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Abstract

The Japanese archipelago is a terminal location for human migration, and the contemporary

Japanese people represent a unique population whose genomic diversity has been shaped
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by multiple migrations from Eurasia. We analyzed the genomic characteristics that define

the genetic makeup of the modern Japanese population from a population genetics per-

spective from the genomic data of 9,287 samples obtained by high-coverage whole-genome

sequencing (WGS) by the National Center Biobank Network. The dataset comprised popu-

lations from the Ryukyu Islands and other parts of the Japanese archipelago (Hondo). The

Hondo population underwent two episodes of population decline during the Jomon period,

corresponding to the Late Neolithic, and the Edo period, corresponding to the Early Modern

era, while the Ryukyu population experienced a population decline during the shell midden

period of the Late Neolithic in this region. Haplotype analysis suggested increased allele fre-

quencies for genes related to alcohol and fatty acid metabolism, which were reported as loci

that had experienced positive natural selection. Two genes related to alcohol metabolism

were found to be 12,500 years out of phase with the time when they began to increase in the

allele frequency; this finding indicates that the genomic diversity of Japanese people has

been shaped by events closely related to agriculture and food production.

Author summary

The human population in the Japanese archipelago exhibits significant genetic diversity,

with the Ryukyu Islands and other parts of the archipelago (Hondo) having undergone

distinct evolutionary paths that have contributed to the genetic divergence of the popula-

tions in each region. In this study, whole genome sequencing of healthy individuals from

national research hospital biobanks was utilized to investigate the genetic diversity of the

Japanese population. Haplotypes were inferred from the genomic data, and a thorough

population genetic analysis was conducted. The results indicated not only genetic differ-

entiation between Hondo and the Ryukyu Islands, but also marked differences in past

population size. In addition, gene genealogies were inferred from the haplotypes, and the

patterns were scrutinized for evidence of natural selection. This analysis revealed unique

traces of natural selection in East Asian populations, many of which were believed to be

linked to dietary changes brought about by agriculture and food production.

Introduction

The Japanese archipelago is located in the eastern part of the Eurasian continent and is one of

the final destinations of the human migration out of Africa [1]. While the identity of the first

human groups to reach the Japanese archipelago is uncertain, the Jomon people, who were

hunter-gatherers known for their pottery, lived in the region after 16,000 years ago [2]. The

genetic diversity of the peoples of the Japanese archipelago underwent a dramatic transforma-

tion following the Yayoi Period, which began around 3,000 years ago with the migration of

agriculturalists from Eurasia. Genome analysis of ancient and modern humans has shown that

they admixed with the originally inhabited Jomon people, resulting in the genetic diversity of

the modern Japanese population from the Yayoi people [3,4]. This process is thought to have

started on Kyushu Island and then gradually spread throughout the archipelago. Although the

Ryukyu Islands are separated from Kyushu Island by a significant distance, the agricultural

culture known as the Gusuku period began 800 years ago, and it is believed that this agricul-

ture was introduced by migrants from the mainland [5]. These long histories of migration and
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admixture have shaped the genetic diversity of the peoples of the Japanese archipelago. Previ-

ous genome analyses have attempted to reveal this genetic diversity, but most have only sam-

pled specific regions and therefore have been insufficient to fully examine the genetic diversity

of the Japanese archipelago as a whole[6,7]. In this study, we used whole-genome sequencing

data from subjects from a wide range of regions in the Japanese archipelago to more fully

understand the genetic diversity of the peoples of the archipelago.

There are six national research hospitals in Japan that specialize in advanced medical care

and research, and each of them maintains its own biobank that collects and stores biological

samples from patients. National Center Biobank Network (NCBN) is a federation of these cen-

ters that collaborate to provide samples, genomic and clinical information, and public relations

[8]. In this study, we performed WGS of 9,850 individual DNA specimens stored in the bio-

banks of NCBN. These biobanks are located in three distinct regions of Japan: NCGM,

NCCHD, and NCNP in the Tokyo area; NCGG in Aichi Prefecture in the central area in the

Honshu Island; and NCVC in Osaka Prefecture in the western area in Honshu Island. There-

fore, the genomic information obtained in the present study is expected to reflect the regional

diversity of Japan to some extent. Here, we characterized the data obtained from this analysis

and described the genetic diversity in the Japanese population.

Results

Whole genome sequencing analysis

DNA samples from 9,850 individuals from five National Center Biobanks were analyzed using

WGS, and the data in FASTQ format were received from the outsourced laboratory. Of the

9,850 samples, 390 were derived from saliva and the remaining 9,460 samples were derived

from blood. The received data were processed through the primary data analysis pipeline to

obtain mapping results and variant call results. Quality control (QC) metrices were calculated

to confirm that stable quality analysis was obtained (Fig 1). The average read depth per autoso-

mal sample after mapping was 34.0 ± 2.4. The minimum read depth observed was 20.0, but the

majority of samples exhibited a read depth of 30 or greater. Notably, samples derived from

saliva showed a higher frequency of low read depths. In contrast, among the blood-derived

samples, the lowest read depth recorded was 29.3. This observation can be attributed to the

fact that non-human foreign DNA present in saliva was subjected to mapping. Indeed, the

Fig 1. Quality control metrics of whole-genome sequencing. Quality control metrics for each sample are plotted against the sample in the horizontal axis

direction; QC indices are (A) average coverage of reads in autosomal loci after excluding duplicated reads, (B) mapping rate, and (C) average insert length.

Saliva-derived samples are colored by yellow.

https://doi.org/10.1371/journal.pgen.1010625.g001
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percentage of unmapped reads in the saliva-derived samples was clearly higher than in the

blood-derived samples (S1 Fig). For comparison purposes, we utilized high-depth WGS data

obtained from the International 1000 Genomes Project phase 3 [9]. Although this data origi-

nated from cell lines, it was generated at a high depth using the same sequencer (Illumina

Novaseq6000), enabling straightforward comparison with the NCBN samples. The average

depth profile per sample exhibited a similar trend between the NCBN and 1000 Genomes data-

sets (S1 Fig). There was no difference between NCBN and 1000Genomes in the comparison of

base coverage across the genome. For example, on a sample average, 96.8% of the entire

genome in both datasets had a coverage of 20 or more, while NCBN and 1000Genomes cov-

ered 70.0% and 67.5% of the genome, respectively, with a coverage of 30 or more (S2 Fig). We

examined the contamination of DNA from the WGS results with VerifyBamID2 software [10],

and found that 22 samples from NCBN had the estimated contamination rates (alpha) greater

than 1%. These samples were excluded from further analysis (S3 Fig).

