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Abstract

Sex chromosomes have evolved repeatedly across the tree of life and often exhibit extreme

size dimorphism due to genetic degeneration of the sex-limited chromosome (e.g. the W

chromosome of some birds and Y chromosome of mammals). However, in some lineages,

ancient sex-limited chromosomes have escaped degeneration. Here, we study the evolu-

tionary maintenance of sex chromosomes in the ostrich (Struthio camelus), where the W

remains 65% the size of the Z chromosome, despite being more than 100 million years old.

Using genome-wide resequencing data, we show that the population scaled recombination

rate of the pseudoautosomal region (PAR) is higher than similar sized autosomes and is cor-

related with pedigree-based recombination rate in the heterogametic females, but not homo-

gametic males. Genetic variation within the sex-linked region (SLR) (π = 0.001) was

significantly lower than in the PAR, consistent with recombination cessation. Conversely,

genetic variation across the PAR (π = 0.0016) was similar to that of autosomes and depen-

dent on local recombination rates, GC content and to a lesser extent, gene density. In partic-

ular, the region close to the SLR was as genetically diverse as autosomes, likely due to high

recombination rates around the PAR boundary restricting genetic linkage with the SLR to

only ~50Kb. The potential for alleles with antagonistic fitness effects in males and females

to drive chromosome degeneration is therefore limited. While some regions of the PAR had

divergent male-female allele frequencies, suggestive of sexually antagonistic alleles, coa-

lescent simulations showed this was broadly consistent with neutral genetic processes. Our

results indicate that the degeneration of the large and ancient sex chromosomes of the

ostrich may have been slowed by high recombination in the female PAR, reducing the

scope for the accumulation of sexually antagonistic variation to generate selection for

recombination cessation.
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Author summary

In birds, sex is determined by a pair of sex chromosomes where females are ZW and

males are ZZ. In many taxa, the W chromosome has degenerated except for a small part

that continues to recombine in both sexes called the pseudoautosomal region (PAR). The

prominent theory for why recombination suppression between Z and W evolves is that

selection favours linkage between the sex-determination locus and alleles with sex-specific

fitness effects. Recombination cessation results in reduced selection efficiency and ulti-

mately the degeneration of the W chromosome. There are, however, some ancient sex

chromosomes that deviate from this path of W demise that present one of the fascinating

puzzles of sex chromosome evolution. In ostriches, sex chromosomes with a long PAR

have been maintained for over 100 million years. Here, we show that high recombination

rates in the region immediately adjacent to the PAR boundary break the association

between the sex-linked region and PAR loci. This suggests that the integrity of sex chro-

mosomes may be maintained in species where high recombination rates minimize the

influence of sex linkage on neighboring genes, reducing the likelihood that mutations

with sex-specific fitness effects accumulate.

Introduction

In many taxa, sex is determined by genes residing on a pair of homologous chromosomes,

such as the XY chromosomes of mammals and the ZW chromosomes of birds [1]. These sex

chromosomes typically have two regions, a sex-linked region (SLR) where sex-determining

genes are located and recombination is suppressed, and one or more pseudoautosomal regions

(PAR) where recombination persists to ensure proper chromosome pairing during meiosis

(Fig 1) [2,3]. Interestingly, the size of the PAR differs widely among even closely related spe-

cies, demonstrating the dynamic evolution of recombination on sex chromosomes [3]. How-

ever, it remains unclear why some species have sex chromosomes with small PARs and

extensive non-recombining regions [4–6], while others have large PARs that are maintained

over long evolutionary periods [7–9].

A popular explanation for why recombination suppression spreads across sex chromo-

somes and PARs degrade, is based on sexually antagonistic selection [13]. Alleles that are bene-

ficial when expressed in one sex, but deleterious when expressed in the other (i.e., sexually

antagonistic variation) cause indirect selection for suppressed recombination between sex

chromosomes. This results in female-beneficial alleles becoming associated with the W and

male-beneficial alleles becoming associated with the Z [14]. Importantly, the conditions for

maintaining such sexually antagonistic variation are more permissive when loci are partially

genetically linked to the SLR [13]. At the same time, stronger sex-linkage increases the coales-

cence times of sampled alleles from the two sex chromosomes. This leads to increased neutral

diversity at partially sex-linked sites within the PAR [15], and increases the potential for the

accumulation of sexually antagonistic genetic variation [16].

