against migrants

as variation in effective population size (Ne) and effective migration rate (me), respectively.

Our method infers genome-wide histories of isolation with migration (IM) using a block-wise

likelihood calculation. The composite likelihood calculation at the heart of our approach is

based on previous analytic work [40–42] and is implemented as part of a modular, open source

bioinformatic toolset: genome-wide IM blockwise likelihood estimation gIMble v.1 (https://

github.com/LohseLab/gIMble). gIMble allows for an efficient inference ofme and Ne in win-

dows along the genome as a scan for barriers to gene flow, includes algorithms for the required

partitioning, filtering and summarizing of genomic variation, and provides a simulation mod-

ule for generating parametric bootstraps using the coalescent simulator msprime [43].

Heliconius melpomene and H. cydno as a test case

Throughout the paper, we describe our approach for demographically explicit scans for barri-

ers to gene flow by way of a re-analysis of data from two sister species ofHeliconius butterflies:

H. melpomene andH. cydno. This classic model of speciation research provides an excellent

test case for our approach given that the genome-wide heterogeneity in divergence and diver-

sity has been studied extensively in this species pair [44–50] and the genetic basis of key barrier

traits (wing patterns and preference for them) is known [45–47, 51]. Despite strong beha-

vioural, ecological, and postzygotic isolation (female hybrid sterility), there is overwhelming

evidence for ongoing hybridisation and gene flow between these species that affects a large pro-

portion of the genome [41, 46]. Martin et al. [46] found that FST betweenH. melpomene andH.
cydno is highly heterogeneous along the genome, but concluded that this heterogeneity does

not provide direct evidence of barriers to introgression. Indeed, FST betweenH. melpomene
andH. cydno is similarly heterogeneous and strongly correlated in both sympatric and allopa-

tic comparisons, despite the fact that allopatric populations are thought to experience no con-

temporary gene flow [46]. Many FST outliers betweenH. melpomene andH. cydnomay

therefore simply reflect increased rates of within-species coalescence [14]. Using this well stud-

iedHeliconius system as a test case, we showcase gIMble and address the following questions:

i) What fraction of the genome likely acts as a complete barrier (me = 0) between these taxa?

ii) What is the overlap/correlation between barriers defined viame and FST outliers? iii) Dome
barriers include known true positives, i.e. major-effect loci controlling phenotypes involved in
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reproductive isolation? iv) Is there a genome wide relationship betweenme and the rate of

recombination, as predicted by models that assume polygenic barriers?

Results

The model

The framework implemented in gIMble models the genomic landscape of speciation by con-

structing scans of two kinds of effective demographic parameters: background selection (BGS)

is captured via heterogeneity in Ne, and barriers to gene flow are modeled via heterogeneity in

me. Unlike previous approaches [9] which assume a relationship betweenme and recombina-

tion, our inference does not rely on knowledge of the recombination map or any assumed rela-

tionship between recombination andme.
We focus on an IM history between two species A and B (Fig 1A). We assume divergence at

a time T in the past (measured in generations) and a constant probability of unidirectional

migration (see Discussion for the effect of bi-directional migration), i.e. lineages sampled in

species B may trace back to A via migration at rateme. Effective population sizes are allowed to

differ between species, i.e. the most complex model assumes three different Ne parameters: NA,

NB and Nanc.

One could in principle co-estimate all five parameters of the IM model (NA, NB, Nanc,me,
T) in sliding windows along the genome. However, in practice, this maximally complex

model in which all parameters vary freely along the genome is both hard to infer—given that

IM parameters are known to have correlated errors [27]—and difficult to interpret. Thus, we

conduct a two-step inference (Fig 1): first, we identify the best-fitting global IM history that

assumes no heterogeneity in demographic parameters along the genome. In a second step,

local variation in Ne and me is estimated in sliding windows along the genome. This infer-

ence is conditioned on the estimate of T obtained under the global model, i.e. we assume

that the onset of species divergence is a global event that is shared by the whole genome.

Note that, unlike the approach of Fraïsse et al. [33], gIMble models variation along the

genome in me rather than the scaled migration rate M = 4Neme, which may vary simply as a

function of Ne.

Summarising genomic variation in blocks and windows

The basic unit of data in the inference implemented in gIMble is a block of sequence of a

fixed number of sites in which we record sequence variation in a heterospecific pair of individ-

uals. We will refer to this as a “pair-block”. Crucially, we assume that blocks are only indirectly

affected by selection at nearby linked sites and otherwise evolve neutrally (theHeliconius anal-

yses described below are restricted to intergenic data) and under a constant mutation rate (see

Discussion for the effect of μ heterogeneity on inference). While the assumptions of neutrality

and a fixed block length and mutation rate allow us to treat blocks as statistically exchangeable,

they necessitate a careful and consistent filtering strategy for variant and invariant sites. In par-

ticular, only sites (both variant and invariant) that meet coverage criteria contribute to the

length of a pair block. As a consequence, the physical span of blocks may be longer than the

block length (Fig 1B). Similarly, windows, defined in terms of a fixed number of pair-blocks,

typically span sequence that is excluded from the analysis, either because of its genomic anno-

tation (e.g. coding sequence, repeats) or because coverage criteria are not met (Fig 1D). An

important property of our blocking algorithm is that pair-blocks are defined independently for

each pair of heterospecific individuals. This avoids sample-size dependent filters, e.g. we do

not restrict inference to data that meet filtering criteria in a fixed fraction of individuals. To
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Fig 1. Demographic inference using gIMble. A) The 5-parameter IM model assumes two populations (A and B) with effective sizes NA and NB that

split T generations in the past from a common ancestral population with size Nanc and experience unidirectional gene flow at rateme. Pairs of diploids

are sampled, one from each population, resulting in two distinct possible topologies. Assuming an infinite sites mutation model, mutations that are

heterozygous in both A and B (Het AB) are exclusive to the magenta topology, while fixed differences (Fixed Diff) are exclusive to the green. Mutations

on A and B branches may occur on either topology, creating heterozygous variants in either the A (Het A) or the B (Het B) individual. B) Pair-blocks

are created from left to right, each containing a fixed number (l) of sites callable in both individuals. The span of any pair-block may be longer than l
due to missing data (gray squares). Pair-blocks are summarised by the number of each type of mutation they carry (the bSFS). The number of

occurrences of each type of pair-block is recorded in a four-dimensional array (the bSFS tally). Pair-blocks that violate the four-gamete test (e.g. shaded

in red) are excluded from the analysis. C) The expected bSFS tally depends on the underlying model and parameter values. Divergence without gene

flow skews the bSFS tally toward higher frequencies of the green topology (and thereby fixed differences) and generally increases divergence. Higher

levels of migration or a shorter split time increase the frequency of the magenta topology (and thereby shared heterozygous sites). D) Pair-blocks are

made along the genome for all possible pairs of individuals. Small gaps between pair-blocks represent missing data while large gaps are regions masked

by the user (e.g. genes or repeats). The bSFS tally from the entire genome is used to identify the most likely parameters of the (global) IM model. In a

subsequent step, sliding windows of a fixed number of pair-blocks (here, 20) and a fixed overlap (here, 5) are made (the red, purple, and blue arrow-

headed bars). The span of a window depends on the physical location of the pair-blocks from which it is composed. For each window, a grid of

parameter values is searched to infer the combination of local parameters that maximises the corresponding composite likelihood. E) the support for

barriers to gene flow for each window can be quantified by comparing the fit to the global model relative to a model of locally reduced gene flow.

https://doi.org/10.1371/journal.pgen.1010999.g001
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facilitate comparability across datasets, we have implemented a minimal set of standard filters

within the gimbleprep module.

Inference is based on the block-wise site frequency spectrum (the bSFS sensu [41]), i.e. the

tallies of SFS mutation types in blocks. The SFS of a pair-block is simply a vector of counts of

the four possible types of mutations: heterozygous sites in A (Het A), heterozygous sites in B

(Het B), shared heterozygous sites (Het AB) and fixed differences (Fixed Diff) (Fig 1A). The

bSFS tally, which can be defined for the entire dataset or for a window consisting of a large

number of pair-blocks, is a (four-dimensional) tally of SFS vectors (Fig 1B).

Lohse et al. [40] showed how to analytically compute the probability of SFS configurations

under the IM and related demographic models in the absence of recombination using the gen-

erating function (GF) of genealogies. gIMble implements this calculation using agemo [42]

and supports both global and local inference through a number of modules. The optimize
module uses the bSFS data to find maximum composite likelihood estimates (MCLE) under

the IM model using standard numeric optimization (Fig A in S1 Text, (3)). In contrast,

gridsearch infers IM parameters in sliding windows over a grid of bSFS probabilities pre-

computed using makegrid (Fig A in S1 Text, (4) & (5)). Importantly, to quantify the uncer-

tainty in parameter estimates, gIMble includes a module to simulate parametric boot-

strap replicates under the inferred demographic history. See Fig A in S1 Text and Methods for

a detailed overview of the gIMble modules.

A butterfly test case

To illustrate gIMble, we re-analysed WGS data of 10 wild-caught individuals each ofH. mel-
pomene andH. cydno, sampled from sympatric populations in Panama (of the subspecies H.
melpomene rosina andH. cydno chioneous, respectively (Table A in S1 Text)). To maximise the

density of variable sites and to satisfy the assumption of selective neutrality, we focused all

analyses on intergenic sequence, which we defined as any sequence without gene or repeat

annotation. For the sake of simplicity, we excluded the Z chromosome, which is known to

have greatly reduced genetic diversity and gene flow inHeliconius taxa [46, 50]. Thus, while it

would be interesting to include the Z in a gIMble analysis of species barriers, in practice, this

would exclude female samples. More importantly, in the absence of information about the rel-

ative mutation rates in males and females and the effective sex ratio, interpreting Z-to-auto-

some differences is notoriously difficult.

After filtering for coverage and quality, we partitioned the data into pair-blocks of length

l = 64 bases. Given that the likelihood calculation assumes no recombination within blocks,

the choice of block length involves a trade-off between power (which increases with l) and bias

(which also increases with l). We explored the effect of block length on parameter estimates

(see next section) and chose l = 64 for most analyses. This block length corresponds to an aver-

age of one heterozygous site (in each taxon) per block (l*π� 1), which is a practical compro-

mise for organisms that have similar rates of mutation and recombination rbp/μ� 1. This

ensures that around half of all pair-blocks contain multiple variants (Fig B in S1 Text). The

total block-wise dataset comprises a mean length of 72 Mb of sequence per heterospecific sam-

ple pair. This corresponds to 69% of the total intergenic sequence and 24% of the entireH. mel-
pomene genome. We find that the average heterozygosity (H) in intergenic blocks within each

species (Table 1) is comparable to the mean pairwise genetic diversity [52] across all sample

pairs (π = 0.0163 and 0.0156 inH. cydno andH. melpomene, respectively), which suggests little

evidence for inbreeding or local population structure.