Summary and accuracy of SNP and short insertion and deletions

Variants were characterized by joint calling to integrate individual variant information. In this

analysis, we performed joint calling of the gVCFs of 9,287 samples from NCBN, which had

been completed at the time of writing manuscript, together with 2,504 samples from the Inter-

national 1000 Genomes project (S1 Table). The VCF obtained after the joint call contained a

total of 208,785,859 records, of which 88.5% (184,864,563) passed the filtering using Variant

Quality Score Recalibration (VQSR). We found 122,459,307 variants after focusing only on the

variants in the NCBN samples, and 86.3% (105,729,588) of them passed the filter of VQSR. Of

the variants that passed the filter, 87,246,166 were single nucleotide variants (SNVs) and

18,483,422 were short insertion and deletions (INDELs); 47% (41,046,547) of the SNVs and

39.8% (7,361,318) of the INDELs that passed the filter were novel variants not registered in

dbSNP151. Most of the novel variants were very rare. For example, 34.56% of the known SNVs

were singletons found as the heterozygous genotypes of one sample out of 9,287 individuals,

and 86.73% were observed at a very low frequency of less than 0.5%. Conversely, 67.46% of the

novel variants not registered in dbSNP were singletons, and the percentage of SNVs with a fre-

quency less than 0.5% was more than 99.99%. This is consistent with previous reports that

most novel variants are found privately [11–14].

We evaluated the accuracy of the variants using two approaches. First, we performed the

genotyping using SNP array to estimate the degree of genotype concordance with WGS results.

For this purpose, genome-wide genotyping using the SNP array on the DNA samples of 448

individuals who had undergone WGS analysis was conducted. The 639,508 autosomal SNPs

remaining after variant QC in the SNP array were compared with the results obtained after

WGS analysis. The number of mismatches ranged from 66 to 7,205 per sample, with an aver-

age of 408.7. As a result, the average discordance rate between the two sets of variants was

0.063%. This estimate appears to be a conservative estimate of the error, as it is primarily con-

centrated in a region that is easy to analyze and for which probes are designed on SNP arrays.

Then, we compared the genotypes of the trio samples to estimate the frequency with which the

offspring of a trio had heterozygous or non-reference homozygous variants whose parents’

genotypes did not follow the pattern expected from Mendelian low. The sample analyzed in

this study contained 148 trios of parents and offspring. We observed the inheritance pattern of

genotypes from an average of 4,284,264 variants per trio. Of these, 6,448.4 (0.15%) had an

abnormal inheritance. This percentage became more pronounced when stratified by the nov-

elty of the variants, e.g., the known SNVs and INDELs had error rates of 0.09% and 0.42%,

respectively, with errors in the inheritance pattern, whereas the novel SNVs and INDELs had
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error rates of 2.26% and 10.9%, respectively. The Mendelian heritability errors can include the

sequencing or genotyping error, de novo mutations, and gene conversions in the parents’ gam-

etes. However, our estimates approximate the error rate of genotyping in this study.

Ancestry inference and allele frequency distribution

We conducted the principal component analysis (PCA) to identify the ancestry of NCBN sam-

ples. After the exclusion of 316 samples from NCBN and 11 samples from the 1000 Genomes

Project, identified as closely related based on Identical-by-Descent (IBD) analysis, a total of

8,971 unrelated samples from NCBN and 2,493 from the 1000 Genomes Project were selected

for subsequent analysis. PCA using these samples detected 21 NCBN samples not belonging to

the East Asian populations (Fig 2A). These samples were confirmed to be from outside of East

Asia by verifying with the biobank from which they were provided. Significantly, the NCBN

sample was found on the far edge of the East Asian cluster, which could support the idea that

the Japanese population is a separate group within East Asia. To verify the influence of the

notably large size of the NCBN sample within the overall population, PCA was conducted on a

downsampled subset of 200 NCBN samples. Similar results were obtained, corroborating the

initial findings (S4 Fig). Furthermore, when PCA was performed exclusively on East Asians,

the samples segregated into two clusters: one consisting of continental populations (Han Chi-

nese in Beijing; CHB, Han Chinese South; CHS, Kinh Vietnamese; KHV, Chinese Dai in

Xishuangbanna, China; CDX) and the other incorporating Japanese in Tokyo (JPT) from 1000

Genomes and NCBN samples (Fig 2B). Moreover, the latter cluster subdivided into larger and

smaller subsets. The larger cluster comprised 8,524 individuals, whereas the smaller cluster

consisted of 182 individuals (S5A Fig). The Biobank information showed that 140 of the 182

individuals of the small cluster lived in or were born in Okinawa Prefecture, while only 27

individuals of the large cluster lived in or were born in Okinawa Prefecture. This postulates

that the larger one represents the Hondo population, while the smaller one corresponds to the

Ryukyu population [15]. The division of the PCA cluster within the Japanese population aligns

with findings reported in previous studies [15–17]. The same bifurcation into two clusters,

Fig 2. Genetic structure of NCBN samples. (A) The first and second principal components are plotted. The

continental population of the international 1000 genomes and NCBN are plotted in different colors and shapes. (B)

PCA plots of the East Asian population of the International 1000 Genomes and NCBN samples are shown. JPT:

Japanese in Tokyo, Japan, CHB: Han Chinese in Beijing, China, CHS: Han Chinese South, KHV: Kinh in Ho Chi

Minh City, Vietnam, CDX: Chinese Dai in Xishuangbanna, China.

https://doi.org/10.1371/journal.pgen.1010625.g002
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Hondo and Ryukyu, was reproduced either by downsampling the NCBN sample (S4 Fig) or by

employing UMAP, a different dimensionality reduction method (S5B Fig). When the PCA

and UMAP plots were plotted with color coding by donor biobank, there were differences in

the distribution among biobanks within the Hondo clusters (S5C and S5D Fig). This indicates

the presence of genetic structure within the Hondo cluster because the biobanks were located

in different locations. Notably, the cluster with the majority of NCGG samples in UMAP was

located at the edge of the Hondo cluster, suggesting the presence of regional genetic structure

as NCGG is located in Aichi Prefecture in central Japan. Further detailed analysis is needed to

account for individual demographic information such as place of birth. We also mapped the

saliva samples to PCA and UMAP plots to examine the effect of data quality on the analysis

(S5E and S5F Fig). We found that there were no clear clusters of saliva samples and that they

had little impact on the population structure analysis. We compared the allele counts of the

Japanese population (GEM Japan Whole-genome Aggregation) estimated based on the WGS

analysis in previous studies with those of the Hondo sample and found significant frequency

agreement (Fig 3A). While the allele frequencies between the Hondo and Ryukyu populations

also showed high agreement, the breadth of the distribution was wider than the comparison

between Hondo and GEM Japan (Fig 3B). This could be due to the difference in the Hondo

and Ryukyu populations and the subsequent genetic drift.

