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Abstract

Genetic studies of disease progression can be used to identify factors that may influence

survival or prognosis, which may differ from factors that influence on disease susceptibility.

Studies of disease progression feed directly into therapeutics for disease, whereas studies

of incidence inform prevention strategies. However, studies of disease progression are

known to be affected by collider (also known as “index event”) bias since the disease pro-

gression phenotype can only be observed for individuals who have the disease. This applies

equally to observational and genetic studies, including genome-wide association studies

and Mendelian randomisation (MR) analyses. In this paper, our aim is to review several sta-

tistical methods that can be used to detect and adjust for index event bias in studies of dis-

ease progression, and how they apply to genetic and MR studies using both individual- and

summary-level data. Methods to detect the presence of index event bias include the use of

negative controls, a comparison of associations between risk factors for incidence in individ-

uals with and without the disease, and an inspection of Miami plots. Methods to adjust for

the bias include inverse probability weighting (with individual-level data), or Slope-Hunter

and Dudbridge et al.’s index event bias adjustment (when only summary-level data are avail-

able). We also outline two approaches for sensitivity analysis. We then illustrate how three

methods to minimise bias can be used in practice with two applied examples. Our first exam-

ple investigates the effects of blood lipid traits on mortality from coronary heart disease,

while our second example investigates genetic associations with breast cancer mortality.

Introduction

There is a growing interest in performing genetic studies of disease progression, with initial

studies suggesting that single nucleotide polymorphisms (SNPs) associated with disease

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010596 February 23, 2023 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Mitchell RE, Hartley AE, Walker VM,

Gkatzionis A, Yarmolinsky J, Bell JA, et al. (2023)

Strategies to investigate and mitigate collider bias

in genetic and Mendelian randomisation studies of

disease progression. PLoS Genet 19(2): e1010596.

https://doi.org/10.1371/journal.pgen.1010596

Editor: Jingshu Wang, The University of Chicago,

UNITED STATES

Published: February 23, 2023

Copyright: © 2023 Mitchell et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Funding: The authors work in an MRC-funded unit

(MC_UU_00011/1, MC_UU_00011/3,

MC_UU_00011/4). VMW is funded by COVID-19

Longitudinal Health and Wellbeing National Core

Study, which is funded by the Medical Research

Council (MC_PC_20059). AHWC is funded by the

Jonathan and Georgina de Pass studentship. The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-3506-160X
https://orcid.org/0000-0001-5064-446X
https://orcid.org/0000-0003-4942-0025
https://doi.org/10.1371/journal.pgen.1010596
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010596&domain=pdf&date_stamp=2023-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010596&domain=pdf&date_stamp=2023-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010596&domain=pdf&date_stamp=2023-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010596&domain=pdf&date_stamp=2023-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010596&domain=pdf&date_stamp=2023-02-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010596&domain=pdf&date_stamp=2023-02-23
https://doi.org/10.1371/journal.pgen.1010596
http://creativecommons.org/licenses/by/4.0/


survival often differ from those associated with disease susceptibility [1–7]. “Disease progres-

sion,” also known as disease prognosis, refers to any event occurring subsequent to disease

incidence, such as changes in severity and/or survival. Investigating such events necessitates

performing studies restricted to individuals who have the disease of interest, i.e., cases. By

design, this involves conditioning on disease incidence, causing it to become a so-called “col-

lider” variable within a causal inference framework [8]. This leads to biased associations

between causal risk factors for disease incidence, including inducing associations between risk

factors that are truly independent of each other (not correlated) in the source population. This

becomes problematic if any of these risk factors for disease incidence, measured or unmea-

sured, also cause disease progression, because indirect associations may be induced between

risk factors for disease incidence and disease progression (red dashed line in Fig 1). Therefore,

a risk factor that is causal only for incidence (risk factor 2 in Fig 1) may falsely appear to cause

progression entirely through an induced association with another causal risk factor for inci-

dence (i.e., a noncausal path) (risk factor 1 in Fig 1). This can result in biased estimates of the

true causal associations between risk factors and disease progression [8,9]; this bias has been

termed index event bias (defined in Box 1). An example of index event bias is in studies of

Fig 1. Directed acyclic graph demonstrating the introduction of collider bias in observational case only studies.

Conditioning on disease incidence induces the association between previously independent causal risk factor 1 and

causal risk factor 2, shown by the dashed line. Because risk factor 1 is also a causal risk factor for disease progression, a

case-only setting has led to a biased association between risk factor 2 and disease progression via the path RF1->RF2-

>DP. The association of the risk factor 2 with disease progression when conditioning on incidence is entirely due to

collider bias.

https://doi.org/10.1371/journal.pgen.1010596.g001

Box 1. Terminology commonly used in relation to the bias induced in
the case-only setting

Collider bias: Bias induced in the association between two variables when conditioning

on their common effect (a “collider”).

Selection bias: Bias in the estimated effect of exposure on outcome caused by nonrandom

participation in/selection into a study. Collider bias will induce associations between all

causes of participation in/selection into a study.

Index event bias: Bias in the estimated effect of exposure on outcome caused by restrict-

ing the analysis to cases only. Collider bias will induce associations between all causes of

the disease.

Survival bias: Bias in the estimated effect of exposure on outcome caused by condition-

ing on those who have survived long enough to be in the study. Collider bias will induce

associations between all causes of survival.
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coronary heart disease (CHD) progression where the restriction of analyses to CHD cases only

(i.e., conditioning on disease state) could induce associations between truly independent CHD

risk factors. This could explain the so-called “obesity paradox” where higher body mass index

(BMI) is associated with longer survival among those with CHD, despite higher BMI being

associated with shorter survival in the general population. Indeed, lower levels of other risk

factors for CHD measured in individuals with high BMI may be sufficient to induce an associ-

ation of higher BMI with longer survival [10–12].

The model-dependent nature of the presence and direction of index event bias should be

noted [13,14]. Where two independent risk factors are causes of a binary collider variable C,

collider (index event) bias will not be induced by conditioning on C if the two risk factors are

perfectly multiplicative/log additive in their effect on C on a risk ratio scale [13]. In case-only

studies, disease incidence plays the role of the collider C. Different variables may be viewed as

colliders in other types of studies; for example, studies affected by survival bias are effectively

conditioned on individuals surviving to study onset and collider (index event) bias in such

studies is avoided when the two risk factors are multiplicative in their effects on survival [15].

Moreover, collider (index event) bias is expected to induce a positive correlation between the

two risk factors if they are supramultiplicative in their effects on disease incidence, and a nega-

tive correlation if the two risk factors are submultiplicative in their effects on disease incidence

[15]. The extent of the resultant collider (index event) bias will therefore be greater the further

away the associations of risk factors with the collider are from the multiplicative/log additive

risk model [13]. In chronic disease epidemiology, many causal risk factors may be expected to

have a submultiplicative impact on the incidence of disease.