We summarised blockwise genetic variation in windows of 50,000 pair-blocks with a 20%

offset between adjacent windows, that is, overlapping windows are shifted by 10,000 pair-
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blocks. Given that we sampled 10 individuals from each taxon (i.e. there are 100 possible het-

ero-specific sample pairs), this window size corresponds to a minimum window span of

500 × 64 bases = 32 kb of “blocked” sequence if we assume complete coverage across all 100

hetero-specific sample pairs. However, since we only considered intergenic sequence that met

coverage and quality filters, the span (distance between first and last base) of windows is con-

siderably greater (median 103 kb, Fig C in S1 Text). Exploring window-wise variation, we

recover several known properties of this dataset: first, outliers of FST are mostly due to reduced

diversity π rather than increased absolute divergence dxy (Fig D in S1 Text). Second, differenti-

ation along the genome is highly variable and includes many peaks, but no large genomic

regions of elevated FST (Fig E in S1 Text). Finally, FST is negatively correlated with recombina-

tion (Fig F in S1 Text).

Fitting a global background model of divergence and gene flow

Our initial aim was to identify a plausible, yet simple, global background demography for this

Heliconius species pair. We compared support for IM models with gene flow in either direc-

tion, as well as simpler nested histories. Specifically, we fitted a history of strict divergence

(DIV,me = 0) and a model of migration only (MIG, T =1) (Table B in S1 Text).

The scenario that best fit the global bSFS is an IM model involving gene flow at rateme =

7.41 × 10−7 (which corresponds toM = 4Nmelme = 1.62 individuals) per generation fromH.
cydno intoH. melpomene (forwards in time) (IM!mel Table 2, Fig G in S1 Text). We refer to this

model as “the global model” from here on. Our estimates under the global model are consistent

with both previous demographic analyses for this species pair [41, 45] (Table 2). Assuming four

generations per year and a spontaneous mutation rate estimated forHeliconius of 2.9 × 10−9 per

bp and generation [53], the maximum composite likelihood estimates (MCLE) under the best

fitting IM model correspond to effective population sizes (Ne) of roughly 0.5 × 106, 1.5 × 106,

and 1 × 106 forH. melpomene,H. cydno and their shared ancestral population, respectively, and

a divergence time of approximately 1 MYA (Fig G in S1 Text, Table 2). These parameter esti-

mates are robust to the choice of block length, i.e. partitioning the data into shorter (48 bases) or

longer (128) blocks gives comparable parameter estimates (Table C in S1 Text). Note that the

second best model,MIG (T =1) also gives very similar estimates ofme Ne (see Table B in S1

Text and Discussion for the robustness of theHeliconius analysis to model choice).

Table 1. Average heterozygosity (H) across all individuals within each species and divergence (dxy) between H. melpomene and H. cydno. Summaries were generated

using gIMble info based on intergenic blocks of 64 bases sampled in heterospecific pairs of individuals (top row). Estimates from a similar previous analysis for a single

pair of individual genomes and longer blocks of 150 bases [41] (second row) are shown for comparison.

Study Data HHcyd HHmel dxy FST

This study 64 bases 0.0158 0.0155 0.0220 0.169

Ref. [41] 150 bases 0.0169 0.0150 0.0218 0.155

https://doi.org/10.1371/journal.pgen.1010999.t001

Table 2. Divergence and gene flow estimates for H. melpomene and H. cydno inferred using gIMble optimise. By default gIMble parameter estimates are scaled

in absolute units, i.e. number of individuals and generations given a user-specified μ. We have converted T to millions of years (MYA) assuming four generations per year.

95% CI obtained from a parametric bootstrap were: [5.36 × 105, 5.63 × 105], forNmel, [1.40 × 106, 1.43 × 106] forNcyd, [9.25 × 105, 9.31 × 105] for Nanc, [1.046, 1.061] for T
and [7.30 × 10−7, 7.53 × 10−7] form. The bottom row gives estimates from a previous analysis [41] that was based on a single pair of individual genomes for comparison.

model/dataset Nmel Ncyd Nanc T (MYA) m (M = 4Nem)

IM!mel 5.49 × 105 1.415 × 106 9.279 × 105 1.054 7.41 × 10−7 (1.62)

IM!mel [41] 1.10 × 106 2.85 × 106 Ncyd 1.04 3.41 × 10−7 (1.50)

https://doi.org/10.1371/journal.pgen.1010999.t002
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Strong support for heterogeneity in Ne and me

We explored variation in Nmel, Ncyd, Nanc andme along theHeliconius genome by exhaustively

searching parameter combinations in a pre-computed 12 × 12 × 12 × 16 grid. The grid was

roughly centred on the MCLEs inferred under the global model and T, the species divergence

time, was fixed to the global estimate (Table 2). The choice of grid involves a trade-off between

resolution and computational resources and—in practice—is most likely an iterative proce-

dure that depends on the variation in parameter estimates in the data. However, instead of opt-

ing for a grid that is as fine as our computational resources would allow, we chose bounds that

capture most of the variation in parameter estimates and a resolution in theme direction that

accommodates our barrier definition.

We find that window-wise, i.e. local, MCLEs of all three Ne parameters vary by a factor of

three (Fig 2). Similarly, local estimates ofme have a wide distribution. Importantly, applying

the same inference to window-wise data simulated under an IM model without heterogeneity

in effective demographic parameters (i.e. the MCLEs under the global model, Table 2) gives

much narrower distributions of local estimates (Fig 2, bottom). Thus, the heterogeneity in

local Ne andme can neither be explained by variation in recombination rate alone, nor by the

randomness of the coalescent and the mutational process (all of which were included in the

simulation), but likely captures true variation in Ne andme due the varying effects of selection

along the genome.

We can quantify the overall support for heterogeneity in Ne andme by summing the log

composite likelihood (ln CL) across windows. In particular, the support for a maximally

Fig 2. Effective demographic parameters in H. cydno and H. melpomene. The distribution ofNmel,Ncyd,Nanc andme fromH. cydno intoH.
melpomene estimated in sliding windows (of span� 100kb) for the real data (top row) and bootstrap simulations withoutme andNe heterogeneity

(bottom row). Simulations were conditioned on theHeliconius recombination map [54] (see Methods). The red lines indicate estimates under the

global model; histogram bins correspond to points in the 12 × 12 × 12 × 16 parameter grid used for inference.

https://doi.org/10.1371/journal.pgen.1010999.g002
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heterogeneous model that allows for variation in Nmel, Ncyd, Nanc andme is the sum of ln CL
associated with all local MCLEs. Allowing for heterogeneity in all three effective parameters

greatly improved the overall fit of the IM!mel model (Table 3).

Detecting barriers to gene flow

Estimatingme,i for each window i (shorthandmi) along the genome immediately allows us to

detect genomic barriers as regions with reduced effective migration. One possibility is to inter-

rogate the point estimates ofmi along the genome. However, in quantifying the support for

reducedme, we want to account for the confounding effects of locally varying effective popula-

tion sizes Ni. To this end, we define ΔB as the relative support for a model in whichmi is

reduced below some thresholdm∗
e relative to a model in whichmi is fixed to m̂e, the value that

best fits the data under the global model assuming no heterogeneity inme. That is,

DB ¼ max
mi � m∗

e 2 M

Ni 2 N

�

ln CL mi; T̂ ;Ni

� �
�

� max
Ni2N

�

ln CL m̂e; T̂ ;Ni

� �
�

:

ð1Þ

Here, m̂e and T̂ are the best supported parameter estimates globally and M and N are the grids

ofme and Ne values used for the window-wise optimization. The first term represents the high-

est support (ln CL) obtained for window i across all possible population sizes Ni and migration

ratesmi below the threshold valuem∗
e . The second term gives the support of the best fitting

model when the migration rate is fixed to the global estimatemi ¼ m̂e and only Ni may vary.

We can think of ΔB,0 = 0 as defining a sea level for barriers to gene flow, i.e. windows with a

positive value have support for reduced gene flow, windows associated with a negative value of

ΔB,0 span genomic regions for which a history that includes gene flow at background level m̂e

fits better than a complete barrier model.

Given that gIMble analyses are restricted to putatively neutral sequence, i.e. barrier loci

are unlikely to contribute directly to the bSFS tally of a window, we expectmi> 0 even for a

window that spans a strong/complete barrier locus. We therefore explored theHeliconius data-

set using twome thresholds to define barriers,m∗
e ¼ 0 orm∗

e ¼ 0:2 ∗ m̂e (we refer to these anal-

yses as ΔB,0 and ΔB,0.2 scans respectively). Only 0.78% of windows (87 out of 11,217) meet the

strictest barrier definition ΔB,0 > 0. We merged all overlapping barrier windows above the

“sea-level” of ΔB,0 = 0 which defines 25 barrier regions of a total length of 4.96 Mb (1.9% of

autosomal sequence). Individual barrier regions range in length from 90 to 408 kb (Fig 3, top).

A less stringent barrier definition, ΔB,0.2 > 0, identifies 7.8% of windows as barriers, spanning

170 barrier regions of a total length of 47.4 Mb (18.2% of autosomal sequence) (Fig 3, bottom).

Since the composite-likelihood measure of barrier support ΔB depends both on the locally

best fitting set of N and the local recombination rate, we used a parametric bootstrap (based

on window-wise simulation replicates generated with gIMble simulate, see Methods) to

estimate window-wise false positive rates (FPR). We find that the average genome-wide FPR

are far lower than the observed fraction of barrier windows: 0.017% and 0.44% for ΔB,0 and

ΔB,0.2 scans, respectively (Fig 3).

Table 3. Model fit measured as Δ ln CL relative to the best fitting global model, IM!mel, fix (Table 2) which assumes that all effective parameters are fixed.

Model DIVfix MIG!mel, fix IM!mel, fix IM!mel;hetNe
IM!mel;hetNe ;me

Δ ln CL -1,057,371 -194,281 0 3,933,396 5,103,312

https://doi.org/10.1371/journal.pgen.1010999.t003
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Barriers only partially overlap FST outliers but coincide with known wing-

pattern genes

Although FST and ΔB are correlated (e.g. for ΔB,0, Pearson’s ρ = 0.783, p< 0.000001, Fig 4), we

find that ΔB barriers only partially overlap FST outliers. This is true irrespective of how ΔB

Fig 3. Barriers to gene flow between H. melpomene and H. cydno inferred using gIMble. Theme threshold used to diagnose barriers is relaxed from

top (ΔB,0) to bottom (ΔB,0.2). Regions above the “sea-level” of ΔB = 0 fit a history of reducedme better than a model assuming the global estimate m̂e .