Functional landscape of variants

The variants identified by WGS analysis were annotated for their biological functions by Vari-

ant Effect Predictor v102 [18]. The impact of the variants was classified based on the criteria of

the annotation software and the database as described in the Methods section. Deleterious

mutations are more likely to be kept at low frequencies in the population, as such mutations

are less likely to spread in the population because of negative selection. In fact, variants with a

high impact on annotation showed a clear tendency to have a low frequency in the population.

For example, 70.8% of the “stop gain” variants, which produce a termination codon in the

middle of a protein sequence, were singletons observed in heterozygous individuals. On the

other hand, in the class of intergenic regions not expected to have a particular impact

Fig 3. Comparison of allele frequency between different populations. (A) The non-reference allele frequencies of

the Hondo population of NCBN samples (X-axis) and the corresponding variants of GEM Japan (Y-axis) were counted

and then the numbers were plotted as density. (B) Same plot for Hondo population (X-axis) and Ryukyu population

(Y-axis).

https://doi.org/10.1371/journal.pgen.1010625.g003
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(upstream & downstream gene variants), the percentage of singletons was about 51%. For a

more detailed examination, the LOFTEE plugin of Variant Effect Predictor was used to detect

loss-of-function (LoF) variants in the Hondo and Ryukyu populations. For comparison, we

also detected LoF variants in 26 populations in the 1000 Genomes Project phase 3 dataset [9].

14,145 SNVs and 16,823 INDELs were detected as high confident LoF specific to the Hondo

population. For the Ryukyu population, 211 SNVs and 288 INDELs were detected. The vast

majority of LoF SNVs exhibited a very low frequency in the Hondo population (Fig 4A). In

fact, 76.0% of these SNVs exhibited allele frequencies below 0.01%. We compared the number

of LoF alleles and the number of homozygous of LoF alleles per individual for Hondo, Ryukyu,

and populations in the 1000 Genomes Project (Figs 4B, 4C, and S6). Since homozygous LoFs

Fig 4. Analysis of loss-of-function (LoF) variants. (A) The allele frequency distribution of newly detected HC LoF SNPs in the Hondo population. (B) The

number of LoF alleles and (C) the number of homozygous of LoF alleles per individual for Hondo Ryukyu, and populations of the International 1000

Genomes. (D) The number of homozygous of LoF alleles per individual by allele frequency for Hondo, Ryukyu, and the populations of the International 1000

Genomes.

https://doi.org/10.1371/journal.pgen.1010625.g004
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result in a complete loss of gene function, the number of homozygous LoFs in an individual’s

genome can be used to measure the individual’s genetic burden. Both indices were highest in

Africa, lowest in West Eurasia, and moderate in Hondo and Ryukyu. The number of homozy-

gous LoF alleles per individual by allele frequency was generally higher in Africa across all

allele frequencies (Fig 4D), which is consistent with the trend observed in a previous study

[19] except for the high number of low frequency (<0.1%) homozygous LoF alleles.

We compared the variants of NCBN samples with ClinVar registered variants [20]. A total

of 103,833 variants found in the Hondo population are registered in ClinVar. Of these, 2,427

were classified as “pathogenic” or “likely pathogenic” variants. Seven variants were found in

the four-star category, the most reliable classification based on the ClinVar review status. Only

one of them was “pathogenic” and a singleton variant (i.e., heterozygous in a person) of the

CFTR gene which are known to cause the disease cystic fibrosis, a condition that affects the

respiratory and digestive systems. The remaining six were polymorphic variants related to

drug responsiveness of CYP2C19. There were 1,130 variants in the 3-star category reviewed by

the expert panel. Of these, 56 were “pathogenic,” and 13 were “likely pathogenic.” The frequen-

cies of these variants were the highest, at 1.0%, and most of them were extremely rare; only a

few were observed in the population. Most of the less well-reviewed variants with<3 stars had

frequencies of less than 1%, but 34 variants had a frequency of 1% or more.

Allele frequency estimation of HLA loci

Three-field HLA calling results from the WGS dataset in the present study were compared

with HLA allele frequencies HLA Foundation Laboratory (Kyoto, Japan) (S7 Fig). All common

HLA alleles (frequencies >1%) were concordant between the two datasets with observed dif-

ferences of less than 1%. To further validate our HLA calling results, a subset of 94 samples

was subjected to high-resolution HLA genotyping. Three-field HLA class I (HLA-A, -C, and

-B) accuracies were 96.3%, 97.9%, and 96.8%, respectively, and 3-field HLA class II

(HLA-DRB1, -DQA1, -DPA1, and -DPB1) accuracies were 98.9%, 100.0%, 98.9%, 100.0%, and

96.8%, respectively. The accuracy of 2-field HLA class I (HLA-A, -C, and -B) increased to

97.9%, 98.4%, and 97.3%, respectively.

Evolutionary perspective of genomic diversity

The recent decrease in population size was detected in Hondo and Ryukyu populations.

Fig 5A shows the population histories of Hondo and Ryukyu populations inferred using

IBDNe [21], which estimated the changes in population size in recent (~200 generations ago)

past based on IBD sharing among individuals. In Hondo, the population size decreased from

about 75 to 50 generations ago, and from 17 to 11 generations ago. In the Ryukyu population,

a reduction in population size was observed from about 100 to 25 generations ago. The distri-

butions of IBD length were multimodal in both populations, indicating fluctuations in popula-

tion size (Fig 5B). We also estimated the long-term changes in the effective population size

from the genome-wide genealogy using Relate software [22]. We estimated genome-wide

genealogy based on the whole-genome data of 1,000 randomly selected samples from Hondo,

182 samples from the Ryukyu, and 103 samples of CHB population from the 1000 Genomes

Project. The Ryukyu population showed a bottleneck that peaked around 2,700 years ago

(S8 Fig). Hondo/CHB population and Ryukyu population diverged around 3,700 years ago,

consistent with previous estimations of the divergence time using SNP arrays [23,24].

