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Abstract

Mediation analysis is commonly used to identify mechanisms and intermediate factors

between causes and outcomes. Studies drawing on polygenic scores (PGSs) can readily

employ traditional regression-based procedures to assess whether trait M mediates the

relationship between the genetic component of outcome Y and outcome Y itself. However,

this approach suffers from attenuation bias, as PGSs capture only a (small) part of the

genetic variance of a given trait. To overcome this limitation, we developed MA-GREML: a

method for Mediation Analysis using Genome-based Restricted Maximum Likelihood

(GREML) estimation.

Using MA-GREML to assess mediation between genetic factors and traits comes with

two main advantages. First, we circumvent the limited predictive accuracy of PGSs that

regression-based mediation approaches suffer from. Second, compared to methods

employing summary statistics from genome-wide association studies, the individual-level

data approach of GREML allows to directly control for confounders of the association

between M and Y. In addition to typical GREML parameters (e.g., the genetic correlation),

MA-GREML estimates (i) the effect of M on Y, (ii) the direct effect (i.e., the genetic variance

of Y that is not mediated by M), and (iii) the indirect effect (i.e., the genetic variance of Y that

is mediated by M). MA-GREML also provides standard errors of these estimates and

assesses the significance of the indirect effect.

We use analytical derivations and simulations to show the validity of our approach under

two main assumptions, viz., that M precedes Y and that environmental confounders of the

association between M and Y are controlled for. We conclude that MA-GREML is an appro-

priate tool to assess the mediating role of trait M in the relationship between the genetic

component of Y and outcome Y. Using data from the US Health and Retirement Study, we

provide evidence that genetic effects on Body Mass Index (BMI), cognitive functioning and

self-reported health in later life run partially through educational attainment. For mental

health, we do not find significant evidence for an indirect effect through educational attain-

ment. Further analyses show that the additive genetic factors of these four outcomes do
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partially (cognition and mental health) and fully (BMI and self-reported health) run through

an earlier realization of these traits.

Author summary

Mediation analysis is instrumental to identify intermediate factors between causes and

outcomes. We developed Mediation Analysis using Genome-based Restricted Maximum

Likelihood (MA-GREML) estimation to quantify to which degree the genetic component

(cause) of a trait (outcome) is mediated by another trait (intermediate factor). This method

has two main advantages. First, it captures the total additive genetic variance as estimated

using GREML rather than the smaller part of the genetic variance typically captured by

polygenic scores. Second, the individual-level data approach GREML takes allows users to

directly control for confounders in the model. We use analytical derivations, simulations,

and empirical data to validate the underlying model that is used to quantify to which

degree an intermediate trait mediates the relationship between the genetic component of

the outcome and the outcome itself. We conclude that MA-GREML is an appropriate

method to estimate genetic mediation and to test the significance of the indirect effect.

We implemented the estimation procedure in the freely available Python-based software

package MGREML, available at https://github.com/devlaming/mgreml/.

Introduction

Mediation analysis is widely used to identify the mechanisms and intermediate factors in

between causes and outcomes [1]. The original idea of mediation analysis dates back to at least

as early as 1934 [2], but it gained momentum after its seminal introduction in the social sci-

ences by Baron and Kenny almost 40 years ago now [3]. Since then, the number of studies

using mediation analysis has grown exponentially [4].

Motivated by the desire to control for genetic confounding [5], the earlier twin-study litera-

ture already attempted to investigate the effect of an environmental factor on a trait while con-

trolling for genetic influences assuming that a significant relationship between the mediating

variable and the outcome variable in a genetically-informative context would provide evidence

for mediation [6]. This approach is not guaranteed to be unbiased because the shared environ-

ment (family) component in a twin study may pick up parental genetic influences; moreover,

this approach fails in case the mediating variable is shared between twins [6]. The more

recently developed biometric mediation model for twin data [7] can detect genetic confound-

ing in a mediation setting, but has been designed to assess mediation between observed (non-

genetic) variables in a genetically-informative model.

The Baron and Kenny approach, though, to assess mediation draws upon conventional

regression techniques in a sample of unrelated individuals. By establishing that the effect of

the independent variable on the outcome variable significantly changes upon inclusion of

the mediating variable in the model, one can assess mediation [3, 8]. By drawing on poly-

genic scores (PGSs), several recent studies have employed such regression models to identify

the mechanisms through which genotypes affect traits [9–11]. A clear limitation of this

approach is that PGSs have limited explanatory power and as such do not fully account for

the additive genetic component of traits [12–15]. Although several regression approaches

have been developed recently to ‘disattenuate’ the estimated effect of the PGS from
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measurement error [15–17], these approaches cannot be used to properly account for the

total additive genetic component of the outcome variable in a mediation model because

these approaches do not recover the relationship between the main explanatory variable (the

PGS) and the mediating variable. To overcome this limitation of PGS-based mediation anal-

yses, we developed a structural equation model (SEM) for mediation analysis using Genome-

based Restricted Maximum Likelihood (GREML) estimation. This approach we refer to as

MA-GREML and has been implemented in MGREML, a Python-based command-line tool

[18, 19].

Originally, GREML estimation has been developed to quantify the contribution of random,

additive effects of single-nucleotide polymorphisms (SNPs) to variation in a trait [20, 21] (i.e.,

the genetic variance) and to the covariance between traits [22] (i.e., the genetic covariance).

Moreover, GREML also quantifies the environmental variance of traits (i.e., the phenotypic

variance not accounted for by the random SNP effects) and the environmental covariance

between traits (i.e., the phenotypic covariance not accounted for by the SNP effects). There-

fore, MA-GREML is able to quantify not only the genetic (co)variance of supposed mediator

M and outcome Y, but also the genetic variance of Y that is mediated byM (i.e., the indirect
effect) and the genetic variance of Y that is not mediated byM (i.e., the direct effect). Impor-

tantly, these estimates are not subject to the typical attenuation bias one would expect in a

mediation analysis using a noisy approximation of the genetic component ofM and/or Y, viz.,
a PGS.

MA-GREML, like Genomic SEM [23], relies on a structural equation model (SEM).

Importantly, whereas MA-GREML employs individual-level genetic data Genomic SEM

draws upon genome-wide association study (GWAS) summary statistics. Genomic SEM is a

flexible two-stage tool that allows users to specify and estimate a wide range of SEMs, also

ones involving forms of mediation. Nevertheless, MA-GREML uses a specific SEM focused

on the question to which degree the relationship between the genetic component of outcome

Y and outcome Y itself is mediated by mediatorM. Genomic SEM cannot be utilized to

answer this specific question because such a model based on GWAS summary statistics forM
and Y would involve more parameters than there are degrees of freedom in the model. We

refer to Section F in S1 Text for a more elaborate discussion of mediation analysis using

Genomic SEM.

Mendelian randomization (MR) models, in which the main explanatory variable is only

allowed to impact the outcome variable through the mediator, can be conceptualized as a

restricted version of the MA-GREML model. This restriction boils down to the so-called exclu-
sion assumption to hold in an MR study, which is often debatable and not empirically verifiable

[24, 25]. MA-GREML may however be instrumental to provide evidence in favor of the exclu-

sion restriction to hold (i.e., whether there is indeed full mediation). Relatedly, a GWAS is

sometimes conducted on a proxy-trait that is easier to measure than the trait of interest itself

[26]. Evidence that genetic effects on the proxy trait run largely or even fully through the actual

trait of interest may build confidence in such proxy-GWAS findings.

