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Abstract

Caenorhabditis nematodes form an excellent model for studying how the mode of reproduc-

tion affects genetic diversity, as some species reproduce via outcrossing whereas others

can self-fertilize. Currently, chromosome-level patterns of diversity and recombination are

only available for self-reproducing Caenorhabditis, making the generality of genomic pat-

terns across the genus unclear given the profound potential influence of reproductive mode.

Here we present a whole-genome diversity landscape, coupled with a new genetic map, for

the outcrossing nematode C. remanei. We demonstrate that the genomic distribution of

recombination in C. remanei, like the model nematode C. elegans, shows high recombina-

tion rates on chromosome arms and low rates toward the central regions. Patterns of

genetic variation across the genome are also similar between these species, but differ dra-

matically in scale, being tenfold greater for C. remanei. Historical reconstructions of variation

in effective population size over the past million generations echo this difference in polymor-

phism. Evolutionary simulations demonstrate how selection, recombination, mutation, and

selfing shape variation along the genome, and that multiple drivers can produce patterns

similar to those observed in natural populations. The results illustrate how genome organi-

zation and selection play a crucial role in shaping the genomic pattern of diversity whereas

demographic processes scale the level of diversity across the genome as a whole.

Author summary

The mode of reproductive exchange among individuals has a profound effect on genetic

diversity. In self-reproducing organisms, absence of genetic interchange between individ-

uals reduces the effective population size and increases linkage among segregating sites at

different genes, leading to lower diversity than outcrossing species. Caenorhabditis nema-

todes offer an exceptional system for studying the genomic effects of different systems of

mating. While selfing species such as C. elegans have been studied, we present the first

recombination map and genome-wide landscape of polymorphism for an outcrossing

member of the genus, C. remanei. We find that, similar to C. elegans, C. remanei has high

recombination rates on chromosome arms and low rates in central regions. The genomic
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diversity landscapes of these species are qualitatively similar, with higher diversity in the

regions of higher recombination. However, C. remanei exhibits tenfold greater diversity

than C. elegans due to their much larger effective population size and the decreased impact

of linked selection as an outcrossing species. We use evolutionary simulations to show the

influence of genomic and demographic processes work on these patterns. This work illus-

trates how understanding complex interactions among genetics, genomics, and reproduc-

tion is fundamental to describing patterns of genetic variation within natural populations.

Introduction

Population genomics aims to infer the evolutionary forces and historical processes that have

shaped genetic variation within species while considering the effects of a range of factors such

as natural selection, patterns of reproduction, genome functional organization, mutational

and recombinational landscapes, as well as spatial and temporal population dynamics and

demographic history. As most of these factors act in combination, it can be challenging to

infer evolutionary history using DNA sequence information within natural populations. While

many population genetic models incorporate several of these factors [1–4], the enormous com-

plexity of the problem means that there is no single analytical model that encompasses all of

these interconnected processes. Even as the scale and quality of individual-level genomic data

within natural populations continue to mount, a great deal of work remains to fully integrate

the ways that mechanistic genetic processes manifest patterns at the whole-genome level in

combination with evolutionary processes operating within and between populations and

species.

Given this challenge, one promising and integrative approach is to use current knowledge

about the genetics of a given species alongside evolutionary simulations of a variety of evolu-

tionary scenarios [5–10] so as to generate a series of null models for hypothesis testing of

empirical data. Given recent progress in molecular genetic methods, it is possible to obtain

high-quality genetic information on genome properties by assembling chromosome-level

genomes [11–13], analyzing genome-wide variation in the rate of mutation [14–16] and

recombination [17–20], and measuring functional-genomic patterns of activity [21,22], and to

then match these features with population-level whole-genome sequence data [23,24]. High-

quality genomic data, population theory, and individualized null hypotheses from evolutionary

simulations promise to be a powerful tool in population genetics to tease apart the genetic and

evolutionary forces that govern genetic variation within and between species.

Variation in the mating system provides one crucial species-specific factor that influences

traits, ecology, and population genetic parameters. For instance, self-fertilization as an extreme

form of inbreeding acts to reduce the effective population size and the effective recombination

rate [25–29], thereby leading to a reduction in heterozygosity, increased linkage disequilib-

rium, reduced influence of dominance, and increased variability in evolutionary trajectories

due to the enhanced influence of drift and a concomitant reduction in efficiency of selection

[30–37]. Within animals, the transition from outcrossing to selfing is often accompanied by

accelerated reproductive incompatibility and isolation, relaxation of sexual selection and sex-

ual conflict, degradation of mating ability, and the generation of outbreeding depression [38,

39]. In the context of population genomic analysis, it is the influence of self-fertilization on

linkage disequilibrium and the way that it expands the genomic footprint of natural selection

that is of particular interest. So the contrast between extreme linkage disequilibrium in self-fer-

tilizing species and natural variability in recombination rate across the genome in outcrossing
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species provides a unique opportunity to critically examine the interaction between population

genetic and transmission genetic processes in shaping molecular variation within species.

Caenorhabditis nematodes are primarily outcrossing species with males and females [40],

with the exception of three predominantly self-fertilizing hermaphroditic species: C. elegans,
C. briggsae, and C. tropicalis. The self-fertilizing mode of reproduction appears to have evolved

independently within each species and to have done so from an outcrossing ancestor fairly

recently [41,42]. Sex in Caenorhabditis species is determined by sex chromosome dosage (X),

with females and hermaphrodites having two copies of the X (XX) and males only one (X0)

[43]. Because sex is determined by the absence of the X, males can arise spontaneously from

nondisjunction of the sex chromosome during meiosis (~0.1% cases for C. elegans [44,45]),

allowing rare outcrossing to occur in natural populations [46–49,50–52]. C. elegans is a model

species for behavior genetics [53–56], development biology [57–59], and experimental evolu-

tion [45,60–62]. Moreover, the occurrence of hermaphroditism in Caenorhabditis nematodes

can be attributed to changes in just a few pathways [63–66], while sex determination itself can

be genetically manipulated, making Caenorhabditis species an unprecedented tool for study of

the effects of reproduction mode in metazoans [45,67–70]. From a population genomic point

of view, the genomic landscapes of diversity in all three selfing Caenorhabditis species are simi-

lar, with a consistent pattern among all chromosomes of higher genetic diversity on the

peripheral “arm” regions and lower diversity on the central regions of chromosomes

[49,50,71,72]. This pattern closely mirrors the chromosome-level pattern of recombination

rate, which is high in chromosome arms and low in centers, with the latter occupying about

half of the chromosome length [49,72–74]. To date, however, no comprehensive population

genomic data are available for outcrossing Caenorhabditis species.

How might outcrossing be expected to affect the distribution of diversity across the

genome? In this study, we use a previously constructed chromosome-level assembly [75] and a

high-density genetic map generated here to examine whole-genome DNA sequence diversity

for Caenorhabditis remanei. C. remanei is an obligate outcrossing nematode that has a signifi-

cantly larger effective population size and levels of molecular polymorphism than selfing spe-

cies [76–80]. To provide a consistent basis for comparison across species, we also reanalyzed a

local sample of C. elegans from Hawaii (from [81]) to compare it with C. remanei using the

same set of diversity statistics. In addition to inferring demographic histories, patterns of link-

age disequilibrium, and genome-wide patterns of divergence, selection, and the spectrum of

nucleotide substitutions, we performed evolutionary simulations under different evolutionary,

mutational, and recombinational scenarios to compare patterns of diversity in C. remanei and

C. elegans with theoretical expectations. We find that the mode of reproduction strongly deter-

mines overall levels of diversity and that finer chromosome-level differences in polymorphism

are governed by the interaction of selection, mutation, and recombination, indicating that a

comprehensive understanding of evolution, demography, and genetic transmission are needed

to interpret whole-genome evolution.

Results

Recombination landscape of C. remanei
To generate the first genetic map for an outcrossing species of Caenorhabditis, C. remanei, we

crossed two inbred lines (PX506 and PX553) derived from isolates collected near Toronto,

Canada ([75], Fig 1 and S1 Table) and individually genotyped 341 F2 offspring. Of the

1,399,638 polymorphic sites among the parental strains, an average of 106,071 markers were

covered by bestRAD-sequencing. Full filtration for informative markers yielded 7,512 total

sites across the genome, which in turn were used to construct the genetic map. The total length

PLOS GENETICS Genomic diversity in outcrossing and selfing nematodes

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010879 August 16, 2023 3 / 38

https://doi.org/10.1371/journal.pgen.1010879


of the genetic map is 288.72 cM. Of this, 40.99 cM is the X chromosome determined via the

female parent, and the remainder is the result of sex-averaged maps for each autosome (see

details in S1 Table). The X chromosome has lower rates of recombination than the sex-aver-

aged map of autosomes, which is likely driven by differential control of recombination on the

sex chromosome (for example [82,83], reviewed in [84]), and/or by unequal recombination

rates in males and females ([85–87], also reviewed in [88]). Our crossing approach precludes

the construction of sex-specific maps, although examining any potential differences in recom-

bination between males and females could be of interest to future studies.

