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AbstractAU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:
Our understanding of the bacterial cell cycle is framed largely by population-based experi-

ments that focus on the behavior of idealized average cells. Most famously, the contribu-

tions of Cooper and Helmstetter help to contextualize the phenomenon of overlapping

replication cycles observed in rapidly growing bacteria. Despite the undeniable value of

these approaches, their necessary reliance on the behavior of idealized average cells

masks the stochasticity inherent in single-cell growth and physiology and limits their mecha-

nistic value. To bridge this gap, we propose an updated and agnostic framework, informed

by extant single-cell data, that quantitatively accounts for stochastic variations in single-cell

dynamics and the impact of medium composition on cell growth and cell cycle progression.

In this framework, stochastic timers sensitive to medium composition impact the relationship

between cell cycle events, accounting for observed differences in the relationship between

cell cycle events in slow- and fast-growing cells. We conclude with a roadmap for potential

application of this framework to longstanding open questions in the bacterial cell cycle field.

Introduction

Proliferation of organisms across the tree of life requires effective coordination of cell growth,

DNA replication, and division. Coordination is challenging in bacteria for which population

mass doubling times can vary as much as 5-fold with nutrient availability. In many bacteria,

including the model organism Escherichia coli, the time required to complete a round of DNA

replication can be longer than the mass doubling time, particularly under nutrient rich condi-

tions, resulting in multiple ongoing cycles of DNA replication on the same chromosomal tem-

plate [1,2].

Traditionally, bacteriologists have relied on population-level strategies to understand

fundamental aspects of bacterial physiology. Population-level approaches that describe the
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behavior of idealized average cells, serve as the foundation for prevailing models of bacterial

growth, size, and cell cycle regulation.

Advances in microfluidics and single-cell analysis, however, reveal disconnects between

population-based behaviors and the reality in single cells. Most importantly, it is now clear

that population-level analysis masks stochastic, cell-to-cell variations in growth rate, size at

division, and the timing of cell cycle events, resulting in models that do not always hold up in

single cells [3–9].

Additionally, despite the precision and care earlier investigators took to emphasize the

phenomenological nature of their models, the relationships they describe are often misinter-

preted as determinant. Growth rate, in particular, is often portrayed as a determinant variable

with regard to the relationship between cell cycle events despite its inherently complex nature,

a feature noted by pioneers including Ole Maaløe, Moselio Schaechter, Charles Helmstetter,

Stephen Cooper, and Frederick Neidhart [1,10].

Here, we review the prevailing population-based models of bacterial growth and cell cycle

progression, highlighting the core reasoning underlying each. Next, we leverage extant data to

propose a framework from which to understand the bacterial cell cycle accounting for physiol-

ogy and stochasticity inherent in single cells. Finally, we end with a discussion of open ques-

tions and avenues for future research.

The nutrient growth law

Early work on the E. coli cell cycle focused on the relationships between growth rate and 4

parameters: cell size, RNA content, DNA content, and nutrient composition. In their classic

1958 study, Schaechter, Maaløe, and Kjeldgaard observed that the average mass of Salmonella
Typhimurium increases exponentially with nutrient-imposed increases in population mass

doubling time [11]. Protein, RNA, and DNA content similarly increase, indicating that their

overall concentration (mass/mass) remains constant.

Although the data are noisy (see Figure 1 of reference 11, for example, related to size), the

best-fit line drawn through over 20 different media conditions suggests a simplified model in

which each of the 4 measured parameters (size, protein, DNA, and RNA content) depend on

growth rate. “At a given temperature, size and composition are found to depend in a simple

manner on the growth rate afforded by the medium. This implies that media that give identical

growth rates produce identical physiological states, regardless of the actual constituents of the
media” [11] (emphasis added).

Based on analysis of cells cultured at different temperatures, Schaechter and colleagues

further clarify that culture medium composition dictates growth rate, and it ultimately dic-

tates the chemical composition of the cell. Despite this important caveat, growth rate—not

medium composition—quickly became perceived as the primary driver of cell cycle progres-

sion [12] in part because of the simplicity with which it lends itself to mathematical

modeling. This positive relationship between growth rate, cellular composition, and cell

cycle progression is colloquially referred to as the “growth law” or “nutrient growth law”

[11,13,14].