We use analytical derivations, simulations, and empirical data, to validate the structural

model underlying MA-GREML and the procedure developed to test the significance of medi-

ating effects. For the empirical analyses, we draw on longitudinal data from the US Health and

Retirement Study [27]. While we do find evidence that genetic effects on Body Mass Index

(BMI), cognition and self-reported health in later life run through educational attainment, the

evidence regarding the mediating role of educational attainment for mental health in later life

is inconclusive. In addition, we find that the additive genetic factors of these four later-life

health outcomes do partially (cognition and mental health) and fully (BMI and self-reported

health) run through an earlier realization of these traits.
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Description of the method

In this section, we first revisit univariate and bivariate GREML estimation. Second, we present

our main SEM, its underlying assumptions, and the interpretation of the latent factors in the

model. Third, we formulate the main quantities of interest (e.g., the direct effect and indirect
effect) as functions of the genetic and environmental (co)variance ofM and Y. Fourth, we pro-

pose a simple likelihood-ratio test (LRT) to assess whether the indirect effect differs from zero.

Finally, we compare MA-GREML estimation to a step-wise approach involving several univar-

iate GREML analyses that resembles the procedure suggested by Baron and Kenny [3] to test

for mediation in a regression framework.

GREML estimation

The default form of GREML estimation considers a single trait Y, for which it assumes fixed

effects (i.e., non-random) of the confounders and additive, random effects of the SNPs, where

each SNP is assumed to have the same explained variance (R2) with respect to the trait of inter-

est [20, 21]. Other specifications of how the R2 per SNP may vary across the genome are possi-

ble. Such a specification is referred to as a heritability model [28]. Typically, this specification

only affects the way in which the so-called genomic relatedness matrix (GRM) is calculated

[18, 29].

Under this model, Y can effectively be decomposed into (i) a latent genetic factor GY, (ii) a

latent environmental factor EY, and (iii) a contribution from the fixed-effect confounders. This

decomposition can be perceived as a simple SEM, involving two latent factors, viz., GY and EY.
The covariance of a given genetic factor between two individuals is equal to the corresponding

element from the GRM, which reflects genetic similarity between individuals based on SNP

data. Thus, the more genetically similar two individuals are, the more similar they tend to be

in terms of GY (i.e., their genetic predisposition towards Y). The covariance of a given environ-

mental factor is assumed to be zero across individuals: environmental exposures (other than

those captured by the fixed-effect confounders) are assumed to be uncorrelated across individ-

uals. Without loss of generality, we also assume that environmental factors have unit variance

and that all latent factors have an expectation equal to zero.

Omitting fixed effects in all equations for presentation purposes, this simple SEM can be

written as:

Y ¼ aGY þ bEY ; ð1Þ

where sGYY ¼ a
2 is the variance in Y accounted for by GY (i.e., the genetic variance of Y) and

sEYY ¼ b
2

the variance accounted for by EY (i.e., the environmental variance of Y). Quantities

sGYY and sEYY are so-called variance components (VCs) [30]. Univariate GREML applied to Y
provides estimates of these VCs while controlling for user-specified fixed-effect confounders.

In this framework, the SNP-based heritability (h2
SNPs) of Y is defined as

h2
SNPs ¼

sGYY
sGYY þ s

E
YY

; ð2Þ

reflecting the proportion of variance (in Y) accounted for by the additive SNP effects under the

specified heritability model.

Bivariate and multivariate generalizations of GREML [18, 22, 31] allow users to also esti-

mate genetic and environmental covariance between traits (denoted by sGMY and sEMY respec-

tively, for traitsM and Y). Genetic covariance quantifies the phenotypic covariance between

two traits accounted for by random SNP effects under the specified heritability model.

PLOS GENETICS MA-GREML

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010638 February 21, 2023 4 / 17

https://doi.org/10.1371/journal.pgen.1010638


Environmental covariance quantifies the remaining phenotypic covariance. These covariances

are also referred to as VCs. In this framework, the genetic correlation betweenM and Y is

defined as

rGMY ¼
sGMYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sGMMs

G
YY

p : ð3Þ

Similar to a classical correlation coefficient, rGMY can range between −1 and +1. In case

rGMY ¼ �1, the genetic components of the two traits are perfectly correlated.

A relatively parsimonious SEM for two traits could be a model in which there are two

genetic factors, with the first genetic factor only affectingM and the second genetic factor

affecting bothM and Y. Such a SEM would only be one possible representation of many

statistically equivalent models, that can all yield a valid rGMY (i.e., in between −1 and +1).

Given the number of options for the design of a SEM, its specification should be guided by

plausible assumptions.

Structural equation model

For the purpose of MA-GREML, we make the following set of assumptions, which yields the

SEM shown in Fig 1:

A1. The heritability model has been correctly specified.

A2. MediatorM precedes outcome Y and has homogeneous effect b on Y.

Fig 1. Structural equation model (SEM) for mediation analysis using GREML (MA-GREML), to quantify to which

extent the genetic component of trait Y affects trait Y through trait M. G and G� are latent genetic factors, E and E�
are latent environmental factors,M is the observed mediator, Y is the observed outcome, (a2 + g2)b2 is the genetic

variance of Y that is mediated byM (indirect effect), and c2 is the genetic variance of Y that is not mediated byM (direct
effect); Full mediation: direct effect = 0 and indirect effect> 0; Partial mediation: direct and indirect effect both> 0;

No mediation: direct effect> 0 and indirect effect = 0.

https://doi.org/10.1371/journal.pgen.1010638.g001

PLOS GENETICS MA-GREML

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010638 February 21, 2023 5 / 17

https://doi.org/10.1371/journal.pgen.1010638.g001
https://doi.org/10.1371/journal.pgen.1010638


A3. The environmental component ofM influences Y only throughM.

A4. Factors that violate A3 (environmental confounders) are controlled for.

A5. M has non-zero environmental variance, also when controlling for environmental

confounders.

Among these, Assumptions A2 and A4 are most critical. To see their relative importance,

observe that Assumption A1 has already been the subject of much research. Importantly, devi-

ations from the assumed heritability model can to a considerable extent be dealt with by modi-

fying the calculation of elements in the GRM [29]. Moreover, although Assumption A3 is

rather strict at first glance, some violations are permissible, provided these are due to observed

confounders that can be controlled for (see Assumption A4). Finally, Assumption A5 implies

the requirement ofM having h2
SNPs < 1, which is exceedingly likely in empirical applications,

as virtually all human traits are influenced by both genetic and environmental factors [32, 33].

Although Assumption A2 is quite typical in mediation analysis [8], this assumption is hard

to verify empirically. Types of mediation analyses using tools such as Genomic SEM [23] also

hinge on the causal direction from mediator to outcome being correctly specified. Imposing

this assumption requires solid theoretical motivation and argumentation.