A key process determining levels of genetic linkage between PAR loci and the SLR is the

rate of recombination. High recombination rates close to the SLR are expected to reduce the

proportion of PAR loci with sex-biased inheritance and the potential for sexually antagonistic

variation to accumulate. Recombination rates can also impact other processes that influence

the evolution of genetic variation on sex chromosomes [17]. For example, regions with low

recombination, particularly when enriched in functional elements under selection, can show

large reductions in neutral genetic diversity due to the impact of selection at linked sites
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[18,19]. In contrast, regions with high recombination rates will be impacted by GC-biased

gene conversion which can also resemble the effect of selection [20–22]. Quantifying recombi-

nation rates across the PAR in relation to the SLR is therefore crucial to understand the poten-

tial for sexually antagonistic selection, patterns of neutral genetic diversity and the evolution of

expanded non-recombining regions.

Molecular and population genetic studies of species with highly degenerated W/Y chromo-

somes have revealed several characteristics of small PARs. In particular, the heterogametic sex

(ZW females or XY males) typically has extreme recombination rates. In collared flycatchers

(Ficedula albicollis), the PAR is only 630 Kb (1.05% of the Z length) and has a female recombi-

nation rate that is about 200 times higher than the genome-wide average, resulting in a GC-

rich sequence due to GC-biased gene conversion [5]. Similarly, in humans, PAR1 is about 2.7

Mb (1.73% of the X length) with a male recombination rate that is ~17 times higher than the

autosomal average [23]. The role of sexual antagonism in the expansion of the SLR in these sys-

tems has been investigated by estimating the divergence in allele frequencies between males

and females and examining sex-biased gene expression, which can be a sign of resolved sexual

conflict [24]. In the human PAR1, there are divergent allele frequencies between the sex chro-

mosomes and enrichment of male-biased expressed genes, but these patterns are not entirely

explained by sexual antagonism [25,26]. However, in collared flycatchers, there is little evi-

dence of male-female allele frequency divergence and sex-biased gene expression. This is

Fig 1. The structure of the ostrich Z chromosome. The Z chromosome consists of the PAR and the SLR. In the PAR, sex chromosomes recombine in both

males (Z/Z) and females (Z/W), while in the SLR recombination only occurs in males. The cumulative recombination frequency between the PAR boundary (at

~52.2 Mb) and loci within the PAR determines the extent of sex-linked inheritance, and is calculated using the female and male genetic map lengths (80.628 cM

and 42.641 cM, respectively from [10]) using the Kosambi map function [11]. Gray bars represent genes along the Z chromosome. Red bars indicate

homologous genes that are still present within the SLR on the W chromosome (i.e., gametologous genes). DMRT1 is the Z-linked avian sex-determining gene

[12] (blue bar).

https://doi.org/10.1371/journal.pgen.1010801.g001
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potentially due to a recombination hotspot close to the PAR-SLR boundary reducing the

opportunity for sexually antagonistic genetic variation to accumulate [5]. In contrast to these

examples of small PARs, the population genetic dynamics of ancient sex chromosomes with

large PARs remain largely unknown.

Sex chromosomes with long PARs are found in both animals [9,27,28] and dioecious plants

[29]. Some of these sex chromosomes, such as those found in the flowering plant Silene latifolia
[30], have evolved relatively recently and are in the early stages of degeneration. Sex chromo-

somes with long and ancient PARs are relatively rare, but notable examples occur within the

avian lineage Palaeognathae (tinamous and ratites). In Palaeognathae, the sex chromosomes

first evolved more than 100 MYA in a shared common ancestor with the Neognathae, which

contains >99% of extant avian species [31]. Unlike the Neognathae, many Palaeognathae spe-

cies, particularly the ratites, have retained long PARs ranging from between ~65% to 73% of

the length of the Z chromosome [9,32–35]. For example, the PAR of the ostrich is ~52.2 Mb

which comprises ~65% of the Z chromosome. Molecular evolution studies of the ostrich PAR

have shown that rates of evolution, measured by synonymous substitution rates, are similar to

autosomal sequences and that the PAR is not enriched for male-biased expressed genes [9].

Recombination frequency along the PAR obtained from an ostrich pedigree also showed a

higher frequency of recombination along the PAR in females compared to males (Fig 1) [10].

However, the resolution of the markers along the Z chromosome was low with an average of 1

marker every ~250Kb. It is therefore unclear how the fine-scale recombination landscape of

the ostrich PAR influences levels of genetic variation and the degree of genetic linkage with the

SLR, a critical factor determining the scope for sexually antagonistic alleles to accumulate.

Here we use whole-genome re-sequencing and a genetic linkage map [10] of the ostrich sex

chromosomes to test if recombination rate can help explain the evolutionary maintenance of

the large, ancient PAR. First, we investigate the pattern of recombination across the sex chro-

mosomes and its influence on the degree of genetic linkage with the SLR (measured by linkage

disequilibrium (LD)). We also compare sex-averaged population recombination rates to male

and female estimates from the genetic linkage map to quantify how historical recombination

rates have been shaped by each sex. Second, we test how recombination rates influence genetic

diversity and GC content and if this relates to gene density across the PAR. Third, we examine

if there are regions of the PAR that potentially harbor sexually antagonistic alleles by calculat-

ing allele frequency differences between males and females. Finally, we evaluate whether pat-

terns of genetic diversity and the observed differences in allele frequencies between males and

females across the PAR, particularly in the region close to SLR, are consistent with predictions

from population genetic theory using coalescent simulations based on [15].