The Cooper–Helmstetter model of cell cycle progression

Once SMK identified a positive connection between nutrient-imposed growth rate, cell size,

and cell composition, the next challenge was to determine how this connection was achieved.

Focusing on DNA replication and leveraging their ability to synchronize cells with their “baby

machine,” Cooper and Helmstetter analyzed DNA synthesis in E. coli in real-time across 13

different media [15].
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Incorporating data from Schaechter and colleagues [11] and work from Cairns [16] identi-

fying the circular nature of the bacterial chromosome, Cooper and Helmstetter developed a

quantitative phenomenological model of the E. coli cell cycle [1]. The Cooper–Helmstetter

model posits 2 distinct replication regimes: single fork and multifork. Single fork (really single

round) replication with up to 2 forks proceeding at a time prevails during slow growth, and

the time required to complete a round of DNA replication (C-period) varies with nutrient-

imposed population growth rate as does the period between the initiation of new rounds of

DNA replication and the initiation of new rounds of cell division [1,15]. During the multifork

regime, division and initiation continue to co-vary with population mass doubling time, how-

ever, elongation rate (and thus C period) plateaus [1] (Fig 1). Because of this imbalance, new

rounds of replication are started prior to completion of the previous one providing an explana-

tion for the multiple origins of replication observed by Cooper and Helmstetter and others,

[1,15,17–22] including later studies that assess cell size [8,12,23–26].

Population and single-cell data tell different stories

Technological limitations meant that Cooper–Helmstetter had to rely on population level data

to develop their phenomenological model of the E. coli cell cycle. As they themselves note,

their model applies specifically to idealized average cells. They intended to explain the phe-

nomena of multifork replication as overlapping replication cycles, not to provide a mechanistic

framework from which to understand relationships between cell cycle events [10].

Individual cells do not behave like average idealized cells, however. In individual cells, sto-

chasticity adds another layer of complexity to the already inherently complex process of over-

lapping cell cycles. Single-cell data reveal high levels of stochasticity regarding both growth

rate and the temporal progression of cell cycle events (Fig 2). Even when the mass doubling

time of a population is held constant, the instantaneous growth rate of single cells within that

population varies as much as 3-fold [8,27,28] and elongation rates vary as much as 4-fold (250

to 1,000 nucleotides/second) [29–31].

Additionally, the “nutrient growth law” proposed by Schaechter and colleagues is inextrica-

bly linked to the Cooper–Helmstetter model, despite accumulating evidence that cell size

and cell cycle progression can vary independently of nutrient-imposed growth rate [11,32–34].

DNA replication is inherently sensitive to medium composition as it directly impacts the avail-

ability of nucleotide precursors, and a coterie of mutations are known to impact size and/or

DNA replication-independent of nutrient-imposed growth rate [32,34–37].

An agnostic framework leveraging stochastic timers illuminates

the relationship between nutrient composition and cell cycle

progression in individual cells

The disconnects outlined above—the inability to account for stochasticity and the misas-

sumption that growth rate is a primary driver of cellular physiology rather than medium

composition—highlight the deficiencies of the Cooper–Helmstetter model as a universal tool

for understanding the mechanisms underlying bacterial cell cycle control. To address this

gap, we leveraged published single-cell datasets for slow and intermediate growth regimes

[8] to develop an agnostic framework for medium-dependent stochastic bacterial cell cycle

progression.

Tackling all problems listed above at once, our framework centers on the idea that at each

initiation event, 3 new stochastic “timers”—corresponding respectively to single-cell inter-ini-

tiation time (the time between successive rounds of replication), τi; fork completion time (C

period duration of individual cells), τC; and the time between initiation and the corresponding
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division event (C+D period for individual cells), τd—all begin to tick (Fig 3). Thus, the relative

order of completion of these 3 timers determines the fork number at the start of the next repli-

cation cycle. We elected to begin with initiation rather than other cell cycle events as this step

is traditionally viewed as the beginning of the bacterial cell cycle. In E. coli, replication initia-

tion is tied to cell growth via accumulation of the initiator protein DnaA to threshold levels

[8,38–43].