Assumption A4 is equivalent to the following two requirements: after controlling for the

observed environmental confounders (i) there exists no other latent environmental factor that

has a direct effect on bothM and Y and (ii) what then remains in terms of E and E� is uncorre-

lated. The reason for introducing Assumption A4, as we show in Section C in S1 Text, is that

only then the environmental covariance betweenM and Y is purely driven by the causal effect

ofM on Y. Thus, Assumption A4 allows to consistently estimate b using the environmental

covariance. We stress that the set of environmental confounders included in the model should

not contain colliders, as their inclusion in the model leads to collider bias.

In light of Assumption A4, a notable advantage of GREML is that it uses individual-level

data, allowing users to directly control for aforementioned confounders of the association

betweenM and Y when identified using the environmental covariance. Genomic SEM [23],

for instance, relies on GWAS summary statistics. As indicated previously, Genomic SEM is

unable to identify the SEM in Fig 1, because it typically has no information about the envi-

ronmental (co)variance of traits at its disposal, and, thus, has too few degrees of freedom for

identification of all relevant parameters. However, even if an extension of Genomic SEM

would be able to identify the SEM in Fig 1 by leveraging sample overlap between a GWAS of

M and a GWAS of Y (and estimates of the environmental covariance betweenM and Y based

on that), and even though it may be convenient to use publicly available GWAS summary sta-

tistics from well-powered GWASs for the desired type of mediation analyses, adequately con-

trolling for such confounders of the association betweenM and Y remains difficult—in a

GWAS one typically only controls for (a rather limited set of) confounders of the association

between the SNP and the outcome, and not for confounders of the associations between vari-

ous traits when identified from the environmental (co)variance permeating the summary

statistics.

Interpretation of the latent factors

In the SEM shown in Fig 1, G and G� are latent genetic factors, E and E� are latent environ-

mental factors,M is the observed mediator, and Y is the observed outcome. Although observed

environmental confounders are not drawn in this figure (for the sake of clarity of the diagram),

these can readily be controlled for by MA-GREML.
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Conceptually, G is the genetic component ofM that is also permitted to affect Y directly,

whereas G� is the genetic component ofM that is only permitted to have an indirect effect on

Y, viz., throughM. To understand why both G and G� are relevant for this model, first observe

that without G the model would simply enforce full mediation: in that case there would only

be genetic factor G� of which its effect on Y runs fully throughM. Second, without G�, the

model would enforce a perfect genetic correlation betweenM and Y as both traits are then

affected only by shared genetic factor G in that case, irrespective of whether there is no media-

tion, partial mediation, or full mediation. For a more elaborate explanation for why both G
and G� are needed in the model, we refer to Section D in S1 Text.

The presence of environmental factor E� (i.e., with f 6¼ 0) is required to satisfy Assumption

A5:M has h2
SNPs < 1. Environmental factor E permits Y to have h2

SNPs < 1 even if b = 0. Here,

we emphasize that MA-GREML would still yield valid estimates if applied to a dataset for

which in truth e = 0 (i.e., E plays no role). Thus, Emerely enhances versatility of MA-GREML.

A similar argument could be made in favor of including an idiosyncratic genetic factor G0 that

only affects Y: here MA-GREML also still yields valid results (see also Section E in S1 Text).

However, for brevity and clarity of the presentation of our model, we do not explicitly consider

the presence of such a factor G0 here.

Direct effect and indirect effect

The underlying equations of the SEM in Fig 1 are given by:

M ¼ Gaþ G�g þ E�f ; and ð4Þ

Y ¼ GcþMbþ Ee: ð5Þ

From Eq 4, it follows that sGMM ¼ a
2 þ g2 and sEMM ¼ f

2. SinceM has effect b onM, mediator

M contributes (a2 + g2)b2 to the genetic variance of Y (indirect effect). Moreover, as G is the

only genetic factor that has a direct effect on Y (with coefficient c), the genetic variance not

mediated byM is given by c2 (direct effect).
In MA-GREML, the effect ofM on Y (i.e., b), the direct effect, and the indirect effect are the

main quantities of interest (see also the discussion in Section A in S1 Text). Using these defini-

tions, we can distinguish three forms of genetic mediation, viz., (i) full mediation if the direct

effect = 0 and the indirect effect > 0, (ii) partial mediation if the direct effect > 0 and the indi-

rect effect >0, (iii) no mediation if the direct effect > 0 and the indirect effect = 0. There is also

a degenerate case in which both the direct and indirect effect are equal to zero, implying that

outcome Y has h2
SNPs ¼ 0. For such an outcome, the question about mediation throughM is

not relevant.

SubstitutingM on the right-hand side of Eq 5 by the right-hand side of Eq 4 yields:

Y ¼ Gcþ ðGabþ G�gbÞ þ E�fbþ Ee ð6Þ

¼ Gðabþ cÞ þ G�gbþ E�fbþ Ee; ð7Þ

where Gc is the direct contribution of G to Y and Gab + G�gb is the contribution of G and G�

running throughM. This formulation reveals that whenever abc 6¼ 0, these two contributions

are correlated (as both then involve G). In that case, the genetic variance of Y comprises a cross

term equal to 2abc, in addition to the direct effect and indirect effect. In other words, the

genetic variance of Y can and often will differ from the sum of the genetic variance mediated by

M and the genetic variance not mediated byM. This deviation cannot clearly be categorized as

either part of the direct or indirect effect. We also abstain from that, and treat it as a cross term.
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Identification strategy

Table 1 shows the VCs as function of the coefficients in the main SEM (Fig 1). These relations

are derived in Section B in S1 Text. Although not all coefficients of the SEM are always sepa-

rately identified, the quantities of interest (i.e., b, the direct effect, and the indirect effect) are

always identified provided Assumption A5 holds true. For instance, in case of full mediation

(c2 = 0 and (a2 + g2)b2 > 0), the SEM cannot differentiate between contributions from G� and

G. More specifically, in case of full mediation, g2 and a2 are not separately identified. However,

a2 + g2 still is identified.

In Section C in S1 Text, we derive a mapping from VCs to the quantities of interest. This

mapping can be summarized as:

b ¼
sEMY
sEMM

; ð8Þ

indirect effect ¼ sGMM

�
sEMY
sEMM

�2

; and ð9Þ

direct effect ¼ sGYY þ s
G
MM

�
sEMY
sEMM

�2

� 2sGMY
sEMY
sEMM

: ð10Þ

Since these three quantities can be expressed as simple functions of the VCs and since

MGREML can readily calculate the sampling covariance matrix of the VCs [18], the delta

method can be applied to obtain standard errors (SEs) of the estimates of b, the direct effect,

and indirect effect. Derivations of the SEs can be found in Section C.4 in S1 Text. By default,

MA-GREML as implemented in MGREML returns these SEs.

Significance of the indirect effect

Assessing the significance of the indirect effect is currently advocated to be the most appropri-

ate test for the presence of mediation [8]. Given we have an estimator (denoted with hat nota-

tion) of the indirect effect and a corresponding SE, we can calculate a Wald test statisticW as

follows:

W ¼
� dindirect effect

SEð dindirect effectÞ

�2

: ð11Þ

Under the null hypothesis of no indirect effect,W should asymptotically follow a χ2(1) distri-

bution [34]. However, the likelihood function of the bivariate GREML model is a nonlinear

function of the variance components (VCs) [18] and the indirect effect in turn is a nonlinear

Table 1. Variance components (VCs) of mediator M and outcome Y as function of the coefficients in the structural

equation model (SEM) shown in Fig 1.

