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Biofilms are communities of microorganisms attached to a surface. The biofilm is a lifestyle

that provides numerous advantages to its bacterial inhabitants, as it can offer shelter from

predators, favor exchange of nutrients and genetic material, and provide resistance to xenobi-

otic stresses. However, conditions around or within the biofilm can deteriorate and bacteria

may need to escape to avoid a death threat. Consequently, to stick or not to stick to a biofilm is

a crucial decision. The fate of an individual bacterium often relies on its ability to either adhere

and settle in an environment or disperse. Likewise, the fate of the entire colony often relies on

managing its population as a function of environmental conditions. For these reasons, adhe-

sion is usually the result of combined actions of several tightly regulated processes. A recent

PLOS Genetics paper by Maeve McLaughlin and colleagues describes a new transcription fac-

tor involved in the regulation of bacterial adhesion and sheds light on the complexity and mul-

tifactorial nature of this regulation [1].

There are multiple stages in the making of a biofilm [2]. Swimming or free-floating bac-

teria in the planktonic phase first approach a surface and interact with it thanks to various

extracellular appendages, such as flagella and pili. This initial adhesion is reversible and

cells can still leave the surface if conditions are not optimal. However, if the environment is

favorable, these attached cells can commit to the biofilm lifestyle by strengthening their

adhesion to the surface and become irreversibly attached. Obviously, the processes that gov-

ern transitions between motile and sessile lifestyles, reversible and irreversible adhesion,

must be tightly regulated. Once permanent adhesion is achieved, bacteria attached to the

surface multiply, the biofilm grows, and two fates are possible for the newborns: join the

biofilm or leave the biofilm and disperse. Bacteria that stay in the biofilm have developed

several, nonexclusive strategies to ensure strong permanent adhesion. Some bacteria inter-

act with the surface thanks to adhesins located around their cell body, such as fimbriae and

other adhesin proteins. Other bacteria secrete an extracellular matrix, usually composed of

polysaccharides, proteins, and / or DNA molecules which help trap cells close to the surface.

Finally, most Alphaproteobacteria rely on a strong polar polysaccharide adhesin to irrevers-

ibly attach to the surface [3]. The holdfast of Caulobacter crescentus is the best characterized

example of such polarly located adhesins, and this polysaccharide is itself responsible for

irreversible adhesion and biofilm formation.

C. crescentus has a dimorphic lifecycle where each motile newborn cell (swarmer) bears a

flagellum and several pili at one pole. Upon transition to the sessile form, the swarmer cell

sheds its flagellum and retracts its pili, entering the non-motile phase of the lifecycle. An adhe-

sive holdfast is synthesized at the pole previously bearing flagellum and pili. Then the cell pro-

duces a polar stalk that pushes the holdfast away from the cell body. The resulting stalked cell
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elongates into a predivisional cell and synthesizes a new flagellum at the pole opposite the

stalk. Finally, each predivisional cell divides and gives birth to a new motile swarmer cell.

Holdfast production is tightly regulated by several independent mechanisms controlled

at numerous stages during the lifecycle of the bacterium. This multilayer mechanism

ensures that holdfast is produced in a timely manner during the cell cycle and only when

conditions are favorable. Indeed, as holdfast-mediated adhesion is irreversible, it is impor-

tant that holdfast is produced only when the environment is suitable for reproduction,

development, and habitat colonization. Holdfast is produced via two distinct pathways, in

the presence or in the absence of a surface. Conditions permitting, holdfast is synthesized

within seconds upon contact after C. crescentus encounters a surface [2,4]. Surface sensing

and subsequent holdfast production result from the combined action of the flagellum and

pilus machineries [4–6]. The first interaction between the pili and the surface creates a resis-

tance for their retraction, which consequently stimulates the production of the nucleotide

second messenger molecule cyclic di-GMP (cdG) by the diguanylate cyclase PleD [7,8].

This generates the first cue which eventually stimulates holdfast production [4]. cdG pro-

duction induced by hampered pili retraction also triggers cell differentiation [7,8], stimulat-

ing the formation of holdfast-bearing stalked cells that will attach irreversibly to the surface.

