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Abstract

Transcription of ribosomal RNA (rRNA) by RNA Polymerase (Pol) I in the nucleolus is nec-

essary for ribosome biogenesis, which is intimately tied to cell growth and proliferation. Per-

turbation of ribosome biogenesis results in tissue specific disorders termed

ribosomopathies in association with alterations in nucleolar structure. However, how rRNA

transcription and ribosome biogenesis regulate nucleolar structure during normal develop-

ment and in the pathogenesis of disease remains poorly understood. Here we show that

homozygous null mutations in Pol I subunits required for rRNA transcription and ribosome

biogenesis lead to preimplantation lethality. Moreover, we discovered that Polr1a-/-,

Polr1b-/-, Polr1c-/- and Polr1d-/- mutants exhibit defects in the structure of their nucleoli, as

evidenced by a decrease in number of nucleolar precursor bodies and a concomitant

increase in nucleolar volume, which results in a single condensed nucleolus. Pharmacologi-

cal inhibition of Pol I in preimplantation and midgestation embryos, as well as in hiPSCs,

similarly results in a single condensed nucleolus or fragmented nucleoli. We find that when

Pol I function and rRNA transcription is inhibited, the viscosity of the granular compartment

of the nucleolus increases, which disrupts its phase separation properties, leading to a sin-

gle condensed nucleolus. However, if a cell progresses through mitosis, the absence of

rRNA transcription prevents reassembly of the nucleolus and manifests as fragmented

nucleoli. Taken together, our data suggests that Pol I function and rRNA transcription are

required for maintaining nucleolar structure and integrity during development and in the

pathogenesis of disease.
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Author summary

Ribosomal RNA (rRNA) is the catalytic component of a ribosome, which translates mes-

senger RNA into protein in every cell. The process of transcribing rRNA takes place in a

membraneless internuclear organelle, the nucleolus, which when disrupted leads to tis-

sue-specific defects known as ribosomopathies in humans. How disruption of rRNA tran-

scription affects nucleolar structure is poorly understood. We generated four different

mouse mutants of subunits of the RNA Polymerase (Pol) I complex, which transcribes

rRNA. Disrupting rRNA transcription results in pre-implantation embryo lethality. Prior

to lethality, the mutant embryos exhibit reduced rRNA and one large, condensed nucleo-

lus, compared to 2–5 nucleoli in control embryos. Pharmacologically inhibiting rRNA

transcription in human induced pluripotent stem cells (hiPSCs) tagged with labels for dif-

ferent compartments of the nucleolus results in either a condensed nucleolus similar to

the Pol I subunit mouse mutants or fragmented nucleoli. The fate of the nucleolus in a cell

depends on the phase of cell cycle it is in prior to Pol I inhibition. Altogether, our data sug-

gests that Pol I mediated rRNA transcription is vital for maintaining nucleolar structure

and integrity during development and is disrupted in association with disease.

Introduction

Ribosome biogenesis is a fundamental process required for protein synthesis in all cells, and

therefore, is vital for all cell survival, growth and proliferation [1]. Ribosome biogenesis takes

place in the nucleolus, which is a membrane-less organelle within the nucleus [2]. The nucleo-

lus is tripartite in structure with each compartment having a specific function in the process of

ribosome biogenesis [3–5]. The fibrillar center (FC) constitutes the innermost compartment of

the nucleolus and forms around actively transcribed ribosomal DNA (rDNA) [6–10]. Here,

RNA Polymerase (Pol) I in concert with many associated proteins such as UBF, Treacle and

Nucleolin (NCL) transcribes rDNA into pre-ribosomal RNA, which is then transported to the

surrounding dense fibrillar center (DFC) where it is cleaved and modified by several rRNA

processing proteins, two of which are Fibrillarin (FBL) and Nopp140. Processed rRNA is then

assembled with ribosomal proteins (RP) and other factors to form the small and large ribo-

some subunits. This takes place in the granular component (GC) which surrounds the FC and

DFC, and is mediated by many proteins such as Nucleophosmin1 (NPM1) [11,12]. The differ-

ent compartments of the nucleolus are maintained as distinct and defined regions through

immiscible phase separation [4]. Phase separation relies on weak interactions between RNA

and proteins with intrinsically disordered regions (IDRs) [13,14], such as FBL [15] and NPM1

[16], to concentrate particular proteins and RNAs to specific compartments of the nucleolus.

Importantly, previous studies have demonstrated that changes in the phase separation proper-

ties of a nucleolar compartment can alter the morphology and function of the nucleolus [17].

In the nucleolus, Pol I is responsible for rRNA transcription, which is a critical rate limiting

step in the ribosome biogenesis process [18,19]. Pol I consists of thirteen subunits, of which

Polr1a and Polr1b form the catalytic core, while Polr1c and Polr1d form a clamp holding the

catalytic core together [20]. Mutations in Pol I subunits cause developmental defects that dis-

proportionally affect craniofacial development. More specifically, mutations in POLR1A cause

Acrofacial Dysostosis Cincinnati type (AFDCin), whereas mutations in POLR1B, POLR1C and

POLR1D and the Pol I associated protein, TCOF1/TREACLE lead to Treacher Collins Syn-

drome (TCS) [21–25]. We have previously defined the mechanisms underlying the pathogene-

sis of craniofacial defects in AFDCin and TCS in association with Pol I loss-of-function. In Pol
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I subunit and associated factor mutants, rRNA transcription is impaired, which alters the stoi-

chiometry between rRNAs and RPs such that excess RPs [26] and possibly 5S rRNA bind to

Mdm2 [27]. This interaction prevents Mdm2 binding to and ubiquitinating p53 for proteaso-

mal degradation. Consequently, p53 accumulates resulting in apoptosis of neural crest cells,

the precursors of most of the craniofacial skeleton [26,28–31]. p53 activation is a hallmark of

nucleolar stress, which is accompanied by changes in nucleolar structure (reviewed in [32,33]).

However, whether nucleolar structure is affected by the genetic loss of Pol I function and

rRNA transcription in association with ribosomopathy pathogenesis remains unknown.

Both oocytes and zygotes lack the classic tripartite nucleolar organization of somatic cells.

However, at the 2-cell stage, when the zygotic genome is activated and rRNA transcription

begins, nucleolar precursor bodies (NPB) appear which have a compact fibrillar structure. At

embryonic day (E) 2.5, when mouse embryos have 8–16 cells, NPBs begin to form small FCs

that are partially surrounded by a DFC. The mature tripartite structure of the nucleolus is

observed in blastomeres from the E3.5 blastocyst stage onwards (reviewed in [34]). Consider-

ing that nucleologenesis is dependent upon active rRNA transcription, we hypothesized that

nucleolar structure would be altered in the Pol I mutants and that this alteration would lead to

nucleolar stress and abnormal development.