For the purposes of the population genomic analysis, we are particularly interested in the

shape of the recombination landscape across the whole genome. We find the chromosomal

recombination landscape to be non-uniform in C. remanei in a fashion that is superficially

similar to that seen in other Caenorhabditis species such as C. elegans, C. briggsae, and C. tropi-
calis, with ends of the C. remanei chromosomes having elevated recombination rates and for

rates of recombination within a given chromosomal domain (arm or center region) being

fairly uniform (Fig 1, [49,72–74,89]). Using stepwise regression to identify the boundaries of

the central domains of lower recombination (Table 1), we find regions of low recombination

Fig 1. Marey map of genome-wide patterns of C. remanei recombination. Rugged marks on the top reflect the density of markers, while the dashed lines

show the boundaries of the central domains (see Table 1). The recombination landscape along C. remanei’s holocentric chromosomes resembles that of other

Caenorhabditis species, C. elegans and C. briggsae, with core domains ("centers") of low recombination and peripheral domains ("arms") of uniform and high

recombination.

https://doi.org/10.1371/journal.pgen.1010879.g001

Table 1. Positions of low recombination domains on chromosomes of the C. remanei genome obtained from crosses of the PX506 and PX553 strains.

Chromosome Left arm ends, Kb

(95% CI)

Right arm starts, Kb

(95% CI)

Recombination rate, cM/Mb (left, central, and right domains) Chromosome size, bp

I 5,803

(5,753–5,853)

13,007

(12,942–13,071)

5.197, 0.673, 3.529 17,247,545

II 6,828

(6,779–6,878)

14,292

(14,060–14,524)

3.883, 0.808, 2.938 19,935,723

III 5,849

(5,828–5,870

11,888

(11,863–11,914)

4.791, 0.316, 3.601 17,877,849

IV 8,639

(8397–8,881)

17,108

(17,072–17,145)

1.447, 0.520, 3.615 25,790,997

V 6,767

(6,717–6,817)

13,852

(13,737–13,966)

3.697, 0.270, 2.531 22,502,457

X 9,040

(8,960–9,120)

16,070

(15,498–16,642)

3.047, 0.879, 1.339 21,501,900

https://doi.org/10.1371/journal.pgen.1010879.t001
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in C. elegans tend to be roughly one-third larger in relative size than in C. remanei. Specifically,

the central domains of chromosomes I, II, III, IV, V, and X of C. elegans represent, corre-

spondingly, 48%, 48%, 48%, 52%, 51%, and 36% of the total chromosome (estimated from

Table 1 in [49]), while in C. remanei these represent 42%, 37%, 34%, 33%, 31%, and 33% of

chromosomal length, which could be potentially caused by DNA loss in selfing nematodes and

relative reduction of the arms [90].

Genetic diversity of C. elegans and C. remanei
In order to compare the landscape of genomic diversity in the outcrossing C. remanei to those

of primarily self-fertilizing species, we sequenced 14 diploid genomes of C. remanei individuals

collected in a forest area near Toronto, Canada. To our knowledge, this work represents the

first comprehensive analysis of chromosome-scale patterns of diversity for outcrossing species

from Caenorhabditis. Consistent with patterns observed for selfing species of Caenorhabditis,
nucleotide diversity is as much as 40% higher in the regions of high recombination than in the

central domains on all chromosomes (C. remanei mean π ± SD in arms, centers, and total: 17 x

10−3 ± 4.9 x 10−3, 12 x 10−3 ± 4.2 x 10−3, and 15 x 10−3 ± 5.2 x 10−3, see Fig 2). Average levels of

polymorphism agree qualitatively with previous estimates from this species based on the analy-

sis of individual genes [79,80,91].

To directly compare equivalent samples of C. remanei and C. elegans, we reanalyzed 28 wild

C. elegans isolates collected at a single location in Hawaii (data from [81], S1 Table) and calcu-

lated the diversity landscape across the genome using the same analysis pipeline that we

applied to C. remanei. Diversity for C. elegans was assessed for individual diploid genotypes

rather than isotypes, as was performed in the original study, so as to properly retain informa-

tion regarding genotype frequencies within the population. Consistent with previous reports,

this analysis show that C. elegans, like C. remanei, has higher diversity levels on the arms com-

pared to the centers [50,81,92–94], with mean values across all site types (π ± SD) in arms, cen-

ters, and total of 1.8 x 10−3 ± 2.4 x 10−3, 0.54 x 10−3 ± 1.2 x 10−3, and 1.2 x 10−3 ± 2.1 x 10−3.

The patterns of nucleotide diversity in C. remanei are qualitatively similar to C. elegans in

distribution across the genome. However, nucleotide diversity differs quantitatively from C.

elegans in scale by being higher by roughly one order of magnitude, consistent with previous

observations of substantial reduction of diversity in selfing vs. outcrossing species of Caenor-
habditis [76–80,91,95,96]. Highlighting this point, the number of SNVs that we used in the

analysis (after filtering, masking of repeats, regions with low mappability, indels, and their

flanking regions) was 243,456 variants for the C. elegans sample and almost ten times more,

2,365,750, for C. remanei.
When comparing patterns of polymorphism between domains of high and low recombina-

tion, we find that, as measured by π, chromosome arms are significantly more diverse in gen-

eral than chromosome centers for both species, which also holds when looking specifically

within exons and introns. Within a given domain, we find that introns are much more diverse

than exons within C. remanei but not significantly different in C. elegans (see Table 2). As

described below, this difference across functional groups has undoubtedly been caused by

reduced effective recombination rate in C. elegans, which has made these domains highly sus-

ceptible to selective sweeps and background selection, homogenizing diversity across linked

genetic elements [79]. In addition, hyper-divergent haplotypes, located mostly in the regions

of high recombination, contribute to the difference in diversity among domains [97]. Consis-

tent with this idea, variance in π is nearly twice as large in chromosome arms as in central

domains within C. elegans but fairly similar across the chromosome in C. remanei. Genomic

patterns of other diversity statistics such as θ, Tajima’s D, variance, skew, kurtosis, the number
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of haplotypes, H1, H12, H2.H1, ZnS, omega (see for details on statistics in [98], and β [99] are

shown in S2 Fig).

Divergence and the spectrum of substitutions in C. remanei
To facilitate examining the landscape of rates of divergence across the C. remanei genome, we

reconstructed ancestral states for the C. remanei genome by using several genomes of C. rema-
nei and a reference genome of C. latens [40,80,90]. In so doing, we imputed ancestral states for

56% of the PX506 reference genome (60%, 56%, 58%, 42%, 59%, 68% from the lengths of the

chromosome I—X), which included 3,553,584 nucleotide substitutions; after filtration of

Fig 2. Diversity landscapes of C. elegans and C. remanei. Dots represent nucleotide diversity per 100 kb window, lines show locally weighted smoothing of

these values, and the vertical dashed lines are the boundaries of regions of low recombination central domain for C. elegans from [49] and for C. remanei from

this study. (A) Nucleotide diversity per 100 kb non-overlapping windows, windows with less than 10% of coverage were removed. Quantitatively, outcrossing

C. remanei has one order of magnitude greater nucleotide diversity than partially selfing C. elegans. However, qualitatively, both species have significantly

greater diversity in the regions of high recombination. (B) Nucleotide diversity within exons (yellow) and introns (grey) of protein-coding genes summarized

per 100 kb non-overlapping windows, windows with less than 5% of coverage were removed. C. remanei shows a large and substantial difference in diversity

between exons and introns along the genome, unlike C. elegans.

https://doi.org/10.1371/journal.pgen.1010879.g002
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genomic windows by coverage we used 2,657,650 substitutions, 53% of which were located on

arms. All chromosomes had comparable fractions of substitutions from the ancestor

(5 ± 0.24%); however, our inference may have been affected by the use of only one reference of

C. latens, as these species are closely related and probably have some unresolved ancestral poly-

morphisms. Calculating the Tamura distance [100] of the PX506 reference genome from the

reconstituted ancestral genome showed that overall divergence was 1.6 times greater on the

arms than in the central domains (Fig 3A). Divergence tends to be positively correlated with

recombination [101]. While the divergence landscape largely resembled the pattern of nucleo-

tide diversity for the Toronto population of C. remanei examined here, chromosome regions

showing low divergence tend to be wider than those seen for diversity measures in the regions

of low recombination. The longer divergence time between C. latens and C. remanei has

allowed for resolution of population genetic processes (fixation) that are ongoing within the

Toronto population (segregating variation), which resulted in more pronounced differences

between the domains of the divergence landscape compared to the diversity landscape, espe-

cially near domain boundaries (Fig 3A and 3C vs Fig 2). The fluctuations in the ratio of nucleo-

tide diversity over divergence on the boundaries of recombination domains are especially

noticeable on chromosomes I, II, III, and V (Fig 3B). The diversity/divergence ratio fluxes

could result from selective processes, demography, or non-uniformity in the mutation land-

scape (S3A, S3B and S3D Fig). The divergence is noticeably lower in exons than in introns, 2.6

times less in the central domains and 2.7 in the arms, and significantly lower in domains of

lower recombination (Exons: d = 1.13, Z = 54.40, P-value < 10−4; Introns: d = 1.63, Z = 69.26,

P-value< 10−4; Total: d = 0.28, Z = 13.55, P-value < 10−4) indicating strong selection.

Using the inferred ancestral states and the C. remanei reference genome (strain PX506) to

estimate the rate of nucleotide substitution, we find that all types of substitutions show a con-

sistent pattern across the chromosomes (S3B Fig). The transition over transversion bias with

standard deviation estimated in 1 Mb windows in this comparison is 1.16±0.1, which is smaller

than the 1.5±0.1 ratio observed within the C. remanei population sample from Toronto (Krus-

kal-Wallis χ2 = 306.94, P-value< 10−16). The difference in biases may be attributed to shifts in

the mutation spectrum [102] within the C. remanei population, as well as disparities in the

mutation spectrum of C. latens used in the ancestral inference. Transition substitutions from

C!T and G!A are the most common, consistent with previous observations of the C. elegans
mutation patterns [97,103–106]. The genomic landscape of recombination also has an impor-

tant effect on the nature of the substitutions, with more C!T and G!A substitutions in the

central domain than in the arms, and more C!G and G!C in the arms (S3A Fig and

Table 2. Statistical comparisons of nucleotide diversity (π) in C. elegans and C. remanei populations within different genomic domains.

