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Abstract

The 16p11.2 and 22q11.2 copy number variants (CNVs) are associated with neurobeha-

vioral traits including autism spectrum disorder (ASD), schizophrenia, bipolar disorder, obe-

sity, and intellectual disability. Identifying specific genes contributing to each disorder and

dissecting the architecture of CNV-trait association has been difficult, inspiring hypotheses

of more complex models, such as multiple genes acting together. Using multi-tissue data

from the GTEx consortium, we generated pairwise expression imputation models for CNV

genes and then applied these elastic net models to GWAS for: ASD, bipolar disorder,

schizophrenia, BMI (obesity), and IQ (intellectual disability). We compared the variance in

these five traits explained by gene pairs with the variance explained by single genes and by

traditional interaction models. We also modeled polygene region-wide effects using

summed predicted expression ranks across many genes to create a regionwide score. We

found that in all CNV-trait pairs except for bipolar disorder at 22q11.2, pairwise effects

explain more variance than single genes. Pairwise model superiority was specific to the

CNV region for all 16p11.2 traits and ASD at 22q11.2. We identified novel individual genes

over-represented in top pairs that did not show single-gene signal. We also found that BMI

and IQ have significant regionwide association with both CNV regions. Overall, we observe

that genetic architecture differs by trait and region, but 9/10 CNV-trait combinations demon-

strate evidence for multigene contribution, and for most of these, the importance of combi-

natorial models appears unique to CNV regions. Our results suggest that mechanistic

insights for CNV pathology may require combinational models.

Author summary

Copy number variants (CNVs) at 16p11.2 and 22q11.2 are associated with neurobeha-

vioral traits including ASD, bipolar disorder, schizophrenia, BMI, and IQ). Previously, we
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attempted to identify individual genes within these CNVs relevant for each trait, but

found that many CNV-trait pairs did not demonstrate single-gene association. Here, we

use similar methodology to assess whether the effect of CNV genes on the same traits

could be better explained by pairs of genes acting together. We found that in nearly all

cases, pairs of genes explained trait variance better than single genes. In several cases, spe-

cific genes contributed to traits disproportionately in pairs, but not individually. Addi-

tionally, we tested for region-wide association using all genes in the region, and found

that both the 16p11.2 and 22q11.2 regions had a significant effect on BMI and IQ. Our

results demonstrate that the genetic architecture of CNV-trait associations is multigenic

and may vary across CNVs and traits.

Introduction

Copy number variants (CNVs) at 16p11.2 and 22q11.2 contribute to neurobehavioral disor-

ders including autism spectrum disorder (ASD), schizophrenia, bipolar disorder, intellectual

disability, and obesity [1–11]. Specific gene-trait contributions at these regions have proven

difficult to find. Single-gene fine-mapping approaches have been challenging due to a lack of

highly-penetrant point mutations in these genes and inconsistent findings in animal models

[12–15]. A potential reason for the lack of clear gene-phenotype relationships is that the archi-

tecture may be more complicated than single-gene contributions to each trait [16]. More com-

plex models are good candidates for in silico analysis, as multiple hypotheses can be efficiently

assessed in parallel.

Data in humans and mice suggest that the expression of 16p11.2 and 22q11.2 CNV genes is

consistently upregulated/downregulated in duplication/deletion carriers [17–20]. From this

observation, we can propose that gene expression dysregulation (and potential downstream pro-

tein expression) is likely to be a pathophysiological mechanism of CNV-associated traits. This

implies that examination of the consequences of gene expression variation for neurobehavioral

traits may indirectly uncover the genetic architecture of CNV-phenotype association. However,

gene expression data for cases affected with neurobehavioral traits remains limited in availability

and ambiguous with respect to causality. Instead, we can use expression-imputation methodol-

ogy and rely on genetic data, available for a far greater number of (control) individuals, to pre-

dict gene expression under the assumption that genetic regulation is similar in cases and

controls. This method allows us to analyze the architecture at a gene level (rather than individual

SNPs) and because it is based on germline genetics, is not affected by potential confounding

influences on gene expression such as age, chronic illness, medication use, and circumstances of

death and tissue preservation. eQTLs (in our case, SNPs used for expression prediction) are less

likely to affect genes in a context-dependent manner, as eQTL-linked genes are less likely to be

affected by enhancer activity compared to GWAS-linked genes [21]. Given that our regions of

interest have trait associations via CNVs but very limited GWAS signal for the same traits, using

eQTLs and expression prediction may find additional information missed by GWAS analyses.

Previously, we used expression imputation to test whether individual genes at the 16p11.2

and 22q11.2 CNV regions were contributing to our five traits of interest (ASD, schizophrenia,

bipolar disorder, intellectual disability, and obesity) [22]. We found contributions of INO80E
to schizophrenia and body mass index (BMI) and of SPN to BMI and IQ, both at 16p11.2.

However, no individual genes were associated with 22q11.2 traits, despite using equally-pow-

ered genetic datasets. No genes at 16p11.2 were significantly associated with ASD or bipolar

disorder using our experiment-wide threshold. These lack of findings in light of the overall
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success of our approach were disappointing given the high prevalence of traits such as ASD in

16p11.2 CNV carriers and schizophrenia in 22q11.2 deletion carriers. One explanation for lack

of gene-trait association is that individual genes may not be independent contributors to these

traits, rather the genetic architecture is combinatorial. Promisingly, it was found that several

pairs of 16p11.2 genes in Drosophila showed evidence of stronger effects on eye phenotypes

than individual genes, and double mutants of 16p11.2 genes in zebrafish led to hyperactivity

and body size phenotypes [15, 23]. Thus, we aimed to investigate combinatorial associations in

our traits of interest in humans.