We detected positive natural selection based on genome-wide genealogy of 1,000 Hondo

samples by Relate and found SNPs with p-values below the genome-wide significance level

(p< 5.0 × 10−8) (S9 Fig and S2 Table). This analysis tests whether there are more branching
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after a particular time period in the genealogy estimated from the data than in the null model

expected from the coalescent model. As the QQ plot suggested inflation of the test statistics

(S10 Fig), it is possible that the results contain false positives. However, the genes reported in

previous studies [25–34], which may have undergone positive natural selection, were correctly

included in the results. It is therefore important to consider this when interpreting the results.

For example, ALDH2 rs671 G/A (p-value = 2.0 × 10−17) and ADH1B rs1229984 T/C (p-

value = 6.8 × 10−10), which are associated with alcohol metabolism, showed positive natural

selection signals [27,28]. The genealogies of the genes showed that the derived alleles were

spreading rapidly through the population (S11 Fig). The second example is signals of positive

natural selection on the non-synonymous rs76930569 C/T (p-value = 1.1 × 10−12) variant in

the OCA2 gene. This variant is in complete linkage equilibrium with rs1800414 T/C, involved

in melanin biosynthesis, and has been shown to be associated with light skin color and tanning

ability in Asian populations [26,33,34]. The third example of the positive selection is the FADS

gene family. Multiple SNPs (rs174599, rs174600, rs174601, rs97384, rs57535397, rs76996928)

showed the signatures of positive selection. FADS1 and FADS2 encode catalytic proteins,

which synthesize long-chain fatty acids from short-chain fatty acids [30], and have been sub-

jected to natural selection related to diet in several human populations [25,30–32]. The results

confirm the existence of positive natural selection as evidenced by the analysis using integrated

haplotype score (iHS) statistics [35] (S12 Fig). The most pronounced normalized iHS within

the ADH1B, FADS family, and OCA2 loci were recorded as 3.25, 3.77, and 3.71, respectively.

These values are within the top 0.31%, 0.17%, and 0.18% of the entire genome, respectively.

Conversely, the peak iHS observed within the ALDH2 locus was 2.48, placing it in the top

2.3%, suggesting a relatively less robust signal of positive natural selection compared to other

loci. We further analyzed change in allele frequency with time for these genes under positive

natural selection. We used CLUES software [36] to estimate the allele frequency trajectory of

SNPs in ALDH2, ADH1B, OCA2, and the FADS gene family. The frequency of the derived

Fig 5. Estimation of past population size from IBD sharing. (A) Short-term effective population size change in Hondo and Ryukyu populations by IBDNe.

(B) Distribution of IBD segment length in Hondo (top) and Ryukyu (bottom).

https://doi.org/10.1371/journal.pgen.1010625.g005
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alleles in ADH1B rs1229984 increased about 20,000 years ago (Fig 6A). In contrast, the fre-

quency of ALDH2 rs671 increased from about 7,500 years ago (Fig 6B). The allele frequency

trajectory of OCA2 rs1800414 (Fig 6C) showed that the frequency of derived allele of OCA2

rs1800414 began to increase due to natural selection around 25,000 years ago. The frequency

of derived allele of rs174599 began increasing around 25,000 years ago, slowed down 15,000

years ago, and started increasing again 10,000 years ago (Fig 6D).

Discussion

In the present study, we conducted a WGS analysis of samples from five biobanks in Japan.

Although the data obtained in this study are intended to be provided as control data for geno-

mic studies of various diseases, the analysis in this study focused on data quality and popula-

tion genetics properties. A uniform quality of data was obtained through the use of a single

procedure that encompassed both sequencing and data analysis. Population-based studies

using WGS analysis have been conducted in various populations [12,37,38]. Studies on Japa-

nese populations have already been reported [12], and the allele frequency distributions in pre-

vious studies are consistent with the results of the present study (Fig 3A). The samples

analyzed in the present study were provided by biobanks in three regions of Japan: NCGM,

NCCHD, and NCNP in the Tokyo area; NCGG in Aichi Prefecture in the central area in the

Fig 6. Trajectories of allele frequency of genes. Allele frequency trajectories of (A) ADH1B rs1229984, (B) ALDH2 rs671, (C) OCA2 rs1800414, and (D)

FADS1 rs174599 are shown.

https://doi.org/10.1371/journal.pgen.1010625.g006
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Honshu Island; and NCVC in Osaka Prefecture in the western area in Honshu Island. There-

fore, the genomic information obtained in the present study is expected to reflect the regional

diversity of Japan to some extent. For instance, the population genetic analysis identified two

clusters representing the ancestry of Ryukyu Islands, comprising Okinawa Prefecture and the

islands of Kagoshima Prefecture and the Hondo region (mainland). This supports the idea

that the Hondo and Ryukyu populations are genetically differentiated, as suggested by anthro-

pological studies [15–17]. We further found that past population sizes differed between Hondo

and Ryukyu. There was a reduction in the Hondo population from 17 to 11 generations ago

(Fig 5A). The corresponding period was 476 and 308 years ago, and the assumption is that

each generation spanned 28 years; most of this duration overlaps with the Edo period in Japan.

This is consistent with the findings from historical demography studies, which suggest that the

population grew at the beginning of the Edo period, but declined or stagnated in the middle

period (18th century) due to limited economic growth, population concentration in cities, and

famine caused by cold weather-related damage during this period. In contrast, the Ryukyu

populations showed population reduction from 100 generations ago to 25 generations ago but

then increased until the present (Fig 5A). This population growth about 700 years ago was

close to the beginning of farming in the Ryukyu Islands (12th century). Assuming that agricul-

ture was brought to the Ryukyu Islands by migrants from the mainland of Japan, the popula-

tion decline observed in the Ryukyu population can be considered a bottleneck associated with

the migration. The population size estimated from the modern genome reflects the past popu-

lation of the migrants and should be influenced negligibly by the genetic diversity of the origi-

nal inhabitants of the Ryukyu Islands. Indeed, although the several human skeletal remains

have been discovered from Pleistocene sites in Ryukyu Islands [39,40], the previous population

genetic analysis based on genome-wide SNPs suggested minor genetic contribution of the

Pleistocene Ryukyu Island population to the modern Ryukyu population [23,24]. The esti-

mated time of divergence between Hondo/CHB and Ryukyu was 3,700 years ago (S8 Fig), sug-

gesting that migration to the Ryukyu Islands occurred recently. This study primarily attributes

the genetic differentiation observed within the Japanese archipelago to migration and subse-

quent isolation, while also underscoring the significance of admixture. Previous studies

[6,17,41] has identified distinct ancestral components in both the Hondo and Ryukyu popula-

tions, a phenomenon interpreted as the result of admixture between the Jomon, the initial set-

tlers of the Japanese archipelago, and the Yayoi, migrants to Japan approximately 3,000 years

ago. The comprehensive sampling across Japan, as undertaken in this study, is anticipated to

bring to light novel insights from this perspective. The feasibility of future research in this area

hinges on the provision of sample origin data from biobanks.