Fig 1. Replication of the E. coli chromosome. Top: Bacterial chromosome depicting the origin of replication (oriC, ●) and terminus (ter,&). After

birth, replication initiation yields a single replication bubble, a replication state termed “single fork replication” (- - -). When a second initiation event

occurs before termination of the prior round, “multifork replication” occurs (—). Active origins and newly synthesized DNA are indicated with colors

corresponding to replication state. Bottom: In the Cooper–Helmstetter model, as nutrient-imposed growth rate increases, the C period length decreases

until it reaches a plateau during fast growth.

https://doi.org/10.1371/journal.pgen.1010505.g001

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010505 January 5, 2023 4 / 13

https://doi.org/10.1371/journal.pgen.1010505.g001
https://doi.org/10.1371/journal.pgen.1010505


We observed that the distributions of the 3 single-cell variables (τi, τC, and τd) generally

vary with the stochastic single-cell exponential growth rate, k, consistent with previous single-

cell data [8,27,28]. Thus, we extract the stochastic distributions of these timers along with the

subsequent replication cycle’s growth rate as experimentally measured functions of k (see S1

File for details), different for each independent growth condition.

To account for media-dependent variations in timer distributions, we generated “calibra-

tion curves” for each media condition and used these curved as input in our framework to sim-

ulate the next τi, τC, τd, and k for each consecutive replication cycle (Fig A in S1 File). This

framework is agnostic to the specific mechanisms governing the dependence on k, and thus

robust to nutrient-dependent or strain-dependent differences in cell growth and cell cycle

progression.

In slow growth conditions, M9 acetate (population mass doubling time 195 min), cells typi-

cally initiated and completed a single round of replication (single fork) per cell cycle (2-fork

cycle in Fig 4, Cooper–Helmstetter model slow growth regime) [1,15,44]. Mathematically, the

Fig 2. Deterministic paradigm vs. stochastic nature of cell cycle timescales. (A) The Cooper–Helmstetter model assumes that all cells within a given

condition follow the population average B, C, and D periods. (B) Relative B, C, and D periods are shown over multiple consecutive replication cycles for

2 cell lineages grown on MOPS glucose (based on data from Si and colleagues). Significant differences between replication cycles necessitate a new

theory accounting for stochasticity.

https://doi.org/10.1371/journal.pgen.1010505.g002

Fig 3. Stochastic timers. Visual representations of the timers τi, τC, and τd in a cell undergoing single fork (A) and multifork (B) replication. These

stochastic timers represent single-cell parameters. During multifork replication, C periods extend beyond a single division cycle. This overlap is

indicated by extended dotted lines. Color schemes match Fig 2.

https://doi.org/10.1371/journal.pgen.1010505.g003
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hierarchy between the 3 timers can be described as τi> τd> τC. However, in some cases, after

termination, we observed a new round of replication initiation prior to division (τd> τi> τC),

leading to a state with a total of 4 active replication forks divided across 2 chromosomes (ori:
ter = 4:2, Fig 4). Distinguishing these cases does not depend on τC, thus, under these condi-

tions, our framework can be simplified to require input of only 2 timers as functions of k: (i)

inter-initiation time, τi; and (ii) time to division, τd.
In intermediate conditions, MOPS glucose and MOPS glycerol 11aa (mass doubling times

52 min and 63 min, respectively), multifork replication occurred when a new round of replica-

tion was initiated prior to completion of the ongoing round of replication, resulting in 6 forks

(τd> τC> τi). In these media, single fork replication consisted solely of the 4-fork replication

pattern described above in which τd> τi> τC, corresponding to a situation in which a single

round of replication terminated and reinitiated prior to division. These cases can be distin-

guished irrespective of τd, simplifying our framework to only require τi and τC as inputs.

Using this streamlined version and the “calibration curves” obtained from the same single-

cell dataset [8] (Fig A in S1 File), we simulated the population distribution of the number of rep-

lication forks per cell. The results of our fitting parameter-free simulations match experimental

data extremely well, thus validating the soundness of the conceptual framework (Fig 5A).