Comparison Species Cohen’s d Permutation test, Z Permutation test, P-value

π within arms vs centers C. elegans 0.62 9.28 < 10−4

C. remanei 1.08 13.96 < 10−4

π within exons on arms vs centers C. elegans 0.52 7.94 < 10−4

C. remanei 1.36 16.16 < 10−4

π within introns on arms vs centers C. elegans 0.65 9.73 < 10−4

C. remanei 0.70 8.33 < 10−4

π within exons vs introns on arms C. elegans 0.06 1.03 0.8456

C. remanei 0.43 -5.34 < 10−4

π within exons vs introns on centers C. elegans 0.04 -0.56 0.2927

C. remanei 1.36 -15.86 < 10−4

https://doi.org/10.1371/journal.pgen.1010879.t002
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Fig 3. Divergence of the C. remanei PX506 strain from ancestral states inferred from the C. latens genome. Each point

represents the Tamura 1992 distance on 100 kb non-overlapping filtered windows, with at least 30 kb of the window length

containing ancestral states, with lines representing the locally weighted smoothing of these values. (A) Divergence of the

reference genome (strain PX506) from the reconstructed ancestral genome. Divergence in central domains is 1.6 times

lower than in the arms, and several highly divergent regions are located on the arms of chromosomes II, III, IV, and X. (B)

Ratio of nucleotide diversity within the Toronto population of C. remanei over divergence shown above. (C) Divergence of

the reference C. remanei genome from the ancestral states in exons (yellow) and introns (grey). Only windows with more

than 5 kb of ancestral states within exons or introns are shown. Divergence in exons and introns is, respectively, 1.7 and 1.6

times less in the central domains than in the arms. (D) The ratio of nucleotide diversity in the Toronto population of C.

remanei over the divergence estimated in exons (yellow) and introns (grey).

https://doi.org/10.1371/journal.pgen.1010879.g003
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S2 Table). In the C. remanei population, the distribution of segregating substitutions along the

genome follows comparable patterns to the inferred ancestral patterns (S3B and S3C Fig).

Genome-scale variation in the nucleotide substitution pattern within C. remanei could be a

consequence of the interaction of recombination, selection, and demographic processes but

could also be generated by variation in the mutation process itself. Experiments with mutation

accumulation lines in C. elegans have shown a 1.2–1.6 times higher rate of base substitutions

on the arms relative to the centers of chromosomes [103], probably due to mutagenic effects of

recombination through double-strand breaks [107–109]. Other differences between these

genomic regions also might contribute, such as chromatin organization, gene density and

their expression, and transposon activity. Accurately inferring the mutation landscape of C.

remanei will require further research, including the use of mutation accumulation lines and/or

extensive sequencing of parent-offspring trios.

Population structure, outcrossing, inbreeding, and effective recombination

Sampling nematodes from a single narrow geographic location can help to describe fine-scale

population organization. Most of the nematodes in the C. remanei sample formed one cluster

of related individuals, with a few more genetically distant nematodes (S4 Fig). Unexpectedly,

the cluster was most likely formed from individuals from a single-family lineage displaying

intensive inbreeding. This view is supported by relatively high Fis values along the C. remanei
genome (0.38 ± 0.15, S2M Fig). Such a value can be obtained through just a few generations of

sibling mating (see Table 5.1 in [110]), which brings new insights into the biology of C. rema-
nei. The inbreeding coefficient is even higher in the C. elegans population (0.86 ± 0.22), as

expected for selfing or partially selfing species. This Fis value corresponds to a 7.5% outcrossing

rate ([111]; 1-s, where s = 2Fis/(1 + Fis) under the assumption of the equilibrium), falling within

the range of values estimated for other C. elegans samples (Table 3). The effective outcrossing

rate estimated from interchromosomal linkage disequilibrium (LD) is three orders of magni-

tude lower, 0.002% ± 0.005% (Table 3). This C. elegans sample consisted primarily of individu-

als derived from several distinct genetic lineages, which have been combined into “isotypes” in

[50] and [81] and the CeNDR database (https://www.elegansvariation.org, S4 Fig).

Patterns of genome-wide linkage disequilibrium are drastically different in the C. elegans
and C. remanei samples. C. elegans has very large blocks of LD both within and across chromo-

somes, with LD decaying slowly along the entire length of the chromosome (Figs 4 and S5), in

agreement with theory [35] and previously reported results [71]. The degree of LD also varies

significantly across chromosomes in C. elegans (d = 0.58, Z = -151.1, P-value < 10−4), which is

also consistent with previous observations [46,47]. In contrast, LD within the C. remanei popu-

lation decays rapidly, within a few hundred base pairs on autosomes and somewhat more

Table 3. Outcrossing rate of C. elegans samples reported in different studies. The Method column specifies the

approach used to estimate the outcrossing rate.

Method Outcrossing rate (%) Study

Heterozygosity 1.3 [93]

20 [112]

1.7 [46]

7.5 This study

Linkage disequilibrium 0.013, 0.005 [93]

0.0016 to 0.22 [47]

< 0.011 [71]

0.0024 This study

https://doi.org/10.1371/journal.pgen.1010879.t003
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gradually on the X chromosome (Fig 4), consistent with previous localized observations for

this species [78]. Background inter- and intrachromosomal LD is estimated to be 0.1, which is

more than a null expectation (the inverse of the sample size, 0.04) and probably related to

inbreeding or another demographic process in the collected sample (S5 Fig). Consistent with

these observations, the inferred genome-wide effective recombination rate in C. elegans is on

average 8.4 times lower than in C. remanei (3.8 x 10−4 ± 2.7 x 10−4 versus 32 x 10−4 ± 77 x 10−4;

S6 Fig). However, the effective recombination in C. elegans does not follow the recombination

domain structure. Here, the difference in meiotic and effective recombination rates among

species is clearly driven by the increase in linkage disequilibrium caused by self-fertilization.

Demographic history of C. remanei and C. elegans samples

Inference of demographic dynamics within both species reveals dynamic changes in popula-

tion size over time (Fig 5). The first striking difference is that the estimated effective population

size of our C. remanei sample is approximately two orders of magnitude higher than that of C.

elegans, spanning a period of thousands of generations (Table 4). The effective size of the C.

elegans sample from Hawaii has changed dramatically in recent generations, likely because of

its intricate metapopulation structure [93,112]. From a historical point of view, the C. elegans
sample displays a pattern of a precipitous decline in the effective population size toward the

present, as previously noted [71]. In contrast, the Toronto population of C. remanei studied

here maintained a consistent, relatively large effective population size but also displays notable

fluctuations in size over time (Fig 5).

To look for site-specific changes in diversity that might be indicative of the action of natural

selection, we also inferred population history for the C. remanei population using recon-

structed ancestral states and a framework for demographic inference (Relate, [114]). Overall,

the pattern of demographic history using this approach is very similar to that reported above,

Fig 4. The decay of linkage disequilibrium (LD) along the chromosomes of C. elegans and C. remanei populations. The median values were estimated from

LD between all biallelic polymorphic sites in C. elegans and every tenth site for C. remanei within either 100 kb non-overlapping windows (overall plots) or 100

bp windows (inset plots). Each line represents a chromosome.

https://doi.org/10.1371/journal.pgen.1010879.g004
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as well as being concordant across all six chromosomes (see S7 and S8A Figs). However, after

adjusting for multiple comparisons, these estimates do not indicate any genomic region that

had been subjected to substantial positive selection in the past (S8C Fig). Nevertheless, esti-

mated p-values deviated from the expectation of a uniform distribution in a fashion that is

more pronounced on the arms than on the centers, a possible signal of non-neutral processes

Fig 5. Reconstructed demographic history of C. elegans and C. remanei populations. Ancient demographic history based on SFS and LD information [113].

Calculations are based on 100 bootstrapped replicates using eight individuals from each species, with each line representing one replicate. The grey shading on

the left-hand side of the plot indicates the regions of recent demographic history where estimations using this method may be less reliable. The grey shaded

areas on the right-hand side of the plot show the regions where the inference should also be less accurate as we move further back in time beyond the threshold

of ~4Ne generations. In this analysis, we used one generation per year, and scaling of the mutation rate (x0.5) and coalescent time (x2) for C. elegans.
Demography derived from individual chromosomes is depicted in S7 Fig. Population sizes of both species fluctuate significantly over time, which is likely to

influence estimates of the coalescent population size. Consistent with this, coalescent population size estimates tend to be one order of magnitude less than the

population sizes calculated from polymorphism data (Table 4). The long-term population size of C. remanei sample is around two orders of magnitude larger

than those of C. elegans.

https://doi.org/10.1371/journal.pgen.1010879.g005

Table 4. Contemporary effective population size (Ne) for C. elegans and C. remanei samples from different stud-

ies. The Method column indicates the approach used to estimate Ne. For our study, the 95% confidence intervals for

the mean Ne are shown in parentheses.