Windows with ΔB> 0 have been coloured to reflect their expected FPR. The ΔB threshold corresponding to a FPR of 0.05 is shown in grey.

https://doi.org/10.1371/journal.pgen.1010999.g003

Fig 4. FST and support for barriers to gene flow between H. melpomene and H. cydno as measured by ΔB (Eq 1) are partially correlated. Each dot

represents an autosomal window of span�100 kb (Fig C in S1 Text). Twome thresholds used to distinguish barriers are shown: ΔB,0 (left) and ΔB,0.2

(right) which identify 0.78% and 7.8% of windows as barriers respectively. The dashed vertical lines delineate the corresponding percentiles in the FST

distribution.

https://doi.org/10.1371/journal.pgen.1010999.g004
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barriers are defined. For example, only 42 of the 87 ΔB,0 barrier windows are contained in the

analogous FST tail (Fig 4). In other words, our demographically explicit scan identifies novel

and different genomic regions which are not necessarily outliers in FST.

To investigate whether the ΔB scan recovers previously identified barrier loci, we focused

on the three large-effect genes controlling wing-pattern differences betweenH. melpomene
andH. cydno that have been studied in detail [55–57]: wnt-A (chromosome 10), cortex (chro-

mosome 15), and optix (chromosome 18). We find that all three of these known positives are

barriers as defined by ΔB,0.2 and two (wnt-A and optix) are also barriers under the most strin-

gent criterion of ΔB,0 > 0 (Fig 5). While optix is also contained in the analogous tail of FST out-

liers (i.e. the 0.78% of windows with highest FST), both wnt-A and cortex are not. Intriguingly,

the two ΔB,0 barrier regions downstream of optix on chromosome 18 coincide with a recently

identified QTL peak of species-specific visual preference behaviours for the red wing-pattern

controlled by optix [44]. This region includes five candidate genes [58], specifically cis regula-

tory differences in Grik2 and regucalcin2 (highlighted in orange in Fig 5).

Barriers are concentrated in regions of low recombination and high coding

density

Population genetic models of species barriers predict a reduction ofme in the vicinity of barrier

loci. This reduction scales with the the map distance from the barrier locus and the strength of

divergent selection acting on it [9, 61, 62]. In regions of low recombination there is thus an

increase both in the physical scale at which barrier loci reduce gene flow in flanking neutral

regions and in the chance that new barrier loci arise [63, 64]. However, since the effect of any

form of selection on nearby neutral sequence depends on recombination, quantifying the asso-

ciation between barriers and rbp has proven hard using summary statistics (but see [65]). Thus,

FST outliers are expected to be concentrated in regions of low recombination simply as a result

of the ubiquitous positive correlation between genetic diversity and recombination rate caused

by BGS and positive selection [13, 66].

In contrast, our framework of estimating effective parameters and defining barriers ofme
via ΔB allows us to disentangle selection acting on barriers from BGS and positive selection not

contributing to species differentiation. Likewise, since our inference ofme and barriers does

not make use of information on recombination, we can explore the relationship between rbp

andme over different physical scales in a second step. After controlling for heterogeneity in Ne,
we find a clear association between localme and direct estimates of recombination rate (rbp)

over two physical scales. At an inter-chromosomal scale,me is negatively correlated with physi-

cal chromosome length (Fig 6, Pearson’s ρ = −0.63, p = 0.0073). This pattern is expected under

polygenic selection against interspecific gene flow because longer chromosomes tend to have

lower rbp inHeliconius [67]. A negative correlation between chromosome length and intro-

gression—measured in terms of fd, a summary statistic that draws information from taxon

trios—has also been found in a previous study of the sameHeliconius species pair [65]. Reas-

suringly, we find estimates of local Ne (both Ncyd and Nmel) to be even more strongly correlated

with chromosome length (Fig H in S1 Text) thanme, as is expected given the general effect of

selection on linked neutral sites [68]. The fact that our estimates of both effective gene flow

and effective population sizes correlate with recombination in the expected direction suggests

that we have successfully decomposed the effects of selection acting at barrier loci from BGS

and positive selection.

The fraction of chromosomes inferred to be covered by strong barrier regions (i.e. ΔB,0 > 0)

varies widely between chromosomes. For instance, chromosomes 1, 4, 9, 14 and 20 harbour no

ΔB,0 barrier windows at all, while chromosome 18 appears to have 6% of its physical length
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Fig 5. Barrier windows inferred using gIMble include known large effect loci for wing pattern traits. Local point estimates ofme (top of each

subplot) and ΔB,0 (bottom of each subplot) for the three chromosomes containing large-effect wing patterning genes (shown in blue). ΔB,0 identifies

wnt-A [59] on chromosomes 10 (top) and optix on chromosome 18 (bottom, blue) as barriers. Given that causal sites may be situated in regulatory

regions, which in the case of optix extend to� 100 kb away from the gene [60], we have highlighted the 100 kb up and downstream of each gene (lighter

blue). ΔB,0 > 0 barriers for each chromosomes are shown in red on top. Another ΔB,0 > 0 barrier on chromosome 18 coincides with Grik2 and

regucalcin2 (orange), genes that are associated with male wing-pattern preference. The wing-pattern gene cortex on chromosome 15 (centre) is not a

barrier according to ΔB,0. We fit a polygenic model (modified from [9]) that predicts localme (shown in green) as a function of CDS density and

recombination rate.

https://doi.org/10.1371/journal.pgen.1010999.g005
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covered by strong barriers. However, the fraction of chromosomes covered by barrier regions

is uncorrelated with physical chromosome length (Fig 6, centre and bottom). This is interest-

ing for two reasons. First, under the simplifying assumptions that each barrier region is caused

by a single barrier locus and that selection acting on individual barrier loci does not differ

among chromosomes, the width of barriers is predicted to scale with 1/rbp [4]. If the rate at

which mutations give rise to potential barrier alleles is uniform across chromosomes, we

would expect longer chromosomes to have a greater concentration of barrier windows. Sec-

ond, theory also predicts that existing barrier loci facilitate the establishment of further barrier

loci in close linkage [63, 64]. This clustering effect would again be stronger for long chromo-

somes (lower rbp) compared to short chromosomes (higher rbp), and should thus further con-

tribute to a positive correlation between chromosome length and the fraction of chromosomes

covered by barrier regions. The most likely explanation for the absence of this predicted corre-

lation for ΔB,0 > 0 barrier regions is a lack of statistical power (i.e. there are only 25 ΔB,0 barrier

regions in total). Indeed, when we consider the less-stringent barrier definition (i.e. the 172

barrier regions identified by ΔB,0.2 > 0), a weakly positive, albeit non-significant, positive rela-

tion between chromosome length and the barrier fraction emerges. (Fig 6, right).

At the second, intra-chromosomal scale, we find that window-wise estimates ofme are

strongly and positively correlated with rbp [67] (estimated directly from lab crosses, see Meth-

ods), again as predicted under a polygenic architecture of barriers [69]. Similarly, barriers to

gene flow defined either by ΔB,0 or ΔB,0.2 are concentrated in regions of reduced recombina-

tion: as per a simple resampling procedure, rbp is significantly lower in barrier windows com-

pared to the average (0.75 vs 1.94 cM/Mb, respectively) (Fig 7 and Table 4). Assuming that

selective targets (both of BGS and selection on barrier loci) reside in or near coding DNA

sequence (CDS), we also expect a negative relationship between the density of CDS and local

Ne andme estimates. We find clear support for both relationships (Fig I in S1 Text, e.g. forme
and CDS measured at a 250 kb scale Pearson’s ρ = −0.164, p< 0.000001). Thus, overall, and in

agreement with a model of polygenic selection against inter-specific gene flow, we find that

barriers to gene flow are concentrated in regions of low recombination and high CDS density.

How many barrier loci are there?

It may be tempting to simply interpret the count of barrier regions (Table 4) as an estimate of

the number of barrier loci. However, this is naive for several reasons: firstly, gIMble models

Fig 6. Relationship between chromosome length and the strength and abundance of barriers. Barrier strength, measured as the meanme across

windows, is negatively correlated with chromosome length (left). In contrast, there is no significant relationship between the relative length of

chromosomes defined as barrier regions and chromosome length irrespective of whether barriers are defined via ΔB,0 (center) or ΔB,0.2 (right).

https://doi.org/10.1371/journal.pgen.1010999.g006
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the indirect and aggregate effects of barrier loci on neutral sequence, and although we expect

strong barriers to lie within barrier regions identified by gIMble, there is no direct corre-

spondence between the number of causal loci and the number of barrier regions, especially if

barriers are polygenic. Secondly, the power to detect barriers relies both on the background

rate of gene flow and theme threshold used to define barriers (although under the IM model

me� = 0 gives a non-arbitrary definition of complete/strong barriers). Thus an alternative

approach to get at the architecture of barriers is to interpret the variation inme inferred by

gIMble in light of a polygenic model.

Aeschbacher et al. [70] proposed a framework to quantify the strength of selection against

introgression under a simple model in which barrier loci are uniformly distributed across the

genome with density ν per base pair. Under this model, the expected local reduction inme at a

genomic window i relative to the background rate (i.e.me,i/m) is a function solely of the per-

base pair recombination rate (rbp) and the “selection density” σ = νs, where s is the selection

coefficient at each barrier locus [70, eqn. 1.9 in Appendix 1]. We fitted a version of this model

in which the reduction in gene flow at a focal genomic window depends only on the closest

flanking barrier locus on either side of it. To account for variation in CDS as a proxy for the

density of barrier loci, we modified this model by scaling ν by the inverse of the CDS density.

We inferred σ and the backgroundm by minimising the sum of squared differences between

the expected localme (given rbp and CDS) and theme estimates inferred by gIMble across all

genomic windows. Exploring CDS and rbp measured at a range of physical scales around each

window (see Methods) revealed that rbp estimated at a scale of 2 Mb and CDS measured at a

250 kb scale best explained the variation in inferredme (Fig J in S1 Text). However, given the

Fig 7. Barrier windows show reduced recombination and an enrichment for coding sequence. Left: genomic windows diagnosed as barriers to gene

flow (ΔB,0.2 in light indigo, ΔB0 in dark indigo) have reduced recombination rate. The median r (cM/Mb) across all windows is shown as a dashed line.