Here we show that homozygous null mutations in Pol I subunits required for rRNA tran-

scription leads to preimplantation lethality. Polr1a-/-, Polr1b-/-, Polr1c-/- and Polr1d-/- mutants

exhibit defects in the structure of their nucleoli, as evidenced by a decrease in number of NPBs

and a concomitant increase in nucleolar volume, which results in a single condensed nucleo-

lus. We observe that upon pharmacological inhibition of Pol I, preimplantation embryos

exhibit two distinct phenotypes: a single condensed nucleolus similar to Pol I genetic mutants,

or fragmented nucleoli like bodies. We also observe the same two phenotypes in human

induced pluripotent stem cells (hiPSCs) when Pol I function and rRNA transcription is inhib-

ited. We determined that the single condensed round nucleolus phenotype is likely caused by

changes in the phase separation properties of NPM1 in the GC. Furthermore, the fragmented

nucleolar phenotype is a result of the inability of the nucleolus to reform following mitosis due

to the lack of Pol I activity. Overall, these results suggest that perturbation of Pol I function,

rRNA transcription and protein distribution within the nucleolus can affect the phase separa-

tion of its components resulting in changes in nucleolar structure, all of which leads to embryo

lethality or the pathogenesis of ribosomopathies.

Results

Loss of function of Pol I subunits results in nucleolar defects and

preimplantation lethality

To investigate the function of Pol I subunits and rRNA transcription during mouse preimplan-

tation development and in the regulation of nucleolus structure, we utilized our previously

generated Polr1a-/-, Polr1c-/- and Polr1d-/- null mouse mutants [26], and generated a new

Polr1b-/- null mutant mouse, collectively referred to as Pol I mutants hereafter. While control

embryos develop to the blastocyst stage, the Pol I mutant zygotes undergo four rounds of cell

division following fertilization before arresting at the 16-cell stage (Fig 1A). Pol I mutant

embryos fragment and appear as a ball of cells with no distinct boundaries between individual

blastomeres (Fig 1B).

Since Pol I drives rRNA transcription during nucleolar assembly [6,7], we therefore hypoth-

esized that NPB structure would be disrupted in Pol I mutants. To assess for changes in NPB

structure, we immunostained the Pol I mutants with markers which label rRNA and the three

major compartments of the nucleolus. We used the Y10b antibody to label 5.8S rRNA in the
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nucleolus as well as in the cytoplasm, and we observed a general downregulation of rRNA in

Pol I mutant embryos (Fig 1C). This is consistent with our previous observations of decreased

nascent rRNA transcription as measured by quantification of the 5’ ETS of the 47S and 45S in

Pol I subunit post-implantation mouse [26] and zebrafish embryos respectively [21,35,36]. We

used Fbl, Treacle and Ncl expression to demarcate the FC, DFC and GC, respectively. We

observe that the level of Fbl expression is variably affected within the different NPBs (Fig 1D),

while Treacle and Ncl intensities are significantly and consistently increased within the NPB of

Pol I mutants (Fig 1E, 1F and 1I). Furthermore, immunostaining for the FC, DFC and GC

compartments revealed that the number of NPBs per cell decreased (Fig 1G) and the volume

of NPB increased (Fig 1H) in Pol I mutants compared to wildtype embryos. These phenotypes

are indicative of perturbed nucleolar structure in the absence of Pol I activity and reduced

Fig 1. Loss of function of Pol I subunits results in nucleolar defects. Bright field images of WT, Polr1a-/-, Polr1b-/-, Polr1c-/- and Polr1d-/- embryos at E2.5 (A)

indicate that the mutant embryos are indistinguishable from WT embryos at 8–16 cell stage. However, by E3.5 (B), Pol I mutant embryos are arrested in

association with blastomere fragmentation while the WT embryos progress to the blastocyst stage. Immunostaining with Y10b to visualize rRNA (C) indicates

that rRNA expression is reduced in all the mutant embryos. While Fbl (D) expression is variable, it is expressed in the NPBs of all the mutants. Ncl (E) and

Treacle (F, I) expression are increased in the NPBs of all the mutants. In addition, the number of NPBs per blastomere is reduced in all the mutants (G), while

the volume per NPB increases (H). The data is represented as mean+/-SEM. Scale bar for A-F = 12.5 μm. * indicates p<0.05, ns indicates p>0.05.

https://doi.org/10.1371/journal.pgen.1010854.g001
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rRNA transcription. In contrast, Pol I heterozygous null mutants do not exhibit nucleolar

defects (S1 Fig).

Loss of function of Pol I associated factor, Tcof1/Treacle, results in

nucleolar defects and post-implantation lethality

Mutations in Pol I subunits are associated with AFDCin (POLR1A) and TCS (POLR1B,

POLR1C and POLR1D) [37–39], ribosomopathies which are characterized by a constellation of

craniofacial anomalies. Interestingly, however, the majority of individuals with TCS have a

mutation in TCOF1, which encodes Treacle, a Pol I associated protein required for rRNA tran-

scription [26,40]. We therefore hypothesized that Tcof1 loss-of-function in mouse embryos

would also result in embryo lethality in association with perturbed nucleolar structure [26].

Surprisingly, Tcof1-/- embryos survive until E10.5 similar to null mutations in other Pol I asso-

ciated proteins such as Rrn3-TIF1A [41]. However, E7.5, Tcof1-/- embryos are smaller overall

compared to wildtype littermates (S2A Fig), and by E8.5, Tcof1-/- embryos have a distinctly

smaller head as well as delayed chorioallantoic fusion, which is indicative of defects in both

ectoderm and mesoderm development (S2B Fig). Given the survival of Tcof1-/- embryos

beyond gastrulation and the essential roles of Tcof1/Treacle in rRNA synthesis during devel-

opment, [26,42,43], we hypothesized that Tcof1/Treacle may be maternally deposited and thus

maternal protein activity continues in spite of the zygotic deletion of Tcof1 in these embryos.

To test this hypothesis, we injected an antibody against Treacle into one blastomere of two-

cell embryos to block the function of Treacle protein. The injected blastomere was also labelled

with DiI to lineage trace its descendants. These mosaic embryos survive until the late blastocyst

stage, but in contrast to control embryos fail to hatch (S2C and S2D Fig). We observed down-

regulation of Treacle, 5.8S rRNA (as measured by Y10b expression), Fbl and Ncl in association

with a single nucleolus in the Treacle antibody injected blastomeres, compared to non-injected

blastomeres (S2E–S2L Fig). A similar downregulation of nucleolar proteins in association with

fewer nucleoli was also observed in Tcof1 mutant mouse embryonic fibroblast cells (MEFs)

(S3 Fig). Altogether this data suggests that rRNA transcription is essential for nucleolar organi-

zation and structure during development.

Nucleolar ultrastructure is altered in the Polr1c-/- mutant embryos

To better understand the effect of diminished Pol I function and rRNA transcription on nucle-

olar structure, we performed immunoelectron microscopy with Y10b and Ncl on Polr1c-/-

mutants. We observed that the number of FCs and DFCs were significantly reduced in individ-

ual blastomeres (Fig 2A–A’). The staining patterns show that both rRNA and Ncl are redistrib-

uted to the edges of the GC, and that rRNA is diminished in the Polr1c-/- mutants (Fig 2B),

consistent with the role of Pol I in rRNA transcription and ribosome biogenesis. Considering

the FC and DFC of the NPBs are reduced in number and exhibit altered structure in Polr1c-/-

mutants, we hypothesized this occurred in association with altered localization of active

rDNA. Fluorescence in situ hybridization with probes designed to the 5’ETS of rDNA followed

by immunofluorescence for Ncl revealed that rDNA loci were redistributed within the nucleus

around the single nucleolus in Polr1c-/- mutants (Fig 2D–2D’), in a pattern reminiscent of

nucleolar stress caps [44].

