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Abstract

Inorganic arsenic is highly toxic and carcinogenic to humans. Exposed individuals vary in

their ability to metabolize arsenic, and variability in arsenic metabolism efficiency (AME) is

associated with risks of arsenic-related toxicities. Inherited genetic variation in the 10q24.32

region, near the arsenic methyltransferase (AS3MT) gene, is associated with urine-based

measures of AME in multiple arsenic-exposed populations. To identify potential causal vari-

ants in this region, we applied fine mapping approaches to targeted sequencing data gener-

ated for exposed individuals from Bangladeshi, American Indian, and European American

populations (n = 2,357, 557, and 648 respectively). We identified three independent associ-

ation signals for Bangladeshis, two for American Indians, and one for European Americans.

The size of the confidence sets for each signal varied from 4 to 85 variants. There was one

signal shared across all three populations, represented by the same SNP in American Indi-

ans and European Americans (rs191177668) and in strong linkage disequilibrium (LD) with

a lead SNP in Bangladesh (rs145537350). Beyond this shared signal, differences in LD pat-

terns, minor allele frequency (MAF) (e.g., rs12573221 ~13% in Bangladesh ~0.2% among

American Indians), and/or heterogeneity in effect sizes across populations likely contributed
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to the apparent population specificity of the additional identified signals. One of our potential

causal variants influences AS3MT expression and nearby DNA methylation in numerous

GTEx tissue types (with rs4919690 as a likely causal variant). Several SNPs in our confi-

dence sets overlap transcription factor binding sites and cis-regulatory elements (from

ENCODE). Taken together, our analyses reveal multiple potential causal variants in the

10q24.32 region influencing AME, including a variant shared across populations, and eluci-

date potential biological mechanisms underlying the impact of genetic variation on AME.

Author summary

Inorganic arsenic is highly toxic, and exposure to arsenic increases risk for multiple dis-

eases, including cancer. Individuals differ in their ability to metabolize and excrete arse-

nic, in part due to inherited genetic variation in and around the AS3MT gene, and these

differences impact arsenic toxicity risk. To identify candidate causal variants in the

AS3MT region, we applied fine-mapping methods to targeted sequencing data from The

Health Effects of Arsenic Longitudinal Study (HEALS), the Strong Heart Study (SHS),

and the New Hampshire Skin Cancer Study (NHSCS) (Bangladesh, American Indian, and

European American populations). We detected 3 independent association signals in

HEALS, 2 in SHS, and 1 in NHSCS; and we identified a set of candidate causal variants for

each of these signals. One of the identified signals represents a potential causal variant that

impacts arsenic metabolism across all three populations. Using omics-QTL co-localization

analyses, we show that some of the variants identified act through regulation AS3MT in

multiple tissue types. Overall, this work increases our understanding of variation in the

AS3MT region and its role in arsenic metabolism across populations.

Introduction

Arsenic-contaminated groundwater is a global public health issue, impacting >220 million

individuals worldwide, with>85% of highly exposed individuals living in South Asia based on

an exposure level of�10μg/L in drinking water [1,2]. The International Agency for Research

on Cancer (IARC) classifies inorganic arsenic (iAs) as a “Group 1” human carcinogen [3] with

chronic exposure increasing the risk of bladder [4], kidney, lung [5], liver, and skin cancers

[3,6]. Exposure to iAs is also associated with increased risk for diabetes [7], as well as cardio-

vascular, cerebrovascular, and neurologic diseases [8–11]. A hallmark of chronic iAs exposure

is the appearance of skin lesions, arsenical hyperkeratosis, typically on the hands and feet of

exposed individuals [12,13]. The most common source of iAs exposure is contaminated drink-

ing water [14] with ~2.1 million individuals in the U.S. [15] and 35 to 77 million in Bangladesh

[16,17] exposed to iAs above 10ug/L, the maximum contaminant level set by the U.S. Environ-

mental Protection Agency (EPA) [18] and World Health Organization (WHO) [1,19]. Other

sources of arsenic exposure include the consumption of contaminated seafood and rice [20–

22].

iAs metabolism in humans is composed of a series of reduction and methylation reactions

occurring primarily in the liver with some metabolism potentially occurring in other tissues

such as the kidney [23,24]. iAs in the form of arsenite (iAsIII) or arsenate (AsV) enters the

body. Based on the Challenger model of metabolism [14,23,25], iAsV can be reduced to iAsIII,

which can be methylated in a reaction catalyzed by arsenic (+3 oxidation state)
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methyltransferase (AS3MT) producing monomethyarsonic acid (MMAV) [14], which can be

reduced to monomethylarsonous acid (MMAIII). A second methylation step, also catalyzed by

AS3MT, produces dimethylarsinic acid (DMAV), which can be reduced to dimethylarsinous

acid (DMAIII), the end-product of iAs metabolism in humans.

Individuals’ arsenic metabolism efficiency (AME) is often represented as the percentage of

each arsenic species in urine relative to all species (iAs%, MMA%, and DMA%) [7,14], with

higher DMA% indicating more efficient metabolism. While age, sex, and environmental fac-

tors contribute to inter-individual variation in AME [14,26], inherited genetic variation also

plays an important role. Variation in the AS3MT/10q24.32 region has shown clear association

with AME in multiple populations, including Bangladesh and American Indian communities

in the US, with multiple independent association signals identified [14,27–29]. Prior studies

have found that higher levels of urinary MMA% and/or lower levels of urinary DMA% are

associated with increased risk for cancer, cardiovascular disease [30] and arsenic-induced skin

lesions [14]. AME-associated SNPs have also been shown to impact the risk of arsenic-induced

skin lesions, reflecting increased arsenic toxicity among those with lower AME [31].

The causal variants underlying the observed associations between AS3MT/10q24.32 varia-

tion and AME remain unknown. Previous studies have had limited SNP density, small sample

sizes, and have focused on single populations. In this work, we generate targeted sequencing

data for multiple arsenic-exposed populations to identify candidate causal variants underlying

the association between 10q24.32 variants and AME. We perform in-silico functional annota-

tion to assess potential functional impact and further prioritize potential causal variants.

Finally, we conduct co-localization analyses to examine variants’ potential effects on AS3MT
expression and/or nearby DNA methylation. This work enhances our understanding of the

genetic mechanism underlying variation in AME and susceptibility to iAs toxicity.

Results

Arsenic exposure and AME

Total urinary arsenic varied substantially across cohorts, with higher concentrations in

HEALS compared to SHS and NHSCS (Fig 1). This difference was also reflected in measures

of arsenic in participants’ drinking water (S1 Fig). DMA% was highest in NHSCS and lowest

in HEALS (Table 1 and S2 Fig). MMA% was highest in SHS and lowest in NHSCS while iAs%

was highest in HEALS and lowest in NHSCS (Table 1).

Association analyses

Conditional association analysis of TOPMed-imputed data identified association signals for

urinary DMA% in the 10q24.32 region for all three cohorts (Fig 2). We identified three inde-

pendent signals in HEALS (lead SNPs rs145537350, rs12573221, and rs4919687), two in SHS

(rs191177668 and rs4919688), and one in NHSCS (rs191177668). The per-allele association

estimates for these lead SNPs varied in magnitude from ~2% to ~12% (in DMA% units)

(Table 2). These results are similar to those observed for the non-imputed data (S3 Fig). Anal-

ysis of MMA% and iAs% across all three cohorts produced results generally consistent with

those observed for DMA%, with similar association signals detected for all three arsenic spe-

cies (S4, S5, S6 and S7 Figs). Alleles associated with increased DMA% tended to be associated

with decreased MMA% and iAs%.

SHS and NHSCS share a lead SNP (rs191177668) and this SNP is in LD (r2 = 0.5–1.0

depending on reference population) with a HEALS lead SNP, rs145537350 (Fig 3), suggesting

a shared causal variant across cohorts. The shared lead SNP in SHS and NHSCS, rs191177668,

has a p-value of 8x10-8 and beta estimate of -0.062 in HEALS (isolated primary signal).
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Controlling for the primary signal, this SNP has p-values of 0.6 and 0.2 in the HEALS second-

ary and tertiary analyses. We also observe two signals in HEALS and one in SHS that appear

distinct (or population-specific), with minimal LD among the lead SNPs (Fig 3). Some lead

SNPs differ substantially in MAF across populations (Table 3). For example, SHS lead SNP

rs145537350 is common in SHS (MAF = 0.14) but has much lower frequency in HEALS

(0.007) and NHSCS (0.005). We further examined MAF differences for the lead SNPs across

SHS centers (S1 Table). Here, we find generally consistent MAF across SHS centers, with the

exception of rs4919688 which is more common in the Arizona center (MAF = 0.482) com-

pared with the Dakotas and Oklahoma centers (0.252, 0.221 respectively).

We examined the impact of BMI as a covariate in each cohort. While BMI is associated

with DMA% in each cohort, the association for the lead SNPs identified in each cohort are

largely unchanged. In the cohorts with available measurements of arsenic in drinking water

(HEALS and NHSCS) water arsenic exposure was inversely associated with DMA% (S8 Fig),

as reported previously [14,32]. However, there was no detectable interaction (P<0.05) between

any of the lead SNPs and exposure level measured in drinking water.

Fine-mapping

The results of ancestry-specific fine-mapping of individual-level data performed using SuSiE

[33,34]] were consistent with those observed in our association analyses, with three distinct

95% confidence sets identified in HEALS and two in SHS (Fig 4). We find overlapping SNPs

in the confidence sets for HEALS set 1 and SHS set 1 (S2, S3, and S4 Tables). For SHS, the

confidence sets identified through the analysis of summary statistics were somewhat different

than those obtained from analyses of individual-level data, with SNPs in summary statistic

based SHS confidence set 1 overlapping with SNPs in HEALS sets 1 and 3 (S2–S5 Tables).

Fig 1. Urinary arsenic concentrations in HEALS, NHSCS, and SHS. Distributions of total urinary arsenic (μg/g of creatinine) are

shown for three arsenic-exposed populations: The Health Effect of Arsenic Longitudinal Study (HEALS, in red), the New Hampshire

Skin Cancer Study (NHSCS, in green), and the Strong Heart Study (SHS, in blue). The inset Fig shows SHS and NHSCS only.

https://doi.org/10.1371/journal.pgen.1010588.g001
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However, in both the summary statistic and individual-level data analyses, no overlap was

observed between HEALS confidence set 2 and any SHS set or between SHS set 2 and any

HEALS set. SuSiE did not identify a confidence set for NH, potentially due to the weaker asso-

ciations observed in this group.

We examined the shared signal through meta-analysis of the isolated HEALS and SHS asso-

ciation signal results using MANTRA. The 95% confidence set produced contained 8 variants

including the lead primary SNPs in HEALS (rs145537350) and SHS (rs191177668) which had

posterior inclusion probabilities of 0.488 and 0.251, respectively (S3 Table). This confidence

set also included the lead tertiary HEALS SNP (rs4919687), a variant included in HEALS set 3

and in the SHS summary statistic-based set 1.

In-silico functional annotation

We aligned credible set variants with markers of open chromatin (Dnase I), cis-Credible Regu-

latory Elements (CREs), H3K27Ac, H3K4me3, and transcription factor (TF) binding sites

(specifically TFs in cells and tissue types related to the kidney, liver, and heart). Three variants

Table 1. Participant characteristics and arsenic species concentrations stratified by cohort.