Right: Barrier windows are enriched for coding sequence (CDS).

https://doi.org/10.1371/journal.pgen.1010999.g007

Table 4. Average properties and Ne estimates for genomic windows defined as barriers between H. melpomene and H. cydno.

Partition # of windows # of regions Total (Mb) %CDS r(cM/Mb) Ncyd Nmel

ΔB,0 > 0 87 25 4.9 0.0958 0.956 1,022,000 430,000

ΔB,0.2 > 0 871 170 47.4 0.0956 1.451 1,283,000 513,000

autosomes 11, 217 n/a 259 0.0765 2.004 1,506,000 630,000

https://doi.org/10.1371/journal.pgen.1010999.t004
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edge effects accumulating at chromosome ends when measuring rbp over 2 Mb, especially for

the shorter chromosomes with a length on the order of 10 Mb (Fig I in S1 Text), we chose to

use rbp values estimated over 1 Mb instead of 2 Mb. With this combination of ranges (1 Mb for

rbp, 250 kb for CDS), we obtain estimates of ŝ � 7:77� 10� 9 (95% CI: [6.95 × 10−9,

8.59 × 10−9]) and of the background migration m̂ � 9:87� 10� 7.

The compound nature of σmeans that similar values can be produced by a small number of

barrier loci under strong selection and a large number of barrier loci under weaker selection.

One question we can ask is what strength of selection s per barrier locus would be required to

produce our estimate of σ, assuming the signal was caused only by the 25 strong (i.e. ΔB,0) bar-

rier regions we inferred. For the sake of simplicity, we assume that each barrier locus experi-

enced the same selection, and that each barrier region contains exactly one barrier locus.

Given a total length of 259 Mb forH. melpomene autosomes [54], we find

ŝ ¼ ŝ=ð25=½259� 106�Þ ¼ 0:0805, which would imply extremely strong selection at each indi-

vidual barrier locus. However, the estimate of σ is clearly driven by the genome-wide relation-

ship betweenme and rbp (and CDS). Indeed, exclusion of the 25 ΔB,0 outlier regions has almost

no effect on our estimate of σ andm: we estimate ŝ � 7:07� 10� 9 (compared to

ŝ � 7:77� 10� 9) and m̂ � 9:82� 10� 7 (compared to m̂ � 9:87� 10� 7). We therefore con-

clude that there must be many more barrier loci than ΔB,0 regions. We can obtain an upper

bound for the number of barrier loci if we consider that 2Nes> 1 for each barrier locus for

selection to be stronger than genetic drift. At the same time, selection at each barrier locus has

to be stronger than the background migration rate if the barrier is to be maintained (i.e. s>
m) [3]. Given our estimates of N̂mel � 549;000 (Table 2) and m̂ � 9:87� 10� 7, the former

threshold (2Nes> 1) is the limiting one, and the maximum number of barrier loci implied by

ŝ ¼ 7:77� 10� 9 is� 1,100,000. Thus, given this upper limit for the number of barrier loci, we

cannot rule out that the overall species barrier betweenH. melpomene andH. cydno has an

omnigenic architecture. In other words, while a moderate number of strong barriers—includ-

ing those associated with the candidate genes optix, regucalcin2, and wnt-A—appear to locally

reduceme to a large extent, a much larger number of weaker barrier loci likely contribute to

reproductive isolation between these taxa.

Robustness to model choice

Our reconstruction ofme assumes an IMmodel, while our analysis of how polygenic selection

generates thisme variation assumes a model of migration–selection balance (i.e. genetic varia-

tion at barrier loci is maintained at migration–selection equilibrium). Interestingly, the second

best global model to theHeliconius data is a history of migration with infinite split time (MIG,

T!1). This and the fact that global parameter estimates ofm, Ncyd and Nmel under theMIG
model are very similar to those under the IMmodel (Table B in S1 Text) implies that the infor-

mation about both T and the ancestral Ne are limited. This raises the question whether these

two parameters matter at all for our inference ofme heterogeneity and barriers.

To assess the extent to which theHeliconius barrier analysis is model dependent, we set up

a simpler gIMble scan under theMIGmodel (varying Ncyd, Nmel andme). While ΔB,0 barriers

are undefined under theMIGmodel, we find that estimates of bothme variation and ΔB,0.2 bar-

riers are extremely similar to the analogous results under the IMmodel (Fig K in S1 Text).

Thus while we would argue that conceptually (and in general) a two-step inference procedure

is a logical approach, our results suggest that forH. melpomene andH. cydno the first step does

not matter, i.e. the inference of barriers in this dataset does not depend on an inferred global

T.
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Discussion

Progress in speciation genomics has been impeded by a conceptual and methodological divide

between approaches that model speciation history under neutral scenarios and analyses that

aim to identify loci under divergent selection that act as barriers to gene flow. Here, we bridge

this divide by introducing gIMble: a single framework to model both the overall species his-

tory and the genomic landscape of speciation. We used gIMble to demonstrate a two-step

inference procedure that fits a genome-wide (global) demography under the IM model, and

then relaxes constraints on Ne andme to estimate these two parameters locally in sliding win-

dows along the genome. Unlike previous approaches that attempt to describe species barriers

via summary statistics such as FST which is affected by all forms of selection, the effective

demographic parameters inferred by gIMble have straightforward interpretations in terms of

evolutionary processes: while heterogeneity in Ne largely reflects BGS,mi measures the long-

term combined effects of barriers to gene flow at a local genomic window i [61]. The ability of

our framework to identify both the position and strength of barriers to gene flow based on esti-

mates ofme holds promise for comparative studies of species barriers [35].

Applying our inference procedure to the neotropical butterfly speciesH. cydno andH. mel-
pomene, we find strong support for genome-wide variation in Ne andme. Genomic windows

of significantly reducedme partially overlap with well-known large-effect loci controlling wing

patterning (optix, cortex and wnt-A) and male preference for wing pattern (regucalcin2). We

also confirm previous studies that estimated higher (effective) gene flow fromH. cydno intoH.
melpomene than in the opposite direction [65, 71]. Finally, we illustrate how the inferred

genome-wide variation inme can be used to infer the aggregate strength of selection against

gene flow given maps of CDS density and recombination rate. This analysis shows that the bar-

rier between these species has a substantial polygenic component.

The inference framework we have developed is a first step towards model-based characteri-

sation of species barriers. However, there is extensive room to improve our method both in

terms of model complexity and optimal exploitation of genomic data. It is important to re-

iterate that modelling the effect of barriers via demographic parameters is a drastic simplifica-

tion [72]. While the approximation implemented in gIMble does capture the effect of

selectionmaintaining barriers once they have been established, it does not consider the

processes by which alleles at barrier loci (and locally beneficial alleles more generally) become

established in the first place. While Bateson–Dobzhansky–Muller incompatibilities can arise

through drift alone only in the absence of migration [73], their establishment in the face of

gene flow involves selection favouring locally adaptive alleles. Thus, developing methods that

capture the joint effect of selection establishing barriers and the resulting reduction inme
remains an important goal of future work.

While gIMble is focused on subsamples of pairs of diploid genomes, its modular design

facilitates the implementation of generalisations to larger samples and more complex demo-

graphic models. There are several obvious and useful avenues for future extensions. First,

gIMble assumes a constant rate of unidirectional gene flow that persists until the present.

Since many taxon pairs that are of interest in speciation research are likely to have completed

speciation (i.e. there is no contemporary gene flow), it would be useful to generalise the

method to allow for a time at which gene flow ceases—the Isolation with Initial Migration

(IIM) model [74]—as well as bi-directional gene flow. While an approximate solution to the

problem of bi-directional gene flow has been described [71], we currently do not know of a

closed-form analytic solution for a sample of four lineages that accounts for multiple discrete

demographic events in the IIM model as is required by agemo [42] (see Methods). While

there are reasons to expect strong asymmetry in the direction of gene flow in general [75], it
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would be useful to know how sensitive the strictly unidirectional gIMble scans are to a small

amount of counter-directional gene flow. Much of the information about past gene flow is

contained in the frequency of pair-blocks carrying shared heterozygous sites that are generated

when migrant lineages coalesce in their source population (Fig 1A). We therefore expect the

me estimate to be inflated by migration in the direction opposite to that of the best-fitting

model of unidirectional gene flow.

A perhaps more important question is to what extent gIMble analyses are meaningful

when the true underlying history involves secondary contact rather than continuous gene

flow. In the absence of extensions that allow fitting multiple discrete events, e.g. models of

instantaneous admixture or periods of gene flow, we caution the user to first assess the overall

fit of the IM model using other inference approaches to determine if a gIMble analysis is

appropriate for their dataset. In the case of the focalHeliconius pair, we not only have a strong

prior for continuous gene flow but can also show that the gIMble scan is robust to the choice

of model (MIG vs IM).

Second, we have ignored heterogeneity in the mutation rate (μ) in our analyses which may

be confounded with heterogeneity inme. However, there is no direct evidence from mutation

accumulation experiments [76] for heterogeneity in μ over the scale relevant for our analysis,

i.e. window of 100kb. In other words, it is biologically implausible that theme variation we

have inferred reflects mutation rate heterogeneity. In contrast, μ is likely to vary over the scale

of gIMble blocks. Moreover, other aspects of genome data (mis-annotation, mapping errors)

are likely to affect the window-wise bSFS in similar ways to fine-scale in μ. Such fine-scale vari-

ation in μ should lead to an overall upward bias in estimates of Ne andme (which is conserva-

tive when identifying barriers).

Finally, gIMble currently does not make use of phased sequence data. While this feature

makes it useful for studies where phasing is not achievable (e.g. short-read sequencing data

and small sample sizes as considered here), extending gIMble to phased data would increase

its statistical power. A further and more profound extension would be to incorporate haplo-

type information in the “blocking” algorithm. Currently, we blindly discretise the genome into

blocks of a fixed length. Given that the history of each block is modelled assuming a single

genealogy, blocks should ideally be defined via topologically informative sites (e.g. using the

four-gamete-test and other topology information) to ensure that each block meets the assump-

tion of a single genealogy [77]. Recently, progress has been made on approaches that infer

ancestral recombination graphs (ARGs) from phased data. In particular, several minimal-

assumption heuristics exist to infer topology-only ARGs [78–80]. These methods use informa-

tion from neighbouring haplotypes to reconstruct marginal tree topologies and would allow

blocks to be defined by the spans of marginal trees, rather than disceretizing the genome at

random and assuming no recombination within blocks, as we have done here. Thus, develop-

ing sampling strategies and likelihood calculations that incorporate topology and haplotype

information will be a priority of future work.