In the case of a genetic epidemiological study of disease progression, index event bias is

potentially problematic when a genetic variant causes the onset/incidence of disease, in the

presence of a measured/unmeasured common cause (i.e., confounder) for disease incidence

and progression. This situation creates spurious and/or biased associations between that

genetic variant and the progression phenotype [16,17]. Fig 2A illustrates this: In case-only

studies, when conditioning on disease incidence, and when there is a shared confounder for

incidence and for progression (risk factor 1) in the population, any genetic variant (risk factor

2) that causes incidence will display an induced association with that confounder (risk factor

1). Collider bias in this context has opened up the pathway of genetic variant -> risk factor 1

-> disease progression, and the genetic variant will falsely appear to be associated with pro-

gression. Importantly, this confounder could be another genetic variant itself, and, therefore,

in a genome-wide association study (GWAS) of case-only samples, more SNPs can appear to

be associated with progression than truly are (Fig 2B). In another scenario, this spurious asso-

ciation through a noncausal pathway could be in addition to the direct true effect of the SNP

on progression, inducing a biased association between the SNP and disease progression, i.e.,

an overestimate or underestimate of the true causal association (Fig 2C). Indeed, a study inves-

tigating the association of known common type 2 diabetes variants with BMI (a strong risk fac-

tor for type 2 diabetes) found three overestimated and one underestimated associations among

11 type 2 diabetes risk alleles when comparing to a nondiabetic population [16]. Another

example uses a polygenic risk score to examine associations between CHD genetic risk variants

and cardiovascular outcomes and found that these differ when examined in those with and

without prior CHD [18]. These studies highlight the need to address this bias by detecting and

accounting for its presence in case-only studies.

Index event bias also has implications for applied genetic epidemiological analyses down-

stream of GWAS, such as Mendelian randomisation (MR) [19–21]. A consequence of not

adjusting for index event bias at the stage of conducting a GWAS would mean that biased asso-

ciation estimates of SNPs with disease progression could be used in MR analyses and result in
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Fig 2. Directed acyclic graph demonstrating the introduction of collider bias in genetic case only studies. (A)

Conditioning on disease incidence induces the association between a previously independent casual risk factor and

causal genetic variant for disease incidence, shown by the dashed line. Because risk factor 1 is also a casual risk factor

for disease progression (a confounder of disease incidence and progression), a case-only setting has led to a biased

association between the genetic variant and disease progression via the path Genetic variant->Measured/unmeasured

confounder->Disease progression. The association of the genetic variant with disease progression when conditioning

on incidence is entirely due to collider bias. (B) Collider bias will induce an association between genetic variants that

both cause disease incidence. This will make a noncausal genetic variant (risk factor 2) to appear associated with

disease progression. (C) A third scenario is where this induced path is in addition to the direct effect of the genetic

variant on disease progression.

https://doi.org/10.1371/journal.pgen.1010596.g002
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potentially misleading causal estimates of exposures with disease progression outcomes. In a

two-sample MR setting, only the SNP-outcome (disease progression) estimates will be affected

by index event bias as the SNP-exposure estimates will be taken from a GWAS that is not

restricted to cases only. However, in a one-sample MR setting of a study of case-only samples,

if the exposure causes disease incidence, then both the SNP-exposure and the SNP-outcome

(disease progression) estimates may be biased. In addition, the MR assumption that the genetic

instrument is independent of factors that confound the association of the exposure with the

outcome would be violated given that conditioning on disease incidence has opened up the

pathway of genetic instrument -> risk factor 1 -> disease progression (Fig 3). This would be

true for a single genetic variant as well as a combination of variants within a polygenic risk

score (PRS) instrument; the use of such scores may increase the potential for this bias. This

would invalidate the MR study and lead to an over- or underestimate of the causal effect of

exposures on the disease progression outcome of interest [21].

Here, we aim to review several strategies that are currently available to investigate and miti-

gate index event bias in GWAS and MR studies of disease progression and advise on the inter-

pretation of results from such studies. Although other sources of selection bias can be an issue

when studying disease progression, including loss-to-follow-up and missing data [22,23], this

review focuses on index event bias. We start with the need to investigate if there is bias in the

case-only population. Where index event bias is detected, we discuss three methods that aim to

minimise index event bias, according to the data that are available (individual-level or sum-

mary-level). We next outline two sensitivity analyses that have been developed to determine the

magnitude of bias that would have to be present to explain any observed associations with pro-

gression. We conclude with two applied examples of disease progression studies—one concern-

ing blood lipid traits and survival in CHD, and the other concerning breast cancer prognosis.

Detecting index event bias

Index event bias can be investigated using negative controls that are causal for disease onset.

For example, age is not genetically determined, and, therefore, the presence of strong

Fig 3. Directed acyclic graph demonstrating the introduction of collider bias in Mendelian randomisation case only studies. In Mendelian randomisation

analyses, the exposure is proxied by a causal genetic instrument. Conditioning on disease incidence induces the association between the previously

independent genetic instrument and a common cause for disease incidence and disease progression, shown by the dashed line. This would violate the

independence MR assumption invalidating the analysis.

https://doi.org/10.1371/journal.pgen.1010596.g003
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associations between SNPs and age in a case-only sample, where age is a risk factor for being a

case, can only be an artefact of index event bias. Similarly, the presence of associations of auto-

somal SNPs with sex, reflecting differences in allele frequencies between men and women,

would be evidence for index event bias if onset of the disease of interest differed by sex. Identi-

fication of sex-associated autosomal loci has highlighted potential bias due to sex differences in

participation in large cohort studies [24]. It should be noted that these analyses do rely on a

large enough sample size so that the analyses have sufficient statistical power. If analyses are

underpowered, one cannot be sure that a lack of association, e.g., between SNPs and age, in

the case-only population is due to underpowered analyses or the true absence of index event

bias. Therefore, power calculations should be performed prior to these analyses. Fig 4 is an

illustration investigating the presence of collider bias in 11,085 myocardial infarction cases in

UK Biobank. The signal seen in chromosome 5 associated with age suggests that index event

bias may have been induced in this sample (Fig 4A). One independent intronic SNP was iden-

tified from this signal, rs535799110, located within C1QTNF3. This SNP, and SNPs in close

linkage disequilibrium, did not show an association with myocardial infarction or age in the

Fig 4. (A) Manhattan plot of GWAS for age at recruitment in myocardial infarction (MI) incidence cases only in UK

Biobank. Cases were defined as individuals who had had an acute MI event using the International Classification of Diseases

10th Revision codes (ICD-10: I21.0-I21.9). GWAS was performed using Plink. This plot illustrates one genetic signal on

chromosome 5 that is shown to be strongly associated with age at recruitment (P< 5 × 10−8). This signal could potentially be

induced due to collider bias as, in a general random population a GWAS for age should not show any signal. However, this

signal could also be due to biases other than collider bias. (B) Manhattan plot of GWAS for sex in MI incidence cases only in

UK Biobank. Cases were defined as individuals who had had an acute MI event using the ICD10 codes I21.0-I21.9. This plot

does not show any strong signal associated with sex, suggesting that no evidence of collider bias is detected.

https://doi.org/10.1371/journal.pgen.1010596.g004
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full UK Biobank dataset. However, expression of C1QTNF3 has been shown be associated

with traits such as erythrocyte measures, BMI-adjusted waist-up ratio, and kidney function

parameters. Equally, known causal risk factors for disease incidence can be used as negative

controls, either as an exposure in a GWAS in the case-only population or in a hypothesis-

driven manner examining the association of the risk factor with genetic variants associated

with disease incidence. When known, genetic variants strongly associated with disease inci-

dence could also be used as negative controls. For example, in a study involving cases of

dementia, a GWAS of the ApoE genotype could be performed. In addition, known risk factors

for disease initiation can be used as a diagnostic for index event bias. These can be either phe-

notypic risk factors, such as smoking or BMI, or genetic variants strongly associated with dis-

ease incidence, or with causes of disease incidence. Index event bias will alter or induce

spurious associations between such risk factors in the case-only population, and these associa-

tions can be compared to those from an independent dataset, not restricted to cases. Differ-

ences between associations in the cases and the independent dataset will be suggestive of index

event bias. Datasets with large sample sizes and deep phenotype data on both cases and non-

cases provide external data to explore how divergent the association between risk factors is

from the multiplicative/log additive model, although it is worth being aware of the effect of

confounding or measurement error in these exploratory analysis. This can indicate the likely

quantitative effect of collider (index event) bias. When using this diagnostic, it is worth being

aware of the recruitment process in each dataset, as this will change the risk factors chosen to

test, e.g., there will be differences in why patients were recruited to a trial versus if they are in a

general population-based longitudinal study or sampled through hospital data.

