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Abstract

Multi-population cohorts offer unprecedented opportunities for profiling disease risk in large

samples, however, heterogeneous risk effects underlying complex traits across populations

make integrative prediction challenging. In this study, we propose a novel Bayesian proba-

bility framework, the Prism Vote (PV), to construct risk predictions in heterogeneous genetic

data. The PV views the trait of an individual as a composite risk from subpopulations, in

which stratum-specific predictors can be formed in data of more homogeneous genetic

structure. Since each individual is described by a composition of subpopulation member-

ships, the framework enables individualized risk characterization. Simulations demonstrated

that the PV framework applied with alternative prediction methods significantly improved

prediction accuracy in mixed and admixed populations. The advantage of PV enlarges as

genetic heterogeneity and sample size increase. In two real genome-wide association data

consists of multiple populations, we showed that the framework considerably enhanced pre-

diction accuracy of the linear mixed model in five-group cross validations. The proposed

method offers a new aspect to analyze individual’s disease risk and improve accuracy for

predicting complex traits in genotype data.

Author summary

In this study, we developed a statistical approach to dissect and predict human complex

traits using genotype data. Distinct from existing methods that focus on refining effect

size of genetic factors, the proposed method, Prism Vote, improves risk prediction from

the dimension of individual, such that disease probability of a subject is regarded as a

composite risk shaded from multiple subpopulations, thereby drawing information from
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both stratum-specific estimation and individualized risk composition. We showed in sim-

ulation studies that the PV enhanced prediction performance of several base prediction

models significantly, particularly when genetic heterogeneity in the data is high. We also

demonstrated in real genome-wide association study data of mixed populations that the

PV considerably enhanced prediction accuracy of linear mixed models for traits including

body-mass index, height, hypertension, and others. The PV framework offers an effective

and scalable approach to leverage subpopulation information to perform risk prediction

in mixed populations.

Introduction

Genome-wide genetic markers encode a sizable portion of common human traits heritability

[1]. One attractive application of the susceptible single nucleotide polymorphisms (SNPs) is to

construct prediction models for assessing disease risk. Previous association studies have dem-

onstrated that most complex traits possess a polygenic background influenced by collective

genetic variants of moderate to small effects [2–4], as exhibited in the human height [2], bipo-

lar disorder [3], and cancers [4]. Due to genetic heterogeneity of complex diseases, a consider-

able part of the identified risk predisposition loci does not replicate across populations [5].

Currently, near 80% of genetic association studies were conducted in populations of European

ancestry [6], and disease risk estimation derived from these datasets alone might not be repre-

sentative for application in the non-European populations [7,8]. Developing statistical meth-

ods for cross-population disease prediction is crucial for improving the genetic risk profiling,

precision medicine interventions, and reducing health disparities [9]. Several methods were

proposed for trans-ethnic risk prediction. Cai et al. improved the Polygenic risk score (PRS)-

based prediction for a target minority population by estimating transferrable effect of a com-

mon set of SNPs between the target and a larger auxiliary population [10]. Coram et al. devel-

oped a prediction method for minority population by incorporating risk loci from an auxiliary

population as the random component in linear mixed model (LMM) [11]. On the other hand,

joint analysis of multiple populations may offer a way to leverage all available samples in the

minority groups, generate an integrative risk prediction inference for diverse populations, and

in turn facilitate new studies to be carried out in non-European cohorts. However, direct com-

bination of cohorts would render prediction accuracy because of the heterogeneous genetic

architecture across population groups, and meta-analysis by mixed models were developed to

combine estimations from multiple populations [12,13]. As these methods improve prediction

by refining the effect size and SNP subsets in the target population, individuals carrying the

same allelic variations at these SNPs would be estimated with the same degree of risk.

Alternatively, we consider prediction in multiple populations by leveraging the dimension

of individual identity, which can be incorporated together with the SNP-centered methods to

improve risk prediction. Under the proposed framework, named the Prism Vote (PV), the dis-

ease risk of a subject can be considered as a composite risk shaded from multiple subpopula-

tion strata, in which stratum-specific genetic risk are characterized, while overall risk of the

subject is integrated using Bayesian probability according to one’s propensity to subpopula-

tions. Therefore, subjects with identical alleles at risk loci may be predicted with non-identical

disease probability as subpopulation propensity varies. In the PV framework, subpopulation

can be regarded as strata of more homogeneous genetic architecture compared to the non-

stratified data, which might be shaped by ancestral difference or implying subject groups

experiencing similar exposures altering gene-environmental interactions. The prediction
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utility of PV is demonstrated in three simulation studies and two genome-wide association

datasets of mixed populations.