Our analysis ofHeliconius data illustrates the potential of our framework for speciation

research. Specifically, we show that theme variation inferred by gIMble can be used to

answer two different, yet complementary, sets of questions about the speciation process. On

the one hand, one may assume that reproductive isolation is conferred at least in part by a

small to moderate number of large-effect barrier loci [1] that can be identified individually

from their strong effect onme. A scan based on ΔB,0 yields a meaningful estimate of the frac-

tion of genome in this category. Importantly, our approach—unlike outlier scans based on

summary statistics such as FST —avoids arbitrary significance thresholds. Instead, the power to

estimate barriers to gene flow (which can be quantified using gIMble simulate) is a func-

tion of the background demography (e.g. the higher the genome-wide backgroundme, the
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greater the power to identify ΔB,0 barriers) and the recombination rate. On the other hand,

reproductive isolation may be largely, if not entirely, polygenic, with a large number of weak

barrier loci reducing gene flow genome-wide [61]. In this case, it becomes impossible to iden-

tify individual barriers [81]. Instead, the main objective will be to understand the genomic pre-

dictors/correlates ofme. One advantage of gIMble is that its inference ofme and Ne is purely

based on genomic variation and can be intersected with many other data types that are rele-

vant for speciation, e.g. gene expression data or information about barriers to gene flow from

crossing experiments or hybrid zone studies.

Importantly, gIMble also does not rely on recombination information (we assume that

blocks are non-recombining and statistically exchangeable), which means that the interaction

between recombination rate andme can be modelled in a second step to make an aggregate

inference on the nature of the polygenic species barrier. We have provided an example of such

an inference using the framework of Aeschbacher et al. [9], extended here to account for varia-

tion in CDS density as a proxy for the density of candidate barrier loci.

Combining these two approaches, we find thatH. melpomene andH. cyndo are separated

by a mixture of large-effect barrier loci and polygenic barrier. Three out of four known large-

effect loci controlling barrier phenotypes in thisHeliconius species pair are contained in the

2% of the genome identified as a barrier by the strictest definition of no effective migration, i.e.

ΔB,0 > 0. Yet at the same time, it is clear that ΔB,0 barriers do not drive the genome-wide corre-

lation we find betweenme and rbp and which is little affected by the exclusion of ΔB,0 barriers.

Simple scaling arguments lead us to conclude that, apart from the 25 major barrier loci we

identified, up to hundreds of thousands of weak barrier loci scattered across the genome might

contribute to reproductive isolation betweenH. melpomene andH. cyndo. In fact, the large-

effect wing pattern loci may be a rather unique feature of the strong selection pressures gener-

ated by Müllerian mimicry inHeliconius and it is unlikely that they function as the sole, or

even the truly significant, species barriers betweenH. melpomene andH. cydno for several rea-

sons. First, these species are known to differ in numerous other ecological traits, including

habitat preference [82]. Second,H. melpomene alleles at both optix and cortex are shared

between taxa [83, 84] and are known to have adaptively introgressed intoH. timareta (a rela-

tive ofH. cydno), yet the species barrier betweenH. melpomene andH. timareta remains intact

[85, 86]. Finally, only three of the 25 strong barrier regions we identify map to genes that are

known to control wing patterns or preference for wing patterns.

Given that much of the past progress in speciation research has come from comparative anal-

yses [28, 87], the fact that even the relatively simple model-based scans we have implemented

here open the door to comparative studies of species barriers is cause for optimism. In particu-

lar, we argue that systematic comparisons of demographically explicit genome scans across

many taxon pairs will reveal whether the combination of a few strong barrier regions embedded

in a genome-wide, highly polygenic barrier signal seen inHeliconius is the rule or an exception.

Materials and methods

Implementation

The gIMble analysis workflow is designed for WGS data in which all samples have been

mapped to a single reference and largely uses established bioinformatic pipelines and file for-

mats. Fig A in S1 Text shows the basic workflow we have used to analyse theHeliconius data.

Currently, gIMble only supports analyses of data from population/species pairs.

The different steps of the workflow are implemented as distinct modules, allowing users to

tailor the analysis steps to a particular dataset and set of research questions:
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• gimbleprep applies simple coverage and quality filters to the input files to ensure consis-

tency in how variation is sampled along the genome.

• parse reads the pre-processed input files into a compressed (zarr) datastore.

• blocks partitions genomic variation data into pair-blocks composed of one individual

sampled from each population.

• windows creates (sliding) windows of a fixed number of pair-blocks along the genome.

• info displays information about the output data of blocks and windows.

• tally prepares blocks/windows data for the optimize and gridsearch modules.

• optimize performs parameter optimization given a bSFS tally and a bounded parameter

space under a specified model.

• makegrid pre-computes and stores the probabilities of bSFS configurations for a grid in

parameter space.

• gridsearch computes and stores likelihoods of tally data given a pre-computed

makegrid.

• query writes output files describing windows, tally, optimize, and gridsearch
results.

• simulate uses msprime [43] to simulate tallies which can be used for parametric boot-

strapping and/or power analyses.

Below, we briefly describe the pre-processing of data, the organisation of gIMble analyses

into a zarr datastore, the modules that allow the fitting of global and local models, and the

parametric bootstrapping of gIMble estimates.

Data processing

gimbleprep. The gimbleprep module implements a simple and consistent filtering

of input files for subsequent analyses. The purpose of this module is to standardise the quality

of data analysed by gIMble using a minimal set of filters that apply to both variant and invari-

ant sites and which maximise the proportion of the data retained for analysis.

The required input for gimbleprep consists of the reference genome (FASTA format),

read sets of each sample aligned to the reference (BAM format), and the called variants (VCF

format). The output is composed of the following four files:

• genome file records the name and length of each sequence in the FASTA file.

• sample file specifies the name of each sample in the VCF file. This file needs to be manually

edited by the user in order to partition samples into two populations/species.

• VCF file contains only those variants that passed the filter criteria: a minimum distance from

non-SNP variants, adequate read depth (based on min/max thresholds inferred from BAM

files), minimum genotype quality, and minimum read mapping quality (SAF, SAR, RPR, RPL).

• BED file describes the “callable” genomic regions for which each sample has adequate cover-

age (based on min/max thresholds). Only those regions described here will be visible to

gIMble. The user can process this file further using external tools to exclude certain geno-

mic regions, such as genes and repeats.
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The genome and sample files give the user control over what data are included in subse-

quent analysis steps of gIMble: the genome file delimits the parts of the genome to analyse

and the sample file specifies the samples (and their population membership) from which

block-wise data is tabulated.

The VCF and BED files generated by gIMble preprocess describe the genomic varia-

tion across samples that satisfy the previously-defined quality thresholds and therefore serve as

a starting point for any complementary or alternative analyses outside of gIMble that the

user may wish to run on the same data.

gIMble parse. This module parses the four input files generated by gimbleprep.

Based on the parsed data, a compressed zarr datastore is created which is central to all subse-

quent analyses.

gIMble blocks. The module blocks uses the “callable” regions specified in the BED

file and the variants contained in the VCF file to define pair-blocks of a fixed number of call-

able sites. Defined this way, pair-blocks can also span non-callable sequence and therefore may

have variable physical spans in the genome. To maximise the genomic regions sampled and to

avoid biases due to missing data, blocks are constructed independently for each sample pair

(hence our term pair-blocks). This ameliorates the asymmetry in coverage profiles among the

samples due to stochastic variation in sequencing depth and/or reference bias. If, instead,

blocks were constructed only for sites that pass the filtering criteria among all samples, the

“block-able” fraction of genome would become smaller and more biased as sample size

increases.

Although blocks are constructed for all pairwise sample combinations both between the

two populations (X) and within each population (A and B), only heterospecific pair-blocks (X)

are used in the inference steps. The blocking of genomic data is controlled by the parameters

--block_length—the number of callable sites in each pair-block—and --block_
span—the maximum distance between the first and last site in a pair-block. While gIMble
only considers biallelic genotypes for inference, the block-cutting algorithm allows for multial-

lelic and missing genotypes. The number of each permitted in a pair-block is controlled with

the parameters --max_multiallelic, and --max_missing. Note that only one set of

blocks can be stored in a gIMble datastore.

gIMble windows. Windows are constructed by traversing each sequence of the refer-

ence from start to end, incorporating the heterospecific pair-blocks (X) as they appear (based

on their start positions). The parameter --blocks controls the window-size, i.e. how many

pair-blocks are incorporated into each window and the parameter --steps by how many

blocks the next window is shifted. Since differences in coverage or mapping bias among sam-

ples can cause uneven distributions of blocks along the genome, there is no guarantee that all

heterospecific sample pairs contribute an equal number of pair-blocks to a window. However,

by choosing a large enough value for --blocks this problem can be mitigated. Analogous to

blocks, only one set of windows can be stored in a gIMble datastore at a time.

gIMble info. gIMble info computes standard population genetic summary statis-

tics (π, dxy andHmean heterozygosity) using the pair-blocks sampled both between (X) and

within species/populations (A and B) that are recorded in the gIMble datastore.

gIMble query. Data contained in the gIMble datastore can be queried using this

module and written into BED and TSV files. This allows extraction of the results of the mod-

ules windows, tally, optimize, makegrid, simulate, and gridsearch.

gIMble tally. Having created blocks (with gIMble blocks) and windows (with

gIMble windows), the module gIMble tally generates the bSFS tally for heterospecific

sample pairs, each consisting of a single diploid sample from each population/species A and B.

The bSFS tally [71] of a dataset or window enumerates the bSFS configurations which are
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themselves indexed by vectors of the form ki, i.e. counts of the four possible mutation types i =

{het_b, het_a, het_ab, fixed_diff} found within a pair-block:

• het_b sites with homozygous genotype in A, heterozygous genotype in B

• het_a sites with heterozygous genotype in A, homozygous genotype in B

• het_ab sites with shared heterozygous genotypes in both populations

• fixed_diff sites with distinct homozygous genotype in both populations

The argument --kmax limits the counts of mutations of each type in the bSFS. Counts of

mutations inside blocks ({het_b, het_a, het_ab, fixed_diff}) exceeding the values in --kmax
(default: 2, 2, 2, 2) are combined. Thus the choice of --kmax involves a trade-off between the

information gained by distinguishing the probabilities of rare bSFS configurations and the

increase in computational complexity. The bSFS tallies of heterospecific data can be counted

from all pair-blocks (-d blocks, i.e. genome-wide), per window (-d windows), or for all

pair-blocks that are included in windows (-d windowsum, in this case pair-blocks included

in multiple overlapping windows are counted repeatedly).