Without access to individual-level data, but with the full set of results from a GWAS of both

incidence and progression of the disease of interest, index event bias can still be examined by

comparing the magnitude of the effect of a SNP on disease progression with the magnitude of

the effect of that same SNP on disease incidence. If there is strong evidence for an association

of a SNP with disease incidence, then we cannot rule out the possibility that the association of

that SNP with progression is purely an artefact of selection bias (Fig 2B) or that the magnitude

of association is biased by selection (Fig 2C). Associations with progression for SNPs not asso-

ciated with disease incidence will not suffer collider bias. Miami plots can be generated to visu-

ally inspect and compare SNP associations for disease incidence and disease progression on a

genome-wide scale. These plots are an extension of a Manhattan plot, where p-values are plot-

ted on the −log10 scale. The Miami plot will present the p-values for incidence on the −log10

scale and the p-values for progression on a log10 scale, for all available SNPs. These can be pro-

duced using publicly available code within the software EasyStrata [25]. An example is shown

in Fig 5 plotting the GWAS results of smoking initiation (top) and smoking cessation in a pop-

ulation of smokers (bottom). As well as comparing across the genome for a GWAS, this meth-

odology can also identify potential index event bias in an MR analysis, with comparisons

restricted to the instrument(s) for the exposure of interest. As described for GWAS, a lack of

evidence for an association between the instrument for the hypothesised exposure and disease

incidence is evidence against the presence of index event bias (i.e., the exposure may be specific

for disease prognosis), whereas if the instrument is also related to disease incidence we cannot

be sure that any relationship with the outcome is not an artefact of index event bias.

Even if these methods do not identify any evidence for index event bias in the case-only

population, the next step would be to perform the sensitivity analyses detailed below, to deter-

mine the magnitude of bias that would need to be present to explain the observed associations.

If there is evidence for index event bias, the subsequent section reviews methods that can be

applied to attempt to overcome this index event bias.
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Sensitivity analyses to determine magnitude of bias

Here, we present two sensitivity analyses that can be used to examine the magnitude of bias.

Smith and VanderWeele method

A sensitivity analysis for index event bias was proposed by Smith and VanderWeele [26]. This

approach is not specific to genetically informed studies of disease progression but can be used

in any epidemiological study where selection bias is suspected, provided that the outcome is

binary and the causal parameter of interest is a risk ratio, odds ratio, or risk difference. Smith

and VanderWeele derive bounds for the true risk ratio (or odds ratio or risk difference) of the

effect of an exposure on an outcome, which can be computed using the observed risk ratio and

an additional variable U representing potentially unobserved confounders (or mediators)

between the outcome and selection into the study. The variable U must be such that the out-

come becomes independent of selection conditional on the exposure and U. In the context of

case-only studies, U represents common causes of disease incidence (the selection variable)

and progression (the outcome), since conditioning on all such causes and on the exposure will

render disease incidence and progression independent. In other words, U represents the “mea-

sured or unmeasured confounder” variables in Fig 2. The effects of U on incidence and pro-

gression need to be specified to compute the selection bias bounds, but otherwise, the method

makes no parametric modelling assumptions. As an additional diagnostic, Smith and Vander-

Weele describe how to compute E-values for selection bias. In case-only studies, an E-value

quantifies how strong the effects of U on incidence and progression should be for the target

risk ratio to take the observed value, if the true effect of the exposure on progression is null. An

online calculator to compute risk ratio bounds and E-values is available at http://selection-

bias.louisahsmith.com. The use of risk ratio bounds has been advocated in case–control studies

with biased selection of controls [27], and the method was recently extended to account for

confounding bias and measurement error, in addition to index event bias [28].

Fig 5. An example of a Miami plot comparing results from a GWAS of smoking initiation (top) and a GWAS of

smoking cessation (bottom) in a population of smokers. Plotted using publicly available summary statistics of Liu

et al. [60]. There are several loci strongly associated with smoking cessation where there is no strong evidence for an

association with smoking initiation (e.g., chr11, 19), suggesting that the association between these loci and smoking

cessation is not the product of collider bias. However, further inspection of the magnitude of effect and confidence

intervals is required to determine that these loci are not associated with initiation. The locus on chromosome 20

reaching genome-wide significance also appears to be associated with smoking initiation, albeit not at genome-wide

significance, suggesting that the association of this locus with smoking cessation may be affected by collider bias.

https://doi.org/10.1371/journal.pgen.1010596.g005
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Quantitative bias analysis

As with the E-value approach, one form of quantitative bias analysis attempts to quantify the

magnitude of bias needed for the observed MR estimates to occur if the association was truly

null, using simulations. For the simulations, individual-level data are generated for cases and

non-cases, based on user-specified assumptions about the factors associated with disease inci-

dence and prognosis [29]. Note that, as these data are simulated, this approach can be applied

to one- or two-sample MR. By repeating this process for multiple simulated samples, investiga-

tors can obtain a distribution of estimates that are solely due to the effects of index event bias.

This information, presented alongside the main estimates, allows those appraising a study to

assess whether the MR estimates represent a plausible association or are more likely a conse-

quence of bias. This has previously been demonstrated in the literature by Noyce et al. in their

study of the relationship between BMI and risk of Parkinson’s disease, where it is referred to as

“frailty modelling” as the bias in their example was thought to be caused by survival effects [29].

Accounting for index event bias

In order to conduct down-stream analysis that correctly accounts for index event bias such as

an MR analysis, it is necessary to adjust the beta estimates prior to performing the MR analysis.

In this section, we review methods to adjust for index event bias when individual-level data are

available, and then explore methods for when either summary-level or individual-level data

are available. A summary of methods described in this section is presented in Table 1.

Inverse probability weighting (IPW)

IPW can help to address index event bias in case-only studies through the creation of a

pseudo-sample where individuals are weighted according to the probability of having the dis-

ease of interest [30]. The weighted pseudo-sample aims to mimic a situation where every indi-

vidual has the same probability of contracting the disease; therefore, the distribution of

sociodemographic and behavioural factors in the weighted sample will be similar to that in the

overall population. Consequently, IPW will down-weight overrepresented individuals (i.e.,

those most likely to have the disease) and up-weight underrepresented individuals (i.e., those

least likely to have the disease) [31,32]. The probability that an individual is included in the

case-only sample is estimated by fitting a statistical model (e.g., logistic regression) for disease

incidence. Individuals in the case-only sample are then weighted by the inverse of their esti-

mated probability of disease. To estimate the model used to calculate the probability weight-

ings, at least some information about non-cases must be known. IPW can only truly overcome

index event bias when the incidence model is adjusted for enough covariates to render inci-

dence independent of the exposure and progression conditional on these covariates. This

means that, ideally, all true causes of incidence and progression should be known and mea-

sured within the target population and should be included in the weighting model. Likewise,

causes of incidence that are also indirectly related to progression should be included in the

weighting model to account for any backdoor paths between incidence and progression and

prevent M-bias. Finally, nonlinearities and interactions in the model for incidence should be

included. Thus, IPW involves the assumption of no unmeasured confounding of incidence

and progression—an assumption that cannot be verified using the observed data.