Results

Recombination rate and linkage disequilibrium across the sex

chromosomes

The sex-averaged population recombination rate (ρ = 4Ner) across the PAR (mean (SD): ρ/

Kb = 0.17 (0.12)) was significantly higher than on similar sized autosomes (mean (SD): ρ/

Kb = 0.13 (0.071)) (Mann-Whitney U: U = 40087, p = 5.867e-05). This is expected given cross-

overs must occur in a smaller chromosomal segment of the female PAR. Recombination rates

were highly variable across the sex chromosomes but could be divided into four regions with

significantly different recombination rate regimes based on a change-point analysis (estimated

change-points: 14.6, 48.1 and 53.6 Mb) (Figs 2A and S3 and S4 Table). The highest recombina-

tion rate at 2.2 Mb (ρ/Kb = 0.8) occurred at the distal end of the chromosomes, farthest from

the PAR boundary. In the mid-PAR, there was a recombination valley containing the
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Fig 2. Recombination rate and linkage disequilibrium (LD) across the ostrich Z chromosome. (A) Population scaled recombination rate (ρ = 4Ner)
calculated from SNPs in windows of 200 Kb with 50 Kb overlap using LDhat [36] (Gray points). The horizontal dashed line in orange is the autosomal average

for ρ/Kb = 0.13. The vertical dashed line in red at 2.2 Mb represents the maximum ρ/Kb across the PAR. The black dash-dotted line is the rolling average

calculated over a span of ~1 Mb (B) Female, male and sex-averaged recombination rate (cM/Mb) in windows of 1 Mb obtained from a genetic linkage map

[10]. The dash-dotted lines are the rolling averages calculated over a span of ~5 Mb (C) LD in windows of 200 Kb with 50 Kb overlap (Gray points). The

horizontal dashed line in orange indicates the average autosomal LD (r2 = 0.15). The black dash-dotted line is the rolling average calculated over a span of ~1

Mb. The triangular matrix plot indicates LD across the 200 Kb of the PAR boundary. The vertical dashed lines in A to C at ~52.2 Mb represents the PAR

boundary. (D) Population scaled recombination rate (ρ/Kb) was significantly correlated to female (R = 0.35, p = 0.013) and sex-averaged (R = 0.32, p = 0.021)

genetic map recombination rate (cM/Mb) across the PAR, but not to male recombination rate (R = 0.1, p = 0.45). Each dot represents an average for 1 Mb

windows. (E) LD steeply declined with population scaled recombination rate (ρ/Kb) for the PAR and the SLR. (F) LD decay in relation to pairwise SNP distance

across the SLR, mid-PAR (~23–28 Mb), autosomes, PAR-boundary (~47–52.2 Mb), the PAR and PAR-1-5 Mb.

https://doi.org/10.1371/journal.pgen.1010801.g002
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minimum rate in the PAR at 22.3 Mb (ρ/Kb = 0.02). Examining the 5 Mb region immediately

adjacent to the PAR boundary showed that the recombination rate was significantly higher

than the autosomal average (mean (SD): ρ/Kb = 0.19 (0.05)) (Mann-Whitney U: U = 1463,

p = 2.175e-06). In contrast, within the SLR the recombination rate dropped abruptly to an

average of 0.1 ρ/Kb (SD = 0.089), consistent with a lack of recombination in females.

The recombination rate influenced LD patterns across the Z chromosome (Fig 2C). Regions

with higher recombination rates had reduced levels of LD (Generalized Least Squares of LD~re-

combination rate: t = -8.1, p< 0.001), with LD declining rapidly with recombination rate (Fig

2E). The mean pairwise LD for the whole PAR was similar to that of autosomes (mean (SD)

PAR = 0.132 (0.017), autosomes = 0.134 (0.017)) and reached a ~50 Kb pairwise SNP distance in

the PAR and ~65 Kb in the autosomes. There was, however, a difference in LD decay between sec-

tions of the PAR according to their distance to the PAR boundary, consistent with changes in

recombination rate (Fig 2F). Across the 200 Kb region spanning the PAR boundary, there was lit-

tle LD between the PAR and SLR (Fig 2C), indicating that even PAR loci in close physical proxim-

ity to the PAR boundary (within ~50Kb) effectively segregate independently from the SLR.

