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Abstract

Ferroptosis is an iron-dependent form of regulated cell death associated with uncontrolled

membrane lipid peroxidation and destruction. Previously, we showed that dietary dihomo-

gamma-linolenic acid (DGLA; 20: 3(n-6)) triggers ferroptosis in the germ cells of the model

organism, Caenorhabditis elegans. We also demonstrated that ether lipid-deficient mutant

strains are sensitive to DGLA-induced ferroptosis, suggesting a protective role for ether lip-

ids. The vinyl ether bond unique to plasmalogen lipids has been hypothesized to function as

an antioxidant, but this has not been tested in animal models. In this study, we used C. ele-

gans mutants to test the hypothesis that the vinyl ether bond in plasmalogens acts as an

antioxidant to protect against germ cell ferroptosis as well as to protect from whole-body

tert-butyl hydroperoxide (TBHP)-induced oxidative stress. We found no role for plasmalo-

gens in either process. Instead, we demonstrate that ether lipid-deficiency disrupts lipid

homeostasis in C. elegans, leading to altered ratios of saturated and monounsaturated fatty

acid (MUFA) content in cellular membranes. We demonstrate that ferroptosis sensitivity in

both wild type and ether-lipid deficient mutants can be rescued in several ways that change

the relative abundance of saturated fats, MUFAs and specific polyunsaturated fatty acids

(PUFAs). Specifically, we reduced ferroptosis sensitivity by (1) using mutant strains unable

to synthesize DGLA, (2) using a strain carrying a gain-of-function mutation in the transcrip-

tional mediator MDT-15, or (3) by dietary supplementation of MUFAs. Furthermore, our

studies reveal important differences in how dietary lipids influence germ cell ferroptosis ver-

sus whole-body peroxide-induced oxidative stress. These studies highlight a potentially

beneficial role for endogenous and dietary MUFAs in the prevention of ferroptosis.

Author summary

Ferroptosis is a regulated form of cell death driven by excess production of lipid peroxides.

Understanding ferroptosis is important because this type of cell death is associated with

disease states such as neurodegeneration and various renal, liver, and lung diseases. In

addition, with more knowledge of regulatory mechanisms, induction of ferroptosis could
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be harnessed to control tumor growth. To examine specific lipid contributions to ferrop-

tosis sensitivity, we used mutant strains of the small roundworm Caenorhabditis elegans
exhibiting a range of altered lipid compositions to examine how cellular and dietary lipids

influence ferroptosis and oxidative stress sensitivity. We found that the accumulation of

lipid peroxides correlates with cell death but that plasmalogens, a subset of ether lipids

that are proposed to act as cellular antioxidants, do not protect from ferroptosis or oxida-

tive stress. Instead, ether lipid biosynthesis contributes to lipid homeostasis in mem-

branes. In their absence, membrane saturated fatty acids are increased, while membrane

monounsaturated fatty acids (MUFAs) are less abundant. Restoring membrane MUFAs

reduces lipid peroxides and contributes to cellular resistance to ferroptotic cell death.

These studies suggest that dietary MUFAs could prevent ferroptosis in disease.

Introduction

Ferroptosis is a regulated form of cell death characterized by iron-dependent accumulation of

lipid peroxides and subsequent cellular destruction [1–3]. Early studies of ferroptosis focused

on the regulation of antioxidant systems, such as the availability of reduced glutathione, the

regulation of glutathione peroxidase enzymes, and the actions of radical trapping antioxidants,

in the protection against ferroptosis [1–7]. However, the identification of oxidized arachidonic

acid (AA; 20:4(n-6)) and adrenic acid (AdA; 22:4(n-6)) in cells undergoing ferroptosis

unveiled the importance of lipid peroxidation in the promotion and execution of ferroptotic

cell death [8–11]. Since then, other groups have shown a range of polyunsaturated fatty acids

(PUFAs) may drive this process, and identified important roles for membrane remodeling

enzymes, such as acyl-CoA synthetase (ACSL) 3 and 4 and lysophosphatidylcholine acyltrans-

ferase 3 (LPCAT3) in ferroptosis regulation [9, 12–15]. Glycerophospholipids, neutral lipids,

sphingolipids and ceramides, cholesterol, and more recently ether glycerophospholipids have

all been implicated in ferroptosis [3, 8, 9, 13, 16–20]. How these different lipids contribute to

ferroptosis is poorly understood.