In a CNV carrier, all genes within the breakpoints are duplicated or deleted, typically with a

similar increase/decrease of expression across all genes. In our previous study, we considered

the level of expression of any individual gene, and its effect on relevant phenotypes in non-car-

riers. Here, we consider two additional models in non-carriers (Fig 1a). First, as a feasible way

to model multigene effects at specific pairs of genes, for each gene pair we look for trait associa-

tion with expression increases or decreases across two genes. Second, we analyze association

patterns when gene expression trends towards being upregulated or downregulated across the

whole region as a way to capture effects of more than two genes.

Results

We predicted the expression of individual CNV genes (using publicly available elastic net

models) and pairs of CNV genes (using elastic net models trained on GWAS SNPs) across

GTEx tissues. We also selected matched control regions for comparison with the CNV region.

First, we identified significant genes and gene pairs through association analysis with five traits

(using the control region genes as a null distribution to test for significance). Next, we com-

pared the trait variance explained by single gene models vs pairwise models, as well as the spe-

cific genes with top associations in single gene vs pairwise models. Finally, we used a rank

scoring approach to create region-wide scores to test for a polygenic contribution of CNV

genes across the region. Fig 1b summarizes this analysis design.

Summary of individual gene results

We have updated our single-gene prioritization from our previous study using new models

from GTEx version 8 and new data from schizophrenia PGC wave 3 (Table 1) [24, 25]. With

this enhancement, we find one 22q11.2 gene (PPIL2) significantly associated with schizophre-

nia at a permutation-based threshold (Table 1 and S5 Table). We note that the permutation-

based threshold (P< median of 5th percentiles of control region P-values) is less conservative

than the experiment-wide thresholds used in previous analysis [22]. However, we can identify

five top genes at 22q11.2 associated with BMI (YDJC, CCDC116, PPIL2, THAP7, UBE2L3), pri-

marily located outside the canonical CNV region (LCR D-E), three with bipolar disorder

(TMEM191B, TUBA8, PPIL2), six with ASD (CLTCL1, AC004471.10, UFD1L, DGCR14,

CCDC188, DGCR9), and two with IQ (SEPT5, LINC00896) (Table 1 and S5 Table). The top

genes associated with ASD at 22q11.2 are located in the LCR A-B part of the variant, consistent

with a previous study [26]. At 16p11.2, the majority of genes tested (31/38) show an association

with BMI. We find that, after updating single-gene prediction models to GTEx v8, SPN is no

longer a major driver of BMI and IQ, as the best predictive SNPs in the most up-to-date ver-

sion of GTEx did not overlap with top SPN SNPs as before; however, new models for

SULT1A4 indicated this gene as a major contributor to both BMI and IQ (S5 Table). INO80E
and KCTD13 remained associated with BMI. We find that INO80E is a top association with

bipolar disorder and ASD; this gene previously showed suggestive bipolar disorder association

but did not meet experiment-wide significance criteria even with the updated models [22].
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Fig 1. Models of CNV pathogenicity via gene expression and analysis design. (A) Rectangles represent individual

genes in a chromosomal location. Warmer colors represent increased mRNA expression. Cooler colors represent

decreased mRNA expression. Greens represent population average mRNA expression. Top: Within a CNV region,

deletion carriers have reduced expression across the majority of genes, duplication carriers have increased expression

across the majority of genes, and copy normal individuals have “average” levels of expression across the majority of

genes. These increases and decreases are specific to the CNV region experiencing increased or decreased DNA copies

(potential positional effects on flanking genes not shown). Bottom: Three models of how gene expression

downregulation in a CNV region may influence a CNV-associated trait in non-carriers. In the first model, decreased

expression of a single gene is sufficient. In the second model, a trait is impacted when two specific genes both have

reduced expression. In the third model, the trait becomes more likely due to reduction of expression in many genes

across the region. These three models are utilized in our study. (B) Visual diagram of analysis design.

https://doi.org/10.1371/journal.pgen.1010780.g001
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Predicting expression of pairs of 16p11.2 and 22q11.2 genes

We trained elastic net models for pairs of 16p11.2 and 22q11.2 genes (both coding and non-

coding when possible) using dataset-specific SNP lists to maximize overlap. In general, the

model quality (as measured by the performance R2) of pairwise models was in-between that of

the two genes that it comprised, as expected (S2 Table). Pairwise predictor SNPs were localized

throughout the region rather than immediately adjacent or only between the two individual

genes. Pairwise predictors generally did not overlap individual gene predictors, though some

were members of the same LD blocks (a representative case is shown in S1 Fig). In addition,

we trained pairwise models for genes in control regions (N = 38 regions for 16p11.2 and

N = 28 regions for 22q11.2).

Pairwise association signal is oligogenic

Using our pairwise models to perform association analysis, we found that there were 278

16p11.2 and 282 22q11.2 pairs significantly associated with ASD, 225 16p11.2 and 137 22q11.2

pairs associated with bipolar disorder, 702 16p11.2 and 129 22q11.2 pairs associated with

schizophrenia, 80 16p11.2 and 33 22q11.2 pairs associated with IQ and 1,212 16p11.2 and 176

22q11.2 pairs associated with BMI (Table 1, S6 and S7 Tables). Top pairs primarily consisted

of two coding genes, consistent with the larger number of coding-coding pairs that had a high-

quality prediction model. The proportion was similar for most comparisons, suggesting that

testing of correlated pairs does not skew our results. Our results suggest that a single strong

association is unlikely to drive our interpretation in most cases. We thus find that pairwise

association signal is oligogenic, spread across many pairs rather than enrichment specific to

top outlier results (S2 and S3 Figs). Due both to the eQTL sharing between pairwise prediction

models as well as to the sharing of genes across pairs, we are unable to use our approach to

confidently identify specific candidate gene pairs; several pairs of potential interest are noted

in the Discussion section.