The higher recombination rate in the regions closest to and farthest from the PAR bound-

ary may be caused by cross-over pairing between the Z and W being forced into a smaller

region in females than in males due to W chromosome degeneration [37]. To investigate

whether females are driving the overall recombination rate in the PAR we used genetic map

data from [10] (Fig 2B). Female recombination rate for the PAR (mean (SD) = 1.70 (1.8) cM/

Mb) was indeed significantly higher than the male rate (mean (SD) = 0.85 (0.93) cM/Mb,

Mann-Whitney U: U = 1635, p = 0.025). Within the 5 Mb region closest to the PAR boundary,

the female recombination reached 3.41 cM/Mb, while the male recombination rate was only

0.41 cM/Mb. Furthermore, ρ was significantly correlated with sex-averaged genetic map

recombination rate (cM/Mb) across the PAR (R = 0.32, p = 0.02), and this was driven by

female, not male recombination rate (Correlation with female map cM/Mb: R = 0.35,

p = 0.013, Correlation with male map cM/Mb: R = 0.11, p = 0.45, Fig 2D). Together these

results imply that historical recombination rates of the ostrich PAR are shaped by the recombi-

nation rate of heterogametic females.

Patterns of genetic diversity and female-male divergence in allele frequency

across the sex chromosomes

Genetic diversity across the Z chromosome was variable with a clear break at the boundary

between the PAR and the SLR (Fig 3A). The average level of genetic diversity in the PAR was

similar to autosomal levels (mean (SD) π: PAR = 0.0016 (0.0004), autosomes = 0.0016

(0.0004), Mann-Whitney U: PAR vs autosomes, U = 97478, p = 0.1). In the SLR, the genetic

diversity dropped abruptly (mean (SD) π = 0.001 (0.0002)), as expected with complete cessa-

tion of recombination (Fig 3A) and was significantly lower than within the PAR (Mann-Whit-

ney U: PAR vs SLR, U = 5615, p = 1.349e-09). The heterogenous pattern of genetic diversity

across the PAR was correlated with recombination rate (Fig 3F. GLS of genetic variation ~ ρ/

Kb: t = 10.22, p< 0.001) and GC content (Fig 3B and 3G. GLS: t = 2.51, p = 0.013). This posi-

tive correlation with GC content is potentially due to GC-biased gene conversion during

recombination events [20]. Conversely, genetic diversity was negatively related to gene density,

although this relationship was weak (Fig 3C and 3H. GLS: t = -1.89, p = 0.06). These results are

consistent with the idea that linked selection in regions with high gene density and low recom-

bination rates leads to reduced genetic diversity [38,39].

We examined if there were regions of the PAR with allele frequency differences between

females and males using two different measures, Tajima’s D and FST between females and
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Fig 3. Population genomic features were highly variable across the ostrich Z chromosome. (A) Pairwise nucleotide

diversity (π), (B) GC content (%), (C) Coding DNA Sequence (CDS) density (%), (D) Tajima’s D (Td) and (E) Female-

male FST (FFM), calculated for 200-Kb non-overlapping windows (Gray points). Pairwise nucleotide diversity on the PAR

plotted as a function of (F) population scaled recombination rate (p< 2.2e-16), (G) GC content (p = 0.0018) and (H) CDS

density (p = 0.041). p-values are for GLS regression coefficients of each explanatory variable taken from the full model
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males (FFM). Partial linkage with the SLR causes neutral variants to have deeper coalescent

times, resulting in a signature of elevated diversity resembling balancing selection, as indicated

by higher values of Tajima’s D [15]. We found Tajima’s D was similar in the PAR and auto-

somes (Mann-Whitney U: U = 84963, p = 0.1), and not significantly higher at the PAR bound-

ary, as expected if allele frequencies are not influenced by the SLR. Instead, Tajima’s D was

highest in the mid-PAR with the maximum value of 1.1 at 22.3 Mb (Fig 3D). Similarly, values

of FFM were highest mid-way through the PAR (Fig 3E). The average FFM across the PAR was

also significantly higher than both autosomes and the SLR (Mann-Whitney U: autosome–

PAR, U = 65673, p<0.001; PAR–SLR, U = 23558, p = 1.646e-08). The mid-PAR had the lowest

recombination rate and genetic diversity, which might explain the elevated values of diver-

gence in female-male allele frequency.

Are patterns across the PAR consistent with neutral genetic theory?

To test if the observed patterns of genetic diversity and female-male divergence across the

PAR are consistent with neutral genetic processes, we used coalescent simulations based on

[15]. Our results were broadly consistent with neutral genetic theoretical predictions of the

expected average pairwise nucleotide diversity (�p), with empirical estimates falling within the

95% confidence intervals from coalescent simulations (Fig 4. See Materials & Methods: Coales-

cent simulations). Genetic diversity did, however, exceed the 95% confidence intervals in two

200 Kb windows, one at the start of the chromosome and one at the PAR boundary (Fig 4A).

Focusing on the small region around the PAR boundary (~10–20 Kb), our simulations pre-

dicted a nonlinear increase in �p (Fig 4C, solid line). This was not seen in our empirical esti-

mates, where �p was lower than expected adjacent to the PAR boundary (Fig 4C), and higher

farther away.