Studies of rare genetic diseases require data on the frequency of variants in the population.

Most of the variants we found in this study were rare, and many of them were newly discov-

ered in this study, as expected from population genetics theory. However, the lower the fre-

quency of the variants, the more difficult it becomes to distinguish them from errors. In this

study, we evaluated the accuracy of genotype detection, estimating a discordance rate of

0.063% compared to genotype detection using WGS and SNP arrays. However, this is an over-

estimation of the error rate due to the combined error of both technologies. We also used the

data obtained from the WGS analysis of the trio for validation. We estimated the Mendelian

error rate, which is the proportion of genotypes detected in the offspring of a trio that is incon-

sistent with Mendel’s laws of heredity. This method has the advantage of being able to examine

the entire genome compared to the use of SNP arrays. We found that the Mendelian error rate

is much higher for novel variants that have not been reported previously. The Mendelian error

rate for novel SNVs was 2.26%, much higher than that of the known SNVs (0.09%). The

observed overall Mendelian error rate of 0.15% in our study is significantly lower than the
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5.25% estimated in a previous whole exome analysis [42]. Drawing direct comparisons

between these two studies is difficult due to the divergent methodologies employed. Therefore,

while the precise reasons for this discrepancy remain unclear, our findings evidently demon-

strate a decreased Mendelian error rate. However, it is important to note that the Mendelian

error rates observed here are considerably higher than the theoretical values derived from the

estimated de novo mutation rate based on identity by descent (IBD) (1.2 x 10−8 mutations per

base pair per meiosis) [43], and thus the majority of these errors are artifacts that arise from

sequencing and variant calls. This has important implications for the identification of causative

mutations in rare genetic diseases, as many causative mutations for these conditions are newly

discovered rare variants. This means that the discovery of such pathological variants in patient

sequencing is subject to a non-negligible degree of error.

We conducted the functional annotation of the variants discovered in this study. Consis-

tent with previous studies [12,37,38], variants that were expected to have a high biological

impact were less common in the population, confirming that negative natural selection

shapes the diversity of variants. Most of the LoF mutations were extremely rare, and most of

them were heterozygous (Fig 4A). The number of LoF mutations in the genome was compa-

rable to that in other Eurasian populations (Fig 4B). Although the Ryukyu population has

experienced population decline (Fig 5A), the frequency of LoF variants was comparable to

that in the Hondo population, and no evidence of differences in the profile of rare func-

tional variants due to the bottleneck effect was noted. The number of LoF sites and homozy-

gous LoF per individual in this study were higher than those detected in a previous study

[44]. Among these, the number of stop gained SNVs was consistent with that recorded in

the previous study [44], whereas the number of splice site SNVs and frameshift INDELs was

higher than that in the previous study [44] (S6 Fig). The number of LoF sites was generally

consistent with the number of LoF sites before manual curation in a previous study [45];

thus, it may be possible to remove false-positive homozygous LoFs through manual filter-

ing, as in the previous study.

We also examined pathogenic variants that have been reported in the past. Pathogenic vari-

ants assessed by an expert panel (4-star status) on ClinVar were found only in one to a few

individuals in the population. On the other hand, some variants that were less reviewed were

polymorphic with high frequency. These results reinforce the importance of utilizing the fre-

quency of the variants in the population to evaluate their pathogenicity.

Genes that have undergone positive natural selection in the East Asian populations are

related to the metabolism. This study supported that the dietary changes in the ancestors seem

to have shaped gene frequencies. Candidate regions undergoing positive natural selection were

found on a genome-wide scale using genealogy analysis (S9 Fig). ADH1B is involved in metab-

olizing alcohol to acetaldehyde, and ALDH2 is involved in metabolizing acetaldehyde. Both

the non-synonymous A allele of ALDH2 rs671 and the C allele of ADH1B rs1229984 affect the

retention of acetaldehyde in the body and cause alcohol flush in Asians [27,46]. These alleles

have been suggested to be associated with Japanese dietary habits and diseases, such as esoph-

ageal cancer [47–49]. Previous studies have hypothesized that positive selection may have

acted to maintain acetaldehyde in the blood against parasite infection, which correlates with

large-scale rice cultivation [28,49–51]. We also observed that the increase in the frequency of

ADH1B occurred earlier than that of ALDH2, indicating that positive selection began to act at

different times for these two genes (Fig 6A and 6B). Based on the geographic distribution of

haplotype structures around ADH1B and ALDH2, according to Koganebuchi et al., positive

selection on ADH1B rs1229984 started before the beginning of the Jomon period, while posi-

tive natural selection on ALDH2 began around 8,000 years ago, in association with the begin-

ning of rice cultivation in China [28]. Our dating by genome-wide genealogy of the Japanese
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population genome is consistent with the above consideration. Using HapMap data, OCA2

rs1800414 has been shown in previous studies to be the effect of positive natural selection on

East Asians [26]. For the OCA2 gene, positive natural selection signals were found in the Euro-

pean population for skin color-related SNPs other than those detected in this study [26]. As

natural selection works for light skin color, a previous study mentioned that it enhances vita-

min D synthesis capacity in regions with low sunlight [34]. For East Asians as well, positive

natural selection may have operated in relation to vitamin D synthesis in regions with low sun-

light. However, since the derived allele of rs1800414 is not necessarily more frequent at the

high latitudes of East Asia, other possibilities, such as sexual selection, cannot be ruled out at

this time [26]. The derived allele of rs1800414 has been shown to be associated with light skin

color and tanning ability in Chinese and Japanese populations [33,34] and is widely observed

in modern East Asians [26], suggesting that the derived allele of rs1800414 originated in the

common ancestor of East Asians and spread throughout East Asia at very early stages of the

East Asian population history. We estimated that the derived allele of OCA2 rs1800414 began

to increase in frequency around 25,000 years ago (Fig 6C). Future analyses of older East Asian

lineages, such as the ancient genome of the Jomon people, may reveal the original variant of

this allele that led to positive natural selection. FADS1 and FADS2 participate in fatty acid

metabolism. For example, in the Inuit population, which relies heavily on a marine animal

diet, there are positive natural selection signals on SNPs of FADS2 genes, which are responsi-

ble for the increase in the concentrations of short-chain fatty acids [52]. Signals of positive nat-

ural selection on alleles that promote long-chain fatty acid synthesis have also been identified

in African [30], European [25,32,53], and South Asian populations [29]. In particular, studies

in European populations have shown that the derived alleles of rs174594 and rs1714546 are

associated with increased total cholesterol and LDL cholesterol levels, increased expression of

FADS2, and decreased expression of FADS1 [25]. In European populations, increased reliance

on plant diets seemed to have resulted in positive natural selection on alleles that promote

long-chain fatty acid synthesis pathways of the FADS gene family [25,31,32]. The SNPs in the

FADS gene family detected in this study were associated with total cholesterol and LDL choles-

terol levels, increased expression of FADS2, and decreased expression of FADS1 (S3 Table),

like the SNPs subjected to natural selection in the European population (S3 Table). These

results suggest that in Hondo populations, as in Europeans, the dietary change was accompa-

nied by positive natural selection for alleles that promote the long-chain fatty acid synthesis.