Pairwise prediction models explain more trait variance than single-gene or

interaction models

To assess whether analyzing pairs of genes provided more information than individual genes,

we calculated how much variance in CNV-associated traits was explained by predicted gene

expression as the adjusted R2 of linear models of individual gene expression predictions, pair-

wise additive gene expression predictions, and two-gene interaction models. We calculated the

proportion of tissue-cohort pairs for which pairwise gene expression was the best predictor. In

all trait-region pairs, with the exception of bipolar disorder at 22q11.2, we found that the trait

variance explained was greater for gene pairs proportionally more often than either single

Table 1. Proportion of significantly associated (P<median of 5th percentiles of control region P-values) single genes (single) and pairwise gene sums (pairs) for

each trait and CNV.

16p11.2 22q11.2

Trait N single (%) N pairs (%) N single (%) N pairs (%)

ASD 8/42 (19%) 273/1542 (18%) 6/65 (9%) 282/3654 (8%)

Bipolar 5/37 (14%) 225/1546 (15%) 3/59 (5%) 137/3669 (4%)

Schizophrenia 21/37 (57%) 702/1543 (45%) 1/59 (2%) 129/4267 (3%)

BMI 31/38 (82%) 1212/1554 (78%) 5/52 (10%) 176/3229 (5%)

IQ 5/38 (13%) 80/1545 (5%) 2/65 (3%) 33/4052 (1%)

https://doi.org/10.1371/journal.pgen.1010780.t001
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genes or interactions (Table 2). To confirm whether this phenomenon was CNV region-spe-

cific or a polygenic property of the trait, we additionally performed this analysis for control

gene sets. For all traits tested at 16p11.2, the proportion of pairwise models exceeding single or

interaction was greater than that of control regions (P< 0.05). At 22q11.2, the CNV region

performed better than control regions in ASD (P = 1.3x10-9), but schizophrenia, bipolar disor-

der, and IQ showed similar or higher proportion pairwise best performance in control regions

(Table 2).

Patterns of genes most represented in associated pairs differ by phenotype

We wanted to know whether the pairwise associations were primarily comprised of genes with

independent association signal or indicated genes with uniquely combinatorial effects. The

results were strikingly different across traits (S8 Table). In two cases–bipolar disorder at

16p11.2 and bipolar disorder at 22q11.2 –one gene stood out as a disproportionate contributor

to pairs (although in 16p11.2 there was a noncoding gene just on the threshold ~2.5 SD), but

in both regions the disproportionate contributor was also a top single gene association

(INO80E and PPIL2 respectively). No single gene contributed disproportionally to pairs for

ASD, schizophrenia, or BMI at 16p11.2 (S8 Table and S4 Fig). At 22q11.2, however, ASD pairs

disproportionately included five genes—AC004471.10, CLTCL1, and CCDC118, which were in

the top ASD single genes, as well as DGCR2 and DGCR6 which we did not pick up as top single

gene associations. For IQ at 22q11.2, COMT was a gene that disproportionately appeared in

pairs and was not a top single gene (S8 Table and S5 Fig). The remaining genes over-repre-

sented in pairs at both 16p11.2 and 22q11.2 were primarily non-coding genes that did not

have significant single-gene models, demonstrating potential regulatory effects of non-coding

genes on CNV coding genes (S8 Table and S4 and S5 Figs). Three of the common patterns–a

top single gene disproportionately represented, no genes disproportionately represented, and

novel genes disproportionally represented–are illustrated in Fig 2.

Region-wide contributions of 16p11.2 and 22q11.2 CNVs to phenotype

After comparing the impacts of single genes and pairs of CNV genes on neurobehavioral traits,

we wanted to test combinations greater than pairwise, but feasibility limited our combinatorial

testing. Therefore, we considered a polygene region-wide model: whether the average devia-

tion of the multigenic region contributes to a phenotype. We assigned a region-wide score to

Table 2. Counts of the model estimated to explain most trait variance for each tissue-cohort pair. Best model is bolded in each case. P-value represents a chi-square

test comparing the proportion of pairwise to non-pairwise counts between CNV regions and controls.

CNV Region All Control Regions

Region Trait single/interaction/pairwise (% pairwise) single/interaction/pairwise (% pairwise) region-specific P-value

16p11.2 ASD 205/169/243 (39%) 5891/7588/6387 (32%) 0.00012

Bipolar 359/390/721 (49%) 14806/19593/19631 (36%) < 2.2x10-16

Schizophrenia 754/730/1554 (51%) 26589/37723/47784 (43%) < 2.2x10-16

BMI 0/0/49 (100%) 48/159/1744 (89%) 0.016

IQ 0/0/49 (100%) 98/232/1565 (83%) 0.0013

22q11.2 ASD 174/196/267 (42%) 4909/7016/5313 (31%) 1.3x10-9

Bipolar 536/435/499 (34%) 11642/15167/14381 (35%) 0.44

Schizophrenia 871/816/1155 (41%) 19632/28147/35053 (42%) 0.07

BMI 0/0/49 (100%) 17/68/1258 (94%) 0.069

IQ 7/17/25 (51%) 20/92/1041 (90%) <2.2x10-16

https://doi.org/10.1371/journal.pgen.1010780.t002
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Fig 2. Three representative examples of the distribution and overrepresentation of individual genes involved in significant pairs. Y-axis: counts of the

number of times each gene is part of a significant pair (permutation P-value<median of 5th percentiles of control region P-values). Bars in blue represent

genes significant (permutation P-value<median of 5th percentiles of control region P-values) in the single gene model for the same trait, with rank

indicated above the bar. Bars in orange represent genes not significant in a single gene model. X-axis: genes in chromosomal order. Disproportionately

overrepresented genes (mean + 2.5 standard deviations) are bolded. The counts are tabulated in S8 Table. (A) For bipolar disorder at 16p11.2, one gene,