Characteristics HEALS (n = 2428) SHS (n = 557) NH (n = 662)

Sex [n (%), male] 1428 (58.8) 229 (41.1) 393 (59.4)

Age [mean ± SD] 41.8 ± 10.5 56.2 ± 8.3 64.4 ± 7.6

BMI (kg/m2kg/m2 [n (%)])

<18.5 1043 (43.0) 5 (0.9) 7 (1.1)

18.5–24.9 1206 (49.8) 87 (15.6) 196 (29.6)

25–29.9 137 (5.6) 197 (35.4) 250 (37.8)

>30 17 (0.7) 267 (47.9) 209 (31.6)

Smoking [n (%), has smoked] 979 (40.3) 218 (39.1) 276 (41.7)

iAs%

mean ± SD 15.2 ± 6.5 8.8 ± 5.6 7.9 ± 5.2

IQR 11, 18.3 5.2, 10.8 4.4, 9.8

Min, Max 0, 70.3 0.62, 59.7 0.5, 35.7

MMA%

mean ± SD 13.7 ± 5.2 14.6 ± 5.6 10.4 ± 4.5

IQR 9.8, 16.7 10.5, 17.6 7.3, 13.2

Min, Max 0, 34.7 0.53, 45.9 0.6, 36.7

DMA%

mean ± SD 71.2 ± 8.7 76.7 ± 9.1 81.8 ± 8.1

IQR 66.1, 77.2 72.1, 83 77, 87.1

Min, Max 27.4, 92.9 32.4, 94.5 35.1, 97.7

Arsenobetaine (ug/L)

mean ± SD 1.5 ± 3.5 2.9 ± 8.1 35.9 ± 111.9

IQR 0, 1.8 0.43, 1.7 1.4, 26.6

Min, Max 0, 85.19 0.07, 97 0.07, 1782.2

Total Urinary Arsenic (ug/g)

mean ± SD 138.5 ± 164.7 15.2 ± 18.8 7.3 ± 8.96

IQR 38.2, 174.7 5.8, 16.8 3.3, 8.3

Min, Max 3.7, 1528.5 0.54, 161.95 0.71, 111.6

Abbreviations: iAs%, percentage of inorganic arsenic; MMA% percentage of monomethylarsonic acid; DMA%, percentage of dimethylarsinic acid; IQR, interquartile

range

https://doi.org/10.1371/journal.pgen.1010588.t001
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Fig 2. Isolated association signals for DMA% in the 10q24.32 region in three arsenic-exposed populations. P-values are from linear models adjusted for

age, sex, and population structure (in HEALS and SHS). The top panel for each population shows the primary association (adjusted for lead SNPs from all non-

primary signals, if present). Additional panels show p-values for secondary (HEALS and SHS) and tertiary (HEALS) association signals (adjusted for lead SNPs

from all other signals). Three signals were identified for HEALS, two for SHS, and one for NHSCS. LD estimates are based on several 1,000 Genomes

populations (SAS for HEALS, MXL/PUR/CLM/PEL for SHS, and EUR for NHSCS).

https://doi.org/10.1371/journal.pgen.1010588.g002

Table 2. Lead SNPs for isolated DMA% association signals by cohort.

Population Lead SNP Confidence Set Membership MAF Imputed/Genotyped Betaa P-Value

HEALS

rs145537350 HEALS CS 1 0.007 Genotyped -0.1197 5.3x10-16

rs12573221 HEALS CS 2 0.134 Genotyped 0.0264 2.2x10-13

rs4919687 HEALS CS 3 0.122 Genotyped -0.0199 6.4x10-8

SHS

rs191177668 SHS CS 1 0.143 Imputed -0.0712 1.8x10-26

rs4919688 SHS CS 2� 0.268 Imputed -0.0428 2.8x10-19

NH

rs191177668 NA 0.012 Imputed -0.0947 5.0x10-9

Abbreviations: SNP, single nucleotide polymorphism; MAF, minor allele frequency; HEALS, Health Effects of Arsenic Longitudinal Study; SHS, Strong Heart Study;

NH, New Hamphire Skin Cancer Study; CS, Confidence Set. A Models were adjusted for age and sex.

Models in SHS additionally included top 5 genotyping PCs, and models in HEALS were adjusted for kinship between participants. Isolated, independent signals were

identified by conditional association models adjusted for other signals identified in the region. Reported beta values reflect the change in DMA% scales from 0–1.

�Refers to the association-based SHS confidence set

https://doi.org/10.1371/journal.pgen.1010588.t002
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Fig 3. Linkage Disequilibrium (LD) among DMA% lead SNPs in multiple reference populations. All LD estimates are based on 1,000 Genomes data

obtained from LDLink. We observe strong LD (r2 = 0.495–1.0) between rs145537350 (HEALS) and rs191177668 (NHSCS and SHS), but weak LD among all

other variants.

https://doi.org/10.1371/journal.pgen.1010588.g003

Table 3. Minor Allele Frequency (MAF) comparison of lead signals across arsenic-exposed cohorts.

Lead SNP Population Identified In Confidence Set Membership HEALS MAF SHS MAF NH MAF

rs145537350� HEALS HEALS CS 1 & SHS CS 1 0.007 0.143 0.005

rs12573221 HEALS HEALS CS 2 0.134 0.002 0.025

rs4919687 HEALS HEALS CS 3 0.122 0.220 0.267

rs191177668� SHS & NH SHS CS 1 0.012 0.143 0.012

rs4919688 SHS SHS CS 2�� 0.026 0.268 0.003

Abbreviations: SNP, single nucleotide polymorphism; MAF, minor allele frequency; HEALS, Health Effects of Arsenic Longitudinal Study; SHS, Strong Heart Study;

NH, Hew Hampshire Case-Control Study of Squamous Cell Carcinoma

�Indicates SNPs that are in high LD with each other across multiple reference population including Bengali, Ad-Mixed Americans, and Europeans.

�� Refers to the association-based SHS confidence set

https://doi.org/10.1371/journal.pgen.1010588.t003
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in HEALS confidence set 1 (Table 4 and S9 Fig), one variant in HEALS set 3 (Table 4 and Fig

5), and 12 of the 50 variants in the HEALS set 2 overlapped at least one of the examined fea-

tures. Examining the 85 variant SHS confidence set that contains the shared lead variant in

SHS and NHSCS (rs191177668) as well as the lead variant in HEALS (rs145537350), we find

that 24 of the variants overlap functional features (S6 Table).

Cis-eQTL identification and co-localization analysis

AS3MT is expressed in most human tissue types, and this expression is highly variable ranging

from 411.5 TPM in the adrenal gland to 0.92 in whole blood (S10 Fig). We identified cis-

eQTLs for AS3MT in 45 tissue types (among 47 analyzed), with 27 tissue types having multiple

Fig 4. SuSiE Fine-Mapping results. 95% confidence sets for HEALS (A) and SHS (B) are each highlighted in different colors and mapped onto the overall

DMA% association results.

https://doi.org/10.1371/journal.pgen.1010588.g004

Table 4. In-Silico functional examination of HEALS confidence set variants.

Variant Coordinates PIP Candidate cis-Regulatory Element

(cCRE)

Transcription Factors binding

the cCRE

Histone Marks at the

cCRE

Classification

Confidence Set 1

rs142093276 10:102769853 0.051 EH38E1495376 32 13 Distal enhancer-like

signature

rs17114969 10:102775204 0.051 EH38E1495388 14 27 Proximal enhancer-like

signature

rs4919681� 10:102824339 0.051 None

Confidence Set 3

rs4919684� chr10:102827267 0.083 None (3 within 2kb)

rs10883783� chr10:102831395 0.154 None (3 within 2kb)

rs743575� chr10:102835149 0.189 EH38E1495455 34 14 Distal enhancer-like

signature

rs4919687� chr10:102835491 0.143 None (4 within 2kb)

rs10883784� chr10:102838165 0.160 None (4 within 2kb)

rs10786714� chr10:102838849 0.160 None (4 within 2kb)

rs4919690 chr10:102856743 0.087 None (3 within 2kb)

Abbreviation; PIP, posterior inclusion probability.

� Indicates SNPs also present in SHS confidence sets

https://doi.org/10.1371/journal.pgen.1010588.t004
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AS3MT cis-eQTLs (as many as four). Following identification of these QTLs, we wanted to

determine if any eQTLs shared a common causal variant with our AME association signals

thereby representing a regulatory mechanism by which our identified SNPs impact AME. Cis-

eQTLs in 22 tissue types had a lead eSNP in high LD (r2>0.7) with rs4919687, a lead DMA%

SNP in HEALS found in confidence set 3. Among these, rs4919690 (in confidence set 3) was

the lead eSNP in 14 tissue types. Eight tissue types had a lead eSNP in high LD with

rs12573221 (lead SNP in HEALS confidence set 2) and 5 tissues had a lead eSNP in high LD

with rs145537350 (lead SNP in HEALS set 1) and rs191177668 (shared lead SNP in SHS and

NHSCS). Examining the individual lead SNPs associated with urinary DMA% in the context

of our eQTL analysis, we found that HEALS lead SNP rs4919687 had p< 5x10-8 in forty tissue

types and the shared lead SNP in SHS and NHSCS, rs191177668, had p-value < 5x10-8 in eight

tissue types (based on primary eQTL analysis). The second lead SNP in SHS (rs4919688) was

not identified in any of our QTL analyses.

Following the identification of eQTLs in high LD with our AME-associated SNPs, we per-

formed a co-localization analysis to determine whether the same causal variants impact AME

and AS3MT expression, providing a regulatory mechanism by which our identified SNPs

influence AME. Under the assumption that 50% of DMA% SNPs are eQTLs (p12 = 5x10-6), we

found evidence for co-localization between AS3MT cis-eQTLs and the DMA% signal repre-

sented by rs4919687 in 21 tissue types (PP of common causal variant (CCV) >80%) (Table 5).

The rs4919687 allele associated with decreased AME (lower DMA%) was associated with

Fig 5. In silico functional annotation of candidate causal variants of HEALS confidence set 3. Candidate causal SNPs from HEALS confidence set 3 (lead

SNP rs4919687) overlap with genomic features including candidate cis-regulatory elements and transcription factor binding sites. Highlighted panels show

details of candidate causal SNPs overlapping these features. Note that AS3MT is located downstream of BORCS7 and overlaps BORCS7-AS3MT.

https://doi.org/10.1371/journal.pgen.1010588.g005
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lower AS3MT expression across all tissue types in which co-localization was observed (Fig

6B), consistent with a mechanism in which lower AS3MT mRNA levels result in lower protein

levels and lower enzymatic activity; thereby decreasing AME.

Varying the prior probability (p12) of the percentage of DMA% SNPs that are also cis-

eQTLs from 50% to 5% decreased the number of tissue types in which co-localization was

observed (PP of CCV>80%) between AS3MT cis-eQTLs and rs4919687 from 21 to 4 (Table 5

and Fig 6A) and resulted in no co-localization between AS3MT cis-eQTLs and other DMA%

signals (other than HEALS set 3).