The frequency of the derived allele of rs174599 in FADS2 began to increase around 25,000

years ago, but the increase was not continuous, and there was a period of stagnation from

15,000 years ago for 5,000 years (Fig 6D). Interestingly, the frequency of this allele varies widely

among East Asian populations. The derived allele was major in CHB (64%) and Japanese

(63%), whereas it was minor in Dai (Chinese Dai in Xishuangbanna, China) (22%), Han Chi-

nese in South (42%), and Kinh Vietnamese (20%); these data suggest that the positive natural

selection of the FADS gene family in East Asians may reflect the association with agriculture

and the complex dietary differences among regional populations. Notably, Mathieson and

Mathieson (2018) disproved the simple idea that these derived alleles underwent positive natu-

ral selection in relation to the introduction of agriculture and speculated that there were com-

plex underlying factors, such as unknown dietary changes [32].

In this study, we demonstrated that the data presented here can be used as a foundation

for analysis of human genetics. While this study focused on population genetic characteriza-

tion of the Japanese population, the data can be used in disease studies, as a resource for

genotype imputation in studies of common diseases, and as a control in studies on rare

diseases.
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Materials and methods

Ethics statement

This study was conducted with approval from the ethics review committee of the NCGM. The

approval number is NCGM-S-003413-06. Written informed consent for the analysis of these

samples was received from all subjects in each biobank.

Sample preparation

DNA samples stored in the biobanks of five national centers (National Cerebral and Cardio-

vascular Center; NCVC, National Center for Geriatrics and Gerontology; NCGG, National

Center for Global Health and Medicine; NCGM, National Center of Neurology and Psychia-

try; NCNP and National Center for Child Health and Development; NCCHD) were submitted

for WGS analysis. Samples derived from healthy individuals or patients with some common

diseases were selected as control groups for future disease studies. Approximately 50 μl of

DNA at a concentration of 80 ng/μl per sample was aliquoted into 96-well plates and shipped

to an outsourced laboratory (TakaraBio, Shiga, Japan) for WGS analysis.

WGS

To avoid quality fluctuations and batch effects, all samples were analyzed by a single out-

sourced laboratory. WGS analysis was performed using NovaSeq6000 (Illumina, San Diego,

CA, US), and sample preparation was performed using the procedures and reagents recom-

mended by the manufacturer. DNA molecules were sonicated with a protocol targeting an

average size of 550 bp. DNA libraries were prepared using the TruSeq DNA PCR-Free HT

Library Prep Kit, and index sequences were added for multiplex analysis. The insert size was

confirmed by electrophoresis in the range of 400–750 bp before sequencing runs. WGS was

performed at 150 bp paired-end and repeated in multiplex until an output of>90 Gbases with-

out duplicated reads was obtained.

Data analysis

We received the quality controlled FASTQ data from the outsourced laboratory and per-

formed mapping and variant calling in an in-house data analysis pipeline. The mapping and

variant calls were performed using the Parabricks v3.1.0 (Nvidia, Santa Clara, CA, US), which

provides the capability to perform the analysis recommended by GATK at high speed using a

GPU [54]. The GRCh38 was used as the reference sequence. The pipeline used in this study

implements algorithms equivalent to those of bwa (v0.7.15) [55] and GATK (v4.1.0). We

flagged duplicates from mapped reads but did not perform realignment and base quality score

recalibration to reduce the computational time. The mapped data were outputted in BAM for-

mat and converted into CRAM format using samtools [56] to reduce the file size. Variant calls

were output in gVCF format for joint calling. QC metrics were obtained to evaluate the quality

of the analyzed data. The depth and map rate were calculated using GATK’s CollectWgs-

Metrics tool. These QC metrics were continuously monitored throughout the analysis. The sex

chromosomes were analyzed assuming both male and female genders. Variant calls were per-

formed for chromosome X in the diploid (-ploidy 2) model for females and the monoploid

(-ploidy 1) model for males. Variant calls of the pseudoautosomal region were performed in

the diploid model. Variants of chromosome Y were called in the monoploid mode regardless

of the sample’s gender. Finally, the appropriate gVCF file for each sex was used during joint

calling. Data from the high-coverage WGS analysis of 2,504 individuals of the International

1000 Genomes Project phase 3 [9] were used as population references for this study. The
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CRAM files reanalyzed using high depth WGS were downloaded from a public database, and

variant calls were performed with the protocol described in this study.

Integrated analyses

To properly estimate the frequencies of variants found after WGS in the population, we inte-

grated the gVCF files. The joint calling was conducted by combining samples from the biobank

of NCBN and samples from the International 1000 Genomes Project phase 3. For the joint call-

ing, we used the gVCFtyper program of the Sentieon package [57]. This program produces

results equivalent to those of GeomicsDBImport followed by GenotypeGVCFs programs for the

joint calling of GATK. To perform efficient computation in a cluster computation environment,

we divided the autosomes into 29 regions evenly. Each variant was scored using VQSR to filter

the integrated VCF. The VarCal and ApplyVarCal programs of the Sentieon package corre-

sponding to GATK’s VariantRecalibrator and ApplyVQSR, respectively, were used for this pro-

cess. The HapMap and International 1000 Genomes Omni2.5 sites, the high-confidence SNPs

of the International 1000 Genomes Project, and the dbSNP151 sites were used as true, training,

and known datasets, respectively. Variants identified as PASS, which correspond to filtering

with 99.9% sensitivity, were used in subsequent analyses unless otherwise noted. The INDELs

in the present variant set were normalized by performing left align, and multiallelic variants

were split into multiple variant records using the norm subcommand in bcftools [44].