Examining patterns of female-male divergence showed a region in the middle of the PAR

(~15 to ~25 Mb) with elevated FFM values that fell outside the 95% confidence interval of the

simulations (Fig 4B). There was also a suggestive spike in FFM very close to the PAR boundary

(Fig 4D). Our simulations also predicted a sharp increase in FFM in the small region adjacent

to the PAR boundary, similar to patterns of genetic diversity. However, the windows with ele-

vated FFM values, that exceeded theoretical predictions, were too far away from the SLR to be

sex-linked (between positions 20-30Mb on the Z). Overall, it appears that the high recombina-

tion rates in females, especially in the region adjacent to the PAR boundary (see Fig 2B), rap-

idly break down genetic associations between the SLR and PAR loci, resulting in empirical

patterns of genetic diversity that are consistent with predictions from neutral theory.

Discussion

The maintenance of recombination in ancient sex chromosomes, as observed in ratites, is one

of the long-standing conundrums of sex chromosome evolution. In this study, we used popu-

lation genomic data from ostriches to investigate how patterns of recombination and genetic

variation across the sex chromosomes change in relation to the SLR. We found that the genetic

linkage between the SLR and the PAR was restricted to an extremely small region (~50Kb),

which means that most of the PAR segregates independently from the SLR.

The PAR sequence that is tightly linked to the SLR is estimated to occur within a cumulative

ρ = 1 from the PAR boundary in heterogametic females [15]. For the 200 Kb window adjacent

reported in the text. In (A) to (E), the black dash-dotted line is the rolling average calculated over a span of ~1 Mb, the

horizontal dashed line indicates the autosomal average and the vertical dashed line indicates the PAR-SLR boundary at

~52.2 Mb.

https://doi.org/10.1371/journal.pgen.1010801.g003
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to the PAR the sex-averaged population scaled recombination rate was 127.1. This means that

the region where ρ = 1 is predicted to be only ~1575 base pairs long. The length of this region

is comparable to that found in Silene latifolia where only ~500 base pairs of the PAR were esti-

mated to be in strong LD with the SLR [40]. Additionally, in our study, genetic variation was

not above the autosomal mean, as expected if the PAR loci were in linkage with the SLR. While

these results suggest that LD decays extremely fast as you move away from the PAR boundary,

it is possible that the difference between the theoretical predictions from our simulations and

our empirical estimates is due to low SNP densities near the PAR boundary, or possibly

because there is an assembly gap of ~7.6 Kb between the PAR and the SLR (S1 Fig).

The recombination rates of the ostrich PAR and autosomes were comparable to studies on

two other ratites. In the greater rhea (Rhea americana), the PAR is 52.5 Mb and the average

recombination rate was similar to that of autosomal pairs 5 and 6 [35]. In the emu (Dromaius

Fig 4. Predicting genetic diversity and female-male divergence across the ostrich PAR using neutral genetic theory. (A) Predicted average neutral genetic

diversity, �p, and (B) female-male divergence, FFM, across the full PAR (Physical position 0–52.2 Mb). Solid lines indicate the mean value of 1,000 replicate

coalescent simulations (Methods section “Coalescent simulations"), with shading indicating 95% confidence intervals (i.e., 95% of calculated values from the

simulations fell within this interval). Points indicate empirical estimates calculated for 200 Kb windows. Panels (C) and (D) are high resolution illustrations (1

Kb windows) of the ~140 kb region immediately adjacent to the PAR boundary.

https://doi.org/10.1371/journal.pgen.1010801.g004

PLOS GENETICS Sex chromosome evolution in the ostrich

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010801 June 30, 2023 9 / 17

https://doi.org/10.1371/journal.pgen.1010801.g004
https://doi.org/10.1371/journal.pgen.1010801


novaehollandiae), a comparison of recombination rates between 14 PAR and 8 autosomal loci

concluded that recombination rates are slightly higher, and LD slightly lower, in the PAR than

the autosomes [41]. In this study, patterns of recombination were highly variable along the

PAR. In addition to the effects of the PAR boundary, recombination variation was consistent

with the possible localization of cross-overs towards the chromosome ends [42]. Interestingly,

we found that variation in historical rates of recombination of the PAR was largely explained

by patterns of recombination in females and not males (Fig 2D). A higher recombination rate

in the heterogametic sex has been hypothesized to protect the PAR from degeneration,

enabling the maintenance of long PARs over prolonged evolutionary time periods [3]. In the

case of ostrich, it seems that the pairing of the W and Z also causes higher recombination rate

in this region.