Considering the additional lead signals identified in our population-specific analyses, we

observed co-localization between DMA% signal rs12573221 (HEALS set 2) and an AS3MT
eQTL in aortic artery. Even under the most liberal priors, we observed no evidence of co-local-

ization for DMA% signals represented by rs145537350 (HEALS set 1) or rs191177668 (shared

SNP in SHS and NHSCS).

Beyond AS3MT, we examined 27 additional genes within 500kb of AS3MT. HEALS DMA

% lead SNPs rs4919687 (HEALS set 3) was in high LD with eQTLs for multiple genes (in at

least one tissue type), including CYP17A1OS, AL356608.1, CYP17A1, BORCS7, NT5C2, and

WBP1L. Among these, a BORCS7 eQTL (represented by rs11191421 and rs4919690) present

in multiple tissues showed strong LD with HEALS lead SNP rs4919687 (set 3) in 43 tissue

types. We also observed two genes, NFKB2 and RPARP-AS1, with cis-eQTLs whose lead SNPs

Table 5. Co-localization of AS3MT eQTLs identified in GTEx tissues with the association signal for DMA% (lead SNP rs4919687) identified in a Bangladeshi popu-

lation across a range of prior probabilities.

Tissue eQTL Lead

SNP

PP of Co-localization Under Different Assumptions Adjustments to Isolate

eQTL signal50% of DMA% SNPs

are eQTLs

25% of DMA% SNPs

are eQTLs

10% of DMA% SNPs

are eQTLs

%5 of DMA% SNPs

are eQTLs

Brain: Hippocampus rs4919690 0.97 0.93 0.82 0.68 0 SNPs

Brain: Nucleus Accumbens

Basal Ganglia

rs10883784 0.97 0.92 0.80 0.66 0 SNPs

Testis rs4919690 0.91 0.78 0.55 0.37 0 SNPs

Vagina rs12775431 0.80 0.58 0.32 0.18 0 SNPs

Artery Aorta rs4919690 0.99 0.98 0.94 0.88 2˚ SNP

Artery Coronary rs4919690 0.97 0.92 0.79 0.64 2˚ SNP

Brain Cortex rs4919690 0.98 0.96 0.88 0.78 2˚ SNP

Mammary Tissue rs12416687 0.94 0.84 0.64 0.46 2˚ SNP

Colon Transverse rs11191421 0.45 0.23 0.09 0.04 2˚ SNP

Heart: Atrial Appendage rs12416687 0.98 0.94 0.84 0.72 2˚ SNP

Heart: Left Ventricle rs11191436 0.93 0.82 0.61 0.42 2˚ SNP

Liver rs4919690 0.91 0.78 0.54 0.36 2˚ SNP

Esophagus Muscularis rs4919690 0.97 0.93 0.82 0.68 1˚ SNP

Adipose Visceral Omentum rs4919690 0.99 0.97 0.92 0.84 2˚, 3˚ SNP

Anterior Cingulate Cortex rs4919690 0.98 0.96 0.88 0.77 2˚, 3˚ SNP

Colon Sigmoid rs4919690 0.97 0.91 0.77 0.62 2˚, 3˚ SNP

Lung rs4919690 0.99 0.98 0.93 0.86 2˚, 3˚ SNP

Nerve Tibial rs4919690 0.99 0.98 0.94 0.88 2˚, 3˚ SNP

Muscle Skeletal rs12416687 0.87 0.71 0.45 0.28 1˚, 2˚ SNP

Skin Suprapubic rs1475642 0.96 0.90 0.74 0.58 1˚, 2˚ SNP

Gastroesophageal Junction rs4919690 0.97 0.91 0.76 0.61 1˚, 3˚ SNP

Adipose Subcutaneous rs4919690 0.98 0.93 0.83 0.69 2˚,3˚,4˚ SNP

Artery Tibial rs12416687 0.98 0.93 0.82 0.69 2˚,3˚,4˚ SNP

https://doi.org/10.1371/journal.pgen.1010588.t005
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were in high LD with a HEALS DMA% lead SNP rs12573221 (set 2) in tibial nerve and trans-

verse colon tissues respectively. Finally, we observed one gene, SUFU, with a cis-eQTL in high

LD with a DMA% association signal from SHS (rs191177668, association-based set 1) in the

tibial artery.

Under the assumption that 50% of DMA% SNPs are cis-eQTLs (p12 = 5x10-6), we identified

25 tissue types in which a cis-eQTL for BORCS7 co-localized with the DMA% signal repre-

sented by rs4919687. Thus, both AS3MT and BORCS7 eQTLs co-localize with this DMA% sig-

nal. We also observed co-localization between this DMA% signal and tissue-specific eQTLs in

CYP17A1OS (thyroid) and CYP17A1 (frontal cortex of the brain) (PP>80%) (S7 Table). Simi-

lar to AS3MT results, reducing p12 (to a 5% probability of co-localization), resulted in much

lower probabilities of co-localization for BORCS7 (S7 Table).

Cis-mQTL identification and co-localization analysis

Among the nine tissue types analyzed, we identified mQTLs in strong LD with rs4919687

(HEALS set 3) in five tissue types: transverse colon, kidney cortex, lung, ovary, and testis. We

also identified mQTLs in high LD with rs12573221 (HEALS set 2) in five tissue types: breast

(mammary), lung, skeletal muscle, prostate, and testis. Finally, we identified mQTLs in high

Fig 6. Co-localization between HEALS DMA% association signal (rs4919687) and AS3MT eQTLs in multiple tissues. We observe evidence of co-

localization in 21 GTEx tissue types, with four example tissue types shown in Panel A (aorta, adipose-visceral omentum, lung, and nerve-tibial). The low

efficiency (low DMA%) allele at rs4919687 is consistently associated with lower AS3MT expression in all tissues for which co-localization was observed.

https://doi.org/10.1371/journal.pgen.1010588.g006
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LD with rs145537350 (HEALS set 1) in four tissue types: breast (mammary), kidney cortex,

lung, and whole blood.

Under the assumption that 50% of DMA% signals are mQTLs (p12 = 5x10-6), we observed

co-localization between DMA% signal rs4919687 and mQTLs in two tissue types: colon-trans-

verse (one CpG) and ovary (two CpGs) (S8 Table). For colon, the associated CpG was in the

gene body of CYP17A1 while for ovary, both associated CpGs were in the gene body of

AS3MT. We did not observe any co-localizations between mQTLs and the DMA% association

signals represented by either rs12573221 (HEALS set 2) or rs145537350 (HEALS set 1).

We observed co-localizations between AS3MT cis-eQTL (rs4919690) and cg08650961 cis-

mQTL (rs4919690) under the assumption that 50% of mQTLs are also eQTLs (p12 = 5x10-4)

and the assumption that 25% of mQTLs are also eQTLs (p12 = 2.5x10-4).

Effect modification analysis

Using known associations between individual characteristics and DMA%, we performed a

series of effect modifications analyses to understand the interactions between these variables

and our identified variants. We found no interaction between sex and the genetic effects on

DMA% (S9 Table); the effects of our identified variants were similar in males and females. We

also examined the interaction between smoking and DMA% and observed evidence of interac-

tion between current smoking and the lead SNP in NHSCS (p = 0.04), but not in HEALS or

SHS.

Sensitivity analysis

Arsenobetaine, a form of organic arsenic found in seafood (see methods) was correlated with

DMA% in all three cohorts (correlation of 0.18, 0.12, and 022 in HEALS, SHS, and NHSCS

respectively); however, no clear differences were seen between our initial analysis results and

those from a model that included adjustment for arsenobetaine. To further confirm our

results, we performed a sensitivity analysis, excluding individuals with DMA% >85 (76 in

HEALS, 224 in NHSCS, and 169 in SHS) to avoid the inclusion of DMA measures strongly

influenced by exposure to organic arsenic. Here, we found no significant change in results

with our lead SNPs still appearing among the top SNPs in the association analyses of all three

populations.

Discussion

The relationship between AS3MT genotype, gene expression in the 10q24.32 region, and arse-

nic metabolism are well-established; however, questions remain regarding the precise causal

variants driving these associations, the potential differences in associations across ancestry

groups, as well as the specific genes in the region influenced by 10q24.32 genotypes across dif-

ferent tissue types. In this project, we applied fine-mapping approaches to sequencing-based

genotype data in the 10q24.32 AME-associated region to identify candidate causal variants

across three cohorts exposed to varying levels of arsenic in their drinking water. Fine-mapping

analyses revealed that there are likely multiple causal variants in the 10q24.32 region impacting

AME (represented by DMA%), with at least one causal variant likely shared across popula-

tions. In silico functional annotation and QTL co-localization further revealed that several of

our candidate causal variants overlap regulatory features and impact expression of AS3MT and

local DNA methylation.

Under the assumption of shared biological mechanisms and shared causal variants across

populations, cross-population association analyses can narrow the list of potential causal vari-

ants in a region by identifying SNPs showing consistent evidence of association across all
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examined populations [35–37]. However, this was not the case in our study, as meta-analysis

of shared association signals in HEALS and SHS produced a confidence set of 8 variants, a set

larger than the corresponding confidence sets based on HEALS alone (4 and 7 variants). This

is likely due to the broader signal observed in SHS, resulting in a confidence set with many

more SNPs than those observed for HEALS (the result of more extensive LD among nearby

variants in SHS). This extensive LD in SHS makes discriminating between potential causal var-

iants more challenging in the meta-analysis context.

A novel finding of our analysis is the identification of associations that appear to be popula-

tion-specific in both HEALS and SHS, which require further examination. Failure to replicate

genetic associations across populations has been observed in many studies and has driven the

increased emphasis on diversity in GWAS [38–43]. One explanation for a lack of replication is

differences in allele frequencies, which can reduce power in populations with low MAF [34].

For example, one of the HEALS confidence sets (lead SNP rs12573221, confidence set 2) has a

MAF range of 6.1–16.5% in HEALS and 0.1–4.4% in SHS; thus, the SNPs are likely too rare in

SHS to be examined at the present sample sizes. Similarly, signal 2 (lead SNP rs4919688, confi-

dence set 2) has a MAF of 26.8% in SHS and 2.6% in HEALS, which may explain the lack of

replication of this SHS signal in HEALS. Our study used different sample sizes for our three

populations. Larger sample sizes, as seen in HEALS, increase the study power and decrease the

standard error of effect estimates, and thus improve our ability to identify association signals

[44]. It is possible that we simply lacked the power to identify all association signals across all

populations.

Beyond MAF, differences in LD likely contribute to the differences in observed signals

across populations. HEALS signal three is represented by rs4919687 which has a MAF >0.1 in

all populations. However, while this variant represents an independent candiate causal variant

and confidence set (set 3) in HEALS, it co-occurs with SNPs from HEALS confidence set 1 in

SHS confidence set 1 (derived from summary statics). Furthermore, we find the HEALS ter-

tiary lead SNP (in HEALS confidence set 3) among the top 30 SNPs of the SHS primary associ-

ation signal. Thus, a single confidence set in SHS (set 1) may capture two confidence sets in

HEALS. Differences in LD patterns across the populations is a possible explanation for these

observations [35,38,45], causing two distinct signals (in HEALS) to be indistinguishable in

SHS.