VC Description SEM coefficients

sGMM Genetic variance ofM = a2 + g2

sGYY Genetic variance of Y = (a2 + g2) b2 + c2 + 2abc

sGMY Genetic covariance ofM and Y = (a2 + g2) b + ac

sEMM Environmental variance ofM = f2

sEYY Environmental variance of Y = f2b2 + e2

sEMY Environmental covariance ofM and Y = f2b

https://doi.org/10.1371/journal.pgen.1010638.t001
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transformations of these estimated VCs. For nonlinear models, a multitude of equivalent

transformations of restrictions under the null hypothesis can be conceived such that the Wald

test statistic takes on any arbitrary non-negative value [35]. This issue is sometimes referred to

as the non-invariance of the Wald test. This major limitation of the Wald test is further com-

pounded by the fact that the null hypothesis of no indirect effect corresponds to values of the

VCs that partially lie on the edge of the parameter space, viz., sGMM ¼ 0 if sEMY 6¼ 0.

To test for the significance of the indirect effect, we, therefore, instead use a LRT, which has

the invariance property that the Wald test lacks. Since the indirect effect is given by (a2 + g2)b2,

it can only be non-zero if two conditions are met: (i) b 6¼ 0 and (ii) a2 + g2 > 0. Conversely,

this implies that the parameter space permitted by the null hypothesis of no indirect effect (P)

is the union of the space permitted by a2 + g2 = 0 (denoted by Pa) and the space permitted by

b = 0 (denoted by Pb). This union contains the intersection, where both b = 0 and a2 + g2 = 0,

as well as all instances where either of the two equals zero.

To obtain the test statistic, we therefore perform the MA-GREML analysis (i) within

parameter space Pa, and (ii) within parameter space Pb. By taking the maximum value of the

two resulting log-likelihoods we find the optimum of the log-likelihood function in P ¼
Pa [ Pb (i.e., the complete parameter space permitted under the null hypothesis). Comparison

of this log-likelihood value to that of the standard bivariate model enables an LRT. The degrees

of freedom for this LRT are determined by the number of parameters fixed in the model and,

therefore, depends on whether the best fit is found in parameter space Pa (two degrees of free-

dom lost) or Pb (one degree of freedom lost).

The power of this LRT thus depends on the power to detect (i) a2 + g2 > 0 and (ii) b 6¼ 0.

While (i) concerns the power to detect thatM has a non-zero heritability, (ii) is about the

power to detect the environmental covariance betweenM and Y. The latter is typically high in

empirical applications provided that there is sufficient overlap between the sets of individuals

for whomM and for whom Y is observed). Therefore, the power to detect h2
SNPs > 0 forM

serves as a reasonable upper bound for the power to detect the indirect effect. For this purpose,

the GCTA power calculator [36] can be used to calculate the statistical power to detect h2
SNPs of

M for a given sample size. This power calculator can be accessed online at https://shiny.

cnsgenomics.com/gctaPower/. For example, the power to detect h2
SNPs > 0 forM with true

h2
SNPs ¼ 25% equals 100% power in a sample of N = 10, 000. The power remains high at 97.7%

in a sample of this size if h2
SNPs is halved to 12.5%. Halving h2

SNPs ofM again (i.e.,

h2
SNPs ¼ 6:125%), we find that we have only 49.0% power to detect the heritable component of

M in case N = 10, 000.

Mediation analysis using univariate GREML estimation

MA-GREML takes a bivariate approach in which mediatorM and outcome Y are simulta-

neously included in the model. Regression-based mediation analysis is traditionally performed

using a step-wise procedure in which several univariate models with eitherM or Y as depen-

dent variable are analyzed and compared [3]. In Section G in S1 Text, we show that a step-wise

procedure involving univariate GREML models will only yield consistent results for the SEM

in Fig 1 in case of full mediation (i.e., direct effect c2 = 0) and/or the genetic variance that

directly contributes to Y does not also affectM (i.e., a = 0).

In short, mirroring a main critique on the step-wise regression-based mediation analysis

procedure [1], a procedure involving univariate GREML models forM and Y would provide

an estimate of b that is confounded by genetic factor G, and, in turn, uses this confounded esti-

mate to back out which part of the genetic variance of Y is not mediated byM. In any other sit-

uation than the described extreme scenarios, this leads to inconsistent results.
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Verification and comparison

Using simulations, we analyze whether the MA-GREML estimators are consistent and if the

LRT for the presence of an indirect effect behaves appropriately (i.e., no inflated false-positive

rate for simulations in which the null hypothesis of no indirect effect holds true). Besides a

Baseline scenario with partial mediation (a2 + g2 = 2, b = 1, and c2 = 1), we also consider three

scenarios with no mediation (i.e., indirect effect = 0), viz., Scenario (i) where a2 + g2 = 0, b = 1,

and c2 = 1; Scenario (ii) where a2 + g2 = 2, b = 0, and c2 = 1; Scenario (iii) where a2 + g2 = 0,

b = 0, and c2 = 1. Finally, we consider one scenario with full mediation (i.e., direct effect = 0),

viz., Scenario (iv) where a2 + g2 = 2, b = 1 and c2 = 0. Section I in S1 Text provides more details

about the set-up of the simulations and Table A-E in S1 Data contains simulation output for

each run of the simulation.

The simulation results are based on 100 runs. Table 2 provides the average estimates and

their SEs across runs (more detailed simulation results can be found in Section J in S1 Text).

Across scenarios and runs, estimates are close to the true values and have small SEs. For the

scenario with partial mediation (Baseline), estimates indeed reveal both the direct and indirect

effect; for the scenarios with no mediation (i–iii), the estimated indirect effect is indeed very

close to zero; for the scenario with full mediation (iv), the estimated direct effect is very close

to zero, as expected. We conclude that MA-GREML consistently estimates the effect ofM on

Y, the direct effect, and the indirect effect, irrespective of whether we have no mediation, par-

tial mediation, or full mediation.

Regarding the behavior of our LRT for the indirect effect, in Scenario (i) the optimum of

the likelihood of the model under the null hypothesis (i.e., under the constraint that (a2 + g2)

b2 = 0) is typically found in Pa (i.e., where a2 + g2 = 0 and where b can differ from zero) and,

therefore, the LRT tends to have two degree of freedom. Fig 2A shows the observed distribu-

tion of p-values resulting from the LRTs compared to the expected distribution of p-values.

We find that the observations lie somewhat below the 45 degree line. Thus, the LRT is conser-

vative in caseM has no genetic variance at all, implying a reduced false-positive rate in that

case. By the same token, this finding implies that the LRT is underpowered in caseM has a

very low but non-zero h2
SNPs. This drawback, however, has little practical relevance, as users

would typically only consider potential mediators that have an appreciable h2
SNPs.

In Scenario (ii), the optimum of the likelihood of the model under the null hypothesis is

mostly found in Pb (i.e., where b = 0 and where a2 + g2 can exceed zero) and, therefore, the

Table 2. Average estimates and corresponding standard errors of estimated parameters in the mediation model (100 simulation runs for each scenario). bb is the esti-

mator of b based on Eq 8 (i.e., the effect of mediatorM on outcome Y); ddirect effect is an estimator of c2 based on Eq 10 (i.e., the genetic variance of Y that is not mediated

byM); dindirect effect is an estimator of (a2 + g2)b2 based on Eq 9 (i.e., the genetic variance of Y that is mediated byM); average standard errors are reported between

parentheses.