Even when the weighting model is correctly specified, IPW estimates will have lower precision

compared to unweighted estimates because weighting reduces the analysis’ effective sample size

[33,34]. This can be particularly concerning in applications where a small number of individuals

are assigned large weights and hence have a disproportionately large influence in the analysis. In

this case, techniques such as weight stabilisation and weight trimming can be used [32,35,36].

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010596 February 23, 2023 9 / 24

https://doi.org/10.1371/journal.pgen.1010596


Table 1. Summary of methods for detecting and accounting for index event bias and sensitivity analyses to determine the magnitude of bias required to negate

observed effect estimates.

Method Data required Theory Strengths Limitations Reference

Detecting index event bias
Negative control

GWAS (e.g., age, sex)

Individual-level phenotype

and genotype data for case-

only population

Associations of SNPs with

age and sex likely to reflect

index event bias if age and/or

sex cause the disease

• Straightforward GWAS

analysis with no knowledge of

risk factors for the disease

required

• Uses variables available in all

datasets

• Requires access to individual-

level data

• Requires sufficient sample size

to assume that lack of observed

associations is due to absence of

bias instead of insufficient power

Determination of

associations between

risk factors for

incidence and their

instruments

Individual-level phenotype

and genetic data for case-

only and comparator

(unselected) population

Presence of associations

between risk factors (and/or

their instruments) of a

different magnitude/

direction of effect to an

unselected sample likely to

reflect index event bias

• Straightforward regression

analyses

• Does not necessarily require

access to genotype data

(although PRS are beneficial)

• Requires access to individual-

level data

• Case-only populations are likely

to be smaller than unselected

populations, and, therefore,

differences in magnitude of

relationships could reflect lower

statistical power in the case-only

population

• Requires a comparator

population, which is not subject

to selection bias

Comparison of

incidence and

prognosis GWAS

results

Summary-level data from a

GWAS of disease incidence

and a GWAS of disease

prognosis

SNPs associated with

incidence may have biased

associations with prognosis,

but associations of SNPs with

prognosis only are not biased

by index event bias

• Requires summary-level data,

which are often publicly

available

• Easy to visually inspect using

a Miami plot

• Identifies SNPs that may be

biased by index event bias but

does not identify if index event

bias is present

Accounting for index event bias
Inverse probability

weighting

Individual-level data for all

known disease incidence

risk factors for all

individuals in target

population (not just disease

cases)

Unbiased estimates (e.g., for

a SNP effect on prognosis)

can be estimated from a

regression model weighted

by the inverse probability of

an individual being a case

• Can be applied to GWAS and

one-sample MR

• Requires data for non-cases

• Requires knowledge of all

known risk factors for disease

incidence

• Requires individual-level data

• May suffer from a loss of

precision if some individuals are

assigned large weights

[30]

Dudbridge et al

method

Summary-level data for a

GWAS of disease incidence

and a GWAS of disease

prognosis

The bias correction factor

can be estimated as the slope

of the regression line of SNP-

prognosis on SNP-incidence

associations using all

independent SNPs

• Generates a bias-correction

factor that can be applied to all

SNPs

• Only requires summary-level

data

• Incidence and prognosis

GWAS can be performed on

overlapping or independent

samples

• Assumes no shared pathways

between disease incidence and

disease prognosis

• Assumes linear effects of SNPs

on incidence and prognosis, with

no interactions

• Inclusion of a large number of

SNPs could result in

underestimation of the bias

correction factor

• Assumes constant confounding

across SNPs

• Affected by allele coding

[12]

Slope-Hunter Summary-level data for a

GWAS of disease incidence

and a GWAS of disease

prognosis

The bias correction factor

can be estimated as the slope

of the regression line of SNP-

prognosis on SNP-incidence

associations using

independent SNPs associated

with incidence only

• Generates a bias-correction

factor that can be applied to all

SNPs

• Only requires summary-level

data

• Incidence and prognosis

GWAS can be performed on

overlapping or independent

samples

• Doesn’t rely on assumption of

no shared biological pathways

contributing to incidence and

prognosis

• Assumes that the variance in

incidence explained by SNPs

associated with incidence only is

at least as great as the variance

explained by SNPs associated

with incidence and prognosis

• Assumes linear effects of SNPs

on incidence and prognosis, with

no interactions

• Assumes constant confounding

across SNPs

[41]

(Continued)
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Once a weighted sample has been generated, analysis methods such as MR can then be

applied. For example, two-stage least squares estimates can be computed using weighted linear

regression instead of ordinary linear regression. IPW can adjust for index event bias in MR

provided the probabilities of disease are accurately estimated [37,38]. In practice, IPW can be

useful in case-only studies that are nested within a cohort study (e.g., studies utilising individ-

ual-level data from the UK Biobank). However, the reliance on individual-level data means

that IPW often cannot be used in two-sample MR studies.

Dudbridge et al. method

The Dudbridge et al. method is based on the premise that the association between a SNP and

progression is proportional to the true effect of the SNP on progression and a bias that is linear

Table 1. (Continued)

Method Data required Theory Strengths Limitations Reference

Corrected Weighted

Least Squares

Summary-level data for a

GWAS of disease incidence

and a GWAS of disease

prognosis

The bias correction factor

can be estimated as the slope

of a weighted regression of

SNP-prognosis on SNP-

incidence associations using

all independent SNPs

• Generates a bias-correction

factor that can be applied to all

SNPs

• Only requires summary-level

data

• Incidence and prognosis

GWAS can be performed on

overlapping or independent

samples

• Inclusion of a large number of

SNPs could result in

underestimation of the bias

correction factor

• Assumes linear effects of SNPs

on incidence and prognosis, with

no interactions

• Assumes constant confounding

across SNPs

[40]

Traditional MR

approaches

Summary-level data, for

SNPs associated with

incidence at genome-wide

significance, from a GWAS

of disease incidence and a

GWAS of disease prognosis

The bias correction factor

can be estimated as the effect

estimate from traditional MR

approaches such as inverse

variance weighted or

weighted median meta-

analyses

• Generates a bias-correction

factor that can be applied to all

SNPs

• Only requires summary-level

data

• Slope estimate can be biased by

sample overlap

• Assumes linear effects of SNPs

on incidence and prognosis, with

no interactions

[40]

Determining magnitude of bias required to explain observed results
Smith and

Vanderweele method

No data required, but need

to specify a factor U such

that incidence and

progression are rendered

independent conditional on

U and the exposure. The

effects of U on incidence and

progression must be elicited.

Computes bounds for the

magnitude of selection bias

using simple expressions that

depend on the effects of U on

incidence/progression. The

bounds can then be used to

assess how strong the

selection effects should be for

an observed association to be

fully explained by selection

bias.

• Easy to implement using

existing software.

• Does not require modelling

assumptions about the selection

mechanism (other than

identifying U).

• Works with both individual

and summary-level data.

• Only works with a binary

outcome.

• Requires U to be identified and

its effects on incidence and

progression elicited, which can

be difficult and/or subjective.

• Does not provide a point

estimate.

[26]

Quantitative bias

analysis

No data are required, but it

can be useful to inform the

simulation.

By simulating individual-

level data and an indicator of

case status, investigators can

obtain a distribution of

estimates that are solely due

to a given magnitude of

index event bias.