Calculating likelihoods

Probabilities of block-wise data under the coalescent with arbitrary demographic history can

be calculated using the method described in [40, 41]. In this framework, the generating func-

tion (GF) for the distribution of genealogical branch lengths is described recursively as the

convolution of independent Laplace-transformed exponential random variables. The GF for a

particular model and sampling configuration can be represented most simply as a directed

graph involving all possible ancestral states of the sample, and the probability of any bSFS con-

figuration ki can be calculated as a partial derivative of the GF [41].

Previous automation of this calculation relied on rather inefficient use ofMathematica’s

[88] symbolic algebra functionality. gIMble now uses agemo [42], a user-friendly re-imple-

mentation of the GF approach in python that extracts the probabilities of bSFS configurations

efficiently by means of a graph traversal algorithm.

gIMble accommodates large samples by considering the composite likelihood (CL) across

all nA × nB heterospecific sample pairs (each pair j consists of single diploid individual, one

each from A and B). Using ni,j as shorthand notation for the number of blocks in sample pair j
with bSFS configuration ki, the joint log composite likelihood (ln CL) is given by:

ln CLðYÞ ¼
X

i

XnA�nB

j¼1

ni;jln pðkijYÞ ð2Þ

where Θ is the vector of model parameters. The composite likelihood can be calculated explic-

itly for each point in parameter space that is visited during the optimization run for a given

data set (see optimize). However, when scanning WGS data, it is more efficient to cast a

grid over parameter space and pre-compute ln pðkijYhÞ for all ki and each possible possible

parameter combination h in the grid (see makegrid). Composite likelihoods can then be

computed efficiently for tallies (based on blocks, windows, or simulate) using

gridsearch.

gIMble optimize. This module infers the best-fitting parameters under a given model

for a given tally (based on parsed or simulated data) using an optimization algorithm with

bounded constraints (CSR2, sbplx, or neldermead), as implemented in nlopt [89]. Given a set

of bounds, optimization can be initiated either at the midpoint of the bounded parameter space
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or at a random starting point. Optimizations finalise after user-defined stopping criteria are

met. The user can assess convergence of the optimizer by consulting the log file.

gIMble makegrid and gridsearch. Precomputing the probabilities of bSFS con-

figurations in a grid across parameter space is efficient (relative to using an optimization algo-

rithm) and therefore useful when we wish to interrogate data in replicate, i.e. across windows

or simulation replicates. Grids are pre-computed using makegrid, saved in the gIMble
store, and used to analyse any dataset contained within the same datastore using

gridsearch. A grid search may be used either for an initial exploration of the likelihood

surface (i.e. prior to defining the parameter space across which to run optimize), or to fit mod-

els to window-wise or simulation data.

Parametric bootstrap

Maximizing ln CL across blocks and sample pairs ignores both linkage between blocks and the

pseudo-replication inherent in subsampling heterospecific pairs. We therefore implemented a

wrapper for msprime [43] to facilitate quantification of uncertainty in parameter estimates,

obtaining critical values of Δ ln CL (for model comparisons) and measuring the power of ΔB
scans via parametric bootstrap.

gIMble simulate. This module simulates replicate datasets either under a user speci-

fied IM type model and set of parameter values or based on parameters inferred across win-

dows from a previous gridsearch. Each simulation replicate consists of a set of windows,

and so can be simulated to correspond to a real dataset in terms of the number of windows

and their recombination rates. Simulated data can be analysed in the same way as real data.

This allows users to perform parametric bootstraps on both global (genome-wide) and local

(window-wise) estimates and to quantify the power and potential biases (due to model misspe-

cification) of gIMble analyses, in particular the assumption of no recombination within

blocks. Parametric bootstraps on local estimates are set up by providing the key of the corre-

sponding gridsearch analysis.

The module simulate uses demes [90] internally for unequivocal model specification.

gIMble can also output the results of optimize as a demes-readable yaml-file, allowing

users to connect gIMble to the growing list of other population genetics tools that support

the demes format [43, 91–95].

Heliconius analyses

We provide a list of all gIMble commands used to analyse theHeliconius dataset in the Sup-

plementary Methods in S1 Text.

Sequence data. Raw reads (Illumina 150 base paired-end) (Table A in S1 Text) were

downloaded from ENA and quality trimmed using fastp 0.20.1 [96] (--length_
required 50). Trimmed reads of each read set were aligned against the chromosome-level

assembly ofH. melpomeneHmel2.5 [67] using bwa mem 0.7.17-r1188 [97]. Alignment

files were sorted with samtools 1.12 [98] and duplicated read pairs were marked with

sambamba markdup 0.8.1 [99]. Variants were called using freebayes v1.3.3
[100] (-k -w -j -T 0.02 -E -1 --report-genotype-likelihood-max).

Data processing. We used the following gimbleprep parameters for theHeliconius
analysis: --min_qual 1, --snpgap 2, --min_depth 8 (i.e. 8 reads), and --max_
depth 3 (i.e. 3 × mean coverage of each BAM file). Blocks were cut using the following

parameters: --block_length 64, --block_span 128, --max_multiallelic
3, and --max_missing 3. Blocks were grouped into windows using gIMble windows
with these parameters: --blocks 50000 (on average, each of the 100 heterospecific sample
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pairs should occur in 50,000/100 = 500 blocks within a window) and --steps 10000. Tal-

lies were made using gIMble tally with --kmax 2,2,2,2 for ‘blocks’, ‘windows’, and

‘windowsum’ (all blocks in windows).

Recombination map and parametric bootstrap. For each data window in theHeliconius
analysis, we obtained direct recombination rate estimates rbp over a range of scales from the

total number of crossover events recorded by Davey et al [67]: we averaged the recombination

rate estimates inH. melpomene,H. cydno, and hybrid crosses for a fixed physical region (of

size 125 kb, 250 kb, 500 kb, 1 Mb, 2 Mb) centred on the window mid-point using a custom

script get_recombination_rate_KL.py.

We performed a parametric bootstrap on the global IM estimates obtained forHeliconius.
To obtain 95% confidence intervals (CI) of MCLEs of parameters under the best fitting global

IMmodel (Table 2), we simulated 100 replicate datasets under the inferred IM!mel model.

Each replicate consisted of a dataset partitioned into windows analogous to the real data (i.e.

500 blocks of 64 bases sampled across 10 × 10 heterospecific pairs). Importantly, simulations

were conditioned on theH. melpomene recombination rates (rbp measured at a 1 Mb scale).

Given that real data windows partially overlap and are in LD, whereas simulated windows are

assumed to be statistically independent, we simulated datasets containing 50 times fewer win-

dows than the real data (this ensures a distance of around 500 kb between windows). We esti-

mated the 95% CIs of data MCLEs as +/- 2SD of the MCLEs across replicates.

To estimate the uncertainty in the gIMble scan, we quantified the false positive rate (FPR)

as follows: For each window and its associated rbp (measured at a 1 Mb scale), we simulated

100 replicates under the locally best fitting set of N estimates but fixingme to m̂e and T̂ to the

MCLE under the global model (Table 2). We used gIMble gridsearch to obtain MCLEs

ofme for each replicate and measure the FPR as the fraction of the simulation replicates for

which ΔB> 0.

Power analysis

While the choice of block length involves a trade-off between power and bias, the definition of

windows involves a trade-off between power and resolution. Our analysis scanned theHelico-
nius genomes for barriers using windows on the scale of 100 kb (i.e. 50,000 × 64 base blocks),

but we find that given theHeliconius background demography, there is high power to detect

genomic barriers for a wide range of window sizes (Fig L in S1 Text).

We quantified the impact of window size, recombination rate and sample size on the power

to detect barriers using gIMble simulate and two extreme barrier definitions: the com-

plete absence of gene flow (m∗
e ¼ 0, i.e. ΔB,0), or a very relaxed definition as a reduction inme

by half (m∗
e < m̂e=2, i.e. ΔB,0.5). Note that the latter is even more permissive than the definition

of a weak barrier that we used in theHeliconius scan (ΔB,0.2). Here, the split time T was fixed to

the background value while Ne parameters were allowed to vary among windows. We assumed

an average per-base and per-generation recombination rate of rbp = 1.89 × 10−8 (given a male

map length of 1083 cM and a genome size of 272.6 Mb [67]). ROC curves were constructed

using 1,000 replicate simulations under the background IM model as true negatives (Table 2)

and the model with a reduced localme as true positives (mi = 0 or m̂e=2).

Fig M in S1 Text shows the relationship between the recombination rate and the power to

detect barriers. The impact of recombination is two-fold: on the one hand, with an increase in

recombination rate we expect to see more topologies within a single window. On the other

hand, an increase in recombination for the same block size increases the probability of observ-

ing four-gamete-test violations. Blocks containing mutation configurations that cannot be

placed on a single topology are non-informative in this framework. Consistently leaving out a
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particular subset of topologies might however bias the inference. Increasing the recombination

rate therefore increases power but also leads to bias.

Supporting information

S1 Text. Supplementary methods, tables & figures. The supporting information is organized

into three sections: (1) Supplementary methods; gIMble commands used for theHeliconius
analysis. (2) Supplementary tables A—C (3) Supplementary Figures A—M.