INO80E is disproportionately involved in significant pairs; this gene is also a significant single gene. A borderline-overrepresented noncoding gene is also

present. (B) For ASD at 16p11.2, no genes are overrepresented in significant pairs. (C) For ASD at 22q11.2, both genes that were significant in single gene

analyses (like CLTCL1) as well as genes that were not significant on their own (like DGCR2) show disproportionate overrepresentation in pairs.

https://doi.org/10.1371/journal.pgen.1010780.g002
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each individual and tested whether scores were significantly different between cases and con-

trols or correlated with quantitative traits. We found that the region-wide score was positively

correlated with BMI for 16p11.2 genes (P = 2.0x10-11) and negatively correlated for 22q11.2

genes (P = 0.0001) (Fig 3). IQ was also negatively correlated with region-wide score for

16p11.2 genes (P = 8.7x10-15) and 22q11.2 genes (P = 1.8x10-6) (Fig 3). None of the categorical

traits showed a significant region-wide contribution (S6 Fig).

Discussion

Our study aimed to provide insight into the genetic architecture of the 16p11.2 and 22q11.2

copy number variants. We modeled the neurobehavioral trait consequences of pairs of genes

expressed in the same direction, extending our previous single-gene analysis (Fig 4). Both

16p11.2 and 22q11.2 had pairs of genes associated with all tested phenotypes based on a per-

mutation-based threshold, however, despite a larger number of genes tested in 22q11.2, the

count of associated genes was larger for 16p11.2 gene pairs. We found that for nearly all traits

tested, variance in phenotype was better explained by pairs of genes than by single genes or tra-

ditional interaction models. The only exception was bipolar disorder at 22q11.2, where single

genes explain more variance. However, for schizophrenia, BMI, and IQ at 22q11.2 the pairwise

model was not specific to the CNV regions but appeared to be a trait-based property of genetic

architecture extending to matched control regions. These findings suggest that the pairwise

effects are different between regions. The advantage of summed pair models in control regions

over single and interaction models in 7 of 10 traits–even when it was less pronounced than

Fig 3. IQ and BMI phenotypes are associated with a region-wide score. Region-wide scores were generated by ranking

each individual based on their sum predicted CNV gene expression levels (see Methods). Region-wide scores across

individuals are shown binned into deciles from lowest to highest predicted expression across the region and the mean (dot)

and standard error (bars) of BMI and IQ values for each region-wide score decile are plotted. Best fit line across deciles is

shown. Association p-values, based on the entire (not binned) UK Biobank dataset: BMI 16p11.2 P = 2.0x10-11; BMI 22q11.2

P = 0.0001; IQ 16p11.2 P = 8.7x10-15; IQ 22q11.2 P = 1.8x10-6.

https://doi.org/10.1371/journal.pgen.1010780.g003
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that of CNV regions in 5 of the 7—was somewhat surprising due to our hypothesis that CNV

regions have the unique property of dysregulation of nearby genes in the same direction. How-

ever, perhaps regulatory landscape across many regions of the genome also biases towards

expression dysregulation of physically colocalized genes in the same direction, and CNV

regions are particularly pathogenic due to specific pairs of genes or above-average density of

associated pairs.

As we observed neither enrichment in the proportion of significant pairwise tests nor out-

lier top signal in the QQ plots, the pairwise contribution to explaining trait variance seems to

be oligogenic across the region. However, in some cases we did observe outliers when examin-

ing the frequency of specific genes involved in top pairs. There was striking variation across

traits and regions in terms of whether the top single genes were also the top contributors to

pairs or novel genes were equally likely to contribute. A single gene was repeatedly contribut-

ing to top pairs for bipolar disorder at 16p11.2 (INO80E, 26% of top pairs) and schizophrenia

at 22q11.2 (PPIL2, 42% of top pairs). The individual association with these genes was not

detected, but the recurrent role of these genes in pairs suggests an important trait contribution.

In contrast, for schizophrenia at 16p11.2 and ASD at 22q11.2, multiple top single genes partici-

pate disproportionately in top pairs. Intriguingly, although pairwise models show similar

advantages for ASD at 16p11.2 and IQ at 22q11.2, genes across the region are more evenly rep-

resented in top pairs. Bipolar disorder at 22q11.2 (with single genes models most often explain-

ing variance) showed association with flanking genes on either side, TUBA8, TMEM191B, and

PPIL2; PPIL2 appeared in most of the pairs, as well. Because we did not find overall support

for a pairwise model for bipolar disorder at 22q11.2, this may simply reflect the independent

association of PPIL2. Our finding of PPIL2 as a bipolar disorder driving gene is supported by

Fig 4. Summary of patterns of new information gained from multi-gene models fitting CNV-trait pairs For each

CNV-trait pair, we specify whether pairwise models performed better than single gene models (all but one CNV-trait

pair, left column), whether genes represented disproportionately in significant pairs primarily represented genes

significant in a single gene model (half of pairs, middle column), and whether region-wide association with a trait was

significant (BMI and IQ only, right column). Yes: blue, No: orange. Dotted fields in the first column represent cases

where the pairwise model advantage did not exceed that of control regions. Dotted fields in the second column

represent cases where they were no over-represented single genes in pairs.

https://doi.org/10.1371/journal.pgen.1010780.g004
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this gene’s over-representation of rare protein truncating variants in the Bipolar Exome

sequencing consortium data [27]. However, it may also be notable that bipolar disorder has

less evidence for association with these CNV regions than most of our other tested traits [28,

29].