Ether glycerophospholipids (herein simplified to ether lipids) contain a fatty alcohol

attached in the sn-1 position in the glycerophospholipid backbone through an ether bond,

instead of a conventional ester linkage (Fig 1A and 1B). There are two different types of ether

lipids: the alkyl O-linked ether lipids, and alkenyl vinyl-linked ether lipids, canonically known

as “plasmalogens”. Both start as fatty alcohols that are incorporated into the precursors of

ether lipids in the peroxisomes, then are transported to the endoplasmic reticulum for comple-

tion of lipid synthesis and, for a subset of ether lipids, conversion to plasmalogens by the addi-

tion of an alkenyl double bond by the enzyme TMEM189, also known as PEDS1 [21–23]. Both

classes of ether lipids are important structural components of membranes, act as signaling

molecules, and are implicated in different peroxisomal diseases, neurodegenerative disease,

and cancer [21, 24–26]. There is evidence from liposome and cell culture experiments that

plasmalogens protect against reactive oxygen species (ROS) [27, 28]. The vinyl ether bond has

been proposed to act as an antioxidant, because when free radicals such as ROS and lipid per-

oxides attack the vinyl double bond, an innocuous aldehyde is generated, acting as a peroxide

“trap” and thereby inhibiting the propagation of lipid peroxidation products [28, 29]. How-

ever, this antioxidant model has not been tested in vivo.

Much like ferroptosis, lipid peroxidation is also implicated in general oxidative stress. Studies

in Caenorhabditis elegans and other organisms use tert-butyl hydroperoxide (TBHP), a toxicant

that generates cytosolic reactive oxygen species (ROS) and induces non-specific lipid
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peroxidation, to study oxidative stress [30–32]. In C. elegans, TBHP exposure leads to reduced

survival from the accumulation of lipid peroxides and increased transcriptional response of oxi-

dative stress response pathway genes, such as the glutathione-S-transferase gst-4 [31, 33–35].

Fig 1. Plasmalogens are not required for protection in DGLA-induced ferroptosis or peroxide-induced oxidative stress. (A and B) structures of a typical

phospholipid with two ester-linked fatty acids (A) or an “ether lipid”, with one ether linked fatty acid and one ester linked fatty acid (B). (C,D, H and I) Young adult

worms were harvested and the end-product of lipid peroxidation, malondialdehyde (MDA), was measured and normalized to total protein using BCA. Each data

point represents an independent experiment of 1,250 worms for each treatment. Statistical significance was determined using a two-way ANOVA with Tukey’s test

for multiple comparisons summarized in S2 Table. TBHP, tert-butyl hydroperoxide; DGLA, dihommo-gamma-linolenic acid. (E) Simplified fatty acid composition

in wild type, ads-1, and tmem-189. Detailed fatty acid composition of each strain with averages and standard deviations in S1 Table. PUFA, polyunsaturated fatty

acid; MUFA, monounsaturated fatty acid; Plas, plasmalogen; SFA, saturated fatty acid. (F) Percentage (%) sterility in wild type, ads-1, and tmem-189 raised on

0.05mM, 0.1mM, 0.15mM, and 0.2mM DGLA. Each data point represents an independent experiment of 50 worms for each treatment. Statistical significance was

determined using a two-way ANOVA with Tukey’s test for multiple comparisons. Shown are the comparison of the mutant vs. WT, all comparisons are summarized

in S2 Table. (G) Oxidative stress survival assays were performed with 14.7 mM TBHP. Wild type and ads-1 were used as controls to compare with the survival of

tmem-189. Approximately 100–200 worms were used for each strain per treatment. Statistical significance for survival was determined using log rank tests (Mantel

Cox) and summarized in S2 Table. Fatty acid composition and sterility for (E, F and H) are displayed in S1 Table. Statistical differences shown are NS, not significant,
� P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001.

https://doi.org/10.1371/journal.pgen.1010436.g001
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Previously, we showed that ingestion of the omega-6 PUFA dihomo-gamma linolenic acid

(DGLA; 20:3(n-6)) led to ferroptotic cell death of germ cells in C. elegans and in human cancer

cells [13]. C. elegans strains carrying a mutation in the ads-1 gene, encoding alkyglycerone

phosphate synthase (AGPS), are completely deficient in ether lipid biosynthesis [36], and were

more sensitive to DGLA-induced ferroptosis (Perez et al., 2020). These studies supported a

role for ether-linked lipids in protection from ferroptosis. Similarly, we previously showed that

ether lipid-deficient mutant strains are also more sensitive to whole-body oxidative stress after

exposure to TBHP and accelerated death [36]. Thus, both stress and death modalities point to

a common protective mechanism by ether lipids in the context of lipid peroxidation. However,

the role of ether lipids in ferroptosis regulation remains controversial, especially in mamma-

lian cells [19, 20, 37].

In this study, we used C. elegans to examine how ether lipids and unsaturated fatty acids

impacted DGLA-induced ferroptosis and TBHP-induced oxidative stress. We found that even

though ether lipid biosynthesis is protective from DGLA-induced ferroptosis, this protection

does not arise from the vinyl double bond in plasmalogens. Instead, modulation of stress resis-

tance by ether lipids is strongly dependent on endogenous MUFA and PUFA synthesis, and

specific dietary and endogenous PUFAs play different roles in ferroptosis versus peroxide-

induced oxidative stress. We discovered a role for the mediator complex MDT-15 in both

DGLA-induced ferroptosis and peroxide-induced oxidative stress in the absence of ether lipids

and suggest that this protection is mediated through regulation of endogenous MUFA biosyn-

thesis. Our findings shed light on the differences in the reported effects of ether lipid biosyn-

thesis in the promotion or protection of ferroptosis and suggest that the presence of

endogenous omega-6 PUFAs, not ether lipids per se, is the main driver of ferroptosis. Finally,

as has been shown in mammals, our work emphasizes that dietary MUFAs strongly protect

from ferroptosis.