Comparison of these effects

with those observed informs

whether the observed effect

is likely to be a consequence

of this bias.

• No data are required to

implement the method, so it

can be applied regardless of

whether you have performed

your main analysis using

individual- or summary-level

data

• Simulated data may not reflect

reality and so be misleading

• No formal recommendations

on how to compare the observed

effect in your main analysis with

those obtained from the

simulation

[29]

GWAS, genome-wide association study; MR, Mendelian randomisation; SNP, single nucleotide polymorphism; PRS, polygenic risk score.

https://doi.org/10.1371/journal.pgen.1010596.t001
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in the effect of the SNP on incident disease [12]. In equation form this can be summarised as

follows:

b
est
p ¼ b

true
p þ bbtrue

i

where b
est
p is the effect estimate for a SNP from a GWAS of progression, b

true
i is the effect of the

SNP on incidence, b
true
p is the true effect of the SNP on progression (the effect of interest), and

b is the slope from a regression of b
est
p on b

true
i for all independent SNPs and is the bias correc-

tion factor. The true effect of the SNP on progression is therefore a combination of the inter-

cept and residual from this regression line [12].

The method developed by Dudbridge et al. uses all SNPs available to determine the cor-

rection factor [12]. Linkage disequilibrium (LD) clumping, based on the p-value for the

SNP effect on incidence, is required prior to analysis to restrict the regression to indepen-

dent SNPs, although the correction factor can then be applied to all SNPs. As well as the

assumption that the SNPs are independent, this method also assumes a linear effect of the

SNP on both incidence and progression (with no interactions), that there is no correlation

between SNP incidence and SNP-progression effects, and that the effect of common causes

of incidence and progression (i.e., genetic and nongenetic confounding) is constant across

all SNPs. The assumption of constant confounding across all SNPs may not be true if there

is a genetic correlation between incidence and progression, as the genetic component of

the unmeasured confounding will be weaker for SNPs that are strongly associated with

both incidence and progression. The assumption of no correlation between SNP-inci-

dence and SNP-progression effects is violated for diseases where the same biological path-

ways, at least in part, contribute to incidence and progression. This assumption may not

be justified for the majority of disease traits. For example, these assumptions would not be

met in cardiovascular disease; given that lowering LDL cholesterol reduces risk of major

vascular events in both primary and secondary prevention trials [39], and thus for SNPs

influencing LDL cholesterol, there will be a very strong positive correlation between their

associations with vascular disease incidence and risk of secondary events. Although Dud-

bridge et al. did show that when there is a positive correlation between incidence and pro-

gression, type 1 error is lower than an unadjusted analysis [12], we advise caution when

using this method.

An updated version of the Dudbridge et al. method was proposed by Cai et al. [40]. The

original method is analogous to MR-Egger with inclusion of an intercept, but the intercept

model is affected by allelic coding. When including all SNPs, regardless of their effect on inci-

dence, the majority of SNPs will have very small effect estimates, making it difficult to code the

alleles in a positive direction. Cai et al. therefore recommended a nonintercept model, which

they called the Corrected Weighted Least Squares (CWLS) method. This method still assumes

no genetic correlation between incidence and progression. The updated method had a lower

type 1 error rate than the original Dudbridge et al. method, but still had a higher type 1 error

rate than no adjustment in the presence of a strong negative genetic correlation between inci-

dence and prognosis [40].

We therefore recommend that the CWLS method is used as a sensitivity analysis alongside

other correction methods (see Slope-Hunter method), to determine robustness of SNP-pro-

gression effect estimates across these methods.

The original Dudbridge et al. method can be performed using an open-source R package

(https://github.com/DudbridgeLab/indexevent) and requires full summary statistics from a

GWAS of disease incidence and a GWAS of disease progression, which can be generated from
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independent or overlapping samples. These summary statistics can be used to perform down-

stream analyses, such as two-sample MR.

Slope-Hunter method

The Slope-Hunter method developed by Mahmoud et al. [41] is again based on the premise

that the association between a SNP and progression measured in a GWAS can be estimated

from the true effect of the SNP on progression and bias linear to the effect of the SNP on inci-

dence [12,41]. However, the Slope-Hunter method extends the algorithms generated by Dud-

bridge et al. and attempts to overcome the limitation of the strong assumption of no genetic

correlation between incidence and progression [41]. Slope-Hunter aims to partition all inde-

pendent SNPs affecting incidence into two categories using cluster-based methods:

1. SNPs only affecting incidence;

2. SNPs affecting both incidence and progression.

The correction factor is estimated from category 1 SNPs only, assuming unmeasured con-

founding across these SNPs. The correction factor is estimated as the slope of the regression

line of disease progression associations on disease incidence associations for this restricted set

of SNPs. This correction factor can be applied to all SNPs. The Slope-Hunter method does not

assume that disease incidence and progression are not genetically correlated, but does assume

that the SNP effects on both incidence and progression are linear, with no interactions. This is

often the case in a logistic model when per-allele effect sizes are small. An additional assump-

tion of the Slope-Hunter method is that the variance in disease incidence explained by cate-

gory 1 SNPs is at least as large as that explained by category 2 SNPs.

Slope-Hunter can be performed using an open-source R package (https://github.com/

Osmahmoud/SlopeHunter/) and, like the Dudbridge et al. method, requires full summary sta-

tistics from a GWAS of disease incidence and a GWAS of disease progression. Both methods

are robust to sample overlap and therefore can be used with summary statistics derived from

the same population as well as independent populations. Summary statistics from these meth-

ods are suitable for use in downstream analyses, such as two-sample MR.

Other summary-level data approaches

The Slope-Hunter, Dudbridge et al., and CWLS approaches have been developed specifically

to identify index event bias from GWAS summary statistics. However, in their recent paper,

Cai et al. discuss how traditional two-sample MR approaches (but applied to an MR of inci-

dence on prognosis) can be used to estimate the bias correction factor b [40]. The fundamental

difference between this approach and Slope-Hunter is in the SNPs used. While Slope-Hunter

aims to identify and use only those that are associated (default p< 0.001) with incidence and

not progression (valid instruments) [41], Cai et al. argue that including all independent SNPs

is preferable to maintain precision and thus power in the progression discovery GWAS, but in

doing so, many weak instruments are included [40]. We would recommend performing an

MR of incidence on prognosis using these more typical genome-wide significant set of SNPs

for incidence. This would reduce the impact of weak instrument bias, but we note that it

would still include invalid SNPs that are associated with both incidence and progression. How-

ever, this approach would allow the performance of a range of different MR methods such as

IVW, weighted median, etc., as further sensitivity analyses. Therefore, in addition to the meth-

ods described above, this could be used to check for consistency of methods in estimating the

correction factor.
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Applied examples of mitigating index event bias

Lipid traits and secondary prevention of CHD

We aimed to examine the existence and mitigation of index event bias in an applied MR study

using individual-level data from the UK Biobank cohort (UKB; see S1 Text). We chose to esti-

mate the effects of two well-known lipid traits, low-density lipoprotein cholesterol (LDL-C)

and high-density lipoprotein cholesterol (HDL-C), on the risk of CHD mortality, and potential

bias induced by selecting on individuals with a history of CHD (the index event). These expo-

sures were chosen because strong evidence exists for both in relation to CHD mortality from

randomised controlled trials (RCTs) of lipid-modifying drug therapies, which were conducted

among people with a history of CHD, thus providing a valuable (likely unbiased) standard for

comparison. This RCT evidence indicates that, among people with CHD history, LDL-C raises