(PDF)
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49. Martin SH, Möst M, Palmer WJ, Salazar C, McMillan WO, Jiggins FM, et al. Natural Selection and

Genetic Diversity in the Butterfly Heliconius melpomene. Genetics. 2016; 203(1):525–541. Available

from: http://www.genetics.org/content/203/1/525 PMID: 27017626

50. Van Belleghem SM, Baquero M, Papa R, Salazar C, McMillan WO, Counterman BA, et al. Patterns of

Z chromosome divergence among Heliconius species highlight the importance of historical demogra-

phy. Molecular ecology. 2018; 27(19):3852–3872. https://doi.org/10.1111/mec.14560 PMID:

29569384

51. Merrill RM, Van Schooten B, Scott JA, Jiggins CD. Pervasive genetic associations between traits caus-

ing reproductive isolation in Heliconius butterflies. Proceedings of the Royal Society B: Biological Sci-

ences. 2011; 278(1705):511–518. Available from: https://royalsocietypublishing.org/doi/abs/10.1098/

rspb.2010.1493 PMID: 20810445

52. Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genet-

ics. 1989; 123(3):585–595. https://doi.org/10.1093/genetics/123.3.585 PMID: 2513255

53. Keightley PD, Pinharanda A, Ness RW, Simpson F, Dasmahapatra KK, Mallet J, et al. Estimation of

the Spontaneous Mutation Rate in Heliconius melpomene. Molecular Biology and Evolution. 2015; 32

(1):239–243. https://doi.org/10.1093/molbev/msu302 PMID: 25371432

54. Davey JW, Barker SL, Rastas PM, Pinharanda A, Martin SH, Durbin R, et al. No evidence for mainte-

nance of a sympatric Heliconius species barrier by chromosomal inversions. Evolution Letters. 2017; 1

(3):138–154. https://doi.org/10.1002/evl3.12 PMID: 30283645

55. Reed RD, Papa R, Martin A, Hines HM, Counterman BA, Pardo-Diaz C, et al. optix Drives the

Repeated Convergent Evolution of Butterfly Wing Pattern Mimicry. Science. 2011; 333(6046):1137–

1141. https://doi.org/10.1126/science.1208227 PMID: 21778360

56. Martin A, Papa R, Nadeau NJ, Hill RI, Counterman BA, Halder G, et al. Diversification of complex but-

terfly wing patterns by repeated regulatory evolution of a Wnt ligand. Proceedings of the National

Academy of Sciences. 2012; 109(31):12632–12637. Available from: http://www.pnas.org/cgi/doi/10.

1073/pnas.1204800109 PMID: 22802635

57. Nadeau NJ, Pardo-Diaz C, Whibley A, Supple MA, Saenko SV, Wallbank RWR, et al. The gene cortex

controls mimicry and crypsis in butterflies and moths. Nature. 2016; 534(7605):106–110. Available

from: http://www.nature.com/doifinder/10.1038/nature17961 PMID: 27251285

58. Rossi M, Hausmann AE, Thurman TJ, Montgomery SH, Papa R, Jiggins CD, et al. Visual mate prefer-

ence evolution during butterfly speciation is linked to neural processing genes. Nature Communica-

tions. 2020; 11(1):2041–1723. https://doi.org/10.1038/s41467-020-18609-z PMID: 32958765

59. Hanly JJ, Robertson ECN, Corning OBWH, Martin A. Porcupine/Wntless-dependent trafficking of the

conserved WntA ligand in butterflies. Journal of Experimental Zoology Part B: Molecular and Develop-

mental Evolution. 2021; 336(6):470–481. https://doi.org/10.1002/jez.b.23046 PMID: 34010515

PLOS GENETICS Demographically explicit scans for barriers to gene flow

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010999 October 10, 2023 28 / 30

https://doi.org/10.1534/genetics.115.183814
http://www.ncbi.nlm.nih.gov/pubmed/26715666
https://doi.org/10.1371/journal.pcbi.1010532
https://doi.org/10.1371/journal.pcbi.1010532
http://www.ncbi.nlm.nih.gov/pubmed/36108047
https://www.biorxiv.org/content/early/2021/09/21/2021.08.31.457499
https://www.biorxiv.org/content/early/2021/09/21/2021.08.31.457499
https://academic.oup.com/genetics/article/doi/10.1093/genetics/iyab229/6460344
https://academic.oup.com/genetics/article/doi/10.1093/genetics/iyab229/6460344
http://www.ncbi.nlm.nih.gov/pubmed/34897427
https://doi.org/10.1371/journal.pbio.2005902
https://doi.org/10.1371/journal.pbio.2005902
http://www.ncbi.nlm.nih.gov/pubmed/30730873
http://www.sciencedirect.com/science/article/pii/S2211124713005652
http://www.ncbi.nlm.nih.gov/pubmed/24183670
http://genome.cshlp.org/content/23/11/1817.abstract
http://www.ncbi.nlm.nih.gov/pubmed/24045163
https://www.genetics.org/content/161/4/1517
https://www.genetics.org/content/161/4/1517
http://www.ncbi.nlm.nih.gov/pubmed/12196397
http://doi.wiley.com/10.1002/evl3.12
http://www.ncbi.nlm.nih.gov/pubmed/30283645
http://www.genetics.org/content/203/1/525
http://www.ncbi.nlm.nih.gov/pubmed/27017626
https://doi.org/10.1111/mec.14560
http://www.ncbi.nlm.nih.gov/pubmed/29569384
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2010.1493
https://royalsocietypublishing.org/doi/abs/10.1098/rspb.2010.1493
http://www.ncbi.nlm.nih.gov/pubmed/20810445
https://doi.org/10.1093/genetics/123.3.585
http://www.ncbi.nlm.nih.gov/pubmed/2513255
https://doi.org/10.1093/molbev/msu302
http://www.ncbi.nlm.nih.gov/pubmed/25371432
https://doi.org/10.1002/evl3.12
http://www.ncbi.nlm.nih.gov/pubmed/30283645
https://doi.org/10.1126/science.1208227
http://www.ncbi.nlm.nih.gov/pubmed/21778360
http://www.pnas.org/cgi/doi/10.1073/pnas.1204800109
http://www.pnas.org/cgi/doi/10.1073/pnas.1204800109
http://www.ncbi.nlm.nih.gov/pubmed/22802635
http://www.nature.com/doifinder/10.1038/nature17961
http://www.ncbi.nlm.nih.gov/pubmed/27251285
https://doi.org/10.1038/s41467-020-18609-z
http://www.ncbi.nlm.nih.gov/pubmed/32958765
https://doi.org/10.1002/jez.b.23046
http://www.ncbi.nlm.nih.gov/pubmed/34010515
https://doi.org/10.1371/journal.pgen.1010999


60. Wallbank RWR, Baxter SW, Pardo-Diaz C, Hanly JJ, Martin SH, Mallet J, et al. Evolutionary Novelty in

a Butterfly Wing Pattern through Enhancer Shuffling. PLoS Biology. 2016; 14(1):1–16. https://doi.org/

10.1371/journal.pbio.1002353

61. Barton N, Bengtsson BO. The barrier to genetic exchange between hybridising populations. Heredity.

1986; 57(3):357–376. https://doi.org/10.1038/hdy.1986.135 PMID: 3804765

62. Flaxman SM, Wacholder AC, Feder JL, Nosil P. Theoretical models of the influence of genomic archi-

tecture on the dynamics of speciation. Molecular Ecology. 2014; 23(16):4074–4088. https://doi.org/10.

1111/mec.12750 PMID: 24724861

63. Aeschbacher S, Bürger R. The effect of linkage on establishment and survival of locally beneficial

mutations. Genetics. 2014; 197(1):317–336. https://doi.org/10.1534/genetics.114.163477 PMID:

24610861

64. Yeaman S, Aeschbacher S, Bürger R. The evolution of genomic islands by increased establishment

probability of linked alleles. Molecular Ecology. 2016; 25(11):2542–2558. Available from: http://dx.doi.

org/10.1111/mec.13611 PMID: 27206531

65. Martin SH, Davey JW, Salazar C, Jiggins CD. Recombination rate variation shapes barriers to intro-

gression across butterfly genomes. PLOS Biology. 2019 02; 17(2):1–28. Available from: https://doi.

org/10.1371/journal.pbio.2006288 PMID: 30730876

66. Cruickshank TE, Hahn MW. Reanalysis suggests that genomic islands of speciation are due to

reduced diversity, not reduced gene flow. Molecular Ecology. 2014; 23:3133–3157. https://doi.org/10.

1111/mec.12796 PMID: 24845075

67. Davey JW, Barker SL, Rastas PM, Pinharanda A, Martin SH, Durbin R, et al. No evidence for mainte-

nance of a sympatric Heliconius species barrier by chromosomal inversions. Evolution letters. 2017; 1

(3):138–154. https://doi.org/10.1002/evl3.12 PMID: 30283645

68. Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genetical Research. 1974 feb; 23

(1):23–35. Available from: https://www.cambridge.org/core/product/identifier/S0016672300014634/

type/journal_article PMID: 4407212

69. Bengtsson B. The flow of genes through a genetic barrier. Evolution: essays in honour of John May-

nard Smith. 1985; 1:31–42.

70. Aeschbacher S, Selby JP, Willis JH, Coop G. Population-genomic inference of the strength and timing

of selection against gene flow. Proceedings of the National Academy of Sciences. 2017; 114

(27):7061–7066. Available from: https://www.pnas.org/content/114/27/7061 PMID: 28634295

71. Lohse K, Chmelik M, Martin SH, Barton NH. Efficient strategies for calculating blockwise likelihoods

under the coalescent. Genetics. 2016; 202(2):775–786. Available from: http://www.genetics.org/

content/202/2/775 PMID: 26715666

72. Waples RS. What Is Ne, Anyway? Journal of Heredity. 2022 05; 113(4):371–379. Available from:

https://doi.org/10.1093/jhered/esac023 PMID: 35532202

73. Bank C, Bürger R, Hermisson J. The Limits to Parapatric Speciation: Dobzhansky–Muller Incompat-

ibilities in a Continent–Island Model. Genetics. 2012 jul; 191(3):845–863. Available from: http://

www.ncbi.nlm.nih.gov/pubmed/10747061 http://www.pubmedcentral.nih.gov/articlerender.fcgi?

artid=PMC1461023 http://www.genetics.org/lookup/doi/10.1534/genetics.111.137513 PMID:

22542972

74. Wilkinson-Herbots HM. The distribution of the coalescence time and the number of pairwise nucleotide

differences in the “isolation with migration” model. Theoretical Population Biology. 2008; 73(2):277–

288. https://doi.org/10.1016/j.tpb.2007.11.001 PMID: 18215405

75. Turelli M, Moyle LC. Asymmetric Postmating Isolation: Darwin’s Corollary to Haldane’s Rule. Genetics.

2007 06; 176(2):1059–1088. Available from: https://doi.org/10.1534/genetics.106.065979 PMID:

17435235

76. Ness RW, Morgan AD, Vasanthakrishnan RB, Colegrave N, Keightley PD. Extensive de novo mutation

rate variation between individuals and across the genome of Chlamydomonas reinhardtii. Genome

Research. 2015; 25(11):1739–1749. Available from: http://genome.cshlp.org/content/25/11/1739.

abstract PMID: 26260971

77. Shipilina D, Stankowski S, Pal A, Chan YF, Barton N. On the origin and structure of haplotype blocks.

Authorea. 2022;. PMID: 36433653

78. Kelleher J, Wong Y, Wohns AW, Fadil C, Albers PK, McVean G. Inferring whole-genome histories in

large population datasets. Nature Genetics. 2019 sep; 51(9):1330–1338. Available from: http://www.