As described above, nucleolar disruption in Pol I mutants is accompanied by increased

expression of Treacle in the NPB (Fig 1F and 1I). We hypothesized that in the absence of Pol I

on the rDNA promoter and decreased rRNA transcription, perhaps Treacle remains bound to

the rDNA promoter, or increasingly binds as a compensatory mechanism or as a means to pre-

vent DNA damage [40]. The amount of biological material from preimplantation embryos is
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Fig 2. Nucleolar organization is altered in the Polr1c-/- mutants. (A) Immunoelectron microscopy with antibodies

against Y10b (large particles) and Ncl (small particles) on Polr1c-/- mutant embryos indicate that the number of FC and

DFC are significantly reduced in Polr1c-/- mutants compared to control embryos. Scale bar = 200 nm. (A’) is higher

magnification image of the FC/DFC shows lower levels of both Y10b (magenta) and Ncl (black) in the Polr1c-/-

mutants. Scale bar = 75 nm. Quantification (Mean+/-SEM) indicates that while Y10b is significantly reduced in

Polr1c-/- mutants (B), Ncl is not (C). 3D-immuno FISH with Ncl antibody (D’), and 5’ETS region of the 47S rDNA (D)

indicates rDNA localization to the condensed nucleolus. Scale bar = 15 μm. (E) ChIP with Treacle antibody pulls down

a significantly higher amount of rDNA promoter in tamoxifen treated Polr1cfx/fx;Cre-ERT2 MEFs compared to DMSO

treated MEFs. B2M promoter was used as an internal control (E’). Data is represented as mean +/- upper and lower

limits. * indicates p<0.05, ** indicates p<0.01, ns indicates p>0.05.

https://doi.org/10.1371/journal.pgen.1010854.g002
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too low to perform a chromatin immunoprecipitation (ChIP) assay, therefore we used Pol I
mutant MEFs to evaluate Treacle binding to rDNA promoters. First, we confirmed that the

nucleolar defects in Polr1afx/fx;Cre-ERT2 and Polr1cfx/fx;Cre-ERT2 MEFs, 48 hours after treat-

ment with Tamoxifen, were similar to Polr1a-/- and Polr1c-/- embryos (S3 Fig). Next we per-

formed ChIP with an antibody against Treacle with lysates prepared from Polr1cfx/fx;Cre-ERT2

MEFs treated with DMSO or Tamoxifen. qPCR after ChIP revealed a significantly higher

amount of 47S rDNA promoter was pulled down with Treacle in Polr1c mutant MEFs com-

pared to controls (see methods). Altogether, this suggests that in the absence of Pol I activity,

Treacle either remains bound to the rDNA promoter, or its binding is increased as a compen-

satory mechanism or attempt to continue rRNA transcription. Either way, the absence of

rDNA transcription results in disruption of nucleolar organization and function.

Pharmacological inhibition of Pol I activity results in two distinct

phenotypes

Pol I mutants exhibit a consistent reduction in the number of NPB that coalesce to a single

large nucleolus. To unveil the mechanisms underlying this phenotype we treated preimplanta-

tion embryos with a pharmacological inhibitor of Pol I. We chose BMH-21 because it is a Pol I

specific inhibitor that does not have off target effects, such as activation of the DNA damage

response, which occurs with other Pol I inhibitors [45,46]. One- or two-cell mouse embryos

cultured with BMH-21 or its solvent DMSO arrest at the 2-cell stage in association with blasto-

mere fragmentation. Similarly, 4-cell stage embryos cultured with BMH-21 or DMSO fail to

progress to the 8-cell stage. This fragmentation and perturbation of development is consistent

with previous observations that DMSO inhibits the development of mouse embryos from

2-cells to 8-cells [47,48]. However, in contrast to control 8-cell embryos which develop to blas-

tocysts, 8-cell embryos treated with BMH-21 undergo one round of cell division prior to

embryo lethality. Furthermore, we observed two distinct phenotypes in these BMH-21 treated

embryos: a single nucleolus (Fig 3B, yellow arrow) as was expected from our previous Pol I

mutant data; and a fragmented nucleolus (Fig 3B, red arrow). The fragmented nucleolus mani-

fests as speckles of Treacle, Ncl and Y10b throughout the nucleoplasm. Interestingly, E8.5

embryos treated with BMH-21 also present with a similar single nucleolus and fragmented

nucleoli phenotypes (Fig 3C–3D”). The nucleolar fragments present in the BMH-21 preim-

plantation embryos are probably the result of persistent protein-protein interactions, indepen-

dent of rRNA transcription and processing. Altogether, these data suggest that inhibition of

Pol I function and rRNA transcription disrupts nucleolar organization and structure in associ-

ation with perturbed embryo development.

Pol I inhibition alters the phase separation properties of the nucleolus and

its structure

A single nucleolus phenotype has previously been attributed to nucleolar stress [49], but how

this occurs mechanistically remains poorly understood. We therefore investigated the dynam-

ics and biophysical properties of nucleolar organization in real time through live imaging of

hiPSC (Allen Institute), in which the endogenous locus of three proteins expressed in either

the FC, DFC and GC, is tagged with a distinct fluorophore [50]. The fluorescent tags do not

alter expression levels, patterns, or protein function in these cells [50]. Halo-tagged UBF labels

the FC, GFP-tagged Fibrillarin (FBL) demarcates the DFC and an RFP-tagged Nucleophos-

min1 (NPM1) marks the GC, allowing for real-time visualization of the dynamic morphology

of each nucleolar compartment.
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First, we tested if inhibiting Pol I function and rRNA transcription using BMH-21 results

in a nucleolar phenotype similar to that observed in Pol I mutant preimplantation embryos.

Through live imaging of BMH-21 treated cells, we observed a reduced number of FCs (UBF,

Fig 3. Pol I inhibition alters nucleolar structure and phase separation properties. (A, B) 16-cell stage DMSO and BMH-21 treated mouse embryos

immunostained with Fbl, Y10b, Treacle and Ncl, and counterstained with DAPI and Phalloidin. The yellow arrow indicates a condensed nucleolus

phenotype, while the red arrow points to a fragmented nucleolus phenotype. Scale bar = 20μm. (C, D) E8.0 embryos treated with DMSO and BMH-21

immunostained with Fbl and Treacle, and counterstained with DAPI. Scale bar = 50μm. (C’-D”) High magnification images of cells from insets in C and

D to show nucleolar disruption in BMH-21 treated embryos. Scale bar = 2.5μm (E-G) Stills from live imaging video of fluorescently tagged hiPSCs

treated with BMH-21 showing the nucleolus condensing. Scale bar = 10μm. (H-K) Analysis of live imaging videos showing changes in the number of

UBF (H) and FBL (I) puncta, NPM1 area (J), and NPM1 sphericity (K). n = 15 cells. Data is represented as mean (line) +/- 95% CI (shading). (L-M)