Variant annotation

Variants were annotated with the Variant Effect Predictor v102 [18]. We ran the loftee plugin

to evaluate the effects of the LoF variants. For the other evaluation of the functional effects,

dbNSFP4.1 [58] was used to assign precomputed evaluation values to the variants. The metrics

used for the assignment included LRT, SIFT, MutationTaster, and Polyphen2.

Genotyping by SNP array

Using JaponicaArray [59], genome-wide genotyping was performed on a subset of samples for

comparison with WGS results. Ninety-four samples each from five biobanks were analyzed using

the residual DNA after WGS analysis. The analysis was performed by an outsourced laboratory

(Toshiba, Tokyo, Japan), and the raw data in CEL format was received. Four samples were

dropped from the genotyping due to a low call rate (<97%) in the first step of genotyping. Clus-

tering for SNP genotyping of variants was performed on the data of 466 individuals using the

Analysis Power Tools (ver. 2.10.2.2, Thermo Fisher Scientific, MA, USA). The clustering results

for each probes’ intensity were classified using the SNPolisher program bundled with the Analysis

Power Tools, and the 639,508 SNPs classified as “Recommended” in autosomes were used for

subsequent analyses. The genotype concordance with WGS was estimated using the hap.py soft-

ware. Comparison was made with 466 samples that overlapped with the WGS analysis samples

selected for the calculation of allele frequencies. To compare the positions for which probes were

designed in the SNP array, SNVs with the same position as the SNP array were extracted from

the results of WGS analysis. The SNP array results were used as true data and the WGS results as

query data. The genotype discordance rate between the SNP array and WGS was calculated by

dividing the number of false positives by 639,508, which is the total number of SNPs compared.

Allele frequency estimation

To calculate the accurate allele frequencies, the ancestry of the samples was estimated using

PCA. Variants were filtered under more stringent criteria for this purpose. Individual’s
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genotypes were considered no calls if they had a genotype quality (GQ) of less than 20, a depth

outside the range of 11 to 64, or if less than 25% of the reads supported the minor allele for het-

erozygous calls. Then, sites with SNPs that had a VQSR filter of PASS, a minor allele frequency

of>1%, and a call rate of>95% were retained. The KING program [60] selected samples of

unrelated individuals in the third-degree kinship or more. For this dataset, independent SNPs

were extracted using PLINK1.9 [61] with “-indep-pairwise 500 50 0.1”, and PCA was per-

formed to calculate the principal component values for each sample using PLINK1.9. Clusters

were identified visually on the scatter plot of the first and second principal components.

Allele and genotype frequencies were estimated for each ancestry group and biobank. The

fill-tags plugin of bcftools was used for these calculations. To compare the allele frequencies in

the Japanese population, we downloaded the GEM Japan frequency panel information from

TogoVar. Since the GEM Japan panel only provides information in hg19 coordinates, we con-

verted it to GRCh38 coordinates. We used GATK’s LiftoverVcf program for the conversion.

HLA analysis

Three-field HLA alleles calling was performed using HLA-HD v1.3.0 [62] based on

IPD-IMGT/HLA v3.43.0 [63]; a score based on the weighted read counts considering varia-

tions in and outside of the domain for antigen presentation was calculated to select the most

suitable pair of alleles amongst the candidate HLA alleles. To validate the accuracies of HLA

calling from WGS, HLA allele frequency distribution was compared with the HLA frequency

dataset from HLA Foundation Laboratory (Kyoto, Japan). To evaluate the accuracy of HLA

calling from the WGS dataset, a subset of the samples (n = 94) was subjected to high-resolution

experimental HLA genotyping for eight HLA genes (HLA-A, -C, -B, -DRB1, -DQA1, -DQB1,

-DPA1, and -DPB1) using next-generation sequencing and AllType assay (One Lambda, West

Hills, CA, US). Experimental HLA genotyping was carried out following the vendor instruc-

tions, which consist of HLA gene amplification, HLA library preparation, HLA template prep-

aration, and HLA library loading onto an ion 530v1 chip (Thermo Fisher Scientific) in the Ion

Chef (Thermo Fisher Scientific), followed by final sequencing on the Ion S5 machine (Thermo

Fisher Scientific). HLA genotype assignments were carried out using HLATypeStream Visual

(TSV v2.0; One Lambda, West Hills, CA, US) and NGSengine (v2.18.0.17625, GenDX,

Utrecht, the Netherlands).

Haplotype phasing

Variant phasing was performed using shapeit v4.2 [64] in a haplotype-based analysis. SNPs of

unrelated samples identified using the ancestry inference were extracted for phasing. The vari-

ant phasing was performed by dividing the autosomes into regions containing overlaps for

efficient computation. Each region was about 10 Mb in length, with a 500 kb overlap margin at

both ends. After phasing, VCFs were concatenated using the concat subcommand in bcftools.

Estimation of recent population size change

We estimated the effective population size change of the Japanese population from IBD shar-

ing, which can estimate the population size change in the recent past (~200 generations ago)

using WGS data [21]. Population size change was estimated for each population based on the

whole-genome data of Hondo (8,524 individuals) and Ryukyu (182 individuals). First, the hap-

ibd software [65] was used to detect the IBD segments shared by each individual. For the

genetic distance, we referred to the HapMap genetic map data distributed with hapibd. IBD

segments were detected by separating the short and long arms of the chromosomes so that

IBD segments did not include the centromere. We then estimated the population size change
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of the Hondo and Ryukyu populations using IBDNe (ibdne.23Apr20.ae9.jar). The shortest

threshold of the IBD segment length was set at 2 cM.

Estimation of genome-wide genealogy, estimation of population size

change, and detection of positive natural selection

We conducted the analysis of gene genealogy using the Relate software [22] to detect long-

term population size change and positive natural selection in Hondo and Ryukyu populations.

Relate is a software that can estimate genealogy on a genome-wide scale for over 10,000 sam-

ples. In this study, we used 1,000 randomly selected individual genomes of Hondo, 182 Ryukyu

samples, and 103 CHB samples of 1000 Genomes Project [9]. First, input files (.haps,.samples)

were created from vcf files using the PrepareInputFiles.sh script in Relate software. We

retrieved the Homo sapiens ancestral sequences (GRCh38) of Ensembl 103 for the ancestral

sequence and StrictMask of 1000 Genomes Project for genomic mask. Next, genome-wide

genealogy was estimated using the “Relate” command of Relate software packages. The muta-

tion rate was set to 1.25 × 10−8 per base per generation and the effective population size was set

to 30,000. We assumed 28 years as the generation time in humans. The estimated genome-

wide genealogy (.anc,.mut) was used as input for population size estimation of Hondo and

Ryukyu populations using the EstimatePopulationSize.sh script. This script simultaneously

conducts estimation of population sizes, re-estimation of branch lengths using the estimated

population sizes, and estimation an average mutation rate. Finally, based on genome-wide

genealogy, we detected the target SNPs of positive natural selection acting on Hondo and Ryu-

kyu populations. Relate calculates a p-value of each SNP for positive selection that quantifies

how quickly a mutation has spread in the population. The p-values were calculated for each

SNP using the DetectSelection.sh script using the output genealogies of population size estima-

tion (.anc,.mut). We evaluated the quality of each SNP by “RelateSelection–mode Quality,”

and SNPs inferred to be inaccurate tree estimation were excluded. The iHS statistic was com-

puted on the same data set using the program selscan [66]. with the VCF containing phased

genotypes as input, the analysis was run separately for the short and long arms of the chromo-

somes. The iHS obtained from the analysis were normalized stratified by 1% of allele frequen-

cies with the norm program bundled with selscan.