Altogether, for these datasets our framework requires only τi and τC to differentiate between

single and multifork replication independent of media composition. Notably, although the

Fig 4. Flow chart depicting the possible replication cycles depending on the order of initiation, termination, and division events. N represents the

number of chromosome copies present in the cell and is equal to the number of termini (ter,&). The 2-fork cycle (blue) forms 2 forks upon initiation

at oriC, ●, then replication is completed leaving 0 forks. The 4-fork cycle (magenta) progresses from 4 forks at initiation to 2 forks after division to

termination. The 6-fork cycle (teal) progresses from 6 forks at initiation to 4 forks after termination of previous replication to 2 forks after division to 6

forks after new round of initiation. Further configurations with 8 forks or more are relevant only at growth rates faster than available in this dataset.

https://doi.org/10.1371/journal.pgen.1010505.g004
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average population mass doubling time in MOPS glucose and MOPS glycerol 11aa are on

either side of the Cooper–Helmstetter 60-min mass doubling time, we did not observe an

abrupt plateau in single-cell C period (τC) under either condition (Fig A in S1 File). It remains

possible, however, that tC (the population averaged value) may eventually plateau under more

nutrient-rich conditions. From an unconstrained mathematical perspective of the population

level, td is also expected to plateau as population mass doubling time is reduced, since τd is

always greater than τC, by definition (Fig 3). In contrast, due to the constraint that every divi-

sion must be preceded by a corresponding initiation, ti follows the same trend as mass dou-

bling time when the nutrient-imposed growth rate is varied.

Relationship between stochastic timers dictates replication fork

number

Taken together, the measured and predicted timer behaviors suggest that multifork replication

is a consequence of changes in the relationship between individual timers at fast single-cell

growth rates. The timers differentially impact the relationships among cell cycle events

depending on growth regime (i.e., slow, intermediate, or fast growth). During slow growth

fork numbers are solely determined by the relative order of τi and τd, while during intermedi-

ate growth they are determined by τi and τC. During fast growth, we predict that all 3 timers

play a role in determining fork numbers, especially during growth conditions that promote a

mixture of allowable chromosome configurations and fork numbers.

At the population level, our framework predicts the emergence of 8-fork (or more) cycles

(τi<τC<2τi<τd<3τi) during fast growth, a mixture of 4-fork (τC<τi< τd<2τi) and 6-fork

cycles (τi<τC< τd<2τi) during intermediate growth (near 60 min mass doubling time), and

a combination of 2-fork and 4-fork cycles during slow growth. Supporting the validity of

our framework, we obtained a close match with data from all 3 conditions without any

fitting parameters (Fig 5B and 5C) and an updated and more detailed rendering of the Coo-

per–Helmstetter model (Fig 6 versus Fig 1).

A roadmap for the application of this model to open biological

questions

To test the ability of our agnostic framwork to address mechanism, we assessed the fork num-

ber-dependence of the divergent relationship between τC and single-cell growth rate. The clear

Fig 5. Comparing model predictions to experimental data. Model simulations (dashed lines) are compared with the experimentally obtained

distributions (solid lines) of number of forks after initiation at different single-cell growth rates for the following growth conditions: (A) M9 acetate, (B)

MOPS glucose, and (C) MOPS glycerol 11aa. Colors represent different number of forks after initiation: 2 (blue), 4 (magenta), and 6 (teal). There is a

close match between model predictions and experimental data, indicating that the presence of different numbers of forks and both single and multifork

replication within the same growth condition is purely a consequence of the inherent stochasticity in the 3 time periods governing the replication cycle

(the C period, the inter-initiation period, and the time to division), each of which depends solely on single-cell growth rate for a given growth condition.

https://doi.org/10.1371/journal.pgen.1010505.g005
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divergence between single-cell growth rate and τC in fast-growing subpopulations suggests

that replication elongation is negatively impacted in these cells. But why?

There are 3 major (but not only) explanations for the negative relationship between τC,

elongation rate, and mass doubling time in cells cultured at fast growth rates in nutrient-rich

medium. In the first, the enzymatic activity of the replisome reaches maximum velocity in fast-

growing cells. In the second, essential parts of the replication machinery or its substrate (e.g.,

dNTPs) become limiting at rapid growth rates (titration model). And in the third, replisomes

Fig 6. Determining dominant fork numbers from nutrient-imposed population growth rate. Our expectation for the trends in ti , tC , and td
(representing the population mean values related to the stochastic timers τi, τC, and τd) as a function of nutrient-imposed population growth rate. We

expect mean τC and τd to flatten as growth rate goes to infinity, while mean τi (equal to mass doubling time) approaches zero. Fork numbers at different

population growth rates are determined by the relative order of these timers, as shown.

https://doi.org/10.1371/journal.pgen.1010505.g006

Fig 7. Two hypothesized models for C period decrease as growth rate increases. (A) Titration. (B) Fork spacing. Ovals represent active replisomes,

triangles represent accessory replisome components and dNTP substrates, arrows represent relative replisome speed, and red clouds around the

replisome represent steric repulsion and topological changes that alter replisome kinetics.