Scenario True parameter values bb ddirect effect dindirect effect
Baseline b = 1, c2 = 1, (a2 + g2) = 2 0.999 1.000 1.996

(0.013) (0.040) (0.061)

(i) b = 1, c2 = 1, (a2 + g2) = 0 0.999 0.999 0.003

(0.011) (0.026) (0.010)

(ii) b = 0, c2 = 1, (a2 + g2) = 2 -0.001 1.000 0.000

(0.013) (0.040) (0.000)

(iii) b = 0, c2 = 1, (a2 + g2) = 0 -0.001 0.999 0.000

(0.011) (0.026) (0.000)

(iv) b = 1, c2 = 0, (a2 + g2) = 2 0.997 0.004 1.990

(0.012) (0.010) (0.063)

https://doi.org/10.1371/journal.pgen.1010638.t002
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LRT tends to have one degree of freedom. Fig 2B plots the observed distribution of p-values

resulting from the LRTs compared to the expected distribution of p-values. With the observa-

tions being close to the diagonal, we find that the empirically observed p-values closely follow

their theoretically expected distribution in case b = 0 and (a2 + g2)>0. Thus, also in this setting,

we do not suffer from an inflated false-positive rate. Moreover, here we find no evidence of

any loss in statistical power (e.g., where b is small but nonzero). Within the set of scenarios

where the null hypothesis of no indirect effect holds true (i.e., Scenarios i–iii), we judge this

scenario to be the most realistic one because in practice mediators will have a non-negligible

h2
SNPs, irrespective of whether they affect Y.

Finally, for Scenario (iii) the observed distribution of p-values resulting from the LRTs

compared to the expected distribution of p-values are shown in Fig 2C. In this setting, it is not

possible to a priori determine whether the optimum of the likelihood of the model under the

null hypothesis will be in either Pa or Pb. This absence of a prior expectation for the degrees of

freedom poses no problem; MA-GREML simply sets the degrees of freedom based on where

the optimum is found under the restrictions imposed by the null hypothesis (i.e., two degrees

of freedom if the optimum under the null hypothesis is found in Pa and one if found in Pb).
The observed p-values, like in Scenario (i), are somewhat conservative. We conclude that also

in this scenario the procedure for testing the significance of the indirect effect sufficiently con-

trols for Type I errors. Again, we note that in practice a setting in which the mediator is not

heritable is not realistic.

Applications

Ethics statement

For our empirical illustrations, we employ data from the US Health and Retirement Study

(HRS). The HRS is a longitudinal panel study that surveys a representative sample of approxi-

mately 20,000 individuals aged 51 years and older (and their spouses) in the United States of

America [27]. Collection and production of HRS data comply with the requirements of the

University of Michigan’s Institutional Review Board (HUM0006112). The specific research

project in which the present study is embedded has been approved locally by the Institutional

Review Board of the Erasmus Research Institute of Management (IRB-E 2014–04).

Empirical results

To construct the genomic-relatedness matrix (GRM) we need for the GREML analyses, we use

the 2012 release of genetic data. These genetic data were obtained from the DNA samples col-

lected from HRS participants in the years between 2006 and 2008. Participants signed consent

Fig 2. QQ-plots visualizing the distribution of p-values resulting from the likelihood ratio tests (LRTs) for the

presence of the indirect effect (a2 + g2)b2 in different scenarios. Panel (a): MediatorM does not have a genetic

component, but has an effect on outcome Y ((a2 + g2) = 0, b 6¼ 0); Panel (b): MediatorM has a genetic component, but

does not have an effect on outcome Y ((a2 + g2)> 0, b = 0); Panel (c): MediatorM does not have a genetic component,

nor an effect on outcome Y ((a2 + g2) = 0, b = 0).

https://doi.org/10.1371/journal.pgen.1010638.g002
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forms stating that the genetic data could be used for non-profit research use only. Genotyping

was carried out using the Illumina Human Omni-2.5 Quad BeadChip. After imposing the

quality control filters recommended by the genotyping center, removal of non-autosomal

SNPs and SNPs with minor allele frequency (MAF) < 0.05, genotyping call rate < 95% and

Hardy–Weinberg p< 10−6, and selection of unrelated individuals from European ancestry

with<5% SNP missingness, we construct the GRM for a sample of 8,652 individuals using

1,188,298 SNPs.

Phenotypic data from the biennial waves of data collection in the HRS are harmonized by

the RAND cooperation. We exploit information about educational attainment (years) and

four health outcomes in later life—Body Mass Index (BMI; kg/m2), Cognition (index score

ranging from 0–35), Mental health (index score ranging from 0–8), and Self-reported health

(index score ranging from 1–5)—as available in the RAND HRS Longitudinal File 2018 (V1).

By analyzing a variable that is realized in early life as mediator and health measures in later life

as outcomes, we make sure that the mediating variable precedes the outcomes. We selected

phenotypic data from the wave of data collection with the (combined) lowest number of miss-

ing values for these four outcomes (Wave 8). In addition, we analyze to what extent genetic

effects run through an earlier realization of these four variables. That is, we analyze whether

the Wave 7 measures mediate the additive genetic effect on the Wave 8 outcomes.

There are 5,305–8,565 individuals with information on the four later-life health outcomes.

For the mediators, the sample size ranges between 5,747–8,638. In our analyses, we control for

sex (Female/Male) and birth year. MGREML also adjusts for the first 20 principal components

of the genomic-relatedness matrix to control for subtle forms of population stratification [37,

38]. Table 3 provides descriptive statistics of the HRS analysis sample. Due to the exclusion of

individuals with a genetic relatedness larger than 0.025 in the analysis sample, the actual analy-

sis samples comprise slightly fewer individuals (see Table 4).

The main results of the empirical analyses are presented in Table 4. The later-life health out-

comes are all heritable. The SNP-based heritability of BMI is 18.7%, and that of cognition is

24.2%. It equals 19.2% for mental health and 10.6% for self-reported health. The heritability

estimates of the mediator (educational attainment) ranges from 26.3% to 29.8% across the

slightly different analysis samples. The estimated effects b ofM on Y show that every additional

year of educational attainment leads to a decrease in BMI of 0.222 kg/m2 and an increase in

Table 3. Descriptive statistics of the analysis sample from the Health and Retirement Study. Std. dev. = Standard deviation; Min. = Minimum; Max. = Maximum.

Variables N Mean Std. dev. Min. Max.