CHD mortality risk [42], whereas HDL-C does not alter CHD mortality risk [43]. Because

LDL-C likely causes CHD onset (based on positive results from past MR studies and several

primary prevention RCTs, in agreement with conventional observational studies; [42,44]), we

expected that conditioning on CHD history would induce potential for index event bias for

LDL-C estimates (Fig 6). In contrast, because HDL-C likely does not cause CHD onset (i.e., no

effect on disease incidence based on null results from past MR studies, in disagreement with

conventional observational studies; [45]), we expected that conditioning on CHD history

would not induce potential for index event bias for HDL-C estimates. It is plausible, however,

that HDL-C may influence CHD mortality indirectly via statin use, leading to an adverse effect

of higher HDL-C (if higher HDL-C causes lower statin use, and lower statin use causes higher

CHD mortality). Our hypothesised causal relationships between HDL-C, LDL-C, triglycerides,

statins, and CHD onset and mortality are shown in Fig A in S1 Text. Using one-sample MR in

UKB, we verified a positive effect of LDL-C, and a null effect of HDL-C, when adjusting for

each other plus triglycerides (given expectations of pleiotropy) [46], on CHD onset (S1 Text).

Among UKB participants with a history of CHD, we examined the effects of lipids on risk

of CHD mortality in an MR framework, using two-stage least squares predictor substitution

regression models and genetic risk scores (GRSs) comprised of genetic variants for exposures

sourced from external GWAS. In a first-stage linear regression model, the exposure, e.g.,

LDL-C, is regressed on a GRS for LDL-C, plus age, sex, and the first ten genetic principal com-

ponents (GPCs). The predicted values from that model were then entered into a logistic regres-

sion model as an exposure (plus age, sex, GPCs) with CHD mortality as the outcome. Standard

errors were bootstrapped using 100 replications. We expected these prognosis models to create

potential for index event bias for LDL-C (because it likely causes CHD onset), but not for

HDL-C (because it likely does not cause CHD onset; Fig 6). The pattern of results when condi-

tioning on CHD history was not entirely as expected given the potential for index event bias,

however (Table 2). Results of the IEB-naive univariable MR analysis suggest that higher

LDL-C (per standard deviation (SD)) raises the odds of CHD mortality, by 2.12 (95%

CI = 1.20, 3.73) times higher (Table 2). However, results of a multivariable MR model adjust-

ing for HDL-C and triglycerides (S1 Text) suggested that higher LDL-C lowered the odds of

CHD mortality, by 0.81 (95% CI = 0.68, 0.96) times lower. In contrast, higher HDL-C (per SD)

appeared to reduce the odds of CHD mortality, and this did not attenuate towards the null

upon adjustment for LDL-C and triglycerides, e.g., the estimate for HDL-C was 0.88 (95%

CI = 0.66, 1.16) before adjustment and 0.61 (95% CI = 0.51, 0.72) after adjustment (S1 Text).

This inverse effect for multivariable-adjusted HDL-C is not consistent with null effects on

CHD mortality risk seen in RCTs of HDL-C modification by drug therapies [42,43] and may

reflect residual pleiotropy, which is not addressed by the adjustments currently made for other
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lipids (LDL-C and triglycerides); i.e., the genetic variants for HDL-C may be affecting CHD

mortality via other pathways beyond HDL-C, which are unaccounted for.

To attempt to mitigate any index event bias induced from conditioning on CHD history,

we applied IPW adjustments to MR models of LDL-C and HDL-C with CHD mortality (using

predictors and criteria described in S1 Text). Results of these IPW adjustments for univariable

LDL-C models provided estimates which were directionally consistent with IPW-unadjusted

results with modest attenuation towards the null (2.12 (95% CI = 1.20, 3.73) before IPW and

Fig 6. Contrasting scenarios in which index event bias is or is not expected, based on the likely causality of exposures for disease onset.

Solid black lines indicate assumed causality. Absent lines indicate assumed lack of causality. Dashed black line indicates induced association.

Absent dashed line indicates lack of induced association. Boxes indicate a variable that has been conditioned on. CHD, coronary heart disease;

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SNP, single nucleotide polymorphism.

https://doi.org/10.1371/journal.pgen.1010596.g006
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1.76 (1.00, 3.11) after IPW). A greater attenuation towards the null was seen in multivariable

LDL-C models (adjusted for HDL-C and triglycerides) upon IPW adjustment (0.81 (95%

CI = 0.68, 0.96) before IPW and 0.95 (95% CI = 0.74, 1.22) after IPW). For univariable

HDL-C, the point estimate changed from negative (0.88) to positive (1.08) upon IPW adjust-

ment, although confidence intervals were imprecise (Table 2). The estimate for multivariable-

adjusted HDL-C also attenuated partly towards the null, this being 0.61 (95% CI = 0.51, 0.72)

before IPW and 0.80 (95% CI = 0.64, 1.00) after IPW (Table 2).

The use of statin medications could potentially complicate the interpretation of effect esti-

mates. Statins are commonly prescribed in adulthood to reduce LDL-C (often on the basis of

total cholesterol and HDL-C values) and are known to influence the risk of CHD onset and

mortality [42]. The overall prevalence of statin use in UKB was 14%, and use was far more

common among participants with versus without a history of CHD (at 57.3% versus 11.3%,

respectively). The prevalence of statin use was also high among participants with a CHD his-

tory who then died of CHD (68.7%), whereas statin use was lower among those without a

CHD history who did not die of CHD (11.3%). LDL-C and HDL-C could each plausibly influ-

ence the likelihood of being prescribed statins among adults with CHD history; these assump-

tions are illustrated in Fig A in S1 Text and examined and confirmed using one-sample MR in

the same UKB data (S1 Text and Table B in S1 Text), whereby higher LDL-C strongly raised

the odds of using statins (OR = 5.71, 95% CI = 3.62, 9.00) and higher HDL-C lowered these

odds (OR = 0.82, 95% CI = 0.71, 0.95). Conditioning on statin use via exclusions/stratifications

or adjustment would be problematic, however, as this could heighten the potential for index

event bias given the likely role of statin use as a mediator (Fig A in S1 Text).

Altogether, the results of this applied example of MR using individual-level data suggest

that the impact of index event bias from conditioning on disease status can be modest and is

Table 2. One-sample MR estimates of the effect of lipid traits on CHD mortality risk among adults with a history

of CHD in UK Biobank (N = 20,552 eligible).

OR (95% CI) for CHD mortality

per SD higher exposure

Index event bias expected (exposure likely causes CHD onset)

LDL-C

Without IPW 2.12 (1.20, 3.73)

With IPW 1.76 (1.00, 3.11)

LDL-C, adj. for HDL-C and trig.

Without IPW 0.81 (0.68, 0.96)

With IPW 0.95 (0.74, 1.22)

Index event bias not expected (exposure likely does not cause onset)

HDL-C

Without IPW 0.88 (0.66, 1.16)

With IPW 1.08 (0.79, 1.48)

HDL-C, adj. for LDL-C and trig.

Without IPW 0.61 (0.51, 0.72)

With IPW 0.80 (0.64, 1.00)

Estimates are among adults of European ancestry and are adjusted for age, sex, and the first ten genetic principal

components. Models are two-stage prediction substitution regression models with bootstrapped standard errors (100

replications).