In addition to these factors, differences in subject recruitment and inclusion among the

studies used for this work may also have contributed to the differences in association signals.

NHSCS included individuals both with and without skin cancer. Arsenic exposure and AME

are risk factors for skin cancer, so this selection could contribute to biases in observed associa-

tions [30,46]. Chronic arsenic exposure is also associated with increased health risks, so the

long-standing exposure in HEALS may also distinguish it from the other populations and

make direct comparison challenging [46]. It is possible that the observed population-specific

signals reflect true differences in genetic effects across populations. Gene-gene or gene-envi-

ronment interactions could result in different effect size estimates across populations [38,40].

Differences in exposure level across populations may also impact the observed associations

[40,41,43]. For instance, attenuation of SNP effects in populations with low exposure may

result in low power to detect association [40]. We examined the gene-environment interaction

between our lead SNPs and arsenic exposure in HEALS and while arsenic exposure did have

an independent effect on DMA%, there was no evidence of effect modification between any of

our identified variants and arsenic exposure (S10 Table).

We sought to understand the regulatory mechanisms by which the causal variants impact

gene function using co-localization analyses focused on AS3MT and surrounding genes and

DNA methylation features. AS3MT is expressed in most tissues at detectable levels (S10 Fig),
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allowing us to examine co-localization across a wide range of tissues. Expression is highest in

the adrenal gland, potentially due to co-regulation with nearby CYP17A1 which plays a role in

steroid hormone formation or for protection against arsenic which can disrupt endocrine

function [47,48]. While co-localization was not detected for adrenal tissue, it was detected in

many tissue types with low expression (e.g. subcutaneous adipose). This suggests that our

results were not driven by the variability in expression across tissues and that low expression

levels did not prevent QTL detection.

The liver is the major site of arsenic metabolism, but we observed only suggestive evidence

of co-localization in this tissue type (Table 5 and S11 Fig) We detected AS3MT eQTLs in liver

(rs4919690, p = 7.15x10-8), but our relatively small sample size may have limited our statistical

power to robustly identify co-localization across all sets of priors analyzed.

Despite the ancestry mismatch between our Bangladeshi participants and the GTEx donors,

we found compelling evidence of co-localization between our DMA% association signal (rep-

resented by rs4919687, HEALS set 3) and a multi-tissue cis-eQTL for AS3MT in 21 tissue

types. The minor allele at SNP rs4919687 was associated with decreased DMA% and decreased

AS3MT expression in tissues in which co-localization was observed, supporting the hypothesis

that decreased expression results in lower amounts of the enzyme and ultimately lower AME.

Our co-localization results suggest that HEALS SNP rs4919690 may be the causal variant

underlying this signal (Posterior Inclusion Probability, PIP = 0.09), as it is the lead eSNP for

the co-localizing AS3MT eQTL in 14 tissue types, and it is the lead eSNP for co-localizing

BORCS7 eQTL in 9 tissue types. The repeated appearance of this SNP as a lead SNP in GTEx

QTL analyses (genotyping based on whole-genome sequencing) suggests causality. Some co-

localization was observed between AS3MT eQTLs and a second association signal in HEALS,

suggesting that this variant may also impact arsenic metabolism by regulating AS3MT expres-

sion across tissues.

No prior evidence suggests a role for BORCS7 in arsenic metabolism; however, we observe

co-localization between a DMA% association signal and cis-eQTLs for BORCS7 in multiple tis-

sues (as observed previously [49]). Expression levels of AS3MT and BORCS7 are correlated in

nearly all tissues in which co-localization is observed, suggesting co-regulation by a common

causal variant (and potentially other mechanisms) or two causal variants in very strong LD.

The correlated expression of the two genes has been noted previously [50]. A mouse strain car-

rying a human BORCS7/AS3MT was created to study arsenic metabolism as the AS3MT pro-

moter abuts the 3’ UTR of BORCS7 [51]. However, this study did not describe any specific role

for BORCS7 in arsenic metabolism. It is likely that the SNPs in this region are pleiotropic,

influencing both AS3MT and the expression of the surrounding genes. Furthermore, co-regu-

lation of these genes has been previously reported in multiple tissue types [31,49,50,52].

The co-localization of mQTLs with DMA% association signals further increases support for

rs4919690 as a causal variant, as mQTLs for 10q24.32 CpGs co-localize with eQTLs (repre-

sented by lead SNP rs4919690) for AS3MT in lung tissue. The DMA% decreasing allele at

rs4919690 (A) is associated with increased methylation of cg08650961, a CpG located in the

body of the CNNM2 gene outside of a CpG island, and decreased AS3MT expression in lung

tissue.

The population mismatch between our studies of AME (Bangladeshi and American Indian

populations) and GTEx donors (primarily European ancestry) likely decreased our power to

detect co-localization in both our eQTL and mQTL analysis. Furthermore, the smaller sample

size of SHS likely increased the standard error of association estimates in this population, and

when this is combined with the population mismatch between SHS and GTEx we likely had a

decreased ability to detect co-localization in this population Our mQTL analysis sample sizes

were also small, some n<100 samples, and our analyses were restricted to 9 tissue types with
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available DNAm data. This limited our power for mQTL detection and our ability to detect

co-localization. Additionally, in the populations examined for this study, we are not able to

fully assess the contribution of organic sources of arsenic to variability in our AME phenotype,

which could potentially bias the associations observed.

In this study, we do not assess the association of AME-related SNPs with arsenic toxicity

risks. However, we have previously shown that the association signals represented by

rs12573221 and rs4919687 show clear associations with arsenic-induced skin lesion risk in

HEALS [53]. Similarly, the novel signal for SHS and NH that we report here (rs191177668),

which is in strong LD with and can serve as a proxy for the novel signal in HEALS

(rs145537350), is also associated with skin lesion risk in the dataset previously described

(OR = 1.64, CI = 1.2, 2.24) [53].

This study builds on previous work in the 10q24.32 region [29,31,49,54,55] in several ways.

Previous studies have found signs of positive selection near the AS3MT gene associated with

efficient arsenic metabolism [56]. They found selection signals in multiple populations includ-

ing several from South America and East Asia and found that several the SNPs associated with

the protective haplotype were also associated with MMA%. None of the identified SNPs

showed a significant association with DMA%, though in the context of our study one SNP did

appear in lD with the secondary lead SNP in SHS.

We leverage data from multiple arsenic-exposed cohorts with diverse ancestry in a single

study, allowing us to consider both shared and population-specific effects of inherited genetic

variation on AME. Additionally, our targeted sequencing data enabled us to identify a novel,

independent association between 10q24.32 variation and DMA% in HEALS that we were

unable to detect in our previous array-based work [28]. We further increased our sample size

for cis-eQTL analyses using the latest data from GTEx and incorporated both expression and

methylation data into our examination of the SNPs’ mechanism of action. Finally, we provide

evidence that there are likely multiple causal SNPs within the 10q24.32 region associated with

AME. Together, this allowed us to provide evidence regarding the potential causal variants

and mechanisms underlying the established association between the 10q24.32 region and

AME. Future studies can build on these findings, potentially establishing cellular or animal

models with perturbations of potential causal sites in order to directly assess the impact of spe-

cific alleles on arsenic metabolism.

Methods

Ethics statement

The study protocol for the Health Effects of Arsenic Longitudinal Study (HEALS) was

approved by the Institutional Review Boards of The University of Chicago, Columbia Univer-

sity, and the Bangladesh Medical Research Council. Details of the study were explained, and

verbal informed consent was obtained from all participants. For the Strong Heart Study (SHS)

the goals and procedures of the study were explained, and a signed consent form was obtained

from each participant [57]. The study protocol was approved by the Indian Health Service

Institutional Review Boards, and the participating communities [7,58]. The NHSCS was

approved by the Committee for the Protection of Human Subjects of Dartmouth College. At

enrollment, participants underwent a written, informed consent process [59].

Study populations

This project leveraged data from three studies of arsenic-exposed individuals: The Health

Effects of Arsenic Longitudinal Study (HEALS), the Strong Heart Study (SHS), and the New

Hampshire Skin Cancer Study (NHSCS) (Table 1).
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HEALS [17] is a prospective cohort study of a population from Araihazar, Bangladesh

exposed to iAs through contaminated well water. 11,746 adults aged 18–75 years were

recruited at baseline (1999–2001). All provided verbal informed consent. Water samples were

collected from all 5,966 wells in the study area and tested for arsenic. In-person interviews,

clinical evaluations, and blood and spot urine sample collection occurred in participants’

homes by trained physicians using structured protocols. Follow-up in-person interviews were

conducted biennially. The study protocol was approved by the Institutional Review Boards of

The University of Chicago, Columbia University, and the Bangladesh Medical Research Coun-

cil. Urinary arsenic species in baseline samples were previously measured for 4,794 partici-

pants by the Columbia University Trace Metals Core Laboratory. For this study, we included

2,426 individuals with both arsenic metabolite data and DNA available for targeted

sequencing.

SHS [11,57,60] was established in 1989 to examine cardiovascular disease and risk factors

among American Indian men and women. It includes participants from 12 tribes in the Amer-

ican Southwest, Northern Plains, and Southern Plains. Arsenic species were measured in 3,973

participants using procedures that have been described previously [61,62]. As some SHS par-

ticipants are relatives, we restricted DNA for sequencing to 997 unrelated individuals with

arsenic metabolite data and DNA available. We excluded 123 participants due to low coverage.

An additional 6 were excluded due to missing arsenic species and/or covariate data. Therefore,

our final dataset includes targeted sequencing for 868 individuals with arsenic species data.

NHSCS [63] is a population-based case-control study of squamous cell carcinoma of the

skin. A total of 510 incident cases of histologically-confirmed, invasive squamous cell carci-

noma were recruited and 483 NH residents, frequency matched on age and sex, were recruited

as controls. Urine and home drinking water samples were collected and used to measure total

water and urinary arsenic concentration urinary arsenic metabolites. Among the 993 partici-

pants, 288 lacked sufficient DNA and were excluded. This resulted in targeted sequencing for

706 participants with existing data on urinary arsenic metabolites.

Measurement of urinary arsenic metabolites

Separation of arsenic species in urine samples from all three populations was performed using

high-performance liquid chromatography [8,17,63]. This procedure was followed by IPC-MS

to quantify arsenic species in urine samples. For this analysis, iAsIII and iAsV were summed

to obtain total iAs, and each arsenic species (iAs, MMA, and DMA) is expressed as a percent-

age of the sum of each of these three species (iAs+MMA+DMA). Arsenocholine (AsC) and

arsenobetaine (AsB) are nontoxic forms of (organic) arsenic and were excluded from our pri-

mary analyses. Details regarding the measurement protocols and the limit of detection for

each metabolite used by each study have been described previously and can be found in S1

Text (Supplemental Methods) [17,54,58,63].

The genotype-tissue expression project (GTEx)

SNP genotype and gene expression (RNA-seq) data from GTEx v8 [64,65] were used in this

project, including data from 838 donors and 49 tissue types. The protocols for sequencing,

processing, and quality control have been previously described [66,67].