Stills from half FRAP time-lapse video of pre-bleach, bleach, and recovery of NPM1 in control (L) and BMH-21 treated (M) cells. (N-O) Graphs of Tau

values for half FRAP (N) and whole FRAP (O) showing both Tau1 and Tau2 significantly increase upon BMH-21 treatment (Student’s t-test). The data

is represented as mean+/-SD. ** indicates p<0.01, **** indicates p<0.0001.

https://doi.org/10.1371/journal.pgen.1010854.g003

PLOS GENETICS Nucleolar defects in the absence of Pol I activity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010854 August 28, 2023 8 / 24

https://doi.org/10.1371/journal.pgen.1010854.g003
https://doi.org/10.1371/journal.pgen.1010854


grey) and DFCs (FBL, green) which unlike in Pol I mutant preimplantation embryos, formed

characteristic nucleolar caps around the GC (NPM1, blue) that collectively coalesced into a

single round nucleolus (Fig 3E–3I and S1 Video) [49]. In the GC, the NPM1 area decreases,

and sphericity increases following BMH-21 treatment (Fig 3G, 3J and 3K), similar to the coa-

lesced single nucleolus we observed in BMH-21 treated preimplantation embryos (Fig 3B, yel-

low arrow). These results indicate that when Pol I activity is perturbed, hiPSCs present with a

similar nucleolar phenotype as BMH-21 treated and Pol I mutant preimplantation embryos.

Nucleolar structure and Pol I function are intimately linked in that perturbations in one

affect the other. We hypothesized that the perturbation in nucleolar structure was caused by

changes in the phase separation properties of the nucleolus upon loss of rRNA transcription.

To test whether the phase separation properties of the nucleolus changed with Pol I inhibition,

we performed Half Florescence Recovery After Photobleaching (FRAP) in hiPSCs. This

method is frequently used to measure changes in liquid-like droplets in vivo [51,52]. We

attempted to perform FRAP on FBL, however due to the size and shape of the DFC, perform-

ing half and whole FRAP caused phototoxicity to the hiPSCs. Therefore, we chose to analyze

changes in phase separation using FRAP of NPM1 in the GC. We performed all FRAP experi-

ments in situ in the hiPSC line to control for environmental or other in vitro factors that may

contribute to the phase separation properties of the nucleolus.

For each FRAP experiment, we performed both whole and half FRAP. For whole FRAP the

entire NPM1 area was instantaneously photobleached and recovery monitored. We hypothe-

sized that whole FRAP recovery would only occur from nucleoplasmic NPM1 entering the

nucleolus. Our results support this hypothesis. For the whole FRAP experiments (S4C–S4H

Fig) we observed an exponential recovery in fluorescence that is comprised of a single diffusive

component which we have labeled Tau. This Tau is the recovery time corresponding to the dif-

fusion of NPM1 to the nucleolus. For each half FRAP experiment, half of the NPM1 area was

instantaneously photobleached and monitored for fluorescence recovery (Fig 3L–3M and S2

Video). We hypothesized for the half FRAP experiments that if the NPM1 behaved in a liquid-

like manner, we would observe a two-component recovery where NPM1 is added to the nucle-

olus from both the nucleoplasm and from the unbleached portion of the nucleolus. Supporting

our hypothesis, we observed recovery that is comprised of these two different components,

which we have labeled as Tau1 and Tau2, respectively. To properly account for the addition of

nucleoplasmic NPM1 to the nucleolus in the half FRAP data, Tau2 in the half FRAP experi-

ments was fixed to the Tau value from whole FRAP experiments. Tau1 for the half FRAP was

allowed to fit to the data. A half FRAP Tau1 recovery that is faster than Tau2 would suggest liq-

uid-like properties of either low (fast) or high (slow) viscosity in the nucleolus [51,52].

We found the half FRAP recovery (Tau1) of BMH-21 treated cells (average Tau1 = 9.05s) is

significantly longer than for control cells (average Tau1 = 3.33s), which is indicative of slower

NPM1 recovery in the GC. These results suggest the viscosity of the GC significantly increases

with Pol I inhibition (Fig 3N). The whole FRAP recovery increased with BMH-21 treatment

(Tau2, Fig 3O), suggesting there is reduced affinity of NPM1 for the GC or increased resistance

of NPM1 addition to the GC. Another metric that we can extract from the data is the percent

recovery. Here, we report the percentage of the initial fluorescence intensity that we observe at

the end of fluorescence recovery. The whole FRAP percent recovery (S4B Fig) decreased

slightly with BMH-21 treatment, indicating there is less nucleoplasmic NPM1 available to add

to the nucleolus. During BMH-21 treatment, the GC of the nucleolus is significantly reduced

in size (Fig 3J). However, the BMH-21 treated cells with the smaller GC have a slower recovery,

indicating that the difference in recovery is independent of the size of the area photobleached

therefore, and that we are likely underestimating the true increased viscosity of the nucleolus

in the BMH-21 condition. Additionally, the intensity of the NPM1 in the GC is higher in the
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BMH-21 treated vs the control cells. This is likely due to the decreased area of the GC follow-

ing BMH-21 treatment which caused NPM1 to be more concentrated in the GC. However,

since our FRAP experiments completely photobleached the NPM1 in all or half of the GC, the

initial amount of NPM1 doesn’t affect our results. Overall, our data suggests the single nucleo-

lar phenotype is likely a result of the changes in the phase separation properties of the nucleo-

lus, specifically the GC, which exhibits slower diffusion and higher viscosity, precipitated by

the perturbation of Pol I function and decreased rRNA transcription.

BMH-21 treatment prevents nucleolar reassembly following cell division

In addition to the coalesced single nucleolus phenotype, we also observe a fragmented nucleo-

lar phenotype in a subset of cells in BMH-21 treated preimplantation (Fig 3B, red arrow), and

midgestation embryos (Fig 3D) and hiPSCs (Fig 4L). Live imaging of control hiPSCs indicates

that during mitosis the nucleolus disassembles leaving UBF puncta associated with rDNA

(Fig 4A–4C). Following telophase, the nucleolus begins reassembly with DFC and GC compo-

nents, such as FBL and NPM1, first aggregated into prenucleolar bodies (PNBs) in the nucleo-

plasm (Fig 4D). Once Pol I-mediated rRNA transcription restarts, the PNBs associate with the

sites of Pol I transcription and the nucleolus reforms (Fig 4E–4F and S3 Video). In cells treated

with BMH-21, the nucleolus disassembles similar to control cells (Fig 4G–4I), however follow-

ing mitosis the nucleolus is unable to reassemble (Fig 4J–4L and S3 Video). This results in a

fragmented nucleolar phenotype where individual UBF, FBL and NPM1 puncta disperse

throughout the nucleoplasm (Fig 4L). Pol I inhibition with BMH-21 doesn’t inhibit cell divi-

sion, likely because the cells that are able to divide are beyond the final cell division G2/M

checkpoint when BMH-21 is added [53]. To test if the fragmented phenotype is primarily

observed in cells unable to reform their nucleolus following cell division when Pol I activity is

inhibited, we synchronized cells in G2/M using VM-26 [54–56] and then released the cells

with or without BMH-21 treatment. VM-26 pauses cells in late G2, but when removed allows

their entry into M phase [54–56]. No significant cell death was observed from treatment with

VM-26. Following synchronization, cells were immediately fixed or released into media, and

we observed 0% of cells with a fragmented phenotype (Fig 4N, 4O and 4Q). BMH-21 treat-

ment after synchronization with VM-26 resulted in a significant increase in the percentage of

cells (14.4%) with fragmented nucleoli (Fig 4P–4Q) compared to the 7.5% of cells with frag-

mented nucleoli in unsynchronized BMH-21 treated cells (Fig 4M). These results suggest that

inhibition of Pol I activity in cells able to undergo mitosis prevents the nucleolus from reas-

sembling, resulting in a fragmented nucleolar phenotype.