https://doi.org/10.1371/journal.pgen.1010505.g007
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Fig 8. Both inter-initiation time and C period are independent of fork number. (A) Inter-initiation time (τi) and (B) C period

(τC) is plotted against single-cell growth rate (k) for an intermediate growth condition (medium 4). Mean and SD of binned C

periods and the spread of data points are plotted separately for ● 4-fork (single fork) and ● 6-fork (multifork) data, based on the fork

number observed just after initiation.

https://doi.org/10.1371/journal.pgen.1010505.g008
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begin to interfere with one another during higher order multifork replication, reducing aver-

age elongation rate through some form of steric interference (fork spacing model).

Although the first model is appealing, the idea that replisome efficiency reaches maximum

velocity at population mass doubling times of 60 min or less is not well supported. Delaying

the initiation of replication via mutations that reduce E. coli cell size [36] or by altering the

accumulation or activity of the initiator protein DnaA, leads to significant (as much as 30%)

reductions in C-period without a corresponding change in growth rate [45,46].

To distinguish between the remaining fork titration and fork spacing models, we plotted τi
and τC relative to k in the 2 intermediate growth conditions and separated the population based

on cycles containing either 4- or 6-fork cycles (Fig 4). A reduction in τi and τC (and consequently

τd) relative to k in a fast-growing population that is independent of total fork number would be

consistent with titration of limiting replication substrates or enzymes (“titration model,” Fig

7A). Conversely, reductions in τi and τC that are correlated with fork number would support a

model in which physical constraints decrease the maximum replication rate due to the increased

number of replication forks progressing on a single strand (“fork spacing model,” Fig 7B).

Applying this “test,” we observed diminishing returns to τC as k increases, independent of

the number of replication forks present in individual cells (Fig 8). Given the limited number of

4- and 6-fork cycles in the current dataset, our future work entails the full evaluation of this

question with sufficiently large datasets representing a wider range of growth conditions.

Then, we can fully dissect the mechanistic and molecular actors underlying this apparent fork

independence.

Discussion

Scientific progress depends on our ability to incorporate new information and is often driven

by technological advancement. While the Cooper–Helmstetter model has served a valuable

function—contextualizing and inspiring work on the bacterial cell cycle for over 50 years—

rapid advances in single-cell analysis reveal its limitations.

To fill this gap, we developed a new framework with which to understand cell cycle coordi-

nation. This framework offers numerous advantages for the evaluation of single-cell data.

Importantly, it may be applied to any strain in any growth medium in any growth regime. Our

framework is agnostic to the mechanism underlying the stochastic dynamics of initiation, rep-

lication and division, and simply captures these dynamics through the experimentally mea-

sured “calibration curves” for each of these timers as functions of single-cell growth rates.

In sum, recognizing the value of single-cell data as a framework from which to understand

the molecular mechanisms underlying cell cycle progression in bacterial cells is just the first

step. Larger, more comprehensive single-cell datasets spanning a wide range of MDTs and

media compositions is essential to determine the relationship between nutrient availability

and cell cycle progression at high resolution not only in E. coli but also in other bacteria,

model, and non-model alike. We look forward to the next chapter!

Supporting information

S1 File. The supporting information file details the protocol for generating calibration

curves from data and includes a figure in which the calibration curves used as inputs in the

model for different growth conditions are plotted.

(PDF)

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010505 January 5, 2023 10 / 13

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010505.s001
https://doi.org/10.1371/journal.pgen.1010505


Acknowledgments

We thank Suckjoon Jun and Fangwei Si for generously sharing the details of their methodol-

ogy and analysis, along with the raw, single-cell datasets that are the heart of this study [8]. We

also thank them as well as Rudro Biswas and Jade Wang for in-depth discussions and com-

ments on the manuscript. We are grateful to the Levin and Iyer-Biswas groups for their

insights and input as we pressure-tested multiple iterations of the model and its implications.

PAL and SI-B thank the Aspen Center for Physics for graciously hosting us and making our

collaboration possible.