Given that the pairwise signal tended to be oligogenic and that expression imputation of

adjacent genes has high correlation (as well as additional limitations of our genetic architecture

analysis discussed below), it is difficult to interpret association at the level of specific gene

pairs. Despite low confidence in any single result, we find it potentially informative to review

literature support and potential future directions for our most statistically convincing gene

(pair) associations, particularly those that recur across pairs or phenotypes or are representa-

tive of a pattern between individual and pairwise top results. For ASD at 16p11.2, the top 15

pairs include four with FAM57B. This gene was previously shown to have multiple within-

region interactions in zebrafish [23]. Here, we find that the top pairwise contributions are with

coding and non-coding genes in repetitive or flanking regions (RP11-347C12.3, TBC1D10B,

BOLA2B, NPIPB12). Studies of 16p11.2 CNV genes rarely include these flanking genes, but

our data suggest that they may contribute to trait association. Notably, our expectation of

expression dysregulation in the same direction would be less strong for flanking genes, so

expanded testing of flanking regions may be worthwhile. The FAM57B and DOC2A pair, asso-

ciated with hyperactivity, head size, and length in the zebrafish study, was in the top quarter of

associated pairs for BMI and IQ. We note that McCammon et al specifically excluded additive

effects, while our study is based on genes contributing additively to pairs (which we find

explains more variance than traditional interactions). For BMI at 16p11.2, the top ranked pair

is CDIPT with ALDOA. It is notable that these two genes were not top-ranked individual genes

for BMI, demonstrating the utility of our pairwise approach to prioritize pairs that might not

be detected as individual genes. The top pair for IQ, MVP and KCTD13, on the other hand,

includes one top IQ-associated gene (MVP) and one gene (KCTD13) not associated with IQ.

This finding is similar to an observation in zebrafish, where the expressivity of head-size phe-

notypes driven by KCTD13 overexpression was increased by additional overexpression of

MVP [13]. For IQ at 22q11.2, several top pairs contain COMT along with a non-coding gene.

COMT is a gene with variants believed to affect multiple traits, including executive function

and schizophrenia risk in the general population and executive function in 22q11.2 deletion

carriers [30–33], and whose expression is associated with IQ in the general population [34].

Our data provides a refined hypothesis that the relationship between COMT and IQ is depen-

dent on additional non-coding genes at 22q11.2. IQ is, in fact, the only trait for which coding-

noncoding pairs are over-represented as significant hits with respect to coding-coding pairs,

which may have implications for future genetic studies of IQ (S1, S2, S6 and S7 Tables).

We also wondered whether there was a general contribution across many genes in the

region. In our analyses, we found that there was a region-wide contribution to both BMI and

IQ in both CNVs. The large number of 16p11.2 genes associated with BMI in both single and

pairwise models was consistent with a region-wide signal. From previously established associa-

tions in CNV carriers, we would expect a negative correlation between increased expression

and BMI for both 16p11.2 and 22q11.2 CNVs. However, we saw this only at 22q11.2 in the

region-wide model. Previously, we found individual genes independently associated with both

increases and decreases of BMI at 16p11.2 [22]. We hypothesized that there may be both BMI-

increasing and BMI-decreasing genes in the 16p11.2 region due to our observation of associa-

tion in both directions in single-gene models (and BMI decreases in syntenic deletion mice

[12]), in which case we might have been picking up more BMI-decreasing genes in our region-

wide score. Alternatively, one known limitation of our cross-tissue expression prediction

approach is that our results may not be driven by the biologically-relevant tissues and thus
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appear to be opposite in direction [35]. We also note that BMI and IQ are quantitative traits

with high sample size, and so we may have had power limitations in other traits.

Previously, we proposed that INO80E at 16p11.2 is a driver of schizophrenia and BMI, a

finding that has been corroborated in similar analyses by others [22]. However, we found that

pairwise models explained more trait variance in both schizophrenia and BMI at 16p11.2, so it

is possible that the pathophysiological contribution of INO80E will be better explained in com-

bination with other genes than independently, a hypothesis that might be of interest for experi-

mental design. Our pairwise findings also suggest that INO80E has an important contribution

to at least two other traits. In bipolar disorder, INO80E is the top individual associated gene

and is the most disproportionate contributor to pairs. In ASD, INO80E is a weakly associated

top individual gene and is the most frequent (albeit not strongly disproportionate) contributor

to significant pairs. This finding suggests that four traits may be influenced by the INO80E
gene, and at least in the case of ASD, this gene works in combination with other genes. How-

ever, we have not found evidence of the involvement of INO80E in IQ, highlighting that the

neurobehavioral phenotypes of 16p11.2 may be broader than the impact of this single gene,

under the assumption that IQ in the general population is a good representation of the

16p11.2-mediated impact on intellectual ability.

There are a number of limitations in our approach to probing the architecture of 16p11.2

and 22q11.2 CNVs using pairs of gene expression predictions and region-wide gene expression

scores. There are numerous combinatorial models that have not been tested, and the true

architecture of gene-trait pairs may lie anywhere in between what we can capture in simplified

models. In fact, given the observation that the entire 16p chromosome arm is enriched for

ASD risk signal and has high amount of chromosomal contact, the region itself, as we had

defined it, could be insufficient [36–38]. By design, the expression imputation framework is

based entirely on cis-regulation of expression and does not capture trans-regulatory effects.

Thus an effect on trait that is due to non-cis architecture may be a false negative. Another plau-

sible scenario is that a cis-eQTL has pleiotropy with a trans-regulatory region (such as chromo-

somal contact). If that is the case, within-region gene pairs that appear associated with

phenotypes may be misleading with respect to specific genes, although our observations about

the advantage of pairwise models for variance explained would remain valid. Finally, TWAS

approaches are unable to capture direction of effect in a reliable way [39]. As a result, this

experimental design also does not allow us to account for the interesting questions of direc-

tionality (i.e., in cases where a trait is present in only deletions or duplications) and reciprocal

phenotypes.