Taken together, our data indicates that Pol I activity and rRNA transcription are important

for nucleolar organization and structure in a cell cycle phase dependent manner. If cells are in

G0/G1/S when Pol I function and rDNA transcription is inhibited, their nucleoli coalesce into

a single large nucleolus. However, if cells are in G2/M at the time of inhibition, their nucleoli

fragment, the difference being the inability to seed nucleolus reformation after mitosis in the

absence of Pol I function and RNA transcription.

Discussion

The nucleolus is the largest membrane-less organelle in eukaryotic cells and it has a well-estab-

lished role in ribosome biogenesis and several cellular stress responses, including DNA dam-

age and proteotoxic stress [57]. Nucleolar dysfunction has been linked to several human

congenital disorders [1,21,24,58–61], cancer [62,63], neurodegenerative diseases [64,65], viral

infections [66–68] and aging [69]. The assembly of the nucleolus is thought to be dependent

on actively transcribing rDNA [70,71], however this had yet to be tested genetically. Pol I
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Fig 4. BMH-21 inhibition of Pol I function prevents nucleolar reassembly following cell division. (A-L) Stills from

time-lapse imaging of control (A-F) and BMH-21 treated (G-L) hiPSCs progressing through the cell cycle. UBF = grey.

FBL = green. NPM1 = blue. Yellow lines denote dividing cells. Scale bar = 10μm. (M-P) Confocal images of hiPSCs

treated with BMH-21 (M), synchronized in G2/M with VM-26 (N), synchronized with VM-26 and released for 3 hours

in regular media (O), and synchronized with VM-26 and released for 3 hours with BMH-21 treated media (P). Red

lines denote cells with fragmented nucleoli. (Q) Graph of the percentage of cells with fragmented nucleoli indicating

that BMH-21 treatment just prior to cell division increases percentage of cell with fragmented nucleoli. Data is

represented as mean+/-SD. One-way ANOVA. **** indicates p<0.0001.

https://doi.org/10.1371/journal.pgen.1010854.g004
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mutant mouse embryos, in which rRNA is downregulated, survive until the 16-cell morula

stage and present with a reduced number of NPBs and significantly increased volume of NPB.

We hypothesize that these embryos survive until the 16-cell stage despite the loss of rRNA

transcription due to maternal deposits of rRNA, ribosomes [30,72] and proteins, similar to

what has been observed for the Subcortical Maternal Complex [73–76].

While the single nucleolus phenotype has previously been described as a consequence of

perturbed ribosome biogenesis [77], the dynamic changes in structure and their underlying

biophysical reasons remained to be characterized. We discovered that genetic deletion of Pol I

subunits disrupts the transcription of rRNA, reducing the rRNA content and altering the local-

ization or stability of nucleolar proteins such as Ncl and Treacle. Considering ribonucleopro-

tein particles maintain the phase separation properties of the nucleolus, we evaluated changes

in the phase separation properties of the GC upon treatment with BMH-21 using FRAP. Our

results indicate that perturbation of Pol I function with BMH-21 increases the viscosity of

NPM1 in the GC. NPM1 typically exists as a pentamer [16] and contains both intrinsically dis-

ordered regions (IDRs) [78,79] that allow for homotypic interactions, and an RNA binding

domain (RBD) which binds to the processed rRNA entering the GC [16,79,80]. Under normal

conditions, NPM1 pentamers bind to rRNA through its RBD and assist in pre-ribosomal

assembly until the ribosomal subunits are expelled from the GC [81]. However, when Pol I

transcription is disrupted, which reduces the amount of rRNA entering the GC, this decreases

NPM1-rRNA interactions and increases NPM1 homotypic interactions [81,82]. The increase

in NPM1 homotypic interactions increases the density of the NPM1 meshwork and conse-

quently GC viscosity [10,78,80], resulting in a single nucleolus. In fact, the single large nucleo-

lus phenotype is consistent with the observation that the number of nuclear speckles, another

membrane-less organelle in the nucleus, decreases upon transcriptional inhibition [83]. Fur-

thermore, disruptions in Pol I transcription causes Polr1a to behave more like a liquid within

nucleolar caps [84], again suggesting the activity of Pol I can influence the biophysical proper-

ties of the nucleolus. Therefore, inhibiting rDNA transcription leads to changes in NPM1

interactions in the GC and subsequently altered phase separation which perturbs nucleolar

structure [82].

While nucleolar proteins, such as NPM1, can independently drive phase separation in vitro
[10], rRNA also aids in maintaining phase separation of the nucleolus [85,86] and can alter

phase separation droplet viscosity in vitro [85,87] by promoting the immiscibility of the DFC

and GC through interactions with FBL and NPM1 [10,16,86]. Our data suggests that reducing

rRNA transcription by genetically or chemically inhibiting Pol I limits NPM1 interactions

with rRNA and other NPM1 molecules leading to redistribution of NPM1 and altered phase

separation of the GC (S5 Fig). Although we were unable to perform FRAP of FBL in the DFC,

we would also expect changes in the viscosity of FBL to occur as the concentration of rRNA

decreases [85,88].

Interestingly, we also observe considerable relocalization of Ncl and Treacle in our Pol I

mutant preimplantation embryos. Ncl contains a Gly-Arg-rich (GAR) domain (similar to

FBL’s IDR) and Treacle is also an intrinsically disordered protein [89–91]. Therefore, their

change in localization could be due to changes in their interactions with rRNA or other pro-

teins in the DFC, leading to changes in phase separation. Overall, these data demonstrate that

impairing Pol I function and rRNA transcription leads to changes in the phase separation

properties of the nucleolus, and this in turn alters nucleolar structure.

In hiPSCs, preimplantation and midgestation embryos treated with BMH-21, we observed

two distinct phenotypes, a single condensed nucleolus, and fragmented nucleoli. The frag-

mented phenotype results from the inability of the nucleolus to reform following cell division.

Typically, the nucleolus disassembles at the beginning of mitosis upon cessation of Pol I
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transcription [92,93] and then reassembles following the re-initiation of transcription [94]. In

early telophase, UBF, FBL, NCL and remaining pre-rRNA associate with active nucleolar orga-

nizer regions [70,71,95]. Also, during early telophase, DFC and GC factors, such as FBL and

NPM1, are localized in discreet puncta in the nucleoplasm called pre-nucleolar bodies (PNBs)

[70,71]. Upon Pol I activation in late telophase, the PNBs are recruited to sites of active rRNA

transcription, and the fully formed nucleolus emerges. In BMH-21 treated hiPSCs, the nucleo-

lus successfully disassembles preceding cell division, however, following cell division the

nucleolus fails to reform and instead we observe discreet small puncta of UBF, FBL and NPM1

dispersed throughout the nucleoplasm. Our data demonstrates that when cells are synchro-

nized in G2/M and Pol I activity is inhibited, an increased percentage of cells exhibit a frag-

mented nucleolar phenotype after division. This data suggests that the nucleolar phenotype,

single condensed or fragmented, is dependent on the phase of the cell cycle when Pol I is

inhibited.