References
1. Cooper S, Helmstetter CE. Chromosome replication and the division cycle of Escherichia coli B/r. J Mol

Biol. 1968; 31:519–540. https://doi.org/10.1016/0022-2836(68)90425-7

2. Wang JD, Levin PA. Metabolism, cell growth and the bacterial cell cycle. Natl Rev. 2009; 7:822–827.

https://doi.org/10.1038/nrmicro2202 PMID: 19806155

3. Jun S, Taheri-Araghi S. Cell-size maintenance: universal strategy revealed. Trends Microbiol. 2015;

23:4–6. https://doi.org/10.1016/j.tim.2014.12.001 PMID: 25497321

4. Sauls JT, Li D, Jun S. Adder and a coarse-grained approach to cell size homeostasis in bacteria. Curr

Opin Cell Biol. 2016; 38:38–44. https://doi.org/10.1016/j.ceb.2016.02.004 PMID: 26901290

5. Ghusinga KR, Vargas-Garcia CA, Singh A. A mechanistic stochastic framework for regulating bacterial

cell division. Sci Rep. 2016; 6:30229. https://doi.org/10.1038/srep30229 PMID: 27456660

6. Logsdon MM, Ho P-Y, Papavinasasundaram K, Richardson K, Cokol M, Sassetti CM, et al. A Parallel

Adder Coordinates Mycobacterial Cell-Cycle Progression and Cell-Size Homeostasis in the Context of

Asymmetric Growth and Organization. Curr Biol. 2017; 27:3367–3374.e7. https://doi.org/10.1016/j.cub.

2017.09.046 PMID: 29107550

7. Lin J, Amir A. The Effects of Stochasticity at the Single-Cell Level and Cell Size Control on the Popula-

tion Growth. Cell Syst. 2017; 5:358–367.e4. https://doi.org/10.1016/j.cels.2017.08.015 PMID:

28988800

8. Si F, Treut GL, Sauls JT, Vadia S, Levin PA, Jun S. Mechanistic Origin of Cell-Size Control and Homeo-

stasis in Bacteria. Curr Biol. 2019; 29:1760–1770.e7. https://doi.org/10.1016/j.cub.2019.04.062 PMID:

31104932

9. Witz G, van Nimwegen E, Julou T. Initiation of chromosome replication controls both division and repli-

cation cycles in E. coli through a double-adder mechanism. Elife. 2019; 8:e48063. https://doi.org/10.

7554/eLife.48063 PMID: 31710292

10. Jun S, Si F, Pugatch R, Scott M. Fundamental Principles in Bacterial Physiology—History, Recent prog-

ress, and the Future with Focus on Cell Size Control: A Review. Rep Prog Phys. 2018; 81:056601.

https://doi.org/10.1088/1361-6633/aaa628 PMID: 29313526

11. Schaechter M, Maaløe O, Kjeldgaard NO. Dependency on medium and temperature of cell size and

chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol. 1958;

19:592–606. https://doi.org/10.1099/00221287-19-3-592 PMID: 13611202

12. Donachie WD. Relationship between cell size and time of initiation of DNA replication. Nature. 1968;

219:1077–1079. https://doi.org/10.1038/2191077a0 PMID: 4876941

13. Si F, Li D, Cox SE, Sauls JT, Azizi O, Sou C, et al. Invariance of Initiation Mass and Predictability of Cell

Size in Escherichia coli. Curr Biol. 2017; 27:1278–1287. S0960-9822(17)30291-9

14. Vadia S, Levin PA. Bacterial Size: Can’t Escape the Long Arm of The Law. Curr Biol. 2017; 27:R339–

R341. https://doi.org/10.1016/j.cub.2017.03.050 PMID: 28486115

15. Helmstetter CE, Cooper S. DNA synthesis during the division cycle of rapidly growing Escherichia coli

B/r. J Mol Biol. 1968; 31:507–518. https://doi.org/10.1016/0022-2836(68)90424-5

16. Cairns J. The bacterial chromosome and its manner of replication as seen by autoradiography. J Mol

Biol. 1963; 6:208–213. https://doi.org/10.1016/s0022-2836(63)80070-4 PMID: 14017761

17. Yoshikawa H, O’sullivan A, Sueoka N. Sequential Replication of the Bacillus subtilis chromosome. 3.

Regulation of Initiation. Proc Natl Acad Sci U S A. 1964; 52:973–980. https://doi.org/10.1073/pnas.52.

4.973 PMID: 14224402

18. Churchward G, Estiva E, Bremer H. Growth rate-dependent control of chromosome replication initiation

in Escherichia coli. J Bacteriol. 1981; 145:1232.