Methods

The method overview

The PV leverages on the genetic heterogeneity and polygenicity nature of complex traits. The

detection of trait-associated markers, thousands of variants with modest effect size, are sensi-

tive to the underlying genetic architecture of data. Stratification of samples may lead to the

identification of stratum-specific risk loci and effects. The framework obtains stratum-wise

risk estimates and delivers the individualized risk probability of traits through modelling the

disease of a subject as a composite risk outcome from multi-layer subpopulations.

Suppose risk of a trait for subject i is attributed from multiple risk strata. Let Y denote a

phenotype of binary outcome, and xi is the genotype matrix of subject i. Disease probability of

the subject can be written as,

PrðY ¼ 1jxiÞ ¼
XK

k¼1
PrðY ¼ 1ji 2 k; xiÞ Prði 2 kjxiÞ; ð1Þ

Eq 1 is referred to as the PV probability of a trait for a subject. It could be generalized to

EðYjxiÞ ¼
PK

k¼1
EðYji 2 k; xiÞ Prði 2 kjxiÞ for a continuous Y. In the equation, PrðY ¼ 1ji 2

k; xiÞ is the disease risk in stratum or subpopulation k, to be obtained by a base prediction

model; and Pr (i2k|xi) is the propensity of subject i belonging to stratum k, calculated by the

Bayes theorem:

Prði 2 kjxiÞ ¼
Pr ði 2 k; xiÞ

Pr ðxiÞ
¼

Pr ðxiji 2 kÞPr ði 2 kÞ
PK

k¼1
Pr ðxiji 2 kÞPr ði 2 kÞ

; ð2Þ

in which Pr(xi|i2k) is the probability of observing xi given subject i belongs to stratum k2
{1,� � �,K}; and Pr(i2k) is estimated by the proportion of kth stratum out of all samples. Fig 1

shows a schematic diagram of the PV framework. The term “prism” reflects the interpretation

that a subject’s disease risk is decomposed into a spectrum of risk distributions by population

strata.

PC-based population stratification and membership estimation

A PC-based approach is adopted to cluster subpopulations as the PCA requires less assump-

tions and could be applied in various data types. Let gij be genotype of subject i for SNP j,
coded by minor allele counts (0, 1, 2), i = 1,� � �,N, and j = 1,� � �,P. The genetic matrix GN×P is

normalized to X, by letting xij¼ ðgij � �g jÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pjð1 � pjÞ

q
, where �g j ¼

PN

i¼1
gij

N is column mean of

SNP vector j, and pj ¼ ð1þ
PN

i¼1
gijÞ=ð2þ 2NÞ is the estimate of underlying allele frequency

of SNP j (11). Compute N×N covariance matrix C. Principal component analysis on X for sub-

jects of both the training and testing data is used to obtain the eigenvectors, denoted as vr,
r = 1,� � �,N, and Cvr = λrvr. Each vector vr2RN corresponds to the rth largest eigenvalue λr. vri is

the ith loading of the eigenvector and carries the interpretation of ith subject’s variation along

the rth ancestry axis. Suppose the top q eigenvectors contain a good amount of variation; ar ¼

lr=
Pq

r¼1
lr is the normalized eigenvalues. Compute the weighted score, w ¼

Pq

r¼1

arvr 2 R
N

, of

which component wi indicates the ith subject’s variation summarized in the top q eigenvectors’

(ancestral) directions. By dividing w into K quantiles, the training subjects can be assigned to
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the K strata according to their quantile location in w. The eigenvectors were obtained using

the PLINK [14]. The K and q can be determined from cross-validations excluding the indepen-

dent test data (S1 Appendix).

The probability of observing a subject belonging to a particular stratum can be approxi-

mated based on the distance of a subject to the stratum center. The center of stratum k is

ck ¼ 1

Nk

P
i2k wi, where Nk is the number of subjects in the stratum. Position of a new subject i

in the ancestral space can be calculated by wi ¼
Pq

r¼1
arvri . As the squared distance of a subject

to a cluster center empirically follows a chi-squared distribution, the probability that subject i
belongs to stratum k can be estimated by,

Prðxiji 2 kÞ ¼ Pr½w2

1
> ðŝ2

i Þ
� 1
ðwi � ckÞ

2
�; ð3Þ

where ŝ2
k is the sample variance of wi in the kth stratum, i2k.