Species Ne x 103 Method Study

C. elegans 0.2–9.5 Allele frequencies [93]

0.1–10 Allele frequencies [92]

80 Allele frequencies [47]

0.01–10 Allele frequencies [112]

6.5 (4.2, 8.3) Coalescent This study

34 (31, 37) Allele frequencies This study

C. remanei 1600 Allele frequencies [78]

250 (220, 280) Coalescent This study

1400 (1400, 1500) Allele frequencies This study

https://doi.org/10.1371/journal.pgen.1010879.t004
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(S8D Fig). This also is consistent with significant and large differences across diversity and

divergence in exons vs. introns in C. remanei caused by selection, as discussed above (Figs 2B

and 3C). We attempted a similar analysis for C. elegans but could not reconstruct a sufficient

number of ancestral sites from several strains of C. elegans and its closest relative C. inopinata
to allow the analysis to proceed.

Evolutionary simulations

The empirical data reveal two major features. First, that total polymorphism is lower in the

partial-selfing C. elegans relative to the outcrossing C. remanei, and second, that the genomic

landscape of genetic polymorphism is structured and appears to be strongly correlated with

domains of high and low recombination. Because many interacting factors can potentially

influence these observations, we conducted individual-based simulations to better understand

the separate and combined effects of positive selection, background selection, recombination,

variation in mutation rates, variation in demography, and variation in rates of partial selfing

on population genomic signatures within these species. We looked at three separate scenarios

on a wide array of population genetic statistics using evolutionary simulations in SLiM [9]: the

interaction of selfing rate, selection, mutation landscape, and recombination domains; the

decay of the ancestral diversity; the effects of fluctuations in population size.

As predicted by theory [25–28,37,115], selfing dramatically reduces the diversity in the pop-

ulation, especially when combined with either positive or negative selection (Fig 6A, far right

panels). Because recombination has little impact on within-lineage diversity under self-fertili-

zation, any form of selection tends to eliminate the variation at linked sites, often at the scale of

the whole genome. As a corollary of this, variation in recombination rate across the genome

has little influence on the genomic landscape of polymorphism when the selfing rate is high

because the genetically effective recombination rate becomes very low in that situation. Simi-

larly, the expected variance in evolutionary outcomes is also very small when selfing and selec-

tion combine because selection consistently eliminates variation irrespective of when and

where new mutations arise within the genome (Fig 6B).

When even minor amounts of outcrossing enter the population [118–121], however, the sit-

uation changes dramatically. In the neutral case, the genomic landscape of polymorphism

remains flat regardless of outcrossing rate, as predicted (Fig 6A, [27,29,35]). But when selection

is introduced, regardless of whether it is positive, negative, or balancing, then regions of high

recombination maintain substantially more variation than regions of low recombination (Fig

6A, left most panels). These simulations, in particular, do a very good job of recapitulating the

empirical patterns seen in both C. elegans and C. remanei. Recent inbreeding, as observed in

our C. remanei samples, does not strongly disrupt this pattern, although the influence of

recombination on the genomic distribution in polymorphism is reduced under balancing

selection in face of inbreeding, as might be expected. Importantly, however, balancing selec-

tion does not generally lead to qualitatively different genomic patterns of polymorphism, nor

does it change expectations of the influence of selfing on regions of high and low recombina-

tion (see also S10 and S11 Figs). The variance in outcomes among simulations also displays a

recombination-dependent pattern (Fig 6B). Specifically, neutral scenarios have greater vari-

ance in regions of lower recombination [117]. Whereas the variance of π in those domains in

non-neutral simulations is lower than in neutral ones and extremely low in scenarios with pos-

itive selection.

Although variation in recombination does an excellent job of capturing the genomic differ-

ences in polymorphism observed in our empirical examples, it is also possible that these pat-

terns could be caused by domain-specific variation in mutation rate. Indeed, there is evidence
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Fig 6. Nucleotide diversity landscapes in simulated populations. Lines represent nucleotide diversity per 40 kb window, the vertical dashed

lines are the boundaries of regions of low recombination central domain. Columns show the outcrossing rate, where “outcrossing” means

completely outcrossing populations and, in other columns, % specify the percentage of selfing in population; "outcrossing inbreeding"

corresponds to scenarios with outcrossing populations that underwent the bottleneck at the very end of simulations (see Methods). Rows

represent domain-specific differences in mutation rate, with 1-1-1 as the uniform mutation landscape, 1.5-1-1.5 as 50% more mutations in

domains of high recombination, and 2-1-2 meaning two times more mutations in domains of high recombination. Colors show the selection

regime (see Methods). (A) Mean nucleotide diversity per 40 kb non-overlapping windows. The mean values are lower in regions of low

recombination in scenarios with selection and a non-uniform mutation landscape. Higher selfing rate and selection pressure reduce the

coalescent time and, consequently, nucleotide diversity. (B) The standard deviation of nucleotide diversity in scenarios with uniform mutation

landscapes. The variance in diversity gets lower with selection and reduction of effective recombination in non-neutral scenarios and becomes

higher with increased selfing in the case of neutrality [116,117].

https://doi.org/10.1371/journal.pgen.1010879.g006
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that mutation rates are different among recombination domains in C. elegans [103,106]. If the

mutation rate is, in fact, elevated on the chromosome arms, then polymorphism also increases

on those arms, with the difference between arms and centers increasing with the disparity in

mutation rate (see Fig 6). As long as there is natural selection and a sufficient level of outcross-

ing, then changing the mutational landscape does not qualitatively alter expectations of the

pattern of genomic variation with respect to the influence of domains of high and low recom-

bination. The situation is more complex under neutrality and/or with a high degree of selfing,

in which case the disparity in mutation rate can mimic the pattern of polymorphism expected

under the combination of selection and recombination. Thus, while the pattern of variation in

C. elegans appears to be consistent with some level of outcrossing combined with selection, it

is also consistent with selfing and variation in mutation rate correlated with recombination

(Fig 6). As outlined below, distinguishing these cases, therefore, depends on the combined

effects of all of these factors on additional haplotype and site-based statistics, such as theta, the

number of haplotypes, variance, kurtosis, H12, H1.H1, H1, β-statistics, Fis, omega, that are

affected by the mutation landscape and other statistics, such as Tajima’s D and LD based statis-

tics (ZnS), that tend not to be (S10, S11 and S12 Figs).

Another formal possibility for the genomic pattern observed within C. elegans is that, while

we might expect this species to exhibit a pattern consistent with selfing, there might be resid-

ual, C. remanei-like unresolved ancestral variation on the arms due to its transition from out-

crossing to selfing (see [97]). To examine this possibility, we used evolutionary simulations to

explore the decay rate of ancestral polymorphism from an outcrossing ancestor to a population

experiencing either 98% or 100% selfing. For complete selfing and purely neutral variation, the

ancestral pattern of variation does indeed persist even after 6Ne generations (Fig 7). However,

the addition of any form of natural selection and allowing for a small fraction of outcrossing

individuals leads to the rapid decay of ancestral diversity, within 1Ne generations for 100% self-

ing and 2Ne for 98% selfing. These results are consistent with the expected average coalescent

time for the scenario (~1/N, more specifically (1+F)/2N, where F is the selfing rate; [25–

27,29,35,122]). Here, the variance in the nucleotide diversity is considerably higher in the pop-

ulations that transition to obligate selfing, which also agrees with previous studies [29,123].

The above simulations assume populations of constant size, but we know that variable sizes

are the reality for most populations, especially those that might experience more of a “boom

and bust” life cycle, such as that experienced by these species [124]. We, therefore, also con-

ducted a third type of simulation that examined two types of recent change in the population

size under neutral scenarios: 1) change from 15K to 5K every five generations for 100 genera-

tions after the burn-in; 2) exponential growth by 3% every generation for 100 generations. We

then evaluated the diversity statistics and compared them for each simulation after 100 genera-

tions of changes in the population size and at the burn-in. S13 Fig illustrates the fold change in

a broad range of population genetic statistics in neutral simulations, with large effects in differ-

ent directions in many of the statistics used in the study, but especially notable in Tajima’s D,

haplotype-based statistics, skew, and kurtosis. Importantly, these statistics are sensitive to per-

turbations in population sizes, which occur naturally in wild nematode populations. Likely,

the impact of recent demographic shifts on diversity might be less pronounced in the regions

of low recombination with selection, as the variance in those scenarios is lower (e.g., Fig 6B).

Thus, understanding population structure and local dynamics in a population is particularly

valuable for interpreting observed patterns of diversity.

We attempted to distinguish the complex interactions among these evolutionary factors by

training a convolutional neural network on diversity statistics and classifying population char-

acteristics such as selfing rate, mutation landscape, and selection. The network performed well

in simulations, but had difficulty classifying empirical samples of C. elegans and C. remanei
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populations using this approach. This likely occurred because the successful application of this

approach requires additional bioinformatic data, empirical information, and an expanded sim-

ulation framework that includes other factors such as demography (see S1 Data Appendix A1).