Simultaneously, pili retraction also brings the polar flagellar machinery, located at the same

pole of the cell, in contact with the surface. This event triggers the second signal for holdfast

production [5,6]. While the flagellum filament or its rotation are dispensable for the surface

contact response [5,9], the motor senses the surface upon direct contact via an unknown

mechanism involving proton motive force and intracellular pH changes [5]. Upon contact,

the flagellar motor triggers the production of cdG via the diguanylate cyclase DgcB. The

produced cdG binds to the predicted glycolipid glycosyltransferase HfsJ, leading to the acti-

vation of this protein crucial for holdfast synthesis [5].

C. crescentus does not only produce holdfast upon contact with a surface, but it can also

synthesize a holdfast in the absence of a surface. In that case, holdfast production is part of a

complex developmental program that leads newborn swarmer cells to differentiate into stalked

cells. Holdfast production during the cell cycle is regulated by levels of cdG inside the cell

[10,11]. cdG is an important player in the switch from motile to sessile lifestyles in many bacte-

ria [12] and has been shown to be crucial for proper timing of holdfast synthesis upon cell dif-

ferentiation: holdfast synthesis is temporally regulated during the cell cycle and holdfast is

produced at the pole when cells reach late swarmer cell stage [10]. The main regulator of hold-

fast synthesis in the absence of a surface is the holdfast inhibitor protein HfiA [13]. HfiA

directly interacts with HfsJ, a protein crucial for holdfast synthesis [13]. As depicted in Fig 1,

HfiA itself is subjected to a complex multi-layered regulation. An ever-growing set of regula-

tors act in concert and maintain HfiA at levels which enable proper holdfast synthesis when

conditions and timing are suitable. First, the cell cycle regulators StaR, GcrA, and CtrA bind to

the hfiA promoter and control its expression, thus ensuring the timing of holdfast synthesis

during cell cycle differentiation [13]. Another layer of regulation occurs in response to stressful

environmental signals such as nutrient limitation [13] and the general stress response [14], via

the action of two-component systems (TCS) such as LovK / LovR [15] and the single-domain

response regulator MrrA [16]. Both LovK / LovR and MrrA control hfiA transcription [13,16]

via a complex network of TCS including the hybrid histidine kinase SkaH, the TCS SpdS /

SpdR, and the RegBA transcriptional regulators RtrA and RtrB [17]. Furthermore, hfiA expres-

sion is also indirectly regulated by flagellum and pili assembly and by chemotaxis proteins by

yet unknown mechanisms [9,18,19] (Fig 1). Finally, the chaperone DnaK is crucial for HfiA

stabilization in the cell once the protein is synthesized [20].
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A few years ago, David Hershey and the Crosson laboratory designed a clever unbiased

genome-wide screen using a barcoded transposon library in C. crescentus where mutants

impaired in adhesion were enriched by their inability to bind to cheesecloth. Adhering bacteria

efficiently bind to the cheesecloth, therefore leaving the liquid medium enriched with non-

adhering bacteria. The transposon library was grown in the presence of cheesecloth for multi-

ple days, and each day, the medium containing unattached cells was used to inoculate a fresh

culture containing a sterile cheesecloth piece [18]. This simple enrichment was instrumental

for important findings in holdfast regulation. For example, it helped determine that motility,

flagellum synthesis, and type IV pili assembly are involved in adhesion via holdfast production

by regulating hfiA expression [18]. More recently, this screen led to the characterization of the

flagellar signaling suppressor (fss) genes which also contribute to holdfast regulation by acting

downstream of flagellum assembly to regulate hfiA expression [21]. That same work also

showed that improper flagellum assembly regulates holdfast production via two distinct path-

ways: a ’mechanical pathway’ regulated by load on the flagellar filament via the stator proteins

Fig 1. HfiA is a master regulator of holdfast production and irreversible adhesion in C. crescentus. The small protein HfiA (Holdfast inhibitor A) is

regulated at the transcriptional level by several players as described in the main text.

https://doi.org/10.1371/journal.pgen.1010648.g001
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and the diguanylate cyclase DgcB and a ’developmental pathway’ regulated by the presence of

a functional flagellum, the fss genes, and the diguanylate cyclase PleD [21]. Both pathways con-

verge to regulate hfiA transcription using different routes.