Outcomes
Body Mass Index (kg/m2) 8,485 27.703 5.596 10.6 82.7

Cognition (index) 5,305 22.754 4.501 0.0 35.0

Mental health (index) 8,521 1.257 1.824 0.0 8.0

Self-reported health (index) 8,565 2.655 1.058 1.0 5.0

Mediators
Educational attainment (years) 8,638 13.154 2.541 0.0 17.0

Body Mass Index (kg/m2)—Lagged 8,340 27.369 5.355 13.7 60.1

Cognition (index)—Lagged 5,747 23.675 4.066 3.0 35.0

Mental health (index)—Lagged 8,195 1.168 1.745 0.0 8.0

Self-reported health (index)—Lagged 8,424 2.609 1.058 1.0 5.0

Covariates
Sex (1 = Female; 0 = Male) 8,652 0.584 0.493 0 1

Birth year 8,652 1937.831 10.424 1905 1974

https://doi.org/10.1371/journal.pgen.1010638.t003
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the cognition index score of 0.323. For mental health and self-reported health, the estimates

are −0.044 and −0.046, respectively. We find that the effect of the additive genetic factor of

BMI on BMI runs through educational attainment for just 1.4%, but this indirect effect is sta-

tistically significant (p = 0.025). For mental health, the indirect effect appears to be statistically

insignificant (p = 0.182). The proportion mediated for cognition is 27.6% (p = 0.011). This per-

centage is roughly similar for self-reported health, 30.6%, and for this outcome the indirect

effect is also significant (p = 0.010).

For the analyses with the lagged variables as mediators, the results are shown in the bottom

of Table 4. For BMI, we observe full mediation: the proportion mediated is 99.9%, and the

indirect effect is statistically significant (p = 3.615 × 10−4). For self-reported health, we observe

a similarly high proportion mediated, i.e., 96.8% (p = 7.785 × 10−5). These estimates suggest

that the additive genetic factor of these two outcomes is relatively time-invariant between con-

secutive data collection waves in the analysis sample. For cognition and mental health the pro-

portions mediated are lower, 71.3% (p = 2.901 × 10−3) and 54.9% (p = 1.563 × 10−3),

respectively, suggesting relatively strong impact of the environment on the development of

these traits over the life-course.

Discussion

We designed a framework to analyze to what extent a particular factor mediates the relation-

ship between the additive genetic factor of a trait and the trait itself. By doing so, we particu-

larly improve on the current practice of using polygenic scores for such analyses, because

GREML enables capturing the full SNP-based heritability of a trait rather than just the

‘explained SNP-based heritability’ [15]. The statistical procedure has been implemented in the

ready-to-use command-line tool MGREML [19]. The GitHub page (https://github.com/

devlaming/mgreml) accompanying this tool comes with a full tutorial on its usage.

Usage of MGREML for mediation analysis requires careful assessment of whether the

assumptions of the model hold for the specific empirical application, in particular that the

causal direction between mediatorM and outcome Y is correctly specified. Moreover, SNP-

based heritability estimates may capture both direct genetic effects and gene-environment

Table 4. MA-GREML results for the empirical analyses using data from the Health and Retirement Study. LRT = Likelihood-Ratio Test for significance of indirect

effect (a2 + g2)b2 (i.e., the proportion of h2
SNPs of outcome Y running through mediatorM); Standard errors in parentheses.

Outcome (Y) Mediator (M) N h2
SNPs (Y) h2

SNPs (M) Effect M on Y (b) Prop. h2
SNPsðYÞ through M LRT p-value

Body Mass Index Educational attainment 8,213 0.187

(0.047)

0.263

(0.046)

-0.222

(0.100)

1.4% 0.025

Cognition Educational attainment 5,169 0.242

(0.074)

0.298

(0.073)

0.323

(0.118)

27.6% 0.011

Mental health Educational attainment 8,250 0.192

(0.046)

0.265

(0.046)

-0.044

(0.033)

7.3% 0.182

Self-reported health Educational attainment 8,291 0.106

(0.045)

0.272

(0.046)

-0.046

(0.019)

30.6% 0.010

Body Mass Index Body Mass Index—Lagged 8,005 0.163

(0.048)

0.189

(0.048)

0.942

(0.019)

99.9% 3.615 × 10−4

Cognition Cognition—Lagged 4,334 0.251

(0.088)

0.256

(0.088)

0.542

(0.073)

71.3% 2.901 × 10−3

Mental health Mental health—Lagged 7,915 0.181

(0.048)

0.086

(0.047)

0.500

(0.033)

54.9% 1.563 × 10−3

Self-reported health Self-reported health—Lagged 8,129 0.126

(0.047)

0.192

(0.047)

0.665

(0.030)

96.8% 7.785 × 10−5

https://doi.org/10.1371/journal.pgen.1010638.t004
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correlations such as genetic nurture effects (i.e., the effect of parental genotype on the child’s

outcomes), depending on the outcome analyzed [15, 39]. In Section H in S1 Text we introduce

a structural equation model including genetic nurture effects and we derive that in situations

where parental factors (e.g., parental genes or parental educational attainment) affect offspring

outcomes estimates of mediating effects are typically affected. As genetic nurture can lead to

both over and underestimation of the effect of mediatorM on outcome Y, the impact of such

effects on the MA-GREML estimates depends on the specific empirical application.

Nevertheless, the assessment of mediation is of prime importance in the social sciences [1],

because it allows for an improved understanding of the mechanisms underlying the relation-

ship between a predictor and an outcome. As a result, more nuanced questions extending

beyond merely determining whether an outcome occurs can be analyzed and answered. How-

ever, the results of mediation analyses are also informative for genetic epidemiology. The

proxy-phenotype approach has been developed to discover genetic variants in a GWAS for

being associated with a trait by investigation of a closely related but easier to measure trait

[26]. While a strong genetic correlation between the two traits often serves as a motivation for

this experimental design [36], backing up such a study with an analysis showing that genetic

effects on the easier to measure trait in fact largely run through the more difficult to measure

trait would particularly build confidence in the eventual proxy-GWAS findings.

Moreover, Mendelian randomization (MR) models are widely used for causal inferences by

exploiting the notion that the inheritance of alleles is random conditional of the genotypes of

the parents [24]. In MR models, the exclusion assumption needs to hold meaning that the

main genetic factor which is used as instrument is only allowed to impact the outcome variable

through the mediator. Whether this assumption holds in empirical applications is often debat-

able and not empirically verifiable [24, 25], especially when a PGS based on a genome-wide

scan of SNPs is being used as instrument. However, our mediation model may provide sugges-

tive evidence in favor of the exclusion restriction to hold in case full mediation is found.

Even in case a biology-informed decision is taken regarding the subset of genetic variants

to use in MR applications, the GREML-based mediation model can be used for such an infor-

mative analysis by constructing a GRM using these genetic variants only rather than a

genome-wide scan of SNPs. For example, the GRM can be constructed using SNPs from spe-

cific chromosomes, SNPs in genes expressed in particular cell types (functional categories), or

SNPs with an allele frequency in a particular range, etc. [40–42]. Moreover, SNPs included in

the GRM can be weighted to reflect a specific heritability model [18, 43]. As illustration, Sec-

tion K in S1 Text contains analysis results for the four later-life outcomes from the empirical

illustration with educational attainment as mediator for which we partitioned the GRM by ten

functional categories. Interestingly, we find that the evidence for mediation differs across func-

tional categories.