In sum, the procedure of applying the PV is as follows: (1) Obtain eigenvectors and eigen-

values of all subjects genotypes (training and testing data) calculated in the ancestral direction;

(2) divide the training set into K strata; (3) obtain stratum-wise predictors by a base prediction

model in the training data, resulting K sets of predicted Y for the test data; (4) calculate the pro-

pensity of a test subject i to stratum k using Eq 3; (5) obtain the final predicted Y for the test set

by Eq 1.

Fig 1. The Prism Vote (PV) framework for individualized risk prediction of traits. The PV views a complex trait of a subject as a composite risk outcome

shaded from subpopulation strata, in which stratum-specific risk predictors may be estimated in a subpopulation comparatively more homogeneous. The

stratum-wise risk is obtained in subpopulations by Pr(Y|i, xi), which are multiplied to a subject’s subpopulation propensity Pr (i2k|xi). The total predicted risk

of a trait for an individual is the aggregated risk estimate from all subpopulations. The PV framework introduced the dimension of individual identity for

modeling disease risk. Hence, the unique spectrum of propensities of each subject to subpopulations offers an individualized risk assessment outcome.

https://doi.org/10.1371/journal.pgen.1010443.g001
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Verification and comparison

Simulation study I: applying PV in mixed population data

Simulation study I aims to investigate the effect of incorporating PV with an LMM base predic-

tion model in dataset consists of multiple populations. The genotype data was obtained from

two real GWAS of African and European populations from the GAIN project (dbGaP accession

number: phs000021.v3.p2). We extracted data including 1,932 subjects of African ancestry

(AA), 2,657 subjects of European ancestry (EA), and 9,242 common (MAF>1%) genetic vari-

ants of chromosome 22. The admixed population genotype data of 2,000 subjects was simulated

by sampling a genetic variant xi,j for subject i at locus j from a binomial distribution,

xi;jeBinð2; pEj Q
E
i þ pAj Q

A
i Þ, where pEj and pAj are MAF of locus j in the EA and AA data, respec-

tively; QE
i and QA

i are the ancestry fractions of subject i in the two populations; QE
i þ QA

i ¼ 1 (S1

Fig). Three thousand causal variants were selected for the AA and EA population, respectively,

among which 75% was common to both populations and 25% was unique to a single population

[15]. Effect size was sampled from normal distributions with the number of variants in each

effect group proportional to effect magnitude. Specifically, phenotype was determined by 10

SNPs of large effect from distribution β~N(0, 10−2), 300 SNPs of moderate effects with β~N(0,

10−3), and the remaining variants from β~N(0, 10−4) [16]. Risk effect of the admixed population

was simulated by setting b
i
j ¼ QE

i b
E
j þ QA

i b
A
j ; j ¼ 1; 2; . . . ; 3000, where b

E
j and b

A
j represent

effect sizes of SNP j in EA and AA, respectively. A linear model was used to obtain phenotype of

subjects from the causal variants and effect sizes, in which the residual term follows a normal

distribution of variance satisfying alternative heritability scenarios (h2 = 0.2, 0.5 and 0.8). In the

mixed data consisted of the EA, AA, and admixed populations, PV was implemented with base

prediction models controlling for the top ten PCs, and by the reference methods that are the

base models controlling for PCs only. For the base models, we considered the linear regression

model (LM), BayesR [16], and Dirichlet Process Regression (DPR) [17]. The BayesR is a linear

mixed model (LMM) assuming the effect of variants follows a normal mixture distribution with

the majority of variants having no effect on the phenotype. While the other LMM method,

DPR, adopts a non-parametric prior on effect distributions and assigns non-zero effect on all

variants. True ancestry information of subjects was treated as unknown and was controlled

purely through statistical modelling. Selection for K and q can be found in S1 Appendix.

Throughout the simulation and real data application in this study, prediction accuracy is mea-

sured by Pearson correlation coefficient between the observed and predicted outcome for con-

tinuous phenotypes, and by area-under-the-curve (AUC) for binary outcomes. Averaged

prediction accuracy on independent test sets in the five-group cross-validation (5GCV) was

reported.

Fig 2 showed that the PV generally improved prediction accuracy of the base models com-

paring to the reference methods in 5GCV. Under the high heritability scenario, the PV

improved the mean prediction correlation coefficient of the BayesR from 0.49 to 0.54 by

10.2%, and improved the DPR from 0.46 to 0.58 by 26.5% (Fig 2, S2 Appendix. Table). PV

improved the LM and DPR in all heritability scenarios, while it only enhanced BayesR under

the high heritability setting. This might be due to the sparse effect model assumption made by

the BayesR, from which modest causal effects were prevailingly estimated as zero in genetic

data of low heritability.