McLaughlin and colleagues performed a similar cheesecloth enrichment using a hyper-

adhesive strain that overexpresses a non-phosphorylatable LovK (lovKH180A) mutant leading

to the misregulation of hfiA expression and overproduction of holdfasts [17]. Two transcrip-

tion factors, RtrA and RtrB, were previously shown to directly bind to the hfiA promoter and

repress its transcription [17]. The work by McLaughlin and colleagues highlights a new tran-

scription factor involved in this pathway, RtrC. The latter binds a pseudo-palindromic motif

present in the hfiA promoter region and represses its expression [1]. All the work accumulated

by the Crosson laboratory over the years places HfiA as a key player in holdfast regulation (Fig

1). Changes in hfiA transcription cause changes in holdfast production and subsequent cell

attachment, so it is not surprising to find out that the regulation of this master regulator of

holdfast synthesis is finely tuned by a complex network that acts upon different conditions and

at different levels.

Using a polar adhesin to bind to surfaces is a trait shared by many Alphaproteobacteria

[3,22] (Fig 2). Polar adhesins are involved in binding to surfaces, but also in forming polarly

arranged cell aggregates called rosettes [23]. So far, only two types of these polar adhesins have

been extensively characterized: the holdfast in the Caulobacterales [23,24] and the unipolar

polysaccharide UPP in the Rhizobiales [25]. The holdfast synthesis gene cluster (hfsEFGHC-
BAD) is found in Caulobacterales that synthesize a holdfast [24,26], while the uppABCDEF
UPP cluster is conserved in the Rhizobiales [27,28] (Fig 2). Other Alphaproteobacteria have

also been reported to attach to surfaces using a polar adhesin and / or form characteristic

rosettes, such as the Rhodobacterales Phaeobacter inhibens [29], Sagittula stellata [30] and

some marine Roseobacters [31]. However, little is known about the synthesis and composition

of those polar adhesins, and these bacteria do not have homologs in either of the hfsE-D or

uppA-F clusters (Fig 2).

In addition to the synthesis clusters mentioned above, a series of other proteins are essential

for holdfast and UPP formation, such as glycosyltransferases (HfsJ and HfsI in C. crescentus
[32] and H. baltica [26], or UppL in A. tumefaciens [28]) (Fig 2). While homologs of HfsJ are

conserved in the Caulobacterales, UppL is present only in several A. tumefaciens strains [28]

and no homologs could be found in other Rhizobiales and Rhodobacterales (Fig 2). The

Crosson laboratory showed previously that, in C. crescentus, HfsJ activity is inhibited by direct

interaction with HfiA, preventing holdfast to be synthesized [13]. Interestingly, there are no

known homologs of HfiA in other species than C. crescentus (Fig 2). In addition, while RtrA

and RtrB are widely spread in the Alphaproteobacteria, RtrC homologs can only be found in

Caulobacterales closely related to C. crescentus [1] (Fig 2). But while HfiA is unique to C. cres-
centus, RtrC (directly controlling HfiA expression) is restricted to closely-related species, and

HfsJ (HfiA direct target) is not present in all Alphabacteria bearing a polar adhesin, the hfiA
regulators LovK / LovR and SpdS / SpdR are not only found in most Alphaproteobacteria but

also widespread among other bacteria (Fig 2) [33,34].

The LovK / LovR TCS are LOV (light, oxygen, voltage) blue light photoreceptor proteins

conserved in bacteria, archaea, plants, and fungi [33]. While photoreceptors were first thought

to be crucial only for photosynthetic organisms that use sunlight as an energy source, we now

know that non-phototrophic bacteria also respond to light to regulate important lifestyle deci-

sions such as motility, virulence and adhesion [33,35]. In addition to C. crescentus holdfast reg-

ulation, LOV proteins have been shown to play a role in regulating adhesion in Xanthomonas
axonopodis [36], Ralstonia pseudosolanacearum [37], and Rhizobium leguminosarum where it

regulates extracellular exopolysaccharide production [38]. Interestingly, R. leguminosarum
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produces a UPP polar polysaccharide [39] (Fig 2) and it would be interesting to know if its pro-

duction is also regulated by light via the LOV complex. Homologs of the SpdS / SpdR TCS are

also present in many species, although under a confusing plethora of names [34]. These key