Another potential model that we have not tested is that only the extremes of the distribu-

tion–either in pairwise sums or region-wide scores–will impact a phenotype, and more modest

increases and decreases in gene expression are buffered. For example, the BMI-16p11.2 panel

in Fig 3 suggests a difference in the top and bottom decile compared to the BMI-score relation-

ship in the intermediate deciles. Our study using all individuals has an advantage in statistical

power if more typical gene expression levels are relevant to the trait, but a disadvantage given

the potential noise that is introduced if only extreme expression deviation is relevant to

uncommon traits such as schizophrenia, bipolar disorder, and ASD.

A technical limitation of our study design is that available datasets are not always ideal for

our approach. For BMI, IQ, and ASD, the best-powered datasets are summary statistics. We

use the summary statistics for single and pairwise association testing, determining permuta-

tion-based significance cutoffs, and finding top individual genes that are represented in pairs.

However, in order to measure variance explained and region-wide scoring, we use individual-

level data. We have to consider heterogeneity across the cohorts as a caveat when comparing

results. Still, for both ASD and IQ the individual level data used is a subset of the full cohort
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comprising summary level statistics, minimizing the differences. For consistency with the pub-

lished Psychiatric Genomics Consortium data, we limited our analyses to white (European)

ancestry. As a result, we are likely not capturing the entire spectrum of eQTL data and GWAS

and are less confident in the transferability of our expression prediction models, but we expect

that our findings about CNV-trait architecture will be true for any genetic-ancestry group.

Finally, our study is based on multiple tissues derived from adults, rather than more targeted

analyses of the brain during specific developmental timepoints. Similarly, when we decide

which model explains more variance, we do not weight tissues differently (according to trait

relevance, sample size, etc.). Despite the limitations, we may be detecting signal driven by a

subset of the data; for example, ASD-donor cerebral organoids show cell-type specificity of

INO80E to neuroepithelial cells during development, yet we detect a pairwise contribution in

cross-tissue analysis [40].

The 16p11.2 and 22q11.2 regions are highly penetrant for neurobehavioral traits, but

require a better understanding of genetic architecture to indicate key biological pathways. By

extending transcription imputation to study a simple summed model of pairwise gene expres-

sion, we uncover a consistent pattern of higher variance explained by gene pairs than either

single genes or traditional interaction models and several traits showing region-wide associa-

tion signal (Fig 4). Most of these patterns appear specific to CNV regions and did not appear

to represent the genetic architecture in matched control regions. ASD, for which single gene

approaches had small to no effect, shows pairwise association signal above that of controls at

both 16p11.2 and 22q11.2. Having failed to dissect 22q11.2 with single-gene approaches, here

we found least two 22q11.2 traits–BMI and IQ–that can be better modeled region-wide. Our

study suggests that pathobiological insights might result from studying combinations of the

genes in and near these CNVs, albeit with potentially differing genetic architecture across traits

and regions.

Methods

Genes studied

We selected genes at the 16p11.2 and 22q11.2 CNV regions that fell into one of these annota-

tion categories: protein-coding, lincRNA, pseudogene, antisense, miRNA. These were consis-

tent with what was used for PrediXcan modeling previously, with miRNA included given the

strong representation of miRNAs at 22q11.2 [41, 42]. We included noncoding genes, as they

have not received significant attention in studies of these regions, despite some evidence of

miRNA contribution to 22q11.2 phenotypes. In addition, we considered flanking genes within

200kb of the region, as there is suggestive evidence of broader transcriptional effects in CNV

carriers, and because we previously found evidence of flanking gene involvement in psychosis

[22, 27]. S1 and S2 Tables contain single and pairwise CNV genes used in analysis.

Phenotypes and datasets

Imputed genotypes from the Psychiatric Genomics Consortium were used to study schizo-

phrenia (wave 3 freeze), bipolar disorder (wave 2 freeze), and ASD (2019 freeze, used for analy-

sis of variance explained only) [25, 43, 44]. Although bipolar disorder is not one of the

strongest associated phenotypes with either CNV, it does get picked up in carrier screens, and

we included it in the study due to its large sample size and high genetic overlap with schizo-

phrenia [28, 29, 45, 46]. An additional joint PGC-iPsych ASD summary statistic set was used

to boost power for ASD analyses (www.med.unc.edu/pgc/download-results/) [44]. Summary

statistics from the GIANT consortium (2015 freeze, www.portals.broadinstitute.org/

collaboration/giant/index.php/GIANT_consortium_data_files)) were used to study BMI, and

PLOS GENETICS Combinations of genes at CNVs contribute to neurobehavioral traits

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010780 June 2, 2023 12 / 20

http://www.med.unc.edu/pgc/download-results/
http://www.portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
http://www.portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
https://doi.org/10.1371/journal.pgen.1010780


a VU-Amsterdam University cohort (wave 2 freeze, www.ctg.cncr.nl/software/summary_

statistics) was used for IQ [47, 48]. Individual-level IQ and BMI data from the UK Biobank

were used for validating discoveries in individual-level data on phenotypes for which individ-

ual-level data were not available [49]. Cohorts and sample sizes are listed in S3 Table. It is pos-

sible that 1–2% of the individuals in these cohorts are CNV carriers, resulting in poorer

expression prediction, but the amount of noise will be negligible and biased towards false neg-

atives rather than false positives.

Predicting the expression levels of individual 16p11.2 and 22q11.2 CNV

genes

Analyses of single genes were performed using elastic net models from www.predictdb.org

trained on the GTEx version 8 data [24]. These prediction models were available for up to 42

16p11.2 genes and up to 65 22q11.2 genes in at least one tissue. The elastic net approach was

chosen for consistency with our pairwise model training approach. Gene expression for each

CNV gene in each individual was predicted using the—predict option in PrediXcan, for each

cohort [50]. Analyses on summary statistics did not require expression prediction.