The empirical results from the Health and Retirement Study presented in the main text,

however, suggest that for two reasons MR analysis based on a genome-wide scan of SNPs (or a

PGS as summary of that) cannot be used to analyze the causal impact of educational attain-

ment on BMI, cognition, mental health, or self-reported health in later life. While for BMI,

cognition and self-reported health we do find a significant indirect effect, the proportion medi-

ated is (far) below 100% suggesting that there are other channels than educational attainment

through which the additive genetic factor for these two outcomes affects the outcomes. For

mental health the indirect effect is statistically insignificant, both invalidating the exclusion

restriction and the so-called relevance assumption that the instrument has explanatory power

for the mediator [24]. In the empirical analyses with lagged versions of the outcome variable as

mediator, we find that the additive genetic factor underlying the outcome can be time-variant

for some traits. These results underscore that the conventional assumption in MR analyses
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that the effects of the genetic variants used as instruments on the exposure (i.e., the mediator

in the MA-GREML framework) do not vary over the life-course is often questionable [44].

Thus, beyond the assessment of the relative size of indirect effects, these results show that

results obtained using MA-GREML are of importance for validating assumptions of other

methodologies. Therefore, we believe that the mediation analysis approach as developed in

this study and implemented in the freely available MGREML tool will prove to be an impor-

tant framework not only for the social sciences but also for genetic epidemiology.

Supporting information

S1 Text. Derivations of the model, a comparison with Genomic SEM, a study of the model

under genetic nurture, simulation set-up, simulation results.

(PDF)

S1 Data. Full simulation output.

(XLSX)

Acknowledgments

The authors are grateful for computational resources provided by the Dutch national e-infra-

structure with support of the SURF cooperative (Project EINF-607). The Health and Retire-

ment Study (HRS) is sponsored by the National Institute on Aging and is conducted by the

University of Michigan.

Disclaimer

The views expressed are those of the authors and not necessarily those of the National Institute

for Health Research.

Author Contributions

Conceptualization: Cornelius A. Rietveld, Ronald de Vlaming.

Data curation: Cornelius A. Rietveld, Ronald de Vlaming, Eric A. W. Slob.

Formal analysis: Cornelius A. Rietveld, Ronald de Vlaming, Eric A. W. Slob.

Funding acquisition: Cornelius A. Rietveld, Eric A. W. Slob.

Investigation: Cornelius A. Rietveld, Ronald de Vlaming, Eric A. W. Slob.

Methodology: Cornelius A. Rietveld, Ronald de Vlaming, Eric A. W. Slob.

Project administration: Cornelius A. Rietveld.

Software: Ronald de Vlaming, Eric A. W. Slob.

Supervision: Cornelius A. Rietveld.

Validation: Ronald de Vlaming, Eric A. W. Slob.

Writing – original draft: Cornelius A. Rietveld, Ronald de Vlaming, Eric A. W. Slob.

Writing – review & editing: Cornelius A. Rietveld, Ronald de Vlaming, Eric A. W. Slob.

References
1. MacKinnon DP. Introduction to statistical mediation analysis. New York: Erlbaum; 2008.

PLOS GENETICS MA-GREML

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010638 February 21, 2023 15 / 17

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010638.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010638.s002
https://doi.org/10.1371/journal.pgen.1010638


2. Wright S. The method of path coefficients. Ann Math Stat. 1934; 5(3):161–215. https://doi.org/10.1214/

aoms/1177732676

3. Baron RM, Kenny DA. The moderator–mediator variable distinction in social psychological research:

Conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986; 51(6):1173–1182.

https://doi.org/10.1037/0022-3514.51.6.1173 PMID: 3806354

4. Nguyen TQ, Schmid I, Stuart EA. Clarifying causal mediation analysis for the applied researcher: Defin-

ing effects based on what we want to learn. Psychol Methods. 2021; 26(2):255–271. https://doi.org/10.

1037/met0000299

5. DiLalla L, Gottesman I. Biological and genetic contributors to violence: Wisdom’s untold tale. Psychol

Bull. 1991; 109(1):125–129. https://doi.org/10.1037/0033-2909.109.1.125 PMID: 2006224

6. Purcell S, Koenen KC. Environmental mediation and the twin design. Behav Genet. 2005; 35(4):491–

498. https://doi.org/10.1007/s10519-004-1484-9 PMID: 15971029

7. Rosenström T, Czajkowski NO, Ystrom E, Krueger RF, Aggen SH, Gillespie NA, et al. Genetically infor-

mative mediation modeling applied to stressors and personality-disorder traits in etiology of alcohol use

disorder. Behav Genet. 2019; 49(1):11–23. https://doi.org/10.1007/s10519-018-9941-z PMID:

30536213

8. Aguinis H, Edwards JR, Bradley KJ. Improving our understanding of moderation and mediation in stra-

tegic management research. Organ Res Methods. 2017; 20(4):665–685. https://doi.org/10.1177/

1094428115627498

9. Okbay A, Beauchamp JP, Fontana MA, Lee JJ, Pers TH, Rietveld CA, et al. Genome-wide association

study identifies 74 loci associated with educational attainment. Nature. 2016; 533(7604):539–542.

https://doi.org/10.1038/nature17671 PMID: 27225129

10. Rietveld CA, Patel PC. ADHD and later-life labor market outcomes in the United States. Eur J Health

Econ. 2019; 20(7):949–967. https://doi.org/10.1007/s10198-019-01055-0 PMID: 31049764

11. Patel PC, Rietveld CA. Effect of the genetic propensity for obesity on income and wealth through educa-

tional attainment. Obesity. 2019; 27(9):1423–1427. https://doi.org/10.1002/oby.22528 PMID:

31199061

12. Dudbridge F. Power and predictive accuracy of polygenic risk scores. PLoS Genet. 2013; 9(3):

e1003348. https://doi.org/10.1371/journal.pgen.1003348 PMID: 23555274

13. De Vlaming R, Okbay A, Rietveld CA, Johannesson M, Magnusson PKE, Uitterlinden AG, et al. Meta-

GWAS Accuracy and Power (MetaGAP) calculator shows that hiding heritability is partially due to

imperfect genetic correlations across studies. PLoS Genet. 2017; 13(1):e1006495. https://doi.org/10.

1371/journal.pgen.1006495 PMID: 28095416

14. Young AI. Solving the missing heritability problem. PLoS Genet. 2019; 15(6):e1008222. https://doi.org/

10.1371/journal.pgen.1008222 PMID: 31233496

15. Van Kippersluis H, Biroli P, Galama TJ, Von Hinke S, Meddens SFW, Muslimova D, et al. Overcoming

attenuation bias in regressions using polygenic indices: A comparison of approaches. BioRxiv. 2021.

16. DiPrete TA, Burik CA, Koellinger PD. Genetic instrumental variable regression: Explaining socioeco-

nomic and health outcomes in nonexperimental data. P Natl Acad Sci USA. 2018; 115(22):E4970–

E4979. https://doi.org/10.1073/pnas.1707388115 PMID: 29686100

17. Becker J, Burik CA, Goldman G, Wang N, Jayashankar H, Bennett M, et al. Resource profile and user

guide of the Polygenic Index Repository. Nat Human Beh. 2021; 5(1):1744–1758. https://doi.org/10.

1038/s41562-021-01119-3 PMID: 34140656

18. De Vlaming R, Slob EAW, Jansen PR, Dagher A, Koellinger PD, Groenen PJF, Rietveld CA. Multivari-

ate analysis reveals shared genetic architecture of brain morphology and human behavior. Comm Biol.