Simulation study II: Prediction performance as genetic heterogeneity varies

In simulation study II, we investigate the performance of PV with DPR base as genetic hetero-

geneity across populations varies. Genotype data was generated according to the minor allele

PLOS GENETICS Individualized disease prediction in mixed populations
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frequency distribution from the EA and AA populations. Two thousand subjects were simu-

lated for each of the single and admixed populations. Genetic similarity was controlled by

covariance of effect size in the EA and AA populations. Let βk2Rm denote effect of m causal

SNPs in population k, which follows a multivariate normal distribution [18],

�
βk

βk0

�

� N 0;

s2
k

m
Im

rk;k0

m
Im

rk;k0

m
Im

s2
k0

m
Im

2

6
6
6
4

3

7
7
7
5

0

B
B
B
@

1

C
C
C
A
;

in which s2
k and s2

k0 are variance of the total additive genetic effect of these SNPs in two popula-

tions k and k0, k6¼k02{1,� � �,K}. The covariance ρk,k0 approximates the “shared heritability”.

Thus, genetic similarity of two populations can be measured by the ratio η = ρk,k0/(σkσk0).
When η = 0, the populations share no effect similarity; and as η approaches one, the traits are

influenced by similar genetic effects in the mixed populations. As shown in Fig 3, the reference

Fig 2. Prediction outcome of the Prism Vote implemented with alternative base prediction models (Simulation Study I). Legend: With PV: Prediction

model is the Prism Vote with the DPR base controlling top 10 PCs; Without PV (the reference method): DPR controlling for the top 10 PCs only. Panels (A)

Heritability = 0.2; (B) Heritability = 0.5; and (C) Heritability = 0.8. Base models include the linear regression model (LM), BayesR, and Dirichlet process

regression (DPR). For all base models, the PV generally improves mean prediction accuracy in terms of concordance correlation coefficient in 5GCV

compared to the reference methods. Detailed results can be found in S2 Appendix.

https://doi.org/10.1371/journal.pgen.1010443.g002
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group (DPR + PCs)’s prediction accuracy observes substantial reduction as genetic similarity

in populations decreases, while DPR implemented in the PV framework produces stable pre-

diction accuracies in all scenarios. For instance, under the high heritability scenario (Fig 3C),

as effect similarity decreases from 80% to 20%, mean prediction accuracy by the base model in

the reference group reduces from 0.52 to 0.40 by 23.1%, while the accuracy with PV only

slightly drops from 0.48 to 0.47 by 2.1%. Under the medium and high heritability settings (Fig

3B and 3C), prediction gain by the PV is warranted when the genetic similarity in multiple

populations is lower than half.

Simulation study III: Prediction performance as sample size increases

This simulation considers influence of sample size on prediction accuracy. In each combina-

tion of heritability (h2 = 0.2, 0.5 and 0.8) and genetic similarity (η = 0.1, 0.5, 0.9) category,

Fig 3. Prediction performance of PV as genetic heterogeneity increases across populations (Simulation Study II). Legend: With PV: Prediction model is

the Prism Vote with the DPR base controlling top 10 PCs; Without PV (the reference method): DPR controlling for the top 10 PCs only. (A) Heritability = 0.2;

(B) Heritability = 0.5; (C) Heritability = 0.8. Vertical axis: average correlation coefficient of the predicted and observed phenotype in 5GCVs. Horizontal axis:

levels of effect size similarity across populations. As effect size similarity decreased across populations, the PV shows stable prediction outcomes (red), while

performances of the reference method were affected substantially (green).

https://doi.org/10.1371/journal.pgen.1010443.g003
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eight datasets were simulated at different sample sizes (N = 1,000 to 40,000). As sample size of

data steadily increases, implementing PV results in prediction accuracy gain in all nine scenar-

ios (Fig 4 and S3 Appendix). Particularly, when N = 40,000, h2 = 0.8 and η = 0.1, PV improved

the prediction accuracy of DPR from 0.59 to 0.80 by 26.3% (Fig 4A).

Applications

The first real GWAS data for application is from the Population Architecture through Geno-

mics and Environment (PAGE) project (dbGap accession number phs000220.v2.p2). A total

number of 9,075 subjects were extracted, consisted of 3,520 self-identified African, 2,104

Hawaiians, and 3,451 Japanese (S4 Appendix. Fig A). Quality control (QC) was performed by

removing SNPs with genotype call rate< 95%, Hardy-Weinberg equilibrium (HWE) p-

value < 5×10−8 or MAF < 0.01. After QC, 560,899 autosomal SNPs were available for analysis.