Finding control gene sets

To create control gene sets to use in a permutation-based analysis, the 16p11.2 and 22q11.2

regions were matched on three categories: (1) number of genes (exact), (2) length of the region

(in bases, 80–120% of the region), (3) ratio of coding to non-coding genes (at least 80% that of

the region to avoid picking up dense regions of noncoding genes). Gene sets that overlapped

the distal 16p11.2 region or the Major Histocompatibility Complex (a known gene-dense

major GWAS-identified locus for schizophrenia) were excluded [51]. Overall, we found 38

comparable regions to 16p11.2 and 28 to 22q11.2. The list of control regions can be found in

S4 Table.

Predicting the expression of pairs of 16p11.2 and 22q11.2 CNV genes

As a simple way to model pairwise gene expression, we took every pair of genes in each CNV

and defined pairwise “joint genes” with expression equal to the inverse-normalized sum of the

expressions of each gene in GTEx. Normalized GTEx gene expression sums were used as

inputs to the PrediXcan elastic net model training pipeline (www.github.com/hakyimlab/

PredictDB_Pipeline_GTEx_v7), with covariates used for the GTEx v8 analyses downloaded

from www.gtexportal.org/home/datasets. Given that our goal was to evaluate the contribution

of these pairwise genes to specific traits, rather than a general-use pairwise model training pro-

cess, a high overlap between the SNPs in our models and the GWAS datasets was vital. For

that reason, we chose to repeat the training process for each trait, leaving only the SNPs in

each GWAS dataset as inputs for model training. We repeated this model training process

again on the control pairs of genes. For 16p11.2 genes, the prediction R2 median and mean are

0.091 and 0.12, respectively; for chosen controls they are 0.093 and 0.14. For 22q11.2 genes, the

prediction median and mean are 0.1 and 0.13, respectively; for chosen controls they are 0.09

and 0.13. This consistency suggests that the control regions are well-matched for key proper-

ties relevant to predicted expression.

To generate the plots in S1 Fig, we extracted predictive SNPs for the INO80E/ZNF48 gene

pair in the Frontal Cortex-BA9 tissue, as well as the SNPs for the two individual genes. Locus-

Zoom (original version, www.locuszoom.org) was run using the schizophrenia association

results for these SNPs from the PGC Schizophrenia wave 3 summary statistics (https://doi.org/

10.6084/m9.figshare.19426775). LD correlation values were generated by LDMatrix from
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LDLink (www.ldlink.nci.nih.gov) and plotted using the LDHeatmap R package with a color

key intended to match that of LocuzZoom.

Association studies between predicted expression and traits

Individual level. Each PGC cohort was converted from PLINK to dosage format for Pre-

diXcan input. Tissue-specific prediction models were applied to each tissue in each cohort.

MultiXcan, a cross-tissue implementation of PrediXcan, was used to combine predicted

expressions across tissues and perform association with trait [52]. Using the MultiXcan p-

value and the average direction of effect of each gene across tissues, we used METAL to deter-

mine a per-gene result [53]. Both single gene and pairwise analyses were performed in the

same way.

Summary level. The ‘MetaMany’ option in the MetaXcan package was applied to sum-

mary-level data using single-tissue prediction models to generate gene-level association results

for each tissue [54]. S-MultiXcan, a cross-tissue implementation of PrediXcan for summary

level data, was used to combine across tissues for tissue-wide association results [52]. Cross-tis-

sue covariances were downloaded from PredictDB for single-gene models and generated from

single tissue covariances for pairwise models using the covariance builder script available at

www.github.com/hakyimlab/MetaXcan/blob/master/software/CovarianceBuilder.py. Both

single gene and pairwise analyses of summary statistics were performed in the same way.

UK Biobank additional expression prediction

While the best-powered GWAS meta-analyses of BMI and IQ were available as summary sta-

tistics, certain analyses such as interaction models and percent variance explained require indi-

vidual-level data. We obtained IQ and BMI measurements from the UK Biobank and took an

average across visits for people with multiple measurements. Analysis was limited to individu-

als who reported their ethnicity as “white”, and included age, age-squared, and 40 principal

components as covariates. A large number of principal components was used due to the corre-

lation between the BMI phenotype and components in the PC 30–40 range. Expression impu-

tation for single genes and pairs was performed with PrediXcan as described above.

Significance thresholds for association studies

For all association studies, a permutation-based threshold was determined using the control

gene sets. After association testing between control gene sets for a CNV and phenotype, the

median of the 5th percentile of control sets was used as a 5% significance threshold for the true

CNV region. As control genes are chosen independently of association with trait, using a

median across all regions will counteract bias caused by any control gene set overlapping a

strong GWAS peak for a trait.

Estimating variance explained by pairwise models

Variance in phenotype explained by imputed expression was measured as the R2 of the linear

model between case-control status and imputed expression for all genes in the CNV. Specifi-

cally, the adjusted R2 was used, as using all pairs of genes involves a large number of variables.

For every tissue-cohort pair, R2 values were calculated using all single genes, all pairwise genes,

and interaction terms. The number of times a model (single, pairwise, or interaction) had the

greatest R2 for a cohort-tissue pair was tallied. The same process was implemented for control

gene sets. A chi-square test was performed to determine whether the proportion of pairwise

models being “best” in a CNV region was different from the proportion in control regions.
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This approach required individual-level data, and as we used summary level data for ASD, IQ,

and BMI, we performed it in PGC ASD individual-level data (without iPSYCH), and UK Bio-

bank for IQ and BMI (each of which was treated as one single cohort).

We acknowledge that previous attempts to solve the problem of variance explained by pre-

dicted expression were made by Liang et al [55]. We attempted this method and found

extremely large estimates for variance explained. This inflation might be due to our relatively

small (<5 MB) regions of interest with high SNP and predicted-expression correlation struc-

ture, as opposed to a predicted transcriptome-wide screen. The estimates provided by our

approach, where the adjusted R2 rarely exceeds 0.05, are a more reasonable estimate of the

effect of one small set of genes on a trait.