Results

Ether lipid deficiency leads to higher lipid peroxidation end products

Our previous studies showed that ether lipid biosynthesis is required to protect C. elegans
from two types of oxidative damage. Ether-lipid defective mutants showed greatly increased

sensitivity to DGLA-induced germ cell ferroptosis [13] as well as accelerated death after expo-

sure to the toxicant TBHP [36]. To determine if the presence or absence of ether lipids influ-

enced oxidized lipid levels in both ferroptosis and peroxide-induced oxidative stress, we

measured the levels of malondialdehyde (MDA), a common end product of lipid peroxidation

[38]. Wild type worms and ether-lipid deficient ads-1 worms were treated with either DGLA

or TBHP, and MDA levels were compared to untreated controls. Although basal levels of

MDA are similar in wild type and ads-1 mutants, the ads-1 mutants accumulated higher MDA

levels after exposure to both TBHP and DGLA (Fig 1C and 1D), consistent with a role for

ether lipids acting to reduce lipid peroxidation in cells.

Plasmalogens do not protect from DGLA-induced ferroptosis or whole-

body oxidative stress

C. elegans ether lipids consist of approximately one third plasmalogens (vinyl ether bonds) and

two thirds O-linked ether lipids [36]. Plasmalogens are synthesized from O-linked ether lipids

in organisms ranging from bacteria to humans by the addition of the double bond at the sn-1

position by the TMEM189 enzyme [22, 23]. If the protective effects of ether lipids in ferropto-

sis and peroxide-induced oxidative stress are due to the vinyl ether bond and the subsequent
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prevention of lipid peroxide propagation, then we expected that a knockout of tmem-189
would lead to increased sensitivity to DGLA-induced ferroptosis and TBHP-induced oxidative

stress. We obtained a CRISPR deletion mutant strain tmem-189(syb2649) and analyzed fatty

acid composition using gas chromatography-mass spectrometry (GC-MS). This strain showed

a complete absence of 18:0 plasmalogen, indicating that the C. elegans TMEM-189 homolog

shares corresponding plasmanylethanolamine activity that has been shown in bacteria and

mammals (Fig 1E and S1 Table). Interestingly, aside from the absence of the 18:0 plasmalogen,

these mutants showed relatively normal levels of saturated, monounsaturated (MUFA) and

polyunsaturated fatty acids (PUFAs) compared to wild type, in contrast to the ether-lipid defi-

cient mutant ads-1, which contain much higher levels of saturated fatty acids and lower levels

of MUFAs than wild type (Fig 1E and S1 Table). To test if plasmalogens are playing a role in

protection from DGLA-induced ferroptosis, we assessed germ cell loss in wild-type and tmem-
189 mutant animals exposed to various doses of DGLA. Surprisingly, tmem-189 mutants dis-

played no difference in sterility levels compared to wild type worms, while ads-1 mutants had

completely sterile populations (Fig 1F). We also examined whether peroxide-induced oxidative

stress was influenced by plasmalogens by scoring survival on TBHP. Again, much like in

DGLA-induced ferroptosis, tmem-189 mutants had survival rates that were comparable to

wild type worms on TBHP, while the ads-1 mutants died much faster (Fig 1G). We then used

the MDA assay to quantify lipid peroxidation levels in WT, tmem-189 and ads-1 strains after

exposure to DGLA or TBHP. We found that after treating tmem-189 mutants with either

DGLA or TBHP, levels of MDA were similar to WT, but ads-1 consistently displayed higher

MDA levels (Fig 1H and 1I). Collectively, these data show that while ether lipids are important

for protection from DGLA-induced ferroptosis and TBHP-induced oxidative stress, this pro-

tection is not due to the plasmalogen subclass of ether lipids, and therefore does not support

the “trap” theory of oxidative stress protection by plasmalogens.

Differential promotion of ferroptotic germ cell death and whole-body

oxidative stress by endogenously synthesized C20 PUFAs

A compelling finding from our previous studies was that ether lipid biosynthesis was

completely dispensable for protection against DGLA-induced ferroptosis of germ cells in the

absence of endogenously synthesized PUFAs. Specifically, fat-3 mutants, which cannot synthe-

size C20-PUFAs, along with ads-1;fat-3 double mutants, were resistant to DGLA-induced fer-

roptosis (Fig 2A and S1 Table) [13, 39, 40]. We asked whether these double mutants were

resistant to peroxide-induced oxidative stress as seen in ads-1 mutants. To test this, we placed

fat-3 and ads-1;fat-3 mutants onto TBHP supplemented plates. Similar to the ferroptosis

assays, we found