Another feature of the PAR was a recombination valley in the middle section which coin-

cided with a reduction in genetic diversity, a positive Tajima’s D and elevated levels of female-

male allelic divergence (Fig 3E). While the elevated female-male divergence might hint at the

action of sexually antagonistic selection, coalescent simulations showed the observed patterns

are still consistent with neutral predictions. We propose that this saddle-shaped pattern of

recombination is consistent with the combined effects of: (i) enforced pairing between the Z

and W chromosomes both at the distal end and close to the PAR boundary, and (ii) cross-over

interference limiting recombination rates in the mid-PAR [37].

In systems with smaller PARs, such as humans [25] and collared flycatchers [5], there is lit-

tle empirical support for the role of sexual antagonism in shaping recombination patterns of

sex chromosomes (although confirming the role of sexually antagonistic selection is extremely

challenging). Small PARs, however, have extreme recombination dynamics that make it diffi-

cult to confirm or deny the importance of sexually antagonistic polymorphisms in the degen-

eration of the sex-limited chromosome. Species with long PARs offer opportunities to study

the influence of the SLR on sex chromosome evolution without such complications. In the

large PAR of the recently evolved sex chromosomes of Silene latifolia, eight genes with positive

Tajima’s D were detected [40]. Two of these genes, that were closest to the SLR, had different

female-male allele frequencies, but the other six genes that were loosely linked to the SLR did

not show any sex differences in allele frequencies. A simulation study on these six genes con-

cluded that the positive Tajima’s D could not be explained solely by demography, and that sex-

ually antagonistic selection might be responsible for creating the observed patterns under a

scenario where they were historically closely linked to the SLR [43].

The recombination of ancient ratite sex chromosomes may be maintained by several pro-

cesses, including sex-biased gene expression [3], a slower rate of molecular evolution [44], and

a high recombination rate at the PAR boundary reducing LD between the SLR and PAR loci

[3]. In ostriches, it is unlikely that the sex chromosomes are maintained due to sex-biased gene

expression, as the genes on the PAR in adults are equally expressed in both sexes [45]. Ratites,

including the ostrich, do however have a slower rate of molecular evolution [46] making it pos-

sible that this has decreased the accumulation of genetic mutations that degenerate the W

chromosome. Our study also highlights that a high recombination rate at the PAR boundary

might prevent the accumulation of sexually antagonistic mutations. The theory for the evolu-

tion of recombination suppression of sex chromosomes due to sexual antagonism relies on

sexually antagonistic alleles building genetic associations with the SLR. A key insight from our

results is that an elevated recombination rate at the PAR boundary can greatly restrict the size

of the region where sexually antagonistic alleles can become genetically associated with the

SLR, providing an explanation for the evolutionary maintenance of ancient recombining sex

chromosomes.
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Materials and methods

Ethics statement

All procedures were approved by the Departmental Ethics Committee for Research on Ani-

mals (DECRA) of the Western Cape Department of Agriculture, reference no. AP/BR/O/

SC14.

Study population, sampling, and sequencing

Blood samples of Struthio camelus were obtained from Western Cape Department of Agricul-

ture’s ostrich research facility in Oudtshoorn, South Africa. Since 1995, individuals have been

bred in pairs at the research facility to create pedigrees. At the time of sampling, the pedigrees

contained 1531 males and 2067 females. We selected 5 males and 5 females for sequencing

using the program PedMine [47]. PedMine identifies individuals with most distant links

within pedigrees allowing the maximum amount of genetic diversity in populations to be sam-

pled. Samples were sequenced at Science for Life Laboratory, the National Genomics Infra-

structure, using paired end with 126 base pairs on Illumina HiSeq 2500, following

manufacturer’s protocol.

Mapping, variant calling and filtering

We implemented a snakemake [48] workflow for mapping and variant calling. Briefly, reads

were trimmed with cutadapt version 2.10 [49] and then mapped to the optical map improved

reference genome (Struthio_camelus.20130116.OM.fa) with bwa version 0.7.17.r1188 [50].

Mean coverage per sample is presented in S1 Table. Duplicates were marked with Picard

MarkDuplicate [51]. The ostrich Z chromosome in the assembly version used in this study

consists of 12 scaffolds (S2 Table). By measuring the average male and female coverage, the

coordinate of the PAR boundary was determined to be in superscaffold36 between 3516672

and 3524264 with gap size of 7592 nucleotides (S1 Fig). We checked for the existence of game-

tologous genes on the 8 SLR scaffolds by identifying annotated genes with a copy on a puta-

tively W-linked scaffold. We measured the male to female coverage ratio for the putative W-

linked scaffold and if the ratio was close to zero, we determined the scaffold to be W-specific

and containing gametologous gene (S3 Table). Heterozygous SNPs in females overlapping

with these genes were removed from further analyses since they reflect divergence between Z

and W since recombination cessation.