Targeted DNA sequencing

Protocols for the collection and extraction of DNA in HEALS, SHS, and NHSCS have been

previously described [17,57,63]. Targeted sequencing for the 10q24.32 region was performed

in all three cohorts using an Illumina TruSeq Custom Amplicon (TSCA) Kit designed in
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Illumina’s DesignStudio. Variant selection for targeted sequencing focused on variants in the

99% confidence set for each of the two AME association signals previously reported in HEALS

[28] (>200 variants). In addition, variants in moderate LD (r2 > 0.4 based on the 1000

Genomes (1KG) BEB population) with the lead variant of either association signal were also

selected (42 and 208 variants for the primary and secondary signals respectively). An addi-

tional set of 527 variants was included to capture/tag all common variants in the 10q24.32

region. Coding regions of genes in the 10q24.32 region (AS3MT, BORCS7, CNNM2,

CYP17A1, and NT5C2) were also selected to capture protein-coding variants. In total, 1,114

“targets” were selected (with targets corresponding to specific variants or exons of interest).

The final TSCA design included 781 small regions across 1.5 Mb of the 10q24.32 region, each

400–450 bp in length. These amplicons covered 858 of our “targets” (with 256 targets being

undesignable due to proximity to repetitive DNA sequences).

Read alignment and genetic variant calling

Targeting sequencing data from all three cohorts (HEALS, SHS, and NH) were processed at

the University of Chicago Bioinformatics Core using the Genome Analysis Toolkit (GATK)

[68] Best Practices Workflow for germline short variant discovery [69]. For variant calling, raw

paired-end reads were mapped to the hg19 reference using the Novoalign software. Variants

were called for each sample using GATK HaplotypeCaller in GVCF mode to produce interme-

diate GVCFs which were then consolidated to a single GVCF file with the GenomicsDBImport

tool. We used this consolidated file to perform joint variant calling across all samples by

cohort, using GATK GenotypeGVCFs, which provided a set of raw SNPs and indels in VCF

format. Biallelic SNPs with any of the following properties were excluded: QualbyDepth (QD)

<2.0, FisherStrand (FS) >60.0, RMSMappingQuality (MQ) <40.0, StrandOddsRatio (SOR)

>3.0, MappingQualityRankSumTest (MQRankSum) <-12.5, or ReadPosRankSum <-8.0.

Additionally, indels with one or more of the following properties were excluded: QD<2.0, FS

>200.0, ReadPosRankSum <-20, Inbreeding Coefficient <-0.8, or SOR>10.0. Finally, sam-

ples with low coverage, indicated by Depth of Coverage (DP) <30 were removed.

Genotype quality control and imputation

Quality control (QC) of called SNPs was performed in PLINK v1.9 [70]. Beginning with 9,858

variants on chromosome 10 across all cohorts, QC included filtering by genotyping rate, sam-

ple missingness, and minor allele frequency (details in Supplemental Methods in S1 Text) and

resulted in 455 10q24.32 variants in 2,357 samples in HEALS, 449 variants in 558 individuals

in SHS, and 437 variants in 648 individuals in NHSCS. We imputed missing genotypes in the

10q24.32 region for each cohort using the TOPMed Imputation Server and the TOPMed refer-

ence panel [71], resulting in 36,468 10q24.32 variants in HEALS, 21,594 in SHS, and 28,401 in

NHSCS.

Association analysis

Data were analyzed using PLINK v1.9 [70] for SHS and NHSCS and using Genome-wide

Complex Train Analysis (GCTA) [72] for HEALS to allow adjustment for cryptic relatedness

using a genetic relationship matrix in a linear mixed model [28,31,54,72,73]. To generate this

kinship matrix, we used genome-wide SNP data available for 2,434 HEALS participants. All

regression models were adjusted for age and sex. Both sex and age are associated with AME;

therefore, they were included as covariates in order remove variation in the outcome of inter-

est and increase the power of our analysis. For SHS, we further included five SNP-based princi-

pal components (PCs) as covariates to account for population structure within the dataset
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(PCs provided by SHS). PCs were not available for NHSCS due to lack of genome-wide SNP

data. While the populations differ by weight, we do not perform association analyses across

cohorts and therefore did not include BMI as a covariate in the models.

Our initial association analyses identified the SNP with the smallest P-value for each popu-

lation (i.e., lead SNP). We then conditioned on the lead SNP(s) and ran a second association

analysis for the region. We repeated this process of conditioning on identified lead SNPs until

no additional, independent, signals were identified (P<5x10-6). To enable downstream co-

localization analyses, we isolated each identified association signal by including the lead SNPs

for all other identified signals as covariates. Arsenobetaine is an organic form of arsenic that is

highly stable and the major arsenic species found in most seafood [22]. Arsenobetaine is a

marker of seafood intake, a diet that can also contain arsenosugars and arsenolipids, which

were not measured but which have the potential to contribute to DMA% [22]. We therefore

examined the relationship between arsenobetaine and DMA% and adjusted for arsenobetaine

in multivariate models.

Fine-mapping to identify candidate causal variants

We applied the Sum of Single Effects (SuSiE) [33] method (in R) to each cohort individually to

identify confidence sets of candidate causal variants in each population. SuSiE uses an iterative

Bayesian stepwise selection approach to produce credible sets of variables that are designed to

be as small as possible while capturing the causal variant. SuSiE can take summary statistics as

input or analyze individual-level data. Both options were used in this analysis to assess consis-

tency. Under the assumption that causal variants are shared across populations, we can take

advantage of population-specific patterns of linkage disequilibrium (LD) to narrow down the

number of potential causal variants [45]. Therefore, we used MANTRA to meta-analyze the

isolated association signals across cohorts [74,75].

In-silico annotation of credible sets

Confidence set variants were examined using the UCSC Genome Browser [76] and ENCODE

data [77]. We identified overlapping regulatory features (DNase hypersensitivity, histone

marks, transcription factor binding sites, etc.) for all variants in each set.

Identifying relevant eQTLs

We identified cis-eQTLs using expression data from 47 tissue types (cell lines excluded) from

GTEx v8, with sample sizes ranging from 73 (Kidney Cortex) to 706 (Skeletal Muscle). We

mapped cis-eQTLs for AS3MT and all genes within 500kb [64] using a series of linear regres-

sions implemented in FastQTL [78] (previously described by GTEx and downloaded from

https://github.com/francois-a/fastqtl). Regressions were adjusted for all covariates provided by

GTEx for each tissue, including five genotyping PCs, sequencing platform and protocol, sex,

and PEER factors (Probabilistic Estimation of Expression Residuals) which account for non-

genetic factors that contribute to variation in gene expression [64,79].

To identify the eQTL(s) for a given gene, FastQTL finds the variant most strongly associ-

ated with gene expression (based on P-value). Once a lead SNP is identified, conditional analy-

ses were used to identify additional independent cis-eQTLs and isolate each cis-eQTL signal

(by adjusting for the lead SNPs for a given cis-eQTLs).

To identify eQTLs that may share a causal variant with a DMA% association signal, we

identified cis-eQTL lead eSNPs in strong LD (r2 >0.7) with a DMA% lead SNP. Due to the var-

ied ancestries of our cohorts (and GTEx), we considered LD estimated from multiple 1KG

groups (European (EUR), Bengali (BEB), and Admixed Americans (AMR)).
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Identifying relevant mQTLs

We used post-QC, inverse-normalized DNA methylation data generated for GTEx samples

and post-QC genotype data from GTEx v8 [64,66,67,80]. Our analysis included a total of 856

samples from 367 donors [67]. The number of samples for each tissue type ranged from 42 to

190, and a total of 754,054 CpGs (measured using Illumina EPIC arrays) were examined across

tissues [80]. The methods for mQTL identification have been described previously by Oliva

et al [80]), and are the same as those used for our eQTL analysis and implemented in FastQTL

[78] (https://github.com/broadinstitute/gtex-pipeline/tree/master/qtl). Multiple testing correc-

tion was performed [81] and conditional mQTL analysis was used to identify independent

mQTLs using the same procedure as described for the eQTL analysis. We focused on mQTLs

within the 10q24.32 AME-associated region (CpGs within 500 kb of AS3MT) and identified

CpGs with mQTLs in high LD (r2>0.7) with at least one of our DMA% association signals.

Co-localization of DMA% and QTL signals

To determine if the observed DMA% association signals and the identified cis-eQTLs and

mQTLs (from GTEx) share common causal variant(s), we conducted a Bayesian test for co-

localization [81] using the coloc R package applied to all overlapping SNPs between the sets of

summary statistics [82–84]. We applied coloc to our isolated DMA% association signals paired

with the tissue type-specific, isolated cis-QTL association signals for all pairs for which the lead

SNPs showed high LD (r2 >0.7) in a relevant 1KG population. The ancestry mismatch among

GTEx (primarily European), HEALS (Bangladeshi), and SHS (American Indian) led us to

examine LD estimates based on EUR, SAS, and AMR populations (for HEALS and SHS

respectively) using data from the 1KG Project implemented in LDlink [85,86].

For co-localization, we specified a prior probability for a SNP being causal only for DMA%

(p1), only for gene expression or methylation (p2), and for both DMA% and expression/meth-

ylation (p12). We set the overall probability of being causal for DMA% (p1 + p12) as 10−5 and

the overall probability of being an eQTL as 10−3 (p2 + p12), which is based on the average num-

ber of eGenes identified in GTEx and is typical in studies of complex traits and eQTLs. We

then conducted a series of analyses in which the value of p12 was varied to correspond to a 5%,

10%, 25%, and 50% probability that a causal variant for DMA% is also an eQTL. This corre-

sponded to four values of p12: 5×10−7, 2×10−6, 2.5×10−6, and 5×10−6. To assess co-localization

between our tissue-specific, isolated mQTL signals and eQTL signals, we set the overall proba-

bility of being associated with an eQTL (p1 + p12) as 10−3 and the overall probability of being

an mQTL as 10−3 (p2 + p12). We conducted a series of analyses in which the value of p12 was

varied to correspond to a 5%, 10%, 25%, and 50% probability that a causal variant for an eQTL

is also an mQTL (p12: 5×10−5, 1×10−4, 2.5×10−4, and 5×10−4).

Co-localization analyses produce a posterior probability (PP) of co-localization (H4), the

PP that different causal variants underlie the two signals (H3), the PP there is an identifiable

causal variant for DMA% but no detectable QTL signal (H1, and vice versa, H2), and the PP of

no identifiable causal variant or QTLs (H0).

Supporting information

S1 Text. a. Supplemental Methods: i. The Genotype-Tissue Expression Project. ii. Measure-

ment of Urinary Arsenic Metabolites. iii. Quality Control for GTEx Whole Genome Sequenc-

ing Data. iv. Genotype Quality Control and Imputation. v. GTEx Expression Data

Quantification. vi. Read Alignment and Genetic Variant Calling. vii. MANTRA meta-analysis.

(PDF)
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S1 Fig. Arsenic Exposure Across Arsenic-Exposed Populations. a. Measures of total water

arsenic (μg/L) measured for individuals in three arsenic-exposed populations. The Health

Effect of Arsenic Longitudinal Study (HEALS, in red), the New Hampshire Skin Cancer Study

(NHSCS, in blue). Measurements in HEALS are based off arsenic levels in wells frequented by

the individual participants; in NHSCS measurements were taken from participants’ homes.