The change in nucleolar structure in the absence of rRNA transcription most likely leads to

nucleolar stress which is associated with p53 activation [26,28]. p53 activation in Pol I mutant

and zebrafish embryos results in lethality [21,26,28,29,35] and in human patients leads to ribo-

somopathies. While DNA damage has been suggested to occur following perturbation of Pol I

activity, we find no evidence for this in vivo in our genetic and other analyses [26]. Further-

more, BMH-21 has been shown to elicit its effect on Pol I function, independent of any DNA

damage response [45].

Considering human patients affected by a ribosomopathy typically have a heterozygous

mutation in a Pol I subunit and, or associated factor, it’s important to consider whether nucle-

olar morphology and assembly are similarly impacted in cells where RNA Pol I activity is

reduced but not completely lost. Recently, AFDCin disease associated POLR1A variants mod-

eled in-vitro were shown to perturb rRNA synthesis in concert with altered nucleolar structure

[96]. Therefore, changes in nucleolar structure, which result in nucleolar dysfunction, are part

of ribosomopathy pathogenesis.

Overall, our work has uncovered the molecular and biophysical mechanisms underlying

structural changes in the nucleolus resulting from genetic and chemical inhibition of Pol I

function and rRNA transcription. Thus, Pol I function and nucleolar structure are intimately

linked, in that perturbation in one affects the other during development and in the pathogene-

sis of disease.

Methods

Ethics statement

All animal experiments were conducted in accordance with the Stowers Institute for Medical

Research Institutional Animal Care and Use Committee approved protocol (IACUC #2022–

143) and the Virginia Commonwealth University Institutional Animal Care and Use Commit-

tee approved protocol #AM10025).

Animals

The day a vaginal plug was observed in a time mated female was designated as embryonic day

(E) 0.5. All mice were housed in a 16 hour light: 8 hour dark light cycle. Polr1a+/-, Polr1c+/- and

Polr1d+/- mice were generated and maintained as previously described [26]. To generate

Tcof1Δ/Δ embryos, Tcof1fx/fx female mice [26] were crossed with Zp3-Cre mice to delete Tcof1
in germline cells and then Tcof1Δ/+ males and females were intercrossed.

CRISPR-Cas9 technology was used to engineer a new mouse strain containing a deletion of

exons 2 and 3 in the Polr1b gene. Potential guideRNA target sites were designed using CCTOP
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[97], and then were evaluated using the predicted on-target efficiency score and off-target

potential [98]. GuideRNA target sites were designed in intron 1 and intron 3 to fully delete

exons 2 and 3. For both selected guideRNA targets, the sequence was ordered as Alt-R

CRISPR-Cas9 crRNA from Integrated DNA Technologies (IDT). Each crRNA was hybridized

with a universal tracrRNA (IDT) to form a full length guideRNA. Ribonucleoprotein (RNP)

was prepared for microinjection with 10ng/μl of each full length guideRNA and 10ng/μl Cas9

protein (IDT, #1081059).

Tissue samples (ear and tail clips) from resulting animals were lysed using QuickExtract

DNA Extraction Solution (Epicentre) followed by PCR at the specific genomic location.

Amplification products were analyzed for a size shift using a LabChip GX (Perkin Elmer).

Selected samples with deletion sized products were purified using ExcelaPure 96-Well UF PCR

Purification Kit (Edge Bio) followed by Sanger sequencing.

Brightfield imaging

Embryos were harvested at E2.5 by flushing the oviduct with 1ml M2 media as described previ-

ously [99]. The embryos were imaged using a Leica MZ16 microscope equipped with a Nikon

DSRi1 camera and NIS Elements BR 3.2 imaging software.

Immunostaining

The harvested embryos were transferred to a 4 well dish containing 4% PFA (Alfa Aesar via

VWR Cat. No. AA43368-9M) for 10 minutes. Immunostaining was performed as described

previously [100]. The following primary antibodies were used: Tcof1 (Abcam, #ab65212),

Y10b (Abcam, # ab171119), Nucleolin (Abcam, #ab22758) and Fibrillarin (Abcam, #

ab154806). The volume and intensity of staining was measured using IMARIS. All images for

each stain were individually acquired with the same settings, and brightness and contrast were

adjusted the same throughout.

Mouse embryonic fibroblast cells

Mouse embryonic fibroblasts were derived from E13.5 Polr1afx/fx;Cre-ERT2, Polr1cfx/fx;Cre-
ERT2 and Tcof1fx/fx;Cre-ERT2 embryos and cultured as described previously [26]. Control cells

were treated with DMSO, while mutant cells were treated with 5μM Tamoxifen to recombine

floxed alleles, and thereby delete the floxed gene. All experiments were performed 48 hours

post tamoxifen treatment. All images for each stain were individually acquired with the same

settings, and brightness and contrast were adjusted the same throughout.

Immunoelectron microscopy

For immunogold labelling, embryos were fixed in 4% PFA, dehydrated in ethanol, and embed-

ded in LR-White resin. Ultrathin sections of about 80nm in thickness were mounted on For-

mvar and carbon coated copper grids, then washed three times with PBS and three times with

PBS containing 1% bovine serum albumin and 0.15% glycine, followed by 30 minutes blocking

with 5% normal goat serum. Samples were incubated for 1 hour with the Ncl and Y10b pri-

mary antibodies at room temperature. After washing in PBS, samples were incubated for 1

hour with gold-conjugated secondary antibodies (Jackson ImmunoResearch, #115-205-166

and 111-195-144). Sections were stained with 2% uranyl acetate and observed under a FEI

electron microscope at 80 kV. The specificity of the immunoreaction was assessed in all cases

by omitting the primary antibodies from the labelling protocol and incubating the sections

only in the gold-conjugated secondary antibodies.
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Quantification was performed as follows. To localize individual gold particles, Laplacian of

Gaussian filters of an appropriate size, depending on the image resolution and particle size,

were applied and maxima found using plugins in Fiji [101]. First the larger 12nm particles were

found, and then regions around them were eliminated to prevent them from being found when

searching a second time for 6nm particles. These were then masked against a manually anno-

tated nucleolar outline and the particles/nm2 were computed for each image and particle size.

3D-immuno FISH

Embryos were fixed with 4% paraformaldehyde (PFA) for 10 minutes, rinsed and permeabi-

lized with 0.5% TritonX-100/PBS for 60 minutes. RNA was digested with 200μg/ml of RNAse

in PBS for 2 hours at 37˚C, and embryos were rinsed with PBS two times. Blocking was per-

formed using superblock (Thermo scientific, # 37580) for 2 hours at room temperature, and

embryos were incubated with anti-Nucleolin antibody (Abcam, #ab22758) for 20 hours at 4˚C.