nature.com/articles/s41588-019-0483-y PMID: 31477934

79. Ignatieva A, LyngsøRB, Jenkins PA, Hein J. KwARG: parsimonious reconstruction of ancestral

recombination graphs with recurrent mutation. Bioinformatics. 2021; 37(19):3277–3284. https://doi.

org/10.1093/bioinformatics/btab351 PMID: 33970217

PLOS GENETICS Demographically explicit scans for barriers to gene flow

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010999 October 10, 2023 29 / 30

https://doi.org/10.1371/journal.pbio.1002353
https://doi.org/10.1371/journal.pbio.1002353
https://doi.org/10.1038/hdy.1986.135
http://www.ncbi.nlm.nih.gov/pubmed/3804765
https://doi.org/10.1111/mec.12750
https://doi.org/10.1111/mec.12750
http://www.ncbi.nlm.nih.gov/pubmed/24724861
https://doi.org/10.1534/genetics.114.163477
http://www.ncbi.nlm.nih.gov/pubmed/24610861
http://dx.doi.org/10.1111/mec.13611
http://dx.doi.org/10.1111/mec.13611
http://www.ncbi.nlm.nih.gov/pubmed/27206531
https://doi.org/10.1371/journal.pbio.2006288
https://doi.org/10.1371/journal.pbio.2006288
http://www.ncbi.nlm.nih.gov/pubmed/30730876
https://doi.org/10.1111/mec.12796
https://doi.org/10.1111/mec.12796
http://www.ncbi.nlm.nih.gov/pubmed/24845075
https://doi.org/10.1002/evl3.12
http://www.ncbi.nlm.nih.gov/pubmed/30283645
https://www.cambridge.org/core/product/identifier/S0016672300014634/type/journal_article
https://www.cambridge.org/core/product/identifier/S0016672300014634/type/journal_article
http://www.ncbi.nlm.nih.gov/pubmed/4407212
https://www.pnas.org/content/114/27/7061
http://www.ncbi.nlm.nih.gov/pubmed/28634295
http://www.genetics.org/content/202/2/775
http://www.genetics.org/content/202/2/775
http://www.ncbi.nlm.nih.gov/pubmed/26715666
https://doi.org/10.1093/jhered/esac023
http://www.ncbi.nlm.nih.gov/pubmed/35532202
http://www.ncbi.nlm.nih.gov/pubmed/10747061
http://www.ncbi.nlm.nih.gov/pubmed/10747061
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1461023
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC1461023
http://www.genetics.org/lookup/doi/10.1534/genetics.111.137513
http://www.ncbi.nlm.nih.gov/pubmed/22542972
https://doi.org/10.1016/j.tpb.2007.11.001
http://www.ncbi.nlm.nih.gov/pubmed/18215405
https://doi.org/10.1534/genetics.106.065979
http://www.ncbi.nlm.nih.gov/pubmed/17435235
http://genome.cshlp.org/content/25/11/1739.abstract
http://genome.cshlp.org/content/25/11/1739.abstract
http://www.ncbi.nlm.nih.gov/pubmed/26260971
http://www.ncbi.nlm.nih.gov/pubmed/36433653
http://www.nature.com/articles/s41588-019-0483-y
http://www.nature.com/articles/s41588-019-0483-y
http://www.ncbi.nlm.nih.gov/pubmed/31477934
https://doi.org/10.1093/bioinformatics/btab351
https://doi.org/10.1093/bioinformatics/btab351
http://www.ncbi.nlm.nih.gov/pubmed/33970217
https://doi.org/10.1371/journal.pgen.1010999


80. Rasmussen DA, Guo F. Espalier: Efficient tree reconciliation and ARG reconstruction using maximum

agreement forests. bioRxiv. 2022;.

81. Jiggins CD, Martin SH. Glittering gold and the quest for Isla de Muerta. Journal of Evolutionary Biology.

2017; 30(8):1509–1511. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/jeb.13110

PMID: 28786188

82. Estrada C, Jiggins CD. Patterns of pollen feeding and habitat preference among Heliconius species.

Ecological Entomology. 2002; 27(4):448–456. Available from: https://resjournals.onlinelibrary.wiley.

com/doi/abs/10.1046/j.1365-2311.2002.00434.x

83. Dasmahapatra KK, Walters JR, Briscoe AD, Davey JW, Whibley A, Nadeau NJ, et al. Butterfly genome

reveals promiscuous exchange of mimicry adaptations among species. Nature. 2012; 487(7405):94–

98. Available from: http://www.nature.com/doifinder/10.1038/nature11041

84. Pardo-Diaz C, Salazar C, Baxter SW, Merot C, Figueiredo-Ready W, Joron M, et al. Adaptive Intro-

gression across Species Boundaries in Heliconius Butterflies. PLOS Genetics. 2012 06; 8(6):1–13.

Available from: https://doi.org/10.1371/journal.pgen.1002752 PMID: 22737081

85. Giraldo N, Salazar C, Jiggins CD, Bermingham E, Linares M. Two sisters in the same dress: Helico-

nius cryptic species. BMC Evolutionary Biology. 2008; 8(1):1471–2148. https://doi.org/10.1186/1471-

2148-8-324 PMID: 19040737

86. Martin SH, Dasmahapatra KK, Nadeau NJ, Salazar C, Walters JR, Simpson F, et al. Genome-wide

evidence for speciation with gene flow in Heliconius butterflies. Genome Research. 2013; 23

(11):1817–1828. https://doi.org/10.1101/gr.159426.113 PMID: 24045163

87. Coyne JA, Allen Orr H. The evolutionary genetics of speciation. Philosophical Transactions of the

Royal Society B: Biological Sciences. 1998; 353(1366):287–305. Available from: http://rstb.

royalsocietypublishing.org/cgi/doi/10.1098/rstb.1998.0210 PMID: 9533126

88. Wolfram Research I. Mathematica, Version 11.1.1.0. Champaign, Illinois: Wolfram Research, Inc.;

2017.

89. Johnson SG, et al.. The NLopt nonlinear-optimization package; 2014. Available from: https://github.

com/stevengj/nlopt.

90. Gower G, Ragsdale AP, Gutenkunst RN, Hartfield M, Noskova E, Struck TJ, et al. Demes: a standard

format for demographic models. bioRxiv. 2022; Available from: https://www.biorxiv.org/content/early/

2022/06/01/2022.05.31.494112.

91. Gutenkunst RN, Hernandez RD, Williamson SH, Bustamante CD. Inferring the Joint Demographic His-

tory of Multiple Populations from Multidimensional SNP Frequency Data. PLoS Genetics. 2009 oct; 5

(10):e1000695. Available from: https://dx.plos.org/10.1371/journal.pgen.1000695 PMID: 19851460

92. Haller BC, Messer PW. SLiM 3: Forward Genetic Simulations Beyond the Wright-Fisher Model. Molec-

ular Biology and Evolution. 2019; 36(3):632–637. https://doi.org/10.1093/molbev/msy228 PMID:

30517680

93. Thornton KR. A c++ template library for efficient forward-time population genetic simulation of large

populations. Genetics. 2014; 198(1):157–166. https://doi.org/10.1534/genetics.114.165019 PMID:

24950894

94. Noskova E, Ulyantsev V, Koepfli KP, O’Brien SJ, Dobrynin P. GADMA: Genetic algorithm for inferring

demographic history of multiple populations from allele frequency spectrum data. GigaScience. 2020;

9(3):giaa005. https://doi.org/10.1093/gigascience/giaa005 PMID: 32112099

95. Ragsdale AP, Gravel S. Models of archaic admixture and recent history from two-locus statistics.

PLoS genetics. 2019; 15(6):e1008204. https://doi.org/10.1371/journal.pgen.1008204 PMID:

31181058

96. Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics.

2018; 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560 PMID: 30423086

97. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint

arXiv:13033997. 2013;.

98. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools

and BCFtools. GigaScience. 2021 02; 10(2). Giab008. Available from: https://doi.org/10.1093/

gigascience/giab008 PMID: 33590861

99. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS alignment

formats. Bioinformatics. 2015; 31(12):2032–2034. https://doi.org/10.1093/bioinformatics/btv098

PMID: 25697820

100. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint

arXiv:12073907. 2012;.

PLOS GENETICS Demographically explicit scans for barriers to gene flow

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010999 October 10, 2023 30 / 30

https://onlinelibrary.wiley.com/doi/abs/10.1111/jeb.13110
http://www.ncbi.nlm.nih.gov/pubmed/28786188
https://resjournals.onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2311.2002.00434.x
https://resjournals.onlinelibrary.wiley.com/doi/abs/10.1046/j.1365-2311.2002.00434.x
http://www.nature.com/doifinder/10.1038/nature11041
https://doi.org/10.1371/journal.pgen.1002752
http://www.ncbi.nlm.nih.gov/pubmed/22737081
https://doi.org/10.1186/1471-2148-8-324
https://doi.org/10.1186/1471-2148-8-324
http://www.ncbi.nlm.nih.gov/pubmed/19040737
https://doi.org/10.1101/gr.159426.113
http://www.ncbi.nlm.nih.gov/pubmed/24045163
http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.1998.0210
http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.1998.0210
http://www.ncbi.nlm.nih.gov/pubmed/9533126
https://github.com/stevengj/nlopt
https://github.com/stevengj/nlopt
https://www.biorxiv.org/content/early/2022/06/01/2022.05.31.494112
https://www.biorxiv.org/content/early/2022/06/01/2022.05.31.494112
https://dx.plos.org/10.1371/journal.pgen.1000695
http://www.ncbi.nlm.nih.gov/pubmed/19851460
https://doi.org/10.1093/molbev/msy228
http://www.ncbi.nlm.nih.gov/pubmed/30517680
https://doi.org/10.1534/genetics.114.165019
http://www.ncbi.nlm.nih.gov/pubmed/24950894
https://doi.org/10.1093/gigascience/giaa005
http://www.ncbi.nlm.nih.gov/pubmed/32112099
https://doi.org/10.1371/journal.pgen.1008204
http://www.ncbi.nlm.nih.gov/pubmed/31181058
https://doi.org/10.1093/bioinformatics/bty560
http://www.ncbi.nlm.nih.gov/pubmed/30423086
https://doi.org/10.1093/gigascience/giab008
https://doi.org/10.1093/gigascience/giab008
http://www.ncbi.nlm.nih.gov/pubmed/33590861
https://doi.org/10.1093/bioinformatics/btv098
http://www.ncbi.nlm.nih.gov/pubmed/25697820
https://doi.org/10.1371/journal.pgen.1010999