(PDF)

S2 Fig. Distribution of urinary DMA percent across cohorts. a. DMA% distribution in three

arsenic-exposed populations. The Health Effect of Arsenic Longitudinal Study (HEALS, in

red), the New Hampshire Skin Cancer Study (NHSCS, in green), and the Strong Heart Study

(SHS, in blue).

(PDF)

S3 Fig. Non-imputed DMA% Conditional Association Results. a. Results of a pre-imputa-

tion genetic association study of arsenic metabolism efficiency (DMA%) in the 10q24.32

region in three arsenic-exposed populations. P-values were generated with linear models

adjusted for age and sex as well as kinship (HEALS) and population structure (SHS). The SNP

with the strongest association is labeled in each panel. The top panel for each population

shows the overall association results, the next shows p-values from models adjusted for the ini-

tial lead SNP, and the bottom panel shows the result of models adjusted for both previously

identified variants. Three variants were identified in the Health Effect of Arsenic Longitudinal

Study (HEALS), four in the Strong Heart Study (SHS), and one in New Hampshire Skin Can-

cer Study (NHSCS).

(PDF)

S4 Fig. HEALS MMA% Conditional Association Results. a. Results of a post-imputation

genetic association study of MMA% in the 10q24.32 region in HEALS. P-values were gener-

ated with linear models adjusted for age, sex, and kinship. The top panel represents overall

association results, the second shows p-values from models adjusted for the initial lead SNP,

and the bottom panel shows the result of models adjusted for both previously identified vari-

ants. Two lead variants were identified in this analysis: chr10:102842818 and chr10:102888092.

We further note that the primary signal likely captures the tertiary signal identified in the anal-

ysis of DMA%.

(PDF)

S5 Fig. HEALS iAs% Conditional Association Results. a. Results of a post-imputation genetic

association study of iAS% in the 10q24.32 region in HEALS. P-values were generated with lin-

ear models adjusted for age, sex, and kinship. The top panel represents overall association

results, the second shows p-values from models adjusted for the initial lead SNP, and the bot-

tom panel shows the result of models adjusted for both previously identified variants. Three

lead variants were identified in this analysis: chr10:103078084 (rs145537350),

chr10:103089387 (rs12573221) and chr10:102853348. We further note that the primary and

secondary signals are identical to two signals identified in the analysis of DMA%.

(PDF)

S6 Fig. SHS MMA% Conditional Association Results. a. Results of a post-imputation genetic

association study of MMA% in the 10q24.32 region in SHS. P-values were generated with lin-

ear models adjusted for age, sex, and population structure. The top panel represents overall

association results, the second shows p-values from models adjusted for the initial lead SNP,

and the bottom panel shows the result of models adjusted for both previously identified vari-

ants. Two lead variants were identified in this analysis: chr10:103078084 (rs145537350) and
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chr10:102842863 (rs4919688). We further note that the second signal is identical to the sec-

ondary signal identified in the analysis of DMA% and that the lead DMA% signal was the sec-

ond most significant signal in the primary analysis and is in strong LD with the identified lead

variant.

(PDF)

S7 Fig. SHS iAs% Conditional Association Results. a. Results of a post-imputation genetic

association study of iAS% in the 10q24.32 region in SHS. P-values were generated with linear

models adjusted for age, sex, and population structure. The top panel represents overall associ-

ation results, the second shows p-values from models adjusted for the initial lead SNP, and the

bottom panel shows the result of models adjusted for both previously identified variants. Two

lead variants were identified in this analysis: chr10:103213304 and chr10:103015726.

(PDF)

S8 Fig. Correlation of DMA% with arsenic exposure (based on drinking water arsenic con-

centration in HEALS (A) and NHSCS (B). a. In both cohorts, we observe a negative correla-

tion in which higher exposure is associated with lower DMA%.

(PDF)

S9 Fig. Genomic annotations of HEALS confidence set 1. a. Results of in silico-functional

analysis reveals overlap with genomic annotations for candidate causal SNPs from HEALS

confidence set 1, corresponding to the primary association signal (lead SNP rs145537350).

Multiple SNPs in the confidence set overlap genomic features including candidate cis-regula-

tory elements and transcription factor binding sites. Highlighted panels show details of candi-

date causal SNPs overlapping these features.

(PDF)

S10 Fig. Distribution of AS3MT expression across human tissues. a. A. The distribution of

AS3MT expression across human tissues reveals higher expression in the adrenal gland com-

pared with all other available tissues. B. With the removal of the adrenal gland, we can see

some variation in AS3MT expression across tissue types. Fig produced using the GTEx portal.

(PDF)

S11 Fig. Co-localization between HEALS DMA% association signal (rs4919687) and

AS3MT eQTLs in the Liver. a. We detect AS3MT eQTLs in the liver and observe evidence of

co-localization (Panel A), but this evidence was not consistent across all sets of priors analyzed.

The low efficiency (low DMA%) allele at rs4919687 is associated with lower AS3MT expression

in the liver, though this pattern is observed more strongly in other tissue types (Panel B).

(PDF)

S1 Table. Minor Allele Frequency (MAF) comparison of lead signals across SHS centers.

(DOCX)

S2 Table. HEALS Confidence Sets (C.S.) from population-specific fine- mapping analysis.

(DOCX)

S3 Table. SHS Confidence Sets (C.S.) from population-specific fine- mapping analysis

based on summary association statistics.

(DOCX)

S4 Table. SHS Confidence Sets (C.S.) from population-specific fine- mapping analysis

based on primary sequencing data.

(DOCX)
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S5 Table. Results of MANTRA meta-analysis of shared signal in HEALS and SHS.
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S6 Table. In-Silico Functional Examination of SHS Primary Sequencing Data Confidence

Set 2.
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S7 Table. Co-localization of eQTLs for genes in the 10q24.32 region (excluding AS3MT)

DMA% association signal (lead SNP rs4919687) identified in Bangladeshi individuals with

posterior probability of colocalization > 80% (for p12 = 5x10-6).
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S8 Table. Co-localization (PP>80%) of mQTLs in the 10q24.32 region identified in GTEx

tissues with the association signal for DMA% (lead SNP rs4919687) identified in a Bangla-

deshi population across a range of prior probabilities.
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the role of membrane transporters. Arch Toxicol. 2010 Jan 1; 84(1):3–16. https://doi.org/10.1007/

s00204-009-0499-7 PMID: 20020104

24. Arsenic Toxicity: What is the Biologic Fate of Arsenic in the Body? | Environmental Medicine | ATSDR

[Internet]. 2021 [cited 2022 Aug 23]. Available from: https://www.atsdr.cdc.gov/csem/arsenic/biologic_

fate.html.

25. Drobna Z, Styblo M, Thomas DJ. An Overview of Arsenic Metabolism and Toxicity. Curr Protoc Toxicol

Editor Board Mahin Maines Ed—Chief Al. 2009; 42(431):4.31.1–4.31.6. https://doi.org/10.1002/

0471140856.tx0431s42 PMID: 25419261

26. Shen H, Niu Q, Xu M, Rui D, Xu S, Feng G, et al. Factors Affecting Arsenic Methylation in Arsenic-

Exposed Humans: A Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2016 Feb;

13(2):205. https://doi.org/10.3390/ijerph13020205 PMID: 26861378

27. Agusa T, Fujihara J, Takeshita H, Iwata H. Individual Variations in Inorganic Arsenic Metabolism Asso-

ciated with AS3MT Genetic Polymorphisms. Int J Mol Sci. 2011 Apr; 12(4):2351–82. https://doi.org/10.

3390/ijms12042351 PMID: 21731446

28. Pierce BL, Kibriya MG, Tong L, Jasmine F, Argos M, Roy S, et al. Genome-wide association study iden-

tifies chromosome 10q24.32 variants associated with arsenic metabolism and toxicity phenotypes in

Bangladesh. PLoS Genet. 2012; 8(2):e1002522. https://doi.org/10.1371/journal.pgen.1002522 PMID:

22383894

29. Balakrishnan P, Vaidya D, Franceschini N, Voruganti VS, Gribble MO, Haack K, et al. Association of

Cardiometabolic Genes with Arsenic Metabolism Biomarkers in American Indian Communities: The

Strong Heart Family Study (SHFS). Environ Health Perspect. 2017 Jan; 125(1):15–22. https://doi.org/

10.1289/EHP251 PMID: 27352405

30. Kuo Chin-Chi Moon Katherine A., Wang Shu-Li Silbergeld Ellen, Ana Navas-Acien. The Association of

Arsenic Metabolism with Cancer, Cardiovascular Disease, and Diabetes: A Systematic Review of the

Epidemiological Evidence. Environ Health Perspect. 125(8):087001. https://doi.org/10.1289/EHP577

PMID: 28796632

31. Pierce BL, Tong L, Argos M, Gao J, Jasmine F, Roy S, et al. Arsenic metabolism efficiency has a causal

role in arsenic toxicity: Mendelian randomization and gene-environment interaction. Int J Epidemiol.

2013 Dec; 42(6):1862–72. https://doi.org/10.1093/ije/dyt182 PMID: 24536095

32. Ahsan H, Chen Y, Kibriya MG, Slavkovich V, Parvez F, Jasmine F, et al. Arsenic Metabolism, Genetic

Susceptibility, and Risk of Premalignant Skin Lesions in Bangladesh. Cancer Epidemiol Prev Biomark.

2007 Jun 1; 16(6):1270–8. https://doi.org/10.1158/1055-9965.EPI-06-0676 PMID: 17548696

PLOS GENETICS Genetics of arsenic metabolism efficiency in multiple populations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010588 January 20, 2023 24 / 27

https://doi.org/10.1158/1055-9965.EPI-15-0718
https://doi.org/10.1158/1055-9965.EPI-15-0718
http://www.ncbi.nlm.nih.gov/pubmed/26677206
https://doi.org/10.1021/acs.est.7b02881
https://doi.org/10.1021/acs.est.7b02881
http://www.ncbi.nlm.nih.gov/pubmed/29043784
http://www.ncbi.nlm.nih.gov/pubmed/11019458
https://doi.org/10.1038/sj.jea.7500449
http://www.ncbi.nlm.nih.gov/pubmed/16160703
https://doi.org/10.1371/journal.pone.0080691
http://www.ncbi.nlm.nih.gov/pubmed/24260455
https://doi.org/10.1289/EHP2096
http://www.ncbi.nlm.nih.gov/pubmed/28728137
https://doi.org/10.1016/j.scitotenv.2016.12.113
https://doi.org/10.1016/j.scitotenv.2016.12.113
http://www.ncbi.nlm.nih.gov/pubmed/28024743
https://doi.org/10.1007/s00204-009-0499-7
https://doi.org/10.1007/s00204-009-0499-7
http://www.ncbi.nlm.nih.gov/pubmed/20020104
https://www.atsdr.cdc.gov/csem/arsenic/biologic_fate.html
https://www.atsdr.cdc.gov/csem/arsenic/biologic_fate.html
https://doi.org/10.1002/0471140856.tx0431s42
https://doi.org/10.1002/0471140856.tx0431s42
http://www.ncbi.nlm.nih.gov/pubmed/25419261
https://doi.org/10.3390/ijerph13020205
http://www.ncbi.nlm.nih.gov/pubmed/26861378
https://doi.org/10.3390/ijms12042351
https://doi.org/10.3390/ijms12042351
http://www.ncbi.nlm.nih.gov/pubmed/21731446
https://doi.org/10.1371/journal.pgen.1002522
http://www.ncbi.nlm.nih.gov/pubmed/22383894
https://doi.org/10.1289/EHP251
https://doi.org/10.1289/EHP251
http://www.ncbi.nlm.nih.gov/pubmed/27352405
https://doi.org/10.1289/EHP577
http://www.ncbi.nlm.nih.gov/pubmed/28796632
https://doi.org/10.1093/ije/dyt182
http://www.ncbi.nlm.nih.gov/pubmed/24536095
https://doi.org/10.1158/1055-9965.EPI-06-0676
http://www.ncbi.nlm.nih.gov/pubmed/17548696
https://doi.org/10.1371/journal.pgen.1010588


33. Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new approach to variable selection in regres-

sion, with application to genetic fine-mapping. bioRxiv. 2020 Jun 27;501114.

34. Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new approach to variable selection in regres-

sion, with application to genetic fine mapping. J R Stat Soc Ser B Stat Methodol. 2020; 82(5):1273–300.

35. Teo YY, Ong RTH, Sim X, Tai ES, Chia KS. Identifying candidate causal variants via trans-population

fine-mapping. Genet Epidemiol. 2010; 34(7):653–64. https://doi.org/10.1002/gepi.20522 PMID:

20839287

36. Wu Y, Waite LL, Jackson AU, Sheu WHH, Buyske S, Absher D, et al. Trans-Ethnic Fine-Mapping of

Lipid Loci Identifies Population-Specific Signals and Allelic Heterogeneity That Increases the Trait Vari-

ance Explained. PLoS Genet [Internet]. 2013 Mar 21 [cited 2021 May 24]; 9(3). Available from: https://

www.ncbi.nlm.nih.gov/pmc/articles/PMC3605054/. https://doi.org/10.1371/journal.pgen.1003379

PMID: 23555291

37. Saccone NL, Saccone SF, Goate AM, Grucza RA, Hinrichs AL, Rice JP, et al. In search of causal vari-

ants: refining disease association signals using cross-population contrasts. BMC Genet. 2008 Aug 29;

9:58. https://doi.org/10.1186/1471-2156-9-58 PMID: 18759969

38. Sirugo G, Williams SM, Tishkoff SA. The Missing Diversity in Human Genetic Studies. Cell. 2019 Mar

21; 177(1):26–31. https://doi.org/10.1016/j.cell.2019.02.048 PMID: 30901543

39. Galinsky KJ, Reshef YA, Finucane HK, Loh PR, Zaitlen N, Patterson NJ, et al. Estimating cross-popula-

tion genetic correlations of causal effect sizes. Genet Epidemiol. 2019; 43(2):180–8. https://doi.org/10.

1002/gepi.22173 PMID: 30474154

40. Carlson CS, Matise TC, North KE, Haiman CA, Fesinmeyer MD, Buyske S, et al. Generalization and

Dilution of Association Results from European GWAS in Populations of Non-European Ancestry: The

PAGE Study. PLOS Biol. 2013 Sep 17; 11(9):e1001661. https://doi.org/10.1371/journal.pbio.1001661

PMID: 24068893

41. Adeyemo A, Rotimi C. Genetic Variants Associated with Complex Human Diseases Show Wide Varia-

tion across Multiple Populations. Public Health Genomics. 2009 Dec; 13(2):72–9. https://doi.org/10.

1159/000218711 PMID: 19439916

42. Drake KA, Torgerson DG, Gignoux CR, Galanter JM, Roth LA, Huntsman S, et al. A genome-wide

association study of bronchodilator response in Latinos implicates rare variants. J Allergy Clin Immunol.

2014 Feb 1; 133(2):370–378.e15. https://doi.org/10.1016/j.jaci.2013.06.043 PMID: 23992748

43. Tang H. Confronting ethnicity-specific disease risk. Nat Genet. 2006 Jan; 38(1):13–5. https://doi.org/10.

1038/ng0106-13 PMID: 16380723

44. de Candia TR, Lee SH, Yang J, Browning BL, Gejman PV, Levinson DF, et al. Additive Genetic Varia-

tion in Schizophrenia Risk Is Shared by Populations of African and European Descent. Am J Hum

Genet. 2013 Sep 5; 93(3):463–70. https://doi.org/10.1016/j.ajhg.2013.07.007 PMID: 23954163

45. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statis-

tical fine-mapping. Nat Rev Genet. 2018 Aug; 19(8):491–504. https://doi.org/10.1038/s41576-018-

0016-z PMID: 29844615

46. Argos M, Kalra T, Pierce BL, Chen Y, Parvez F, Islam T, et al. A Prospective Study of Arsenic Exposure

From Drinking Water and Incidence of Skin Lesions in Bangladesh. Am J Epidemiol. 2011 Jul 15; 174

(2):185–94. https://doi.org/10.1093/aje/kwr062 PMID: 21576319

47. Gomez-Rubio P, Meza-Montenegro MM, Cantu-Soto E, Klimecki WT. Genetic association between

intronic variants in AS3MT and arsenic methylation efficiency is focused on a large linkage disequilib-

rium cluster in chromosome 10. J Appl Toxicol JAT. 2010 Apr; 30(3):260–70. https://doi.org/10.1002/

jat.1492 PMID: 20014157

48. Sun HJ, Xiang P, Luo J, Hong H, Lin H, Li HB, et al. Mechanisms of arsenic disruption on gonadal, adre-

nal and thyroid endocrine systems in humans: A review. Environ Int. 2016 Oct; 95:61–8.

49. Chernoff M, Tong L, Demanelis K, Vander Griend D, Ahsan H, Pierce BL. Genetic Determinants of

Reduced Arsenic Metabolism Efficiency in the 10q24.32 Region Are Associated With Reduced AS3MT

Expression in Multiple Human Tissue Types. Toxicol Sci. 2020 Aug 1; 176(2):382–95. https://doi.org/

10.1093/toxsci/kfaa075 PMID: 32433756

50. Li M, Jaffe AE, Straub RE, Tao R, Shin JH, Wang Y, et al. A human-specific AS3MT isoform and

BORCS7 are molecular risk factors in the 10q24.32 schizophrenia-associated locus. Nat Med. 2016

Jun; 22(6):649–56. https://doi.org/10.1038/nm.4096 PMID: 27158905

51. Koller BH, Snouwaert JN, Douillet C, Jania LA, El-Masri H, Thomas DJ, et al. Arsenic Metabolism in

Mice Carrying a BORCS7/AS3MT Locus Humanized by Syntenic Replacement. Environ Health Per-

spect. 2020 Aug; 128(8):87003. https://doi.org/10.1289/EHP6943 PMID: 32779937

52. Duarte RRR, Troakes C, Nolan M, Srivastava DP, Murray RM, Bray NJ. Genome-wide significant

schizophrenia risk variation on chromosome 10q24 is associated with altered cis-regulation of

PLOS GENETICS Genetics of arsenic metabolism efficiency in multiple populations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010588 January 20, 2023 25 / 27

https://doi.org/10.1002/gepi.20522
http://www.ncbi.nlm.nih.gov/pubmed/20839287
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605054/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3605054/
https://doi.org/10.1371/journal.pgen.1003379
http://www.ncbi.nlm.nih.gov/pubmed/23555291
https://doi.org/10.1186/1471-2156-9-58
http://www.ncbi.nlm.nih.gov/pubmed/18759969
https://doi.org/10.1016/j.cell.2019.02.048
http://www.ncbi.nlm.nih.gov/pubmed/30901543
https://doi.org/10.1002/gepi.22173
https://doi.org/10.1002/gepi.22173
http://www.ncbi.nlm.nih.gov/pubmed/30474154
https://doi.org/10.1371/journal.pbio.1001661
http://www.ncbi.nlm.nih.gov/pubmed/24068893
https://doi.org/10.1159/000218711
https://doi.org/10.1159/000218711
http://www.ncbi.nlm.nih.gov/pubmed/19439916
https://doi.org/10.1016/j.jaci.2013.06.043
http://www.ncbi.nlm.nih.gov/pubmed/23992748
https://doi.org/10.1038/ng0106-13
https://doi.org/10.1038/ng0106-13
http://www.ncbi.nlm.nih.gov/pubmed/16380723
https://doi.org/10.1016/j.ajhg.2013.07.007
http://www.ncbi.nlm.nih.gov/pubmed/23954163
https://doi.org/10.1038/s41576-018-0016-z
https://doi.org/10.1038/s41576-018-0016-z
http://www.ncbi.nlm.nih.gov/pubmed/29844615
https://doi.org/10.1093/aje/kwr062
http://www.ncbi.nlm.nih.gov/pubmed/21576319
https://doi.org/10.1002/jat.1492
https://doi.org/10.1002/jat.1492
http://www.ncbi.nlm.nih.gov/pubmed/20014157
https://doi.org/10.1093/toxsci/kfaa075
https://doi.org/10.1093/toxsci/kfaa075
http://www.ncbi.nlm.nih.gov/pubmed/32433756
https://doi.org/10.1038/nm.4096
http://www.ncbi.nlm.nih.gov/pubmed/27158905
https://doi.org/10.1289/EHP6943
http://www.ncbi.nlm.nih.gov/pubmed/32779937
https://doi.org/10.1371/journal.pgen.1010588


BORCS7, AS3MT, and NT5C2 in the human brain. Am J Med Genet Part B Neuropsychiatr Genet Off

Publ Int Soc Psychiatr Genet. 2016 Sep; 171(6):806–14.

53. Pierce BL, Tong L, Dean S, Argos M, Jasmine F, Rakibuz-Zaman M, et al. A missense variant in FTCD

is associated with arsenic metabolism and toxicity phenotypes in Bangladesh. PLOS Genet. 2019 Mar

20; 15(3):e1007984. https://doi.org/10.1371/journal.pgen.1007984 PMID: 30893314

54. Delgado DA, Chernoff M, Huang L, Tong L, Chen L, Jasmine F, et al. Rare, Protein-Altering Variants in

AS3MT and Arsenic Metabolism Efficiency: A Multi-Population Association Study. Environ Health Per-

spect. 129(4):047007. https://doi.org/10.1289/EHP8152 PMID: 33826413

55. Karagas MR, Gossai A, Pierce B, Ahsan H. Drinking Water Arsenic Contamination, Skin Lesions, and

Malignancies: A Systematic Review of the Global Evidence. Curr Environ Health Rep. 2015 Mar 1; 2

(1):52–68. https://doi.org/10.1007/s40572-014-0040-x PMID: 26231242

56. De Loma J, Vicente M, Tirado N, Ascui F, Vahter M, Gardon J, et al. Human adaptation to arsenic in

Bolivians living in the Andes. Chemosphere. 2022 Aug 1; 301:134764. https://doi.org/10.1016/j.

chemosphere.2022.134764 PMID: 35490756

57. Lee ET, Welty TK, Fabsitz R, Cowan LD, Le NA, Oopik AJ, et al. The Strong Heart Study. A study of car-

diovascular disease in American Indians: design and methods. Am J Epidemiol. 1990 Dec; 132

(6):1141–55. https://doi.org/10.1093/oxfordjournals.aje.a115757 PMID: 2260546

58. Navas -Acien Ana, Umans JG, Howard BV, Goessler W, Francesconi KA, Crainiceanu CM, et al. Urine

Arsenic Concentrations and Species Excretion Patterns in American Indian Communities Over a 10-

year Period: The Strong Heart Study. Environ Health Perspect. 2009 Sep 1; 117(9):1428–33. https://

doi.org/10.1289/ehp.0800509 PMID: 19750109

59. Rees JR, Zens MS, Gui J, Celaya MO, Riddle BL, Karagas MR. Non Melanoma Skin Cancer and Sub-

sequent Cancer Risk. PLOS ONE. 2014 Jun 17; 9(6):e99674. https://doi.org/10.1371/journal.pone.