2021; 4(1):1180. https://doi.org/10.1038/s42003-021-02712-y PMID: 34642422

19. De Vlaming R, Slob EAW. MGREML v1.0.0. 2021.

20. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a

large proportion of the heritability for human height. Nat Genet. 2010; 42(7):565–569. https://doi.org/10.

1038/ng.608 PMID: 20562875

21. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: A tool for genome-wide complex trait analysis. Am

J Hum Genet. 2011; 88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011 PMID: 21167468

22. Lee SH, Yang J, Goddard ME, Visscher PM, Wray NR. Estimation of pleiotropy between complex dis-

eases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum

likelihood. Bioinformatics. 2012; 28(19):2540–2542. https://doi.org/10.1093/bioinformatics/bts474

PMID: 22843982

23. Grotzinger AD, Rhemtulla M, De Vlaming R, Ritchie SJ, Mallard TT, Hill WD, et al. Genomic structural

equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat

Human Beh. 2019; 3(5):513–525. https://doi.org/10.1038/s41562-019-0566-x PMID: 30962613

PLOS GENETICS MA-GREML

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010638 February 21, 2023 16 / 17

https://doi.org/10.1214/aoms/1177732676
https://doi.org/10.1214/aoms/1177732676
https://doi.org/10.1037/0022-3514.51.6.1173
http://www.ncbi.nlm.nih.gov/pubmed/3806354
https://doi.org/10.1037/met0000299
https://doi.org/10.1037/met0000299
https://doi.org/10.1037/0033-2909.109.1.125
http://www.ncbi.nlm.nih.gov/pubmed/2006224
https://doi.org/10.1007/s10519-004-1484-9
http://www.ncbi.nlm.nih.gov/pubmed/15971029
https://doi.org/10.1007/s10519-018-9941-z
http://www.ncbi.nlm.nih.gov/pubmed/30536213
https://doi.org/10.1177/1094428115627498
https://doi.org/10.1177/1094428115627498
https://doi.org/10.1038/nature17671
http://www.ncbi.nlm.nih.gov/pubmed/27225129
https://doi.org/10.1007/s10198-019-01055-0
http://www.ncbi.nlm.nih.gov/pubmed/31049764
https://doi.org/10.1002/oby.22528
http://www.ncbi.nlm.nih.gov/pubmed/31199061
https://doi.org/10.1371/journal.pgen.1003348
http://www.ncbi.nlm.nih.gov/pubmed/23555274
https://doi.org/10.1371/journal.pgen.1006495
https://doi.org/10.1371/journal.pgen.1006495
http://www.ncbi.nlm.nih.gov/pubmed/28095416
https://doi.org/10.1371/journal.pgen.1008222
https://doi.org/10.1371/journal.pgen.1008222
http://www.ncbi.nlm.nih.gov/pubmed/31233496
https://doi.org/10.1073/pnas.1707388115
http://www.ncbi.nlm.nih.gov/pubmed/29686100
https://doi.org/10.1038/s41562-021-01119-3
https://doi.org/10.1038/s41562-021-01119-3
http://www.ncbi.nlm.nih.gov/pubmed/34140656
https://doi.org/10.1038/s42003-021-02712-y
http://www.ncbi.nlm.nih.gov/pubmed/34642422
https://doi.org/10.1038/ng.608
https://doi.org/10.1038/ng.608
http://www.ncbi.nlm.nih.gov/pubmed/20562875
https://doi.org/10.1016/j.ajhg.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21167468
https://doi.org/10.1093/bioinformatics/bts474
http://www.ncbi.nlm.nih.gov/pubmed/22843982
https://doi.org/10.1038/s41562-019-0566-x
http://www.ncbi.nlm.nih.gov/pubmed/30962613
https://doi.org/10.1371/journal.pgen.1010638


24. Smith GD, Ebrahim S. Mendelian randomization: Prospects, potentials, and limitations. Int J Epidemiol.

2004; 33(1):30–42. https://doi.org/10.1093/ije/dyh132 PMID: 15075143

25. Van Kippersluis H, Rietveld CA. Pleiotropy-robust Mendelian Randomization. Int J Epidemiol. 2018; 47

(4):1279–1288. https://doi.org/10.1093/ije/dyx002 PMID: 28338774

26. Rietveld CA, Esko T, Davies G, Pers TH, Turley P, Benyamin B, et al. Common genetic variants associ-

ated with cognitive performance identified using the proxy-phenotype method. P Natl Acad Sci USA.

2014; 111(38):13790–13794. https://doi.org/10.1073/pnas.1404623111 PMID: 25201988

27. Sonnega A, Faul JD, Ofstedal MB, Langa KM, Phillips JWR, Weir DR. Cohort profile: The Health and

Retirement Study (HRS). Int J Epidemiol. 2014; 43(2):576–585. https://doi.org/10.1093/ije/dyu067

PMID: 24671021

28. Speed D, Holmes J, Balding DJ. Evaluating and improving heritability models using summary statistics.

Nat Genet. 2020; 52(4):458–462. https://doi.org/10.1038/s41588-020-0600-y PMID: 32203469

29. Speed D, Cai N, Johnson MR, Nejentsev S, Balding DJ. Reevaluation of SNP heritability in complex

human traits. Nat Genet. 2017; 49(7):986–992. https://doi.org/10.1038/ng.3865 PMID: 28530675

30. Lynch M, Walsh B. Genetics and analysis of quantitative traits. Sunderland: Sinauer; 1998.

31. Lee SH, Van der Werf JHJ. MTG2: An efficient algorithm for multivariate linear mixed model analysis

based on genomic information. Bioinformatics. 2016; 32(9):1420–1422. https://doi.org/10.1093/

bioinformatics/btw012 PMID: 26755623

32. Polderman TJC, Benyamin B, De Leeuw CA, Sullivan PF, Van Bochoven A, Visscher PM, Posthuma D.

Meta-analysis of the heritability of human traits based on fifty years of twin studies. Nat Genet. 2015; 47

(7):702–709. https://doi.org/10.1038/ng.3285 PMID: 25985137

33. Yang J, Zeng Jian, Goddard ME, Wray NR, Visscher PM. Concepts, estimation and interpretation of

SNP-based heritability. Nat Genet. 2017; 49(9):1304–1310. https://doi.org/10.1038/ng.3941 PMID:

28854176

34. Heij C, De Boer P, Franses PH, Kloek T, Van Dijk HK. Econometric methods with applications in busi-

ness and economics. Oxford University Press. 2004.

35. Davidson R, MacKinnon J. Estimation and inference in econometrics. Oxford University Press. 1993.

36. Visscher PM, Hemani G, Vinkhuyzen AAE, Chen G-B, Lee SH, Wray NR, Goddard ME, Yang J. Statisti-

cal power to detect genetic (co)variance of complex traits using SNP data in unrelated samples. PLoS

Genet. 2014; 10(4):e1004269. https://doi.org/10.1371/journal.pgen.1004269 PMID: 24721987

37. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analy-

sis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38(8):904–909.

https://doi.org/10.1038/ng1847 PMID: 16862161

38. Rietveld CA, Conley D, Eriksson N, Esko T, Medland SE, Vinkhuyzen AAE, et al. Replicability and

robustness of GWAS for behavioral traits. Psych Sci. 2014; 25(11):1975–1986. https://doi.org/10.1177/

0956797614545132 PMID: 25287667
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