Discussion

The transition from traditional population genetics to molecular population genetics shifted

the general analytical framework from alleles at a locus to the nucleotide sequence at a particu-

lar site in the genome. The progressive expansion of this framework requires scaling these

approaches in the context of broader genome-wide factors such as linkage, recombination,

and localized variation in mutation rates, as well as how the impacts of these processes are

amplified by population history and structure, and species biology. Attempting to understand

the separate and combined impacts of these factors requires comprehensive information about

Fig 7. Decay of ancestral polymorphism in simulated populations that transitioned from outcrossing to selfing. The columns indicate populations that

switched to 98% selfing (left column) and 100% selfing (right column) after obligate outcrossing. Lines represent the mean nucleotide diversity values estimated

from 50 replicates in domains of high recombination, with the shaded areas representing the standard deviation among these replicates. Generations on the

ordinate axis show the number of generations after the burn-in. Colors show the selection regime. Each row represents the mutation landscape (see Methods),

and the dashed lines represent the nucleotide diversity in the populations without outcrossing ancestors. The average diversity in all scenarios with selection

decline rapidly (within ~N generations) towards levels of diversity in selfing or partially selfing populations. Neutral scenarios in obligate selfing populations

have greater variance, which increases over time because these populations are, basically, composed of independent lineages.

https://doi.org/10.1371/journal.pgen.1010879.g007
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molecular diversity across the genome and a theoretical context in which different alternatives

can be rigorously tested. Caenorhabditis nematodes provide a natural experiment in which

phylogenetically close species have drastically different lifestyles, demography, and genetic

processes. With this in mind, we assessed the genomic landscape of various population diver-

sity statistics of populations of C. remanei and C. elegans. We find that the level of diversity is

dramatically different across species, with partially selfing C. elegans having order of magni-

tude lower diversity than the outcrossing C. remanei, yet that the pattern of genetic diversity is

strikingly similar across both species’ genomes, being positively correlated with large-scale

transitions in recombination rate between chromosome centers and arms.

Mating systems and global patterns of diversity

Focusing first on global differences among species, here we used local samples of individuals

to facilitate analysis of population history and structure and to allow comparison of features of

diversity distributions among outcrossing and selfing species with similar genome organiza-

tions. Previous analyses of diversity of C. elegans at a global scale [81,97] have demonstrated

that even with an overall low genetic diversity expected for a nearly selfing species, a large

number of hyper-divergent haplotypes—covering one-fifth of the genome and located mostly

on the chromosome arms—have been maintained in that species, possibly because they are

involved in adaptation to specific environmental niches. These regions also could result from

allelic sequence divergence, analogous to the Meselson effect [125] demonstrated for asexual

species, expected from coalescent theory when the fraction of outcrossing is considerably

lower than the reciprocal of the population size [118,119,122,126]. Overall, our estimates of the

outcrossing rate and population size for the C. elegans sample overlap with previously reported

values (Tables 3 and 4). It remains an open question if such hyper-divergent regions are pres-

ent in populations of outcrossing Caenorhabditis species, because short-read data, such as that

used here for C. remanei tends to be difficult to align in hyper-divergent regions of high

recombination rate. This can potentially lead to lower diversity estimates, as regions with poor

coverage are excluded from the analysis. Long-read data will be required to close these gaps in

the genomic coverage.

Looking broadly at haplotype structure across the genome, the rate of decay in linkage dis-

equilibrium (LD) was drastically different in C. remanei and C. elegans. As predicted by theory

[35,127], the outcrossing C. remanei displays rapid LD decay, within hundreds of base pairs,

and low levels of inter and intrachromosomal correlations. These observations and our estima-

tions of genome-wide effective recombination rate are consistent with previous studies [78].

However, slightly elevated background LD could indicate a recent inbreeding, consistent with

high Fis values (S2M Fig). The “Scottish tartan” pattern of genomic linkage disequilibrium

in C. elegans, in which associations across chromosomes are often nearly as strong as associa-

tions within chromosomes (S5 Fig), is particularly striking and is consistent with the previous

observations of high inter- and intrachromosomal linkage disequilibrium in C. elegans [78].

Because effective recombination rate is a major driver of diversity and linkage along the

genome, nematodes provide an especially useful model for studying the evolutionary effects of

this factor.

Genomic landscapes of diversity and factors that affect them in C. elegans
and C. remanei populations

Moving from a global genome perspective to patterns of diversity observed along specific chro-

mosomes requires teasing apart a large number of potentially influential factors (including

population history, structure, and demography, natural selection, species biology and
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development, and reproduction mode, location-specific variation in recombination and muta-

tion, and additional genomic properties such as genome activity and positions of various

genetic elements like transposons, genes, regulatory elements, etc.). Using the empirical data

from populations of C. elegans and C. remanei and evolutionary simulations derived here, we

step through below how some of these factors contribute to the landscape of diversity.

Recombination landscape and genomic organization

We constructed the first comprehensive genetic map of C. remanei, the first for an outcrossing

species in this genus (Fig 2), to guide the understanding of genomic patterns of diversity. The

genetic map shows a similar structure to other maps constructed for Caenorhabditis species

[49,73,72] with large central parts of chromosomes of suppressed recombination [49,73,89].

The recombinational landscape deduced from the population data was also consistent with

this pattern. Notably, the X chromosome exhibits the same recombination pattern as auto-

somes in C. remanei, as in other Caenorhabditis species [49,73,89], but with a noticeably

shorter genetic map. More research is needed to determine if this is due to distinct recombina-

tion regulation on the sex chromosome [82,88,128,129] or to averaging of recombination rates

between sexes, which might have different recombination regulation, as has been shown for C.

elegans [88,130]. C. elegans and C. remanei, and some other Caenorhabditis species, share

other similarities in chromosome organization: central parts of chromosomes display lower

recombination and have higher gene density, lower repetitive content, lower GC-content,

higher gene expression, and a higher level of inter-chromosomal interactions than the periph-

eral parts of chromosomes [75,131,132]. As recombination across the genome is one of the

critical factors that might affect the shape of diversity landscape, and the genetic map is neces-

sary to model and interpret diversity along the genome, we used the domain-like structure of

Caenorhabditis chromosomes as the basis for our simulations to allow comparison of diversity

landscapes between domains in empirical and simulated populations.

Diversity landscapes and linkage-disequilibrium

Self-reproduction leads to increased homozygosity and linkage disequilibrium, which is

known from theory [25–27,29,122,133–135] and which has been frequently shown empirically

(reviewed in [136]). For Caenorhabditis nematodes, genomic landscapes of diversity have

already been derived for three selfing species [50,71,72]. In order to compare the diversity pat-

terns of nematodes with different reproduction modes, we obtained the first genome-wide

diversity landscape for an outcrossing Caenorhabditis species, C. remanei, and contrasted its

patterns with the selfing C. elegans. C. remanei has one order of magnitude higher nucleotide

diversity than C. elegans, due to larger population size, higher effective recombination, and

outcrossing, which is consistent with previous gene-based estimates [76,91]. Importantly, the

diversity landscapes across the genome in both species follows the domain-like organization of

chromosomes with higher diversity levels in the peripheral regions of higher recombination

and low diversity in the “central” domains of lower recombination of their holocentric

chromosomes.

In the absence of selection, our simulations show that nonuniform recombination rates by

themselves cannot generate the structure of diversity observed in the empirical data, although

recombination rate did, of course, profoundly impact the majority of population genetic statis-

tics (Figs 6 and S10, neutral scenarios in the top rows compared to Figs 4 and S2). In general,

these patterns agree with previous predictions expected for a number of these statistics (see

Table 1 in [37]).
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Interaction of selection and recombination

Genetic variation and recombination rate tend to be correlated due to the reduction of diver-

sity of linked sites both by hitchhiking (positive) and background (negative) selection

[4,30,32,137–140]. Positive correlations of meiotic recombination rate and nucleotide diversity

have been shown for many species [108,141–148], however, this pattern is not universal and

can be influenced by a variety of factors [107,149]. Selfing generates a distinct reduction in

effective recombination, thereby reducing the efficiency of selection [26,33,36,122,150,151].

Both C. elegans and C. remanei display higher diversity in regions of higher recombination,

which may be a signature of linked selection. This is consistent with prior research showing

that Caenorhabditis nematodes exhibit substantial effects of background [143,146,152,153],

positive selection [50], and perhaps balancing selection on some loci [97,154]. Our observation

that exons and introns show very strong differences in diversity in C. remanei whereas they are

very similar in C. elegans, provides strong evidence that selection is much more efficient in C.

remanei than C. elegans, almost certainly because reduced effective recombination rates in C.

elegans.
The genome organization across Caenorhabditis as a whole appears to be likely the result of

prolonged continuous selection, as chromosomes within all species are compact, densely

packed with genes, and have similar patterns of recombination, and chromatin activity [75].

They also tend to lack repetitive elements in the regions of lower recombination, which are

likely to have been removed by background selection [132]. Similarly, the central gene-dense

regions in domains of lower recombination also tend to be more conserved. For example,

within C. remanei, reconstructing ancestral states using C. latens genome as an outgroup

reveals that the central chromosome domains are twice as conserved as the arms, a pattern also

observed in C. elegans [131].

But exactly how do recombination and selection interact to generate these patterns? To

address this question, we performed evolutionary simulations using the Caenorhabditis
domain-like recombination landscape under conditions of different selfing rates, patterns of

deleterious and beneficial mutations, as well as mutations under balancing selection. By

including selection, we were able to mimic the shape of some of the diversity statistics found in

empirical data (Figs 2, S2, S6, S10, S11 and S12). Importantly for the interpretation of diversity

within C. elegans, even a small proportion of outcrossing (>1/N) was enough to start observing

the effects of linked selection, as is predicted by theory [120–122]. So, at first glance, it would

appear that we can do a very good job predicting patterns of genomic diversity within these

species using the right balance of natural selection integrated across domains that differ dra-

matically in recombination structure. However, diversity is not shaped solely by the forces that

either restructure or remove it from the population, but also by mutational forces that intro-

duce it into the population in the first place.

Mutation landscapes

Mutation is the initial source of genetic variation, and the mutation rate can fluctuate along

the chromosome due to such factors as chromatin accessibility, methylation, transcription

activity, recombination rate, genomic context, replication and reparation timing [155–164].