Fig 4. Prediction performance of PV as sample size increases (Simulation study III). Legend: With PV: Prediction model is the Prism Vote with the DPR

base controlling top 10 PCs; Without PV (the reference method): DPR controlling for the top 10 PCs only. (A) Heritability = 0.8, effect size similarity η = 0.1;

(B) Heritability = 0.8, η = 0.5; (C) Heritability = 0.8, η = 0.9. As the sample size increased from 1,000 to 40,000, the prediction accuracy of PV continued to

increase. The PV’s advantage was more evident when genetic heterogeneity was high (Panel A and B). Results for scenarios of heritability = 0.2 and 0.5 can be

found in S3 Appendix.

https://doi.org/10.1371/journal.pgen.1010443.g004
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The second GWAS is a subset of the non-European population in the UK Biobank [19]. We

included 5,718 individuals of Indian ancestry, 4,297 Caribbean, 3,204 African, 1,748 Pakistan

1,504 Chinese, 221 Bangladeshi, 2,869 admixed populations, and 6,947 subjects without clear

ancestry information (S4 Appendix. Fig B). After QC, 26,506 subjects and 524,557 SNPs were

available for analysis. In the PAGE data, traits including the body mass index (BMI), height,

diabetes, and hypertension were analyzed; and in the UK biobank data, BMI, height, cardio-

vascular disease (CVD), and diabetes diagnosed by doctor (diabetes) were analyzed. For both

datasets, the optimal stratum number was estimated to be two, and q was set to ten.

In the PAGE data, PV was implemented with DPR controlling PCs for predicting BMI,

height, diabetes, and hypertension (Fig 5). Comparing to the reference method (DPR+PCs),

PV enhanced the prediction accuracy of base model by 12.1% (SD 4.7%) for BMI, 2.0% (1.5%)

Fig 5. Prediction performance of PV in real data application (PAGE dataset). Legend: Mean 5GCV Prediction accuracy of PV and the reference method

using DPR base model in mixed populations of the PAGE data. Comparing to the reference method, PV enhances the prediction accuracy of DPR by 12.1%

(SD 4.7%) for the BMI, 2.0% (1.5%) for height, 5.2% (SD 2.1%) for hypertension, and 5.4% (SD 2.2%) for diabetes. Prediction outcome in single populations by

the reference method is shown in gray color. Details can be found in S1 Table.

https://doi.org/10.1371/journal.pgen.1010443.g005
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for height, 5.2% (SD 2.1%) for hypertension, and 5.4% (SD 2.2%) for diabetes. For easier inter-

pretation of the results, we also displayed the prediction outcome achieved in single popula-

tions (Fig 5, S1 Table). In general, by the reference method, prediction accuracy in the joint

cohort is in between the highest and lowest performance achieved in single populations (Fig

5B–5D), while the PV elevates the prediction outcome in mixed population data close to the

best accuracy reached in single populations. For example, in Fig 5D, the prediction for diabe-

tes by the reference method is in-between its performance in the Japanese population that is

observed with the lowest accuracy and the African population the second lowest; while the PV

improves the joint cohort prediction to an accuracy achieved in the Hawaiian population with

the highest performance. Furthermore, as shown in Fig 5A, PV increases prediction accuracy

for BMI to 0.374 (SD 0.004) in the mixed population, a level unreached in single populations,

among which the best performance is only 0.299 (SD 0.022).

In UK Biobank data composed of five minority populations and subjects of 12 vague self-

reported ancestries (S2 Table), applying PV with the DPR base significantly improves the pre-

diction accuracy for the BMI by 12.0% (SD 5.6%), for the height by 1.44% (SD 0.38%), for the

CVD by 5.9% (SD 1.0%), and for the diabetes by 3.7% (SD 2.2%) (Fig 6, S3 Table). Prediction

standard deviations also considerably reduce in the joint data analysis, benefited from the

larger sample size. Finally, we compared the estimated effect size of the top 5,000 SNPs in the

two real GWAS datasets (S5 Appendix. Figs A and B); the effect sizes are vastly different

between stratum, suggesting prevailing genetic heterogeneity in these data.