After three rinses with PBS, secondary antibody (Donkey Alexa 647 anti-Rabbit) (Invitrogen,

#A-31573) was applied for 2 hours at room temperature and the embryos were washed twice

with PBS. Post fixation was performed with 4% PFA for 10 minutes, followed by two washes

with PBS, and the embryos were then dehydrated with ice cold 100% Methanol for 30 minutes.

With a small volume of 100% Methanol, the embryos were deposited on microscope slides,

which were air dried for 1 hour. Probe DNA (mouse rDNA BAC clone RP23-225M6, Empire

genomics) was mixed with Hybridization buffer (50% formamide, 2X SSC, 1% dextran sulfate,

100ug/ml salmon sperm DNA), applied on the slides, and both genomic DNA and probe

DNA were denatured simultaneously on a heating block at 80˚C for 8 minutes. Hybridization

was performed at 37˚C for 16 to 20 hours. Slides were washed with 2X SSC for 5 minutes, 50%

formamide/2X SSC for 15 minutes at 37˚C, 2X SSC for 10 minutes two times, and 2X SSC/

0.1% Triton X for 10 minutes. Embryos were stained with 10 ug/ml of DAPI for 30 minutes at

room temperature. Slides were mounted with ProLong gold antifade mountant (Invitrogen, #

36930). The embryos were imaged using Nikon Ti2 with CSU-W1 Spinning Disk. All images

for each stain were individually acquired with the same settings, and brightness and contrast

were adjusted the same throughout.

Chromatin immunoprecipitation

To pulldown the rDNA promoter, chromatin immunoprecipitation was performed as

described previously [102] using a Treacle antibody. Student’s t-test was used for statistical

analysis. The following primers used: rDNA_F: 5’-ATAAATGAAGAAAATAACTAA-3’;

rDNA_R: 5’-TCTGGTACCTTCTTAATCACAGAT3’; B2M_F: 5’-CTTCTCTACTGGGTC
CACCG-3’; B2M_R: 5’-CTGCTTATCGGCTCGGAAGA-3’.

BMH-21 treatment on preimplantation embryos

8-cell embryos from CD1 pregnant dam were harvested using M2 media and cultured in

KSOM media in 5% CO2 at 37˚C. After 30 minutes of normalization in the culture conditions,

the embryos were treated with 0.1 μM BMH-21 for 8 hours. The controls were treated with

DMSO. After 8 hours, the culture media was changed to fresh KSOM media and the embryos

were cultured for an additional 16 hours, after which they were fixed and immunostained.

BMH-21 treatment on E8.5 embryos

E8.5 embryos from C57Bl/6 pregnant dam were harvested and cultured in 50% rat serum in

DMEM-F12 media in 20% CO2 at 37C. After 30 minutes of normalization in the culture
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conditions, the embryos were treated with 1 μM BMH-21 for 8 hours. The controls were

treated with DMSO. After 8 hours, the embryos were then fixed and immunostained. Further,

the embryos were cryo-sectioned and imaged using Nikon Ti2 microscope with CSU-W1

Spinning Disk. All images for each stain were individually acquired with the same settings,

and brightness and contrast were adjusted the same throughout.

Antibody microinjections in 2-cell embryos

Immature C57BL/6J female mice (3–4 weeks of age) were utilized as embryo donors. The

C57BL/6J females were superovulated following standard procedures with 5 IU PMSG (Gen-

way Biotech, #GWB-2AE30A) followed 46 hours later with 5 IU hCG (Sigma, #CG5) and sub-

sequently mated to fertile C57BL/6J stud males. Females were checked for the presence of a

copulatory plug the following morning as an indication of successful mating. One-cell fertil-

ized embryos at were collected from the oviducts of successfully mated females at 0.5dpc and

placed in KSOM media in a CO2 incubator at 37˚C, 5% CO2. Fertilized oocytes were cultured

overnight to the two-cell stage for microinjection the following morning. Microinjection was

performed using a Nikon Eclipse Ti inverted microscope equipped with Eppendorf Transfer-

Man micromanipulators, Eppendorf CellTram Air for holding of embryos, and Eppendorf

FemtoJet auto-injector. A small drop of M2 media was placed on a siliconized depression slide

and approximately 20–30 C57BL/6J oocytes were transferred to the slide for microinjection.

The slide was placed on the stage of the microscope and 2-cell embryos were injected at 200x.

1–2 pico liters total of 1mg/ml Treacle antibody was injected into one blastomere of the devel-

oping two-cell embryo using previously described techniques [99]. The control embryos were

injected with water. DiI (ThermoFisher, #C7000) was added to the injection mix in both con-

trol and antibody injected embryos as a lineage tracer. Immediately following microinjection,

the embryos were returned to the CO2 incubator in KSOM culture media and observed daily

for embryo development. Blastocyst stage embryos were fixed and imaged for DiI, which was

subsequently bleached followed by immunostaining of the embryos with Treacle, Y10b, Fbl

and Ncl.

Cell culture practices

The human induced pluripotent stem cell line used in this study, AICS-0086 cl.147, was gener-

ated as described previously [103,104]. This cell line can be obtained through the Allen Cell

Collection (www.allencell.org/cell-catalog). Undifferentiated hiPSCs were maintained and pas-

saged on plates coated with hESC-qualified Matrigel (Corning #354277) in mTeSR1 (Stem

Cell Technologies #85850) supplemented with 1% penicillin/streptomycin (ThermoFisher,

#15070063). Cells were passaged approximately every 3–5 days (70–85% confluency) using

Accutase (Gibco, #11105–01) to detach cells. Cells were plated in mTeSR1 + 1% P/S and

10 μM Rock Inhibitor (Y-27632, StemCell Technologies, #72308). A detailed protocol for cell

line maintenance can be found at www.allencell.org/sops SOP: WTC culture v1.7.pdf. For

BMH-21 treatment, 1um BMH-21 (Sigma, #SML1183) was added to mTeSR1 media for either

1 hour for fixed imaging or after the first acquired frame for live imaging. For VM-26 treat-

ment, 80nM of VM-26 (Sigma, #0609) was added to media for 24 hours to synchronize cells in

G2/M before being rinsed off.

Live imaging acquisition

HiPSCs (AICS-0086 cl.147) with RFP-tagged Nucleophosmin, GFP-tagged Fibrillarin and

Halo-tagged upstream binding factor were plated on Matrigel coated Ibidi 35 mm μ-Dishes

(Ibidi, # 81156). Before imaging, cells were treated with 200 nM of Janelia Fluor HaloTag
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Ligand 646 for 30 minutes. The cells were then imaged using a CSU-W1 spinning disc (Yoko-

gawa) coupled to a Ti2 microscope (Nikon) through a 60x Plan Apochromat objective (NA

1.45). Excitation of GFP occurred at 488 nm, RFP occurred at 561 nm, and Halo JF 646

occurred at 640 nm. The emissions were collected for 20 to 200 ms per frame through a stan-

dard filter onto a Flash 4 camera (Hamamatsu). Cells were imaged every 10 minutes for 5

hours. Great care was taken to reduce illumination as much as possible to avoid phototoxicity.