Variant calling was performed with GATK version 4.1.4.1 following best practice proce-

dures developed at the Broad Institute [52]. The GATK HaplotypeCaller was run individually

on each sample to generate GVCF output. GVCF files for all samples were imported to a Geno-

micsDB datastore, followed by genotyping with GATK GenotypeGVCFs to produce a final

raw variant call set. Several filtering steps were performed on the raw call set to obtain the final

call set of high quality. Biallelic SNPs were selected with GAKT SelectVariants and filtered

with GATK VariantFilteration using best practice options QUAL < 30, QualByDepth (QD) <

2.0, RMSMappingQuality (MQ) < 40.0, MappingQualityRankSumTest (MQRankSum) <

-12.5, FisherStrand (FS) > 60.0, ReadPosRankSumTest < -8.0 and StrandOddsRatio (SOR) >

3.0. We removed variants overlapping with repeats annotated by the aves repeat library using

BEDTools intersect [53]. We filtered SNPs with more than twice the average coverage (>70

reads) and less than 5 reads per site. SNPs in the SLR in females are expected to occur only as

haploid. However, heterozygous SNPs in the SLR in females can occur either due to genotyp-

ing error or due to the divergence of the Z and W sequences in the gametologous region. We

therefore filtered the heterozygous SNPs in females in the SLR. This left us with 5,776,166
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SNPs for autosomes, 268,006 SNPs for the PAR and 89,540 SNPs for the SLR. Distribution of

alternative allele frequency and per site depth is shown in S2 Fig. To filter the background

non-variant sites, we calculated coverage per site using samtools version 1.14 [54]. We used

the hard-masked reference genome for repeats and filtered sites that had a minimum of 5

reads or a maximum of 70 reads. Coverage filter removed 78,235,359 sites from the whole

genome. VCF files are publicly available in Dryad database [55].

Measures of population scaled recombination and linkage disequilibrium

Pedigree-based recombination rate provides us with an estimate of the recombination rate for

one generation, but population scaled recombination rate (ρ = 4Ner) gives us an estimate of

recombination in the history of sample. Population scaled recombination rate was estimated

for each Z scaffold separately in windows of 1000 SNPs with an overlap of 200 SNPs. The inter-
val program in LDhat 2.2 [36] was used, and three independent Markov-Chain Monte Carlo

(MCMC) chains were run with a block penalty of 5 and 25 million iterations. We sampled the

chain every 5000 iterations and discarded the first fifth (5,000,000 iterations) as burn-in. To

determine where the trend in population scaled recombination rates changes, we performed

change-point analysis using the segmented package in R [56]. The change-point analysis with

sex-averaged population scaled recombination rate returned 3 significant change-points along

the graph, at 14.6, 48.1 and 53.6 Mb (S3 Fig). We have used these change points to define four

regions: the SLR where recombination rate drops to an average of 0.1; the 5 Mb segment clos-

est to the PAR boundary where recombination is higher than autosomal average; the mid-PAR

containing the minimum recombination rate at 22.3 Mb, and the region most distant from the

PAR boundary where recombination frequency reaches its maximum value well above the

autosomal average at 2.2 Mb (S4 Table). Pairwise linkage disequilibrium (LD) was measured

as the square of the correlation coefficient between the allelic states (r2) for all pairs of SNPs

within 200 Kb window with 50 Kb overlap after filtering for Hardy-Weinberg equilibrium

(HWE) in vcftools [57] using PopLDdecay [58].

Measures of genetic variation and female-male allelic differentiation

Pairwise nucleotide diversity (π), the number of segregating sites (θ) and the relationship

between the two, measured as Tajima’s D statistic [59] for neutrally evolving sequences were

calculated across chromosome Z in 200 and 1000 Kb non-overlapping windows using vcftools

version 1.16 [57] and custom Python scripts located under https://github.com/Homap/

ostrich_PAR_analysis/tree/main/code/analysis/diversity. All population genetics measures

were calculated for the SLR considering its haploid state in females. We investigated the rela-

tionship between genetic variation in the PAR with recombination rate, GC content and gene

density using Generalized Least Squares (GLS) regression with autocorrelation structure

(corAR1), and maximum likelihood estimation using the nlme R package [60]. We measured

genetic differentiation between females and males using FST measure of population differentia-

tion [61] in vcftools version 1.16 [57].