Discussion

The Prism Vote framework is introduced to dissect and integrate risk of individuals based on

personalized risk spectrum through a Bayesian probability framework. Simulation studies

showed that the method generally enhanced the prediction of base models in different herita-

bility scenarios; and advantage of the framework expanded with increasing genetic heteroge-

neity and sample size. Application of the PV in two real GWASs data of mixed populations

also resulted considerable gain in prediction accuracy.

The component steps of the framework can be substituted with alternative methods accord-

ing to data attributes. In the population stratification step, either a model-based or model-free

model may be incorporated [20–22]. The two approaches were tested on a simulated admixed

cohort generated from two distinct populations (S6 Appendix). Individuals’ group member-

ship probabilities obtained by the PC-based method described in this study gave concordant

estimates as the outcome obtained from the Bayesian maximum likelihood approach imple-

mented in the ADMIXTURE software [22] (S6 Appendix).

For the prediction step, linear mixed model is pertinent for this study design for its good

property of simultaneous estimation of whole genome SNPs effects and prediction. Other

approaches, such as the machine learning methods, or the PRS, may be applied to construct

predictors in stratum. To apply the PRS, the following issues shall be considered. The PRS

draws summary statistics from well-powered external datasets, however, these external popula-

tions were predominantly of the European ancestries. Therefore, although coefficient of the

aggregated PRS can be evaluated in stratum, to differentiate SNP-effects across stratum, one

need to estimate the transferrable part of the effect size from auxiliary data to strata [10,23], or

to construct joint PRS for the mixed populations in strata [24]. These would rely on the feasi-

bility of calculating the transferrable genetic effect or the availability of ancestry-specific sum-

mary statistics. We explored implementation of PV with the joint PRS approach in the PAGE

data. On the BMI trait, using LDpred2 [25] as base model in mixed populations [24] (S7

Appendix), PV significantly improved the prediction correlation coefficient from 0.372 (SD
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0.013) to 0.389 (SD 0.015) in 5GCV comparing to using the base model with PCs. Neverthe-

less, no significant difference was observed in the prediction for the other traits (S7 Appendix.

Table B).

Fig 6. Prediction performance of the PV in real data application (UK Biobank data). Legend: Mean 5GCV prediction accuracy of the PV and reference

method using the DPR base model in the UK Biobank mixed population (non-European) data. Applying the PV significantly improved the prediction accuracy

of DPR for BMI by 12.0% (SD 5.6%), for height by 1.44% (SD 0.38%), for CVD by 5.9% (SD 1.0%), and for diabetes by 3.7% (SD 2.2%). Details can be found in

S3 Table.

https://doi.org/10.1371/journal.pgen.1010443.g006
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The PV framework leverages on data’s genetic architecture to form homogeneous genetic

strata. The grouping of subjects is a complicated issue as it is simultaneously influenced by the

sample size, underlying genetic models of the trait, and genetic architecture in strata. In either

model-based or model-free approach, the number of population clusters was often determined

empirically [5,20,21]. In the current analysis, an equal division approach was adopted such

that each stratum has the same sample size. Nevertheless, the clustering step could be further

optimized by considering bias-variance trade-off for SNP-effects estimation within stratum

towards achieving optimal prediction outcome, which requires extensive research in future

studies.

One notable advantage of the PV framework is that it enables prediction for subjects

with unknown or admixed ancestries by decomposing subject’s propensity to more homo-

geneous subpopulation stratum, thereby allowing the extraction of information from other

populations to inform prediction of admixed samples (S8 Appendix). Another advantage of

the PV is that it allows distributed programing of large genomic datasets in the dimension

of subjects. Traditionally, SNPs are assigned to multiple clusters to increase computation

efficiency, yet distributed computing is difficult to be carried out for the prediction models

requiring simultaneous evaluation of biomarkers, such as the LMM or penalized regression.

Markedly, the PV framework enables the simultaneous evaluation and prediction incorpo-

rating all SNPs in distributed calculations, by applying the prism filter on individuals and

estimating disease risk from genetic background of the subpopulations that are assigned to

CPU-clusters. Meanwhile, the PV’s Bayesian probability framework maintains total infor-

mation gain from the subpopulations, producing a balanced and potentially improved pre-

diction outcome.

In this study, we proposed the Prism Vote method for predicting human complex traits in

genotype data consisted of multiple populations, and investigated application of the prism fil-

ter in the aspect of genetic similarity of subjects. The framework might be extended to alterna-

tive stratification aspects such as phenotype subgroups for improving prediction of a

particular trait, as well as to other genetic or non-genetic datasets, which will be explored in

future studies.
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