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010505 January 5, 2023 11 / 13

https://doi.org/10.1016/0022-2836%2868%2990425-7
https://doi.org/10.1038/nrmicro2202
http://www.ncbi.nlm.nih.gov/pubmed/19806155
https://doi.org/10.1016/j.tim.2014.12.001
http://www.ncbi.nlm.nih.gov/pubmed/25497321
https://doi.org/10.1016/j.ceb.2016.02.004
http://www.ncbi.nlm.nih.gov/pubmed/26901290
https://doi.org/10.1038/srep30229
http://www.ncbi.nlm.nih.gov/pubmed/27456660
https://doi.org/10.1016/j.cub.2017.09.046
https://doi.org/10.1016/j.cub.2017.09.046
http://www.ncbi.nlm.nih.gov/pubmed/29107550
https://doi.org/10.1016/j.cels.2017.08.015
http://www.ncbi.nlm.nih.gov/pubmed/28988800
https://doi.org/10.1016/j.cub.2019.04.062
http://www.ncbi.nlm.nih.gov/pubmed/31104932
https://doi.org/10.7554/eLife.48063
https://doi.org/10.7554/eLife.48063
http://www.ncbi.nlm.nih.gov/pubmed/31710292
https://doi.org/10.1088/1361-6633/aaa628
http://www.ncbi.nlm.nih.gov/pubmed/29313526
https://doi.org/10.1099/00221287-19-3-592
http://www.ncbi.nlm.nih.gov/pubmed/13611202
https://doi.org/10.1038/2191077a0
http://www.ncbi.nlm.nih.gov/pubmed/4876941
https://doi.org/10.1016/j.cub.2017.03.050
http://www.ncbi.nlm.nih.gov/pubmed/28486115
https://doi.org/10.1016/0022-2836%2868%2990424-5
https://doi.org/10.1016/s0022-2836%2863%2980070-4
http://www.ncbi.nlm.nih.gov/pubmed/14017761
https://doi.org/10.1073/pnas.52.4.973
https://doi.org/10.1073/pnas.52.4.973
http://www.ncbi.nlm.nih.gov/pubmed/14224402
https://doi.org/10.1371/journal.pgen.1010505


19. Bremer H, Churchward G. An examination of the Cooper-Helmstetter theory of DNA replication in bac-

teria and its underlying assumptions. J Theor Biol. 1977; 69:645–654. https://doi.org/10.1016/0022-

5193(77)90373-3 PMID: 607026

20. Zheng H, Bai Y, Jiang M, Tokuyasu TA, Huang X, Zhong F, et al. General quantitative relations linking

cell growth and the cell cycle in Escherichia coli. Nat Microbiol. 2020; 5:995–1001. https://doi.org/10.

1038/s41564-020-0717-x PMID: 32424336

21. Jameson KH, Wilkinson AJ. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia

coli. Genes (Basel). 2017;8:https://doi.org/10.3390/genes8010022 PMID: 28075389

22. Sauls JT, Cox SE, Do Q, Castillo V, Ghulam-Jelani Z, Jun S. Control of Bacillus subtilis Replication Initi-

ation during Physiological Transitions and Perturbations. MBio. 2019:10. https://doi.org/10.1128/mBio.

02205-19 PMID: 31848269

23. Sauls JT, Cox SE, Do Q, Castillo V, Ghulam-Jelani Z, Jun S. Gram-positive and Gram-negative Bacte-

ria Share Common Principles to Coordinate Growth and the Cell Cycle at the Single-cell Level. bioRxiv.

2019:726596. https://doi.org/10.1101/726596

24. Micali G, Grilli J, Marchi J, Osella M, Cosentino LM. Dissecting the Control Mechanisms for DNA Repli-

cation and Cell Division in E. coli. Cell Rep. 2018; 25:761–771.e4. https://doi.org/10.1016/j.celrep.2018.

09.061 PMID: 30332654

25. Micali G, Grilli J, Osella M, Lagomarsino MC. Concurrent processes set E. coli cell division. Sci Adv.

2018: 4. https://doi.org/10.1126/sciadv.aau3324 PMID: 30417095

26. Kubitschek HE, Freedman ML. Chromosome replication and the division cycle of Escherichia coli B-r. J

Bacteriol. 1971; 107:95–99.
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