Coalescent simulations

We modeled the expected neutral genetic diversity (π) and between-sex divergence (female vs.

male FST) for the ostrich PAR following the approach of [15] and [16]. All coalescent simula-

tions were performed using the computationally efficient simulator msprime [62]. We lever-

aged the fact that the coalescent for recombining sex chromosomes is mathematically

equivalent to the structured coalescent for two demes (representing X and Y or Z and W chro-

mosomes) where recombination causes migration of genes between demes. When applied to
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the ostrich Z-W sex chromosomes system, the effective population sizes for the two demes cor-

responding to Z and W chromosomes are 3Ne/4 and Ne/4, respectively, where Ne is the effec-

tive population size for an autosomal gene. The forward recombination rate in females

(movement of a gene from a Z to a W chromosome) is denoted rf, while the backward rate

(moving from a W to a Z chromosome) is equal to rf/3 [15]. Recombination in males only

shuffles genes between Z chromosomes (i.e., within deme), and therefore does not influence

coalescence times. The population-scaled recombination rate was calculated as 4Nerf.
The key predictions from the models are the average coalescence times for genes sampled

on two different Z chromosomes (�TZZ), two W chromosomes (�TWW), and on a Z and W chro-

mosome (�TZW), from which we can calculate the average coalescence time for alleles sampled

within a deme (�Tw ¼ ð
�TZZ þ

�TWWÞ=2) and average total coalescence time

(�Tt ¼
ð�TZZþ�TWW Þ

4
þ

�TZW
2

). Average coalescent times for genes sampled in males and females can

be calculated in similar fashion. The average genetic diversity at a given site located within the

PAR will be proportional to �Tt such that, in the limit of high recombination (rf➔½), �Tt for

genes located in the PAR will converge on that of autosomal genes [15]. The expected genetic

diversity for a site at a given location within the PAR (i.e., with Ne and rf values determined by

the physical position of a given gene) will be, approximately, �pPAR ¼ �pAuto
�Tt. The average

between-sex divergence will be approximately equal to Ffm
ST � 1 �

�T fm
w

�T fm
t

, where �Tfm
w ¼ ð

�Tff þ

�TmmÞ=2 is the expected within-chromosome coalescence time for a pair of genes sampled in

males and a pair sampled in females, and �Tfm
t ¼ ð�Tff þ

�Tmm þ 2�TfmÞ=4 is the expected total

coalescence time for a pair of genes where one is sampled from a female and the other is sam-

pled from a male [16].

To generate the theoretical expectations presented in Fig 4, we performed 1000 replicate

coalescent simulations for each of 200 evenly located sites on the Z chromosome, starting at

the PAR boundary and extending toward the distal end of the chromosome arm (encompass-

ing all 52 MB of the PAR for analyses of the full PAR, and for only the 144 Kb immediately

adjacent to the PAR boundary) using the same number of sampled chromosomes from

females and males as were present in the empirical data set. For each site we used the popula-

tion scaled recombination rate (ρ) as described above. Using ρ and pedigree-based recombina-

tion frequency (r), we obtained estimates of Ne across the PAR following Ne ¼
r

4r. We

estimated recombination frequency from the genetic map obtained in [10] using the Kosambi

map function r ¼ 1

2

e4x � 1

e4xþ1

� �
, where r is the recombination fraction and x is the average number

of crossovers. The unit of map distance measured this way is Morgan (M), one Morgan is

defined as the length of a chromosome segment bracketed by two loci that produces, on aver-

age, one crossover per meiosis. For each site, we calculated �pPAR and FFM from replicate simula-

tions; confidence intervals were calculated as the 2.5 and 97.5 percentiles for each metric

across replicate simulations. All computer code needed to reproduce the simulations, popula-

tion genomics analyses and data processing are available in the GitHub repository (https://

github.com/Homap/ostrich_PAR_analysis).

Dryad DOI

10.5061/dryad.pnvx0k6sx.

Supporting information

S1 Table. Median read coverage per sample.

(XLSX)
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S2 Table. List of Z-linked scaffolds in ostrich assembly.

(XLSX)

S3 Table. List of putative gametologous genes and their coordinates along the SLR Z-scaf-

folds and W-linked scaffolds.

(XLSX)

S4 Table. Change-point analysis for population scaled recombination rate along the Z

chromosome.

(XLSX)

S1 Fig. Coverage in males (blue) and females (red) in the PAR-SLR boundary. The bound-

ary is located on superscaffold36. Dashed lines indicate the boundary coordinates used for this

study (superscaffold36: 3,516,672–3,524,264).

(TIF)

S2 Fig. Distribution of alternative allele frequency (top row) and read depth per site (bot-

tom row) for the PAR, autosomes and SLR.

(TIF)

S3 Fig. Change-point analysis across the Z chromosome for population scaled recombina-

tion rate. Three significant change points were identified at 14.64, 48.1 and 53.6 Mb (red cir-

cles).

(TIF)
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