Live imaging analysis

Individual cells were cropped from time-lapse videos and imported into Imaris (Bitplane,

Inc.). A total of 12 untreated cells from 3 different experiments and 12 drug treated cells from

3 different experiments were analyzed. Surfaces were created for each component of the nucle-

olus using fluorescent labels and tracked over time. The number of FBL and UBF components,

and the area and sphericity of the NPM1 component were averaged and plotted with the 95%

confidence interval per time point for each treatment.

FRAP acquisition and analysis

HiPSCs (AICS- 0086 cl.147) with RFP-tagged Nucleophosmin, GFP-tagged Fibrillarin and

Halo-tagged upstream binding factor were plated on Matrigel coated Ibidi 35 mm μ-Dishes

(Ibidi, #81156). The cells were then imaged using a CSU-W1 spinning disc (Yokogawa) coupled

to a Ti2 microscope (Nikon) through a 60x Plan Apochromat objective (NA 1.45). Excitation of

RFP occurred at 561 nm, and the emission was collected for 50 to 200 ms per frame through a

standard filter onto a Flash 4 camera (Hamamatsu). Photobleaching was achieved using a dif-

fraction-limited 561 nm laser beam focused on the region of interest and scanned across that

ROI until fluorescence was eliminated. The settings for bleaching were adjusted so that bleaching

was nearly instantaneous for both half and whole FRAP (< 2 s). Multiple prebleach images of

cells were acquired for 0.5 s without delay, and the recovery after bleaching was recorded every

0.5s for 2 minutes. In separate instances, either the entire punctum was bleached (full FRAP) or

only a part was bleached (half FRAP). Three independent experiments were performed for both

control and BMH-21 treated cells with approximately 30 cells bleached for both half and whole

FRAP in each experiment. Recovery curves and analysis were performed using in-house written

plugins in Fiji (https://imagej.net/Fiji). First, the images were cropped to the cell of interest and

then registered to remove the cell/punctum movement using a plugin called Stackregj. After this,

an ROI was placed over the bleached portion of the cell and the mean intensity of the ROI was

plotted using a plugin called “create spectrum jru v1.” Once all the curves for a particular condi-

tion were collected, they were combined into one window using “combine all trajectories jru

v1.” The curves were then all normalized to the min and max of each curve using “normalize tra-

jectories jru v1.” The curves were then manually aligned in time so that the bleach points all

aligned at the same timepoint. Finally, each curve was fit individually using “batch FRAP fit jru

v1.” The fit parameters were then averaged to give the Tau and percent recovery. The recovery

for the whole FRAP experiments was fit by a single exponential yielding a single Tau value

which corresponds to the addition of NPM1 to the nucleolus. Half FRAP data was fit by a double

exponential yielding two Tau values. To properly account for the addition of protein to the

aggregate in the half FRAP data, Tau2 in the half FRAP experiments was fixed to the Tau value

from whole FRAP experiments. Tau1 for the half FRAP was allowed to fit to the data.

Supporting information

S1 Fig. Pol I heterozygous mutants have unaffected PNBs. Immunostaining with Ncl to

visualize NPBs indicates that its expression levels are consistent, and the number of NPBs per
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blastomere are similar between WT and Pol I heterozygous mutants. Scale bar = 12.5 μm.

(TIF)

S2 Fig. Tcof1-/- embryos are midgestation lethal. (A) Tcof1-/- embryos are noticeably smaller

than controls at E7.5. At E8.5 (B), these embryos are significantly smaller than their WT litter-

mates. (C) Treacle antibody injected embryos exhibit cell death in the inner cell mass and fail

to hatch, while control embryos proceed to hatching at E4.5 (D) Survival statistics of embryos

injected with antibody indicates that over 50% of the embryos injected with Treacle antibody

did not survive. Expression levels of Treacle (E, F), Y10b (G, H), Fbl (I, J) and Ncl (K, L) are

significantly reduced in Treacle injected blastomeres and their descendants. The data is repre-

sented as mean+/-SEM. Scale bar for A and B is 100 μm. Scale bar for E, G, I and K = 12.5 μm.

**** indicates p<0.0001.

(TIF)

S3 Fig. Mutations in Pol I subunits causes Nucleolar Morphology defects in MEFs. Immu-

nostaining of MEFs with Treacle (A), Fbl (B), Ncl (C) and UBF (D) antibodies suggests that

the number of nucleoli are significantly reduced in Polr1afx/fx;Cre-ERT2, Polr1cfx/fx;Cre-ERT2

and Tcof1fx/fx;Cre-ERT2. Tcof1fx/fx;Cre-ERT2 MEFs have reduced expression of Fbl, Ncl and Ubf

unlike Polr1afx/fx;Cre-ERT2 and Polr1cfx/fx;Cre-ERT2, compared to controls.

(TIF)

S4 Fig. BMH-21 treatment causes increased recovery in whole and half FRAP GC. (A, B)

Graphs showing the percent recovery of the GC of half and whole FRAP respectively. Data is

represented as mean+/-SD. Student’s t-test. (C-H) Confocal images of whole FRAP NPM1 and

its recovery over time in control and BMH-21 treated cells. (I-L) Average FRAP recovery

curves for control (I, K) or BMH-21 treated (J, L) cells. The x-axis indicates slices or frames of

the video where each slice or frame is the image taken at 0.5s intervals and the y-axis displays

the intensity of the recovering NPM1 in the GC. ** indicates p<0.01, ns indicates p>0.05.

(TIF)

S5 Fig. Nucleolar disruption in Pol I mutants. (A) In control embryos and cells, each nucleo-

lus has distinct FC and DFC regions surrounded by the GC and maintains an amorphous

structure. rRNA is bound to nucleolar proteins (NPM1 in red, Ncl in purple and Treacle in

blue). (B) When Pol I activity is inhibited, the nucleolus changes shape, becoming round and

condensed. rRNA transcripts are reduced and nucleolar protein expression increases, which

leads to a change in phase separation of the nucleolus. This leads to nucleolar stress in the

pathogenesis of ribosomopathies.

(TIF)

S1 Video. BMH-21 treatment of nucleolar tagged hiPSCs. hiPSCs were imaged for UBF

(HaloTag grey), FBL (GFP, green) and NPM1 (RFP, blue) every 10 minutes for 5 hours. 1μM

of BMH-21 was added after the first frame was acquired. NPM1 condenses into a round circle

while UBF and FBL form nucleolar caps at the GC periphery. Scale bar = 10μm.

(MP4)

S2 Video. Half FRAP of control and BMH-21 treated hiPSC. NPM1 (RFP, grey) was imaged

in control (left) and BMH-21 treated (right) hiPSCs rapidly for five frames pre-bleach, then

half of the GC was bleached, and recovery of NPM1 was monitored for two minutes.

(MP4)

S3 Video. Cell division in control and BMH-21 treated hiPSCs. Time-lapse imaging of con-

trol (left) and BMH-21 treated (right) hiPSCs undergoing cell division. The nucleolus
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disassembles leading up to division with UBF remaining associated with rDNA. In control

cells, the nucleolus reassembles following division whereas the nucleolus in BMH-21 treated

cells fragments.

(MP4)
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