Estimating the allele frequency trajectory

Changes in the allele frequency through the time were estimated using CLUES to infer allele

frequency trajectories [36]. CLUES uses the genome-wide genealogy inferred by Relate. First,

the sampleBranchLengths.sh script implemented in Relate was used to MCMC sample the

gene trees for the focal SNPs. Then, using the sampled tree file (.timeb) as input, we estimated

the allele frequency trajectory using CLUES’s inference.py command. The coalescence rate

estimated by Relate (.coal file) can be used as an input to modify the population size change

using the -coal option. In this study, we estimated the allele frequency trajectory by focusing

on ALDH2 rs671, ADH1B rs1229984, OCA2 rs1800414, and FADS2 rs174600 among the

SNPs that showed signals of natural selection in Relate.

Web resources

IGSR: The International Genome Sample Resource, https://www.internationalgenome.org

Hap.py, https://github.com/Illumina/hap.py

GEM Japan, https://www.amed.go.jp/en/aboutus/collaboration/ga4gh_gem_japan.html

TogoVar, https://togovar.biosciencedbc.jp/

GATK, https://gatk.broadinstitute.org/hc/en-us
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HLA frequency dataset from HLA Foundation Laboratory (Kyoto, Japan), http://hla.or.jp/

index.html

Homo sapiens ancestral sequences (GRCh38), ftp://ftp.ensembl.org/pub/current_fasta/

ancestral_alleles/homo_sapiens_ancestor_GRCh38.tar.gz

dbSNP, https://www.ncbi.nlm.nih.gov/snp/

Supporting information

S1 Fig. Comparison of QC metrics. Comparison of QC metrics between NCBN and 1000

Genome samples. (A)(D) Histogram of average depth per sample. (B)(E) Cumulative frequen-

cies of average depth per sample. Comparisons are made between NCBN and 1000Genome

samples in (A)(B)(C); Comparisons are made between blood, saliva (both NCBN) and cell line

(1000Genomes) in (D)(E)(F).

(PDF)

S2 Fig. Fraction of the genomic region that is mapped with specific depth (10x, 20x, 30x,

40x). The fraction of genomic regions exhibiting a certain level of mapping depth is computed

for each sample. These data are then represented and compared using a boxplot stratified by

DNA source.

(PDF)

S3 Fig. Breakdown of QC steps and sample size for this study. The steps in the analysis and

QC process are illustrated in the figure, with a breakdown of the number of samples.

(PDF)

S4 Fig. PCA performed with the number of NCBN samples reduced to 200. A PCA was per-

formed on 200 randomly selected NCBN samples under the same conditions as in Fig 2. (A)

The first and second principal components are plotted. The continental population of the

international 1000 genomes and NCBN are plotted in different colors and shapes. (B) PCA

plots of the East Asian population of the International 1000 Genomes and NCBN samples are

shown.

(PDF)

S5 Fig. Genetic structure of East Asian populations. (A) The clusters consisting of the

NCBN samples in Fig 2 are classified into Hondo (blue), Ryukyu (orange), and others. (B) The

six principal component of PCA were dimensionally reduced to a two-dimensional represen-

tation via the Uniform Manifold Approximation and Projection (UMAP). The color scheme

employed matches that of (A). The UMAP transformation was executed using the UMAP

function from the umap-learn package in Python, with the parameters set to n_neighbors = 10

and min_dist = 0.5. (C) (D) Plot of (A) and (B) color-coded by sample donor biobank. Periph-

eral density distribution is also attached to show the difference in distribution within clusters.

(E) (F) Plots (A) and (B) with saliva-derived samples highlighted.

(PDF)

S6 Fig. Analysis of Loss-of-function (LoF) variants. The numbers of LoF sites per individual

by category are presented: (A) and (B) stop gained SNV; (C) and (D) splice site SNV; (E) and

(F) frameshift INDELs.

(PDF)

S7 Fig. HLA alleles frequencies (%) between NCBN vs HLA Foundation Laboratory,

Kyoto, Japan. Comparison for class I HLA genes (HLA-A, -C, -B) (left). Comparison for class

II HLA genes (HLA-DRB1, -DQA1, -DQB1, -DPA1, -DPB1) (right). Only common HLA
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alleles (HLA frequencies > 1%) are included in this analysis.

(PDF)

S8 Fig. Long-term effective population size change of Hondo, Ryukyu, and Han Chinese.

The changes in population size were estimated from the gene genealogy across the genome.

(PDF)

S9 Fig. Manhattan plot of the selection scan result of the whole-genome SNPs by Relate.

The red line represents the genome-wide significance level (5 × 10−8).

(PDF)

S10 Fig. QQ plot of the selection scan result of the whole-genome SNPs by Relate. The red

line denotes y = x.

(PDF)

S11 Fig. Gene genealogy estimated by Relate. Genealogy of (a) ALDH2 rs671, (b) ADH1B

rs1229984 (c) OCA2 rs1800414 (d) FADS1 rs174599 are presented. The vertical axis represents

the age (years before present). Derived allele carriers are shown in red.

(PDF)

S12 Fig. Genome-wide signature of positive selection (his) of the whole genome SNPs by

selscan. The absolute values of iHS for each SNP are plotted on the vertical axis, with red and

blue lines drawn at the top 0.1% and 1% of the genome, respectively, in descending order of

absolute iHS value.

(PDF)

S1 Table. Summary of variants discovered by WGS.

(PDF)

S2 Table. List of SNPs for which natural selection was detected by Relate.

(XLSX)

S3 Table. Abbreviated GTEx eQTL Results of SNPs affected by positive natural selection in

FADS gene family, P Value Cut Off of 10−20.

(PDF)
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