Testing a region-wide model

We estimated a region-wide score for each individual using their single-gene predicted expres-

sions. First, we found the normalized rank of an individual for the expression of a gene; the

median rank was used for genes expressed in multiple tissues. The sum of an individual’s

gene-specific rankings became the individual’s region-wide score; these scores were converted

to normalized (between 0 and 1) ranks. For quantitative traits, we quantified the relationship

between score and phenotype as a Pearson correlation. For binary traits, we tested for a differ-

ence in score distribution between cases and controls (Kolmogorov-Smirnov test), as well as

for a difference in score means between cases and controls (t-test).

Initially, we attempted to approach region-wide association in the same way as pairwise

association for schizophrenia. Region-wide sums of GTEx expressions of all CNV genes were

used as inputs into elastic net models from GTEx SNPs, with the same covariates as before.

After model quality filtering, models in only 5 tissues at 16p11.2 and 13 tissues at 22q11.2

remained, all with R2 < 0.1. As a result, we did not further pursue this method.

Supporting information

S1 Fig. Landscape of SNP predictors for single and pairwise genes. As a representative

example of the relationship between the prediction SNP architecture for single vs. pairwise

genes, we selected INO80E and ZNF48, the top schizophrenia pair, in the frontal cortex, a puta-

tive schizophrenia-relevant tissue. 60 SNPs from three categories are plotted: 20 INO80E pre-

dictors, 32 ZNF48 predictors, and 8 predictors of the INO80E/ZNF48 pair. Top: LocusZoom

plot of association of predictor SNPs with schizophrenia. Circles: SNP predictors in one of the

three (above) categories. Y-axis: schizophrenia association P-value (left, circles); recombina-

tion rate (right, blue line). X-axis: distance on chr. 16. Middle: Distribution of plotted SNP

positions for all three categories (vertical bars) with colored lines representing prediction for

gene or pair. Red rectangle: INO80E gene, red lines: INO80E predictors; blue rectangle: ZNF48
gene, blue lines: ZNF48 predictors; purple x: INO80E-ZNF48 theoretical expression pair, pur-

ple lines, INO80E-ZNF48 pair predictors. Bottom: LD structure of predictive SNPs. LD heat-

map color scale is in the same order as the R2 scale in LocusZoom. Note: Approximately 120

additional unique genes (both coding and noncoding) are located in the region (not shown),

including 30 between INO80E and ZNF48.

(PDF)

S2 Fig. Pairwise signal at 16p11.2 is polygenic. Q-Q plots comparing PrediXcan association

signal from single 16p11.2 genes (blue), pairs of 16p11.2 genes (orange), single genes in control

subsets (gray), and pairs of genes in control subsets (black).

(PDF)
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S3 Fig. Pairwise signal at 22q11.2 is polygenic. Q-Q plots comparing PrediXcan association

signal from single 22q11.2 genes (blue), pairs of 22q11.2 genes (orange), single genes in control

subsets (gray), and pairs of genes in control subsets (black).

(PDF)

S4 Fig. Patterns of top single genes contributing to significant pairs at 16p11.2. Y-axis:

counts of the number of times each gene contributes to a significant pair (permutation P-

value <median of 5th percentiles of control region p-values). Bars in blue represent genes sig-

nificant (permutation P-value < median of 5th percentiles of control region p-values) in a sin-

gle gene model for the same trait, with rank indicated above the bar. Bars in orange represent

genes not significant in a single gene model. X-axis: genes in chromosomal order. Dispropor-

tionately represented genes (mean + 2.5 standard deviations) are bolded.

(PDF)

S5 Fig. Patterns of top single genes contributing to significant pairs at 22q11.2. Y-axis:

counts of the number of times each gene contributes to a significant pair (permutation P-

value <median of 5th percentiles of control region p-values). Bars in blue represent genes sig-

nificant (permutation P-value < median of 5th percentiles of control region p-values) in a sin-

gle gene model for the same trait, with rank indicated above the bar. Bars in orange represent

genes not significant in a single gene model. X-axis: genes in chromosomal order. Dispropor-

tionately represented genes (mean + 2.5 standard deviations) are bolded.

(PDF)

S6 Fig. Region-wide score association with ASD, bipolar disorder, and schizophrenia.

Region-wide scores across individuals were binned into deciles and the mean (dot) and stan-

dard error (bars) of case-control ratios for each decile are plotted. Best fit line across deciles

is shown. Top: 16p11.2. Bottom: 22q11.2. Left to right: ASD, Schizophrenia, Bipolar Disor-

der.

(PDF)

S1 Note. Members of the Psychiatric Genomics Consortium contributing to this work.

(DOCX)

S1 Table. Pairwise and single predictive model qualities for 16p11.2 genes. Four different

model sets were created for SNP overlap (ASD and bipolar used the same PGC panel). For

each pair of genes, the median of prediction qualities (R2) among tissues along with the num-

ber of tissues for which predictive models are available (which can be zero) are noted. These

are compared to single-gene predictive model qualities and coding/noncoding genes are anno-

tated.

(XLSX)

S2 Table. Pairwise and single predictive model qualities for 22q11.2 genes. Four different

model sets were created for SNP overlap (ASD and bipolar used the same PGC panel). For

each pair of genes, the median of prediction qualities (R2) among tissues along with the num-

ber of tissues for which predictive models are available (which can be zero) are noted. These
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tated.
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S5 Table. Single gene associations with five neurobehavioral traits. Genes are listed in order

of MultiXcan/S-MultiXcan p-values and genes significant based on a permutation-based

threshold are highlighted.
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based threshold are highlighted.
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based threshold are highlighted.
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S8 Table. Number of times a 16p11.2 or 22q11.2 gene is represented in a top associated

pair. Tabulation of count data from Fig 2. Highlighted genes are significant single genes for
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