TCS are major regulators of photosynthesis and other metabolic processes, but are also

involved in the regulation of many other cellular processes [40]. They have been reported in

various species to control motility and / or adhesion. In Rhodobacter capsulatus, the RegB /

RegA regulon controls the majority of genes involved in motility [41] and, in Rhodobacter
sphaeroides, PrrB / PrrA regulates aerotaxis [42]. Whereas, in Pseudomonas aeruginosa, RoxS /

RoxR regulates bacterial attachment to epithelial cells [43], the MSMEG_0244 / MSMEG_0246

and PrrB / PrrA pairs control biofilm formation in Mycobacterium smegmatis and R. sphaer-
oides respectively [43,44]. In C. crescentus, SpdS / SpdR controls the expression of at least three

hfiA transcriptional regulators: RtrA, RtrB [17], and the newly described RtrC [1]. These regu-

lators modulate holdfast production and biofilm formation. Interestingly, the work by

McLaughlin et al. shows that, in C. crescentus, RtrC can act as a repressor or activator of gene

expression depending on its binding site location [1]. In addition to the hfiA promoter, RtrC

binds to the promoter of genes involved in cdG signaling, motility, and chemotaxis [1]. This

suggests that the entire pathway might regulate more than irreversible adhesion via HfiA-

dependent holdfast production. This work provides hints for RtrC acting as a regulator operat-

ing at the crossroad of opposing lifestyles: sessile or motile. It will be interesting to determine

whether this complex and multi-layered regulation cascade could also be involved in other

Fig 2. Conservation of proteins involved in holdfast regulation via HfiA in C. crescentus among several Alphaproteobacteria bearing a polar adhesin.

Several species reported in the literature as bearing a polar adhesin have been selected to build this phylogenetic tree: Caulobacter crescentus [23] and C. henricii
[45], Brevundimonas subvibrioides [45], Asticcacaulis excentricus [23] and A. biprosthecum [46], Hyphomonas adhaerens [47], Hirschia baltica [26], Maricaulis
maris [45], Agrobacterium tumefaciens [48], Rhizobium leguminosarum [39], Sinorhizobium meliloti [49], Rhodospeudomonas palustris [27], Bradyrhizobium
japonicum [50], Phaeobacter inhibens [29] and Sagittula stellata [30]. The tree was built using a concatenated alignment of 7 conserved proteins (FusA, GyrA,

GyrB, RecA, RpoA, and RpoB) aligned using MUSCLE [51] and constructed using iTOL [52]. Red, orange et yellow boxes represent the presence of a polar

adhesin (holdfast, UPP, or other respectively). The presence of homologous proteins was determined by BLAST [53] reciprocal best hits, with cut-offs of E

value> 10−5 and sequence identity> 50%. The presence of homologs for the HfsE-D holdfast cluster, HfsJ, HfiA, RtrA, RtrB, RtrC, and SpdS / SdpR is

represented by a colored box. The absence of the box indicates that no protein satisfied the BLAST criteria.

https://doi.org/10.1371/journal.pgen.1010648.g002
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steps of the motile to sessile transition. This transition must also be tightly controlled in other

bacteria, and little is known about the regulators involved in this switch in other Alphaproteo-

bacteria [25]. As discussed above, RtrC homologs are present only in species closely related to

C. crescentus [1] (Fig 2), and more studies are needed to determine how unique this regulation

system is and how other bacteria producing a polar adhesin switch from motile to sessile

lifestyles.

In conclusion, the work by McLaughlin et al. adds a new player involved in the complex

regulation cascade of HfiA, illustrating that this small protein acts as a master regulator of

holdfast production and irreversible adhesion in C. crescentus [1]. HfiA and RtrC are unique

to close relatives of C. crescentus. It would also be interesting to know how other species that

produce polar polysaccharides to irreversibly adhere to surfaces and form biofilms ensure

proper timing of synthesis of their adhesins when conditions are favorable. Do they also rely

on RegB / RegA or other TCS? Do they have several regulation pathways and / or a master reg-

ulator like HfiA, controlled at multiple levels?
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