CHD, coronary heart disease; HDL-C, high-density lipoprotein cholesterol; IPW, inverse probability weighting;

LDL-C, low-density lipoprotein cholesterol; MR, Mendelian randomisation; OR, odds ratio; SD, standard deviation;

trig, triglycerides; CI, confidence interval.

https://doi.org/10.1371/journal.pgen.1010596.t002
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sensitive to multivariable adjustment, indicative of pleiotropy. Indeed, the extent of induced

bias will depend on how divergent the joint effect of lipid traits with other causal risk factors

are from the multiplicative/log-additive model, with substantial index event bias expected the

more divergent they are. In a univariable MR model in UKB, higher LDL-C appeared to raise

CHD mortality risk among adults with a history of CHD, in line with results of RCTs. The

direction of this estimated effect was reversed in a multivariable MR model adjusting for

HDL-C and triglycerides, however: higher LDL-C appeared to directly reduce CHD mortality.

This inverse direct effect, e.g., with LDL-C appearing paradoxically protective against CHD

mortality risk among adults with CHD history, may reflect index event bias. Index event bias

may also alter the magnitude of a true effect, and so we applied IPW adjustments to LDL-C

estimates. This resulted in modest attenuation of effect size for the univariable model with 95%

CIs that overlapped those of initial estimates, but more substantial attenuation to the null for

the multivariable model. Full attenuations towards the null may not be expected following

such IPW adjustments given the necessarily incomplete set of predictive factors on which they

are based. In contrast to LDL-C, conditioning on CHD history is not expected to induce index

event bias for HDL-C with CHD mortality, because HDL-C is likely noncausal for CHD onset.

Our MR effect estimates for HDL-C (univariable and with multivariable adjustment for

LDL-C and triglycerides) with CHD mortality were inverse among adults with CHD history,

however, which is unexpected given null results from RCTs. This estimate was substantially

attenuated upon IPW adjustment in the univariable model, but only modestly attenuated in

the multivariable model. This suggests that residual pleiotropy or other forms of selection bias

given the unrepresentativeness of UKB may be greater concerns than index event bias in this

applied example.

Breast cancer susceptibility PRS and breast cancer–specific mortality

Increasingly, MR and other genetic studies are exploring the prognostic role of risk factors in

individuals with cancer. Such studies include those examining the effect of environmental and

molecular risk factors on overall and cancer-specific survival, cancer recurrence, and tumour

density [47–50]. Prognostic factors examined that are also risk factors for cancer onset are vul-

nerable to index event bias and, thus, approaches should be taken to examine and mitigate any

bias present in these settings. In this applied example, we evaluated the association of a breast

cancer susceptibility PRS with subsequent disease progression using summary genetic associa-

tion data on breast cancer susceptibility in 122,977 cases and 105,974 controls and breast can-

cer–specific mortality in 96,661 cancer cases (7,976 events) [5,51]. A PRS for breast cancer

susceptibility was constructed using 339 SNPs associated with breast cancer risk at genome-

wide significance (p< 5.0 × 10−8, r2 < 0.10). Summary statistics for SNPs comprising this PRS

were then extracted from the breast cancer progression GWAS and harmonised across datasets

by orienting effect estimates in relation to the same allele, resulting in 318 SNPs. In this case-

only analysis, the PRS was associated with a lower risk of breast cancer–specific mortality (per

unit increase in natural log odds breast cancer liability: HR 0.90, 95% CI 0.86 to 0.96).

To explore whether this finding was influenced by index event bias, we used two methods

to detect and account for this bias: the Dudbridge et al. method and Slope-Hunter method.

Summary statistics for breast cancer risk and breast cancer progression were harmonised

across datasets then pruned for LD (r2 < 0.10), resulting in 94,744 SNPs. SNP-progression

effects were then regressed on SNP-risk effects using a SIMEX adjustment for regression dilu-

tion to generate a correction factor for SNP-progression effects (under the assumption of no

genetic correlation between breast cancer risk and breast cancer–specific mortality). SNP

effects on progression were then adjusted using this correction factor (−0.013, 95% CI −0.014
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to −0.013) and PRS analyses were reperformed, which generated a revised estimate of HR 0.92

(95% CI 0.87 to 0.97) for the effect of the breast cancer susceptibility PRS on breast cancer–

specific mortality.

Using the Slope-Hunter method, a correction factor was also generated using a subset of

the 94,744 SNPs that only influenced breast cancer risk (i.e., that have no effect on breast can-

cer–specific mortality, termed “hunted” SNPs), thus being robust to the presence of genetic

correlations between disease incidence and progression (Slope-Hunter fitted model showing

cluster assignment of each SNP provided in Fig 7). In contrast to the Dudbridge et al. method,

use of Slope-Hunter generated a larger adjustment factor of −0.243 (95% CI −0.361 to −0.126).

When PRS analyses were reperformed using SNP-progression effects adjusted for this correc-

tion factor, this generated a revised estimate of HR 1.15 (95% CI 1.09 to 1.22) for the effect of

the breast cancer susceptibility PRS on breast cancer–specific mortality. Sensitivity analyses

performed using different p-value thresholds to generate correction factors for both Dud-

bridge et al. and Slope-Hunter methods (along with corresponding changes to distributions of

cluster sizes and “entropy” values for the Slope-Hunter method) are presented in Table 3.

This example demonstrates the potential for large differences in findings when using Dud-

bridge et al. and Slope-Hunter methods to correct for index event bias, and we recommend

further examination of the assumptions behind each method, and sensitivity analyses. For

example, the Dudbridge et al. method is more sensitive to the presence of genetic correlation

between disease incidence and progression, whereas the Slope-Hunter method assumption is

that there are no common causes of incidence and prognosis that explain more of the variance

in incidence than the SNPs that only affect incidence. Neither of these assumptions can be ver-

ified with the observed data, so sensitivity analyses could explore their implications. Sensitivity

analyses using the methods described earlier in this review could be used to either suggest

plausible selection effects (i.e., provide estimates of the effects of U on incidence and progno-

sis) and reestimate the effects of interest, or to investigate what magnitude of selection bias

would be needed to have observed the negative effect of PRS for breast cancer on mortality, if

in fact there was no effect.

Fig 7. Slope-Hunter fitted model showing assignment of each SNP to “hunted” or “pleiotropic” clusters for an

analysis examining the effect of a breast cancer susceptibility PRS on breast cancer–specific mortality. “Hunted”

refers to SNPs that only affect incidence (here, breast cancer risk), and “pleiotropic” refers to SNPs that affect both

incidence and prognosis (here, breast cancer risk and breast cancer–specific mortality). In this example, there were 5

hunted SNPs (i.e., those used to generate a “correction factor” for index event bias) and 171 pleiotropic SNPs.

https://doi.org/10.1371/journal.pgen.1010596.g007
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Conclusions

We have highlighted the potential for bias in genetic studies of disease progression due to their

case-only design. We reviewed methods available to detect this index event bias (“Detecting

index event bias”), using either individual-level or summary-level data, and showed how access

to individual-level data allows a more thorough investigation of biased associations between

risk factors for disease incidence. Next, we outlined two sensitivity analyses (“Sensitivity analy-

ses”) to assess the magnitude of bias that would have to be present to explain observed associa-

tions in an MR analysis; we recommend that results of these analyses are presented alongside

causal effect estimates for any case-only MR analysis. We then discussed methods to account

for this bias (“Accounting for index event bias”) in both GWAS and MR analyses and

highlighted the assumptions associated with each method, such as knowledge and availability

of all risk factors for IPW analysis in a single-sample setting and assumptions of linearity for

the summary-level methods. Finally, we applied methods that account for and minimise bias

(IPW, Dudbridge et al., Slope-Hunter) to two real-data examples.