0099674 PMID: 24937304

60. Research Overview [Internet]. [cited 2021 Mar 2]. Available from: https://strongheartstudy.org/

Research/Research-Overview.

61. Zheng LY, Umans JG, Yeh F, Francesconi KA, Goessler W, Silbergeld EK, et al. The Association of

Urine Arsenic with Prevalent and Incident Chronic Kidney Disease: Evidence from the Strong Heart

Study. Epidemiol Camb Mass. 2015 Jul; 26(4):601–12. https://doi.org/10.1097/EDE.

0000000000000313 PMID: 25929811

62. Scheer J, Findenig S, Goessler W, Francesconi KA, Howard B, Umans JG, et al. Arsenic species and

selected metals in human urine: validation of HPLC/ICPMS and ICPMS procedures for a long-term pop-

ulation-based epidemiological study. Anal Methods. 2012 Feb 2; 4(2):406–13. https://doi.org/10.1039/

C2AY05638K PMID: 22685491

63. Diane Gilbert-Diamond, Zhigang Li, Perry Ann E., Spencer Steven K., Gandolfi A. Jay, Karagas Marga-

ret R. A Population-based Case–Control Study of Urinary Arsenic Species and Squamous Cell Carci-

noma in New Hampshire, USA. Environ Health Perspect. 2013 Oct 1; 121(10):1154–60.

64. GTEx Consortium, Laboratory, Data Analysis &Coordinating Center (LDACC)—Analysis Working

Group, Statistical Methods groups—Analysis Working Group, Enhancing GTEx (eGTEx) groups, NIH

Common Fund, NIH/NCI, et al. Genetic effects on gene expression across human tissues. Nature.

2017 Oct 11;550(7675):204–13.

65. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A Novel Approach to High-Qual-

ity Postmortem Tissue Procurement: The GTEx Project. Biopreservation Biobanking. 2015 Oct; 13

(5):311–9. https://doi.org/10.1089/bio.2015.0032 PMID: 26484571

66. GTEx Portal [Internet]. [cited 2021 Apr 28]. Available from: https://www.gtexportal.org/home/.

67. Consortium TGte. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Sci-

ence. 2020 Sep 11; 369(6509):1318–30. https://doi.org/10.1126/science.aaz1776 PMID: 32913098

68. Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Auwera GAV der, et al. Scaling accu-

rate genetic variant discovery to tens of thousands of samples. bioRxiv. 2018 Jul 24;201178.

69. Germline short variant discovery (SNPs + Indels) [Internet]. GATK. [cited 2021 May 20]. Available from:

https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-

SNPs-Indels-.

70. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for

whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007 Sep; 81

(3):559–75. https://doi.org/10.1086/519795 PMID: 17701901

71. Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation

service and methods. Nat Genet. 2016 Oct; 48(10):1284–7. https://doi.org/10.1038/ng.3656 PMID:

27571263

PLOS GENETICS Genetics of arsenic metabolism efficiency in multiple populations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010588 January 20, 2023 26 / 27

https://doi.org/10.1371/journal.pgen.1007984
http://www.ncbi.nlm.nih.gov/pubmed/30893314
https://doi.org/10.1289/EHP8152
http://www.ncbi.nlm.nih.gov/pubmed/33826413
https://doi.org/10.1007/s40572-014-0040-x
http://www.ncbi.nlm.nih.gov/pubmed/26231242
https://doi.org/10.1016/j.chemosphere.2022.134764
https://doi.org/10.1016/j.chemosphere.2022.134764
http://www.ncbi.nlm.nih.gov/pubmed/35490756
https://doi.org/10.1093/oxfordjournals.aje.a115757
http://www.ncbi.nlm.nih.gov/pubmed/2260546
https://doi.org/10.1289/ehp.0800509
https://doi.org/10.1289/ehp.0800509
http://www.ncbi.nlm.nih.gov/pubmed/19750109
https://doi.org/10.1371/journal.pone.0099674
https://doi.org/10.1371/journal.pone.0099674
http://www.ncbi.nlm.nih.gov/pubmed/24937304
https://strongheartstudy.org/Research/Research-Overview
https://strongheartstudy.org/Research/Research-Overview
https://doi.org/10.1097/EDE.0000000000000313
https://doi.org/10.1097/EDE.0000000000000313
http://www.ncbi.nlm.nih.gov/pubmed/25929811
https://doi.org/10.1039/C2AY05638K
https://doi.org/10.1039/C2AY05638K
http://www.ncbi.nlm.nih.gov/pubmed/22685491
https://doi.org/10.1089/bio.2015.0032
http://www.ncbi.nlm.nih.gov/pubmed/26484571
https://www.gtexportal.org/home/
https://doi.org/10.1126/science.aaz1776
http://www.ncbi.nlm.nih.gov/pubmed/32913098
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pubmed/17701901
https://doi.org/10.1038/ng.3656
http://www.ncbi.nlm.nih.gov/pubmed/27571263
https://doi.org/10.1371/journal.pgen.1010588


72. Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am

J Hum Genet. 2011 Jan 7; 88(1):76–82. https://doi.org/10.1016/j.ajhg.2010.11.011 PMID: 21167468

73. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL. Advantages and pitfalls in the application of

mixed model association methods. Nat Genet. 2014 Feb; 46(2):100–6. https://doi.org/10.1038/ng.2876

PMID: 24473328

74. Morris AP. Transethnic Meta-Analysis of Genomewide Association Studies. Genet Epidemiol. 2011

Dec; 35(8):809–22. https://doi.org/10.1002/gepi.20630 PMID: 22125221

75. Li YR, Keating BJ. Trans-ethnic genome-wide association studies: advantages and challenges of map-

ping in diverse populations. Genome Med [Internet]. 2014 Oct 31 [cited 2021 Jun 7]; 6. Available from:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254423/. https://doi.org/10.1186/s13073-014-0091-5

PMID: 25473427

76. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser

at UCSC. Genome Res. 2002 Jun; 12(6):996–1006. https://doi.org/10.1101/gr.229102 PMID:

12045153

77. Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA ele-

ments (ENCODE): data portal update. Nucleic Acids Res. 2018 Jan 4; 46(Database issue):D794–801.

https://doi.org/10.1093/nar/gkx1081 PMID: 29126249

78. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O. Fast and efficient QTL mapper for thousands

of molecular phenotypes. Bioinformatics. 2016 May 15; 32(10):1479–85. https://doi.org/10.1093/

bioinformatics/btv722 PMID: 26708335

79. Stegle O, Parts L, Piipari M, Winn J, Durbin R. Using probabilistic estimation of expression residuals

(PEER) to obtain increased power and interpretability of gene expression analyses. Nat Protoc. 2012

Feb 16; 7(3):500–7. https://doi.org/10.1038/nprot.2011.457 PMID: 22343431

80. Oliva M, Demanelis K, Lu Y, Chernoff M, Jasmine F, Ahsan H, et al. DNA methylation QTL mapping

across diverse human tissues provides molecular links between genetic variation and complex traits.

Nat Genet. 2022 Dec 12;1–11. https://doi.org/10.1038/s41588-022-01248-z PMID: 36510025

81. Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci U S A.

2003 Aug 5; 100(16):9440–5. https://doi.org/10.1073/pnas.1530509100 PMID: 12883005

82. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian Test for

Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLOS Genet.

2014 May 15; 10(5):e1004383. https://doi.org/10.1371/journal.pgen.1004383 PMID: 24830394

83. Wallace C. Statistical Testing of Shared Genetic Control for Potentially Related Traits. Genet Epidemiol.

2013; 37(8):802–13. https://doi.org/10.1002/gepi.21765 PMID: 24227294

84. Wallace C, Rotival M, Cooper JD, Rice CM, Yang JHM, McNeill M, et al. Statistical colocalization of

monocyte gene expression and genetic risk variants for type 1 diabetes. Hum Mol Genet. 2012 Jun 15;

21(12):2815–24. https://doi.org/10.1093/hmg/dds098 PMID: 22403184

85. Machiela MJ, Chanock SJ. LDlink: a web-based application for exploring population-specific haplotype

structure and linking correlated alleles of possible functional variants. Bioinforma Oxf Engl. 2015 Nov 1;

31(21):3555–7. https://doi.org/10.1093/bioinformatics/btv402 PMID: 26139635

86. Alexander TA, Machiela MJ. LDpop: an interactive online tool to calculate and visualize geographic LD

patterns. BMC Bioinformatics. 2020 Jan 10; 21(1):14. https://doi.org/10.1186/s12859-020-3340-1

PMID: 31924160

PLOS GENETICS Genetics of arsenic metabolism efficiency in multiple populations

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010588 January 20, 2023 27 / 27

https://doi.org/10.1016/j.ajhg.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21167468
https://doi.org/10.1038/ng.2876
http://www.ncbi.nlm.nih.gov/pubmed/24473328
https://doi.org/10.1002/gepi.20630
http://www.ncbi.nlm.nih.gov/pubmed/22125221
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4254423/
https://doi.org/10.1186/s13073-014-0091-5
http://www.ncbi.nlm.nih.gov/pubmed/25473427
https://doi.org/10.1101/gr.229102
http://www.ncbi.nlm.nih.gov/pubmed/12045153
https://doi.org/10.1093/nar/gkx1081
http://www.ncbi.nlm.nih.gov/pubmed/29126249
https://doi.org/10.1093/bioinformatics/btv722
https://doi.org/10.1093/bioinformatics/btv722
http://www.ncbi.nlm.nih.gov/pubmed/26708335
https://doi.org/10.1038/nprot.2011.457
http://www.ncbi.nlm.nih.gov/pubmed/22343431
https://doi.org/10.1038/s41588-022-01248-z
http://www.ncbi.nlm.nih.gov/pubmed/36510025
https://doi.org/10.1073/pnas.1530509100
http://www.ncbi.nlm.nih.gov/pubmed/12883005
https://doi.org/10.1371/journal.pgen.1004383
http://www.ncbi.nlm.nih.gov/pubmed/24830394
https://doi.org/10.1002/gepi.21765
http://www.ncbi.nlm.nih.gov/pubmed/24227294
https://doi.org/10.1093/hmg/dds098
http://www.ncbi.nlm.nih.gov/pubmed/22403184
https://doi.org/10.1093/bioinformatics/btv402
http://www.ncbi.nlm.nih.gov/pubmed/26139635
https://doi.org/10.1186/s12859-020-3340-1
http://www.ncbi.nlm.nih.gov/pubmed/31924160
https://doi.org/10.1371/journal.pgen.1010588