Nonuniform mutation landscapes have been observed in various species [165–168], including

C. elegans [103,106], where the mutation rate on the arms is 1.2–1.6 higher than in the central

regions. For these nematodes, these differences might be caused by the mutagenic properties

of recombination itself, which varies strongly across the genome, or by a variety of other

potential factors. To explore potential variation in mutation rates across the genome, we

inferred the substitution spectrum for C. remanei using our inference of ancestral genomic
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states. This spectrum has the same dominant type of substitution, C!T|G!A, as C. elegans
[103,169,170], and these are the most common polymorphic types of biallelic substitution both

in C. elegans and C. remanei samples (resp. 58.4% and 60% from all types of biallelic substitu-

tions). The fraction of C!T|G!A, A!T|T!A, and C!G|G!C substitutions are different

within regions of higher and lower recombination in C. remanei (S3 Fig). The similarity of

both chromosome organization and substitution spectrum of C. remanei and C. elegans
implies that the mutation rate in C. remanei might be greater in regions of high recombination.

However, direct mutation accumulation experiments and more detailed analysis of mutational

signatures and subtypes are required to fully describe the features of the mutation landscape of

C. remanei. Similarly, we know very little about the degree of gene conversion within Caenor-
habditis species, which can lead to an increase in homozygosity in the regions of higher recom-

bination [126]. An indirect signature of this process is higher GC content in the regions of

higher recombination, which we do indeed observe in these Caenorhabditis species

[75,131,132]. However, since we currently have no basis for parameterizing these potential

effects, the potential for gene conversion was not included in our simulations.

Patterns of genomic diversity with varying patterns of mutational input are uncomfortably

similar to those produced by an interaction of selection and recombination alone. It naturally

makes sense that regions with more mutation would also have more standing variation. If

higher mutation rates are correlated with higher recombination rates, then at least at a superfi-

cial level, it would seem to be very difficult to distinguish among these evolutionary forces

(Figs 6, S10, S11 and S12). Our evolutionary simulations showed that variation in mutation

rate along the genome affects most diversity statistics that we used in this study, except Taji-

ma’s D, ω, ZnS, Fis, and TMRCA. In reality, a complex combination of evolutionary forces

influences the genetic variability in these nematodes, which suggests that a deeper understand-

ing of the balance of these forces requires more subtle ways of distinguishing among them, as

we attempt to do with our classification analysis below.

History and structure of populations

Organisms live in dynamic environments that change in space and time, which naturally has

the potential to dramatically affect population densities and therefore the context for evolu-

tionary change. C. elegans populations locally undergo phases of exponential growth in local-

ized areas of vegetative decay, followed by dispersal to habitats with new resources

[52,124,171]. Consistent with this, its global population structure suggests metapopulation

dynamics of frequent local extinctions followed by recolonization [93,112,172].

The structure of the local collection of C. elegans used here, which is part of a much larger

dataset from Hawaii [81], shows both multiple divergent lineages and resampling of a few

closely related individuals, consistent with the emerging metapopulation paradigm. And

indeed, the inferred demographic history of this population suggests massive reduction and

fluctuations in population size over time (Fig 5). While the ancient pattern of population his-

tory and size is comparable to the previously reported dynamics in C. elegans described by

Thomas et al. [71], these demographic histories cannot be directly compared on the recent

time scale since we employed genomic data from nematodes isolated from one location,

whereas they used pseudo-diploids from a "global" sample.

The global population structure of C. remanei similarly implies extensive migration across

its range [80,173], but local dynamics are still poorly understood. In the Toronto sample of C.

remanei, we observed elevated inbreeding coefficient and background linkage disequilibrium

along the genome, which is likely the result of within-family mating or similar demographic

processes in recent generations. Moving back in time, the inferred evolutionary population
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history of this population indicates major fluctuations in the population size of up to two

orders of magnitude (Figs 5 and S8A). Even so, the inferred sizes are larger than those pre-

dicted for C. elegans. One consequence of these estimates is that the total size and overall scale

of population dynamics makes it particularly difficult to implement this specific demography

in our simulations due to excessive computational demands. Nevertheless, our simulations

show that continuous exponential population growth had much stronger effects on most

diversity statistics than fluctuations in the population size. Similarly, a recent bottleneck in out-

crossing populations, which seems to be the case for the C. remanei population, can have a sig-

nificant impact on most of the diversity statistics used in our study ("outcrossing inbreeding"

columns in Figs 6, S10, S11 and S12). Overall, however, these demographic effects are minor

relative to persistent differences in the mating system.

A potential explanation for the pattern of diversity within C. elegans is that the pattern of

polymorphism across the genome is a residual echo of ancestral outcrossing, even in the

expected homogenizing effects of self-reproduction. In particular, C. elegans is predicted to

have switched to selfing reproduction within the last ~4 my [41]. To test this hypothesis, we

simulated populations exhibiting a discrete change in the mode of reproduction and then

tracked how the diversity decayed over time. We found that polymorphism from the outcross-

ing ancestor was predicted to decay very rapidly. With that, it is very unlikely that the pattern

of diversity that we observe in C. elegans is the ghost of past outcrossing and instead that it has

been maintained by ongoing low levels of outcrossing within extant populations or as a result

of a complex interaction of selection and metapopulation dynamics.

Exploring evolutionary scenarios through simulations

No complete theoretical framework exists to describe how all of the above factors—selection,

drift, mutation, genome organization, mating system, and population history—interact to

shape diversity at a genomic scale, despite much theory [36,37,120,122,174,175]. Forward-time

evolutionary simulation provides an alternative approach to test hypotheses for complex sce-

narios designed specifically for the species of interest [8,9,176]. Our simulated diversity land-

scapes, when compared with the empirical patterns in C. elegans and C. remanei, confirmed

the general conclusion that differences in effective population size were responsible for gener-

ating the scale and magnitude of genetic variation, whereas effective recombination and selec-

tion coupled with mutation and genome organization, shape the distribution of that diversity

across the genome (the genomic landscape of diversity). Thus, changing modes of mating

among Caenorhabditis species has had a profound effect on both the scale and shape of the

diversity landscape.

Evolutionary simulations could potentially be further utilized to evaluate and interpret pat-

terns observed in empirical data by dissecting signatures of different forces and scenarios on

genomic diversity, for instance, by using deep-learning methods (see S1 Data Appendix A1).

However, it is important to acknowledge that this approach can be computationally challeng-

ing and requires control of the quality of input data (genomic coverage and bioinformatic

choices) as well as careful consideration of many potential factors such as population history

and structure, in addition to evolutionary forces, genome organization, and species biology.

Conclusion

Caenorhabditis nematodes provide a useful model to study evolutionary consequences of self-

ing, as they have highly divergent mating systems while maintaining an overall similarity in

genome organization. Here, we have demonstrated that the recombination landscape of out-

crossing C. remanei is similar to C. elegans, with extensive domains of lower recombination on
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the central parts of chromosomes that predict the genomic landscape of the diversity in both

species. The scale of genetic polymorphism within selfing C. elegans and outcrossing C. rema-
nei, however, are dramatically different because of large differences in effective population size

and demographic history. These findings support the emerging perspective that understanding

patterns of variation at any particular site in the genome requires a global perspective of the

forces that shape variation across the genome as a whole.

Materials and methods

Genetic map for Caenorhabditis remanei
We constructed a genetic map for C. remanei from crosses of 2 inbred strains, PX506 and

PX553. Initially, C. remanei isolates were derived from individuals living with terrestrial iso-

pods (Oniscidea) taken from Koffler Scientific Reserve at Jokers Hill, King City, Toronto,

Ontario, in October 2008 as described in [177]. Strain PX390 was created from one female

mated with 3 males from an isopod. Strain PX393 is from one female and one male from an

independent isopod. The strains were propagated for 2–3 generations before freezing. PX506

and PX553 are inbred strains generated from PX390 and PX393, respectively (the parental

strain for PX506 was inadvertently specified as PX393 in [75]). To reduce residual heterozy-

gosity, the lines were sib-mated for 28–30 generations before freezing. Nematodes were kept

under the standard laboratory conditions according to Brenner [43].

The genetic map was constructed from 4 crosses of C. remanei strains PX506 and PX553, (2

crosses of ♀PX506 x ♂PX553 and 2 ♀PX553 x ♂PX506) using parental genotypes and 341 indi-

vidually sequenced F2 nematodes, all females. Single L4 animals were digested in proteinase K,

and the DNA content was linearly amplified with the phi-29 enzyme (GenomiPhiV3, GE life

sciences), then normalized samples were processed for bestRAD sequencing [178] with EcoRI

restriction site based adapters. Each multiplexed sample set was sequenced on the Illumina Hi-

Seq 4000 platform with four lanes of 100 bp paired-end reads (University of Oregon Sequenc-

ing Facility, Eugene, OR). Additionally, we sequenced the PX553 parental strain using the

Nextera kit (Illumina) and Hi-Seq 4000 platform. The genome sequence of the PX506 strain

was generated previously [75].

For parental strains, we checked the sequence quality of reads with FastQC v.0.11.5 [179]

and MultiQC v.1.3 [180], trimmed and filtered reads with Skewer v.0.2.2 [181]. The filtered

reads were mapped to the C. remanei genome (GCA_010183535.1 from the NCBI database)

with BWA-MEM v.0.7.17 [182]. Then we filtered reads with SAMtools v.1.5 [183], removed

duplicates by Picard tools v.2.17.6 [184], realigned indels, and called variants with GATK v.3.7

and v.4.1 [185]. Variants were filtered with standard GATK hard filters (see discussions in

[186–188]), with only diallelic loci being used in the analysis. We also masked repetitive

regions, as well as sites with too low or too high of coverage.

To process the bestRAD reads, we filtered reads without barcodes and flipped forward and

reversed reads when a barcode was found on the reverse read using Flip2BeRAD [189], demul-

tiplexed reads with process_radtags from the Stacks package v.1.46 [190], followed by an addi-

tional adapter and quality trimming with Skewer. Then, we mapped the reads to the C.

remanei reference genome (GCA_010183535.1) using bwa mem, marked duplicates and recal-

ibrated alignment with variants from the parental, PX506 and PX553, strains with Picard and

GATK BaseRecalibrator, filtered reads that did not cover the parental variants, had secondary

alignments, or low mapping quality by SAMtools, and called variants with samtools mpileup.

We generated the genetic map with Lep-Map3 [191], the order of markers was defined by their

positions on the reference genome. The recombination rate per Mb was estimated in R, the

boundaries of low and high recombination domains were determined with the pricewise
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regression by the segmented package [192] in R. For more details on this part of the analysis,

see the scripts at https://github.com/phillips-lab/CR_CE_popgen/tree/main/genetic_map/.

C. remanei and C. elegans population genomic data

To study the genomic pattern of diversity in outcrossing nematodes, we sequenced 14 wild

individuals of C. remanei. Isopods, a phoretic host carrier of C. remanei [193], were collected

at the same station as the strains used for the genetic map, the Koffler Scientific Reserve in

Ontario, Canada, in September 2013, sacrificed within a few hours following collection after

having been placed on agar plates seeded with Escherichia coli OP50. From each of 14 single C.

remanei individuals isolated the next day from these samples (S3 Table), genomic DNA was

directly amplified using the Repli-G kit (Qiagen), and then sequenced with Illumina HiSeq

from TruSeq gDNA libraries by GenomeQuebec. One pair of C. remanei individuals derived

from a shared isopod host (NS50-1, NS50-2), whereas all other individuals were isolated from

different isopods.

To compare the population diversity patterns of this outcrossing species with a selfing spe-

cies using similar approaches, we re-analyzed genomic sequences of 28 wild isolates of C. ele-
gans collected at one location on the Big Island, Hawaii, from Crombie et al. [81]. For more

details on the C. elegans sample, see Source data 1 from [81]. Sample IDs and the NCBI

Sequence Read Archive accession numbers for C. elegans and C. remanei are in S3 Table.

Variant calling, diversity statistics, and demography

We filtered and mapped reads to the C. elegans genome (project PRJNA13758, from Worm-

Base version WS245) or the C. remanei genome (GCA_010183535.1 from the NCBI database)

as described for the genetic map parental strains above. The individuals included in this study

had an average depth of coverage ranging from 20x to 40x. Variants were filtered with the stan-

dard GATK hard filter, only diallelic loci were used in the analysis. Additionally, we masked

some genomic regions, such as indels with 10bp flanking regions with GATK and BEDTools

v.2.25 [194]; repetitive regions using the masked versions of genomes and a script to extract

them from [195]; and regions with too low or high mappability (<5x or>100x coverage in

half of the individuals), all masks were combined by BEDTools merge.

We estimated 12 population diversity statistics using diploS/HIC fvecVcf [98] with two

minor modifications: allowing not to normalize statistics, and to have only one sub-window in

a window (see diploSHIC_note.txt on the project GitHub), and, additionally, the β-statistic

using BetaScan [196] for 100 kb windows in C. elegans and C. remanei samples. To estimate

the β-statistic for empirical data, we first applied an imputation with beagle v.5.0 [197] and a

data format conversion by glactools [198]. Nucleotide diversity within introns and exons was

estimated using these features from corresponding genome annotations, VCFtools [199], and

BEDTools. We compared nucleotide diversity between domains of recombination and differ-

ent gene features using Cohen’s d from the lsr package [200] and the Fisher-Pitman Permuta-

tion Test (Z) from the coin package [201] in R [202].

Demographic history was inferred by SMC++ v1.15.1 [113] for 100 bootstrapped replicates

of 8 individuals using data from chromosomes I, III, IV for C. elegans and I, II, III, V for C.

remanei. Additionally, we performed this analysis for all chromosomes separately. The geno-

mic regions with unfit mappability or repeats were masked as described above. We used the

mutation rate of 2.3e-09 base substitution per generation [106], and, for C. elegans, we rescaled

this mutation rate by 0.5 and, later, the obtained generation time by 2 due to selfing (as dis-

cussed in [203]). To compare estimates of the recent population sizes from SMC++, as well as

with previous estimates within C. elegans, we also calculated effective population size from
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nucleotide diversity data using the Watterson estimator [204] assuming neutrality and com-

plete selfing for C. elegans (see [26,205], Ne = N/2).

The inbreeding coefficient (Fis) along the genome was estimated for sites with a minor allele

frequency of more than 0.05 using VCFtools v.0.1.15, BEDtools v.2.25, HTSlib v.1.6, plink

v1.90b4.6 [206], and popStats v1.0.0 [207]. The sample structure was visualized in the two-

dimension space using latent coordinates from popVAE [208]. The effective recombination

rate along the genomes was inferred by ReLERNN [176], using one of the replicates of recon-

structed demography from SMC++ and (x0.5) mutation and (x2) time scaling for the selfing

species. Linkage disequilibrium within and across chromosomes and the LD decay were esti-

mated with plink using all sites for C. elegans sample, and every 10th site for C. remanei for all

LD calculations except the fine-resolution LD where we used all sites.

Figures were plotted via R packages dichromat [209], ggplot2 [210], gridExtra [211], ggpubr

[212], magick [213], and also boot [214], coin [215], lsr [216], reshape2 [217], scales [218] to

estimate summary statistics. The scripts for variant calling and masking, diversity statistics

estimation, demography reconstructions, populations structure, effective recombination infer-

ence, LD decay, and corresponding figures and statistics are in https://github.com/phillips-lab/

CR_CE_popgen/tree/main/diversity_stats/.

Reconstruction of the ancestral states of C. remanei
We reconstructed the ancestral states of the C. remanei and C. latens reference genomes. We

used genomes of four strains of C. remanei, PX506, PX356 (GCA_001643735.2), PB4641

(GCA_000149515.1), PX439 (GCA_002259225.1) and C. latens (GCA_002259235.1). Prelimi-

nary topology was obtained with progressiveMauve [219] with 1 Mb regions from each of 6

chromosomes. Next, the genomes were masked based on their mappability by GenMap [220],

and aligned by Progressive Cactus [221] with the following species tree topology: ((((C. rema-
nei PB4641, C. remanei PX356), C. remanei PX439), C. remanei PX506), C. latens). The ances-

tral states were re-estimated by ancestorsML tool in the HAL tools [222].

Then for each chromosome, we calculated the fractions of sites with ancestral states, GC

content in the ancestor, various types of substitutions per 100 kb non-overlapping windows,

and extracted ancestral states positions polymorphic in the C. remanei population by HAL

tools, BEDtools, and bash. We used Relate [114] to infer the history of the C. remanei popula-

tion based on the ancestral states and the recombination map described above. We also exam-

ined demographic tests of the signal of positive selection along the genome, adjusting reported

p-values using the harmonic mean p-value within 3 Mb sliding windows (2 Mb overlap) from

harmonicmeanp [223] R package. The time to the most recent common ancestor (TMRCA),

the relative TMRCA half-life (RTH, following [224]), and terminal branch lengths were

assessed by phangorn [225] and phytools [226] R packages from Relate generated trees. Statis-

tical analysis and visualization was made with coin, data.table [227], dplyr [228], ggplot2, grid-

Extra, ggpubr, lsr, pals [229], and scales packages in R. All scripts for the ancestral

reconstruction, demographic inference, and related analyses available at https://github.com/

phillips-lab/CR_CE_popgen/tree/main/ancestral.

Evolutionary simulations

To understand how various factors affect the genomic landscape of diversity, we run forward-

time individual-based evolutionary simulations in SLiM v.3.3 [8,9] using the tree-sequence

format [10]. We performed three types of simulation: 1) effects of the selfing rate, selection,

and mutation landscape; 2) the decay of the ancestral diversity; 3) effects of rapid changes in

population size on estimated statistics. All simulations had a population size of 5,000
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individuals, 1 chromosome of 3 Mb in size with three recombination domains: left and right

arms (1 Mb) with a high recombination rate (2.5e-7), and a 1 Mb central domain of low

recombination (1e-9) to mimic the recombination domains of lower and higher recombina-

tion in nematodes.

In the first type of simulations, we changed selfing, mutation landscape, and selection

regime. The selfing rate was 0% (outcrossers), 90%, 98%, 99.9%, or 100% (selfers). The muta-

tion landscape was uniform with the mutation rate of 2e-8 in all domains of recombination.

While this is an order of magnitude higher than actual mutation rate estimates, higher rates

greatly facilitate the simulation process and, since the emphasis is on the relative values of

mutation on arms and centers, this difference should not affect the normalized statistics used

above. We used several domain-specific patterns of mutation rate differences: a uniform land-

scape with no difference in the mutation rate on the arms and the central domain (denoted as

1-1-1), 15% more mutations on the arms than on the centers (1.15-1-1.15), 50% more (1.5-1-

1.5), or 200% more mutations on the arms (2-1-2), the 1x mutation rate was the same in all

simulations. Slightly elevated mutation rates within regions of higher recombination have

been shown for nematodes previously [32,49]. We considered four main types of selection

regimes: only neutral mutations; neutral and 10% deleterious mutations; neutral, 10% deleteri-

ous, and 1% beneficial mutations; neutral, 10% deleterious, and 1% balancing mutations. Non-

neutral simulations utilized various distributions for selection, and simulations with balancing

selection used only one of these distributions (see details in S4 Table). Distributions of domi-

nance were different for deleterious and beneficial mutations, with a shift towards recessive for

the former and more additive coefficients for the latter (see S14 Fig and the SLiM scripts). All

simulations were run for 50,000 generations (10N, burn-in).

The second type of simulations was designed to explore the effects of a switch from ancestral

outcrossing to selfing. We ran neutral and non-neutral simulations (see details in S4 Table) in

which all populations were outcrossing during burn-in and then subsequently changed to either

98 or 100% selfing. To observe the decay of ancestral diversity we saved results every 5,000 gen-

erations for 30,000 (6N) generations and repeated each scenario 50 times.

The aim of the third type of simulations was to reveal the consequences of rapid change in pop-

ulation size on the diversity statistics used in our analyses. These simulations utilized only neutral

mutations but allowed different selfing rates and mutational landscapes. First, we performed sim-

ulations with 100 generations of exponential growth of 3% following burn-in, generating a rapid

population size increase from 5K to about 100K. Second, we investigated the effects of fluctuations

in population size following burn-in, by setting the population size to 15,000 and then back to

5,000 for 10 generations and so on 5 iterations. For the third type of scenario with exponential

growth or fluctuations of the population size, we compared diversity statistics for the same popu-

lations at the burn-in generation and at the end of the simulation for 50 replicates.

We added neutral mutations, “recapitated” trees, and converted tree sequences from SLiM

simulations to the VCF file format with 100 individuals using tskit v.0.3.4 [230], msprime

v.0.6.1 [231], pyslim [232], and estimated diversity statistics with diploS/HIC and BetaScan as

for empirical data but for 40 kb windows with and without normalization. We also estimated

the divergence from the ancestral genome using bash and BEDtools, Fis statistics via popStats,

and calculated tree heights (TMRCA) from tree-sequences using python modules argparse

[233], msprime, statistics [234], and pyslim.

We plotted and analyzed simulation results using packages coin, corrplot, dichromat, dplyr,

ggplot2, gridExtra, ggpubr, and lsr packages in R. SLiM scripts for simulations, and related R

scripts for visualization and analysis are in https://github.com/phillips-lab/CR_CE_popgen/tree/

main/simulations/. Additionally, we performed a classification of simulated and empirical data by

evolutionary scenarios. The details of this approach are described in S1 Data Appendix A1.
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Supporting information

S1 Fig. The number of crossover events in F2 individuals from 4 crosses of C. remanei
inbred lines. A1 and A2 are crosses of ♀ PX506 x ♂ PX553; whereas B1 and B2 are crosses of ♀
PX553 x ♂ PX506. We observed similar distributions of the number of crossover events in all

crosses. Autosomes had more recombination events than the sex chromosome (X).

(TIF)

S2 Fig. Genomic diversity statistics in C. elegans and C. remanei populations. Dots repre-

sent the diversity statistics estimated in 100 kb non-overlapping windows, whereas lines show

locally weighted smoothing of these values. Windows with less than 10% covered positions

were removed from the analysis. The vertical dashed lines indicate the boundaries of regions

of low recombination central domain. The x-axis represents the normalized genome position.

See the description of statistics in the Methods section. In almost all statistics, C. remanei and

C. elegans exhibit distinct patterns and scales.

(TIF)

S3 Fig. Landscape of nucleotide substitutions in the C. remanei PX506 reference genome,

as estimated from inferred ancestral states. The first two lines (dark teal and teal) are transi-

tions and the other lines are various forms of transversions. (A) Percent of substitutions for

each class as estimated from ancestral GC content as a fraction of coverage of a 1 Mb genomic

window. (B) Relative fraction of each substitution type at a given genomic location. Overall,

relative proportions for three of the substitution types are homogeneous along the genome,

while the three other types (C!T|G!A, A!T|T!A, and C!G|G!C, marked with aster-

isks) show small but significant differences between domains of recombination (see S2 Table).

(TIF)

S4 Fig. Two-dimensional representation of relatedness and structure in C. remanei and C.

elegans populations. LD1 and LD2 show two latent dimensions. Some individuals in C. rema-
nei population are closely related. In the C. elegans population, there are few lines with several

individuals that are almost genetically identical and were combined to isotypes in previous

studies ([81], see S3 Table).

(TIF)

S5 Fig. Genome wide patterns of linkage disequilibrium. The panels show linkage disequi-

librium (r2) in the C. elegans (A) and C. remanei (B) populations. The linkage between and

within chromosomes is highly similar in C. elegans, but significantly different (see the main

text). C. remanei shows the fast decay of linkage disequilibrium (Fig 4) and low interchromo-

somal LD.

(TIF)

S6 Fig. Genome-wide landscape of recombination inferred from population diversity data

of C. elegans and C. remanei. The x-axis shows the normalized genome position. The vertical

dashed lines indicate the boundaries of central regions of low recombination obtained from

genetic maps.

(TIF)

S7 Fig. Demographic history of populations of C. elegans and C. remanei inferred from

each chromosome. The color represents chromosomes. We ran 100 bootstrapped replicates

using eight individuals from each species, each line represents one replicate. The grey shadow

indicates the region of recent demographic history, where estimations are less accurate. We

used one generation per year in this analysis and scaled of the mutation rate (x0.5) and
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coalescent time (x2) for C. elegans.
(TIF)

S8 Fig. Analysis of inferred genome-wide genealogies of the C. remanei population. (A)

Demographic history of the C. remanei population estimated for each chromosome. (B) Tree

statistics calculated from the genealogies averaged for 100 kb windows; TMRCA (time to the

most recent common ancestor), RTH (relative TMRCA half-time), and the lengths of terminal

branches of the trees. (C) Signatures of positive selection along the genome, the y-axis shows

the p-values after the correction on multiple comparisons using the harmonic mean approach

(see the Methods). (D) Quantile-quantile plot displays p-values from the tests for positive

selection (y-axis) versus the expected uniform distribution of p-values (x-axis). The yellow

color shows sites on the arms, and the black color indicates sites on the central parts of chro-

mosomes.

(TIF)

S9 Fig. The distribution of selection and dominance coefficients of beneficial and deleteri-

ous mutations in outcrossing simulated populations. This picture depicts mutations from

the SD&SB-SD&SB class described in S4 Table with the uniform mutation landscape. (A) Per-

centage of mutation classes with allele frequency more than 0.5 at the beginning of the simula-

tion (“Initial”) and the end on the arms and centers. Colors display the class of dominance

coefficient (h), and the columns represent the strengths of selection (absolute values of Ns,

where N is the population size of 5,000 and s is the selection coefficient). (B) The percent of

corresponding mutation classes of mutations with allele frequency less than 0.5.

(TIF)

S10 Fig. Distributions of diversity statistics in simulated populations. Lines represent

locally weighted smoothing of the values estimated per 40 kb non-overlapping windows, the

vertical dashed lines indicate the boundaries of central domain with low recombination rate.

Columns show the outcrossing rate, where “outcrossing” means completely outcrossing popu-

lations and, in other columns, % specify the percentage of selfing in population; "outcrossing

inbreeding" corresponds to scenarios with outcrossing populations that underwent the bottle-

neck at the very end of simulations (see Methods). Rows represent domain-specific differences

in mutation rate, with 1-1-1 is the uniform mutation landscape, 1.15-1-1.15 means 15% more

mutations on the arms, 1.5-1-1.5 is 50% more mutations in domains of high recombination,

and 2-1-2 means two times more mutations in domains of high recombination. Colors show

the selection regime (see details in Methods). On this figure, shown only 4 selection regimes

that are specified with asterixis in S4 Table.

(TIF)

S11 Fig. Distributions of diversity statistics in simulated populations for scenarios with

neutral and deleterious and beneficial mutations. See description to S10 Fig and parameters

in S4 Table.

(TIF)

S12 Fig. Distributions of diversity statistics in simulated populations for scenarios with

neutral and deleterious mutations. See description to S10 Fig and parameters in S4 Table.

(TIF)

S13 Fig. Differences in diversity statistics between simulations with shifts in the popula-

tion size compared to the values of the statistics of the corresponding simulation before

the changes in neutral scenarios. The colors represent the fold change in statistics at the end

of the simulation versus before changes in size. (A) Fluctuation in population size for 100
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generations, where every five generations, the population size went from 5,000 to 15,000 and

then back. (B) Exponential growth of 3% for 100 generations.

(TIF)

S14 Fig. Distributions of selection and dominance coefficients used in evolutionary simu-

lations. The columns show the percentage of each class of selection coefficients drawn from

gamma distributions with different parameters (see S4 Table). Dominance coefficients were

chosen independently from a mixture of uniform and beta distributions with distinct parame-

ters for deleterious mutations and beneficial mutations (see the Methods and SLiM scripts at

https://github.com/phillips-lab/CR_CE_popgen/tree/main/simulations).

(TIF)

S1 Table. Supplementary information for the C. remanei genetic map.

(XLSX)

S2 Table. The difference in the relative fraction of substitutions from the C. latens and C.

remanei common ancestor to the C. remanei strain PX506 between “arms” and “centers”.

(XLSX)

S3 Table. Individually sequences worms used in this study.

(XLSX)

S4 Table. Distribution of selection coefficients used in evolutionary simulations.

(XLSX)

S1 Data Appendix A1. Classification of simulated and empirical data using convolutional

neural networks. We describe an approach to classify evolutionary simulations and empirical

data by evolutionary scenarios using deep learning, its application, caveats and future direc-

tions.

(PDF)
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