Our first application was an individual-level data analysis of the effect of LDL-C and

HDL-C on CHD mortality in which we applied the IPW method. We showed how the magni-

tude of the estimated effect of LDL-C on CHD mortality is reduced, albeit modestly, when

using IPW to account for index event bias, in the opposite direction to that predicted from the

likely direction of collider bias. This analysis is complicated by two factors, namely statin use,

and the fact that the incident event (CHD onset) happened before data on the exposures were

collected. Thus, the IPW may in fact be modelling variables affected by CHD onset, rather

than vice versa. Similarly, earlier LDL-C/HDL-C measures affect statin use at baseline, which

is likely to also have been affected by the index event and to cause later mortality. This high-

lights how it may be difficult to generate accurate causal effect estimates in realistically com-

plex situations. Further methods are needed to address the issue of bias due to pre-index event

statin use being both caused by pre-index event measures of exposure and being a cause of the

index event, and subsequent statin use to be caused by pre-index event exposure and the index

event (and likely an interaction between them). These situations are potentially further compli-

cated by the fact that the data used here (UKB) are known to be highly selected from the gen-

eral population via nonrepresentative participation and are thus subject to other forms of

selection bias.

Table 3. Sensitivity analyses employing different p-value thresholds to generate correction factors across Dudbridge et al. [12] and Slope-Hunter [41] methods

examining the effect of a breast cancer susceptibility PRS on breast cancer–specific mortality.

Method p-value threshold� Cluster distribution (SH) Entropy (SH) Adjustment factor (95% CI)

Dudbridge et al. 1.0 × 10−3 - - −0.013

(−100.011, 99.909)

Slope-Hunter 1.0 × 10−3 5 (H), 171 (P) 0.577 −0.243

(−0.361, −0.126)

Dudbridge et al. 1.0 × 10−4 - - N/A

Slope-Hunter�� 1.0 × 10−4 0 (H), 42 (P) NaN −0.207

(−0.318, −0.097)

Dudbridge et al. 5.0 × 10−8 - - N/A

Slope-Hunter 5.0 × 10−8 5 (H), 4 (P) 0.971 −0.154

(−0.228, −0.079)

�p-value threshold used to generate correction factor. SH = Only applicable to Slope-Hunter method. H = Hunted, P = Pleiotropic.

��Note: It is advised that users of the Slope-Hunter package interpret findings with caution when no SNPs are assigned to the “hunted” cluster (e.g., findings obtained

using a p-value threshold< 1.0 × 10−4 in this example) and that users explore multiple p-value thresholds as a sensitivity analysis.

https://doi.org/10.1371/journal.pgen.1010596.t003
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Although the Dudbridge et al. and Slope-Hunter methods can be applied to both individ-

ual- and summary-level data, we chose to illustrate them in our second applied example using

summary-level data. We showed how the Slope-Hunter and Dudbridge et al. correction factors

produced different estimates of the effect of a breast cancer PRS on breast cancer–specific mor-

tality. This highlights the need to consider whether the assumptions of each method hold,

namely the lack of genetic correlation between incident breast cancer and mortality for the

Dudbridge et al. method, and that the SNPs only associated with incident breast cancer explain

at least as much variance in incidence as the SNPs associated with both incidence and mortal-

ity for the Slope-Hunter method. We recommend performing both methods, repeating subse-

quent PRS/MR analyses with both versions of the corrected data in sensitivity analyses, and

presenting results of each method alongside a discussion of the assumptions and why they are/

are not likely to hold for the progression example in question.

It should be noted that, in this paper, we have focused on one type of selection bias, index

event bias, and there are other forms of selection bias to consider in genetic studies of disease

progression, which were beyond the scope of this review. For example, studies of disease pro-

gression require a population of individuals who have survived long enough to have developed

disease and to allow sufficient time for disease to progress, meaning that such studies are often

restricted to an older population and can be susceptible to survival bias. Some of the methods

presented in this review could also be applied in the context of survival bias, for example, IPW

can be applied so long as data are available for those individuals who did not survive (although

this assumes that every factor predicting survival has been measured) [52]. Further methods to

deal with survival bias in MR studies have been discussed previously [52–55]. Additionally,

analyses of disease progression require longitudinal data; therefore, they can be vulnerable to

bias due to missing data and loss-to-follow-up. Equally, bias can arise in MR studies when the

genetic variants differ in their association to the exposure in cases of the disease versus the gen-

eral population [56]. An additional consideration when performing an MR analysis with dis-

ease progression as the outcome would be to verify that the SNP-exposure associations are the

same in cases as in a healthy population as there may be effect modification by factors relating

to having the disease. As a consequence, the SNP-exposure estimates from a healthy popula-

tion would not be correct.

Finally, we should mention that quantifying and adjusting for index event bias in case-only

studies is an active area of research, and we expect new methods to emerge in the coming

years. For example, Cinelli et al. [57] recently developed a sensitivity analysis tool for pleiotro-

pic bias and population stratification in MR. Their approach can be used to model collider

bias in MR studies where conditioning on a collider opens a pleiotropic path between the

instrument and the outcome, meaning that it may be applicable to studies of disease progres-

sion, although this was only briefly explored by Cinelli et al. and more research in that direc-

tion may be needed. As another example, Heckman-type sample selection models [58] are

often used in econometrics to adjust for bias due to missing data, and a recent paper explored

whether these models can also be applied to genetic studies [59].

In conclusion, our review summarises established approaches for detecting and adjusting

for index event bias in genetic studies of disease progression. We hope that our work will pro-

vide a useful resource to applied researchers working on such studies.

Data availability statement

Summary statistics for the age and sex GWAS in myocardial infarction cases in UK Biobank

are available through the University of Bristol data repository (https://doi.org/10.5523/bris.

2p0ih3u1cpxq12smf079dm1t5a). Fig 5 was generated using publicly available summary
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statistics, downloaded from https://conservancy.umn.edu/handle/11299/201564. The breast

cancer PRS analysis also used publicly available summary data; the incident breast cancer sum-

mary statistics were downloaded from https://bcac.ccge.medschl.cam.ac.uk/bcacdata/

oncoarray/oncoarray-and-combined-summary-result/gwas-summary-results-breast-cancer-

risk-2017/, and the breast cancer survival summary statistics were downloaded from https://

bcac.ccge.medschl.cam.ac.uk/bcacdata/oncoarray/oncoarray-and-combined-summary-result/

gwas-summary-results-survival-2019/.
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tial pleiotropic pathways from LDL-C and HDL-C to CHD mortality. DAG illustrating potential

pleiotropic pathways from LDL-C and HDL-C to CHD mortality. Solid black lines indicate

assumed causality. Absent solid lines indicate assumed lack of causality. Dashed red lines indicate

induced associations. Absent dashed red lines indicate lack of induced associations. Boxes indicate

a variable that has been conditioned on. Table A in S1 Text. One-sample MR estimates of the

effect of lipid traits on CHD onset in UK Biobank (N = 337,288 eligible). Estimates are among

adults of European ancestry and are adjusted for age, sex, and the first ten genetic principal com-

ponents. Models are two-stage prediction substitution regression models with bootstrapped stan-

dard errors (100 replications). Table B in S1 Text. One-sample MR estimates of the total effect of

lipid traits on statin use in UK Biobank. Estimates are among adults of European ancestry and are

adjusted for age, sex, and the first ten genetic principal components. Models are two-stage predic-

tion substitution regression models with bootstrapped standard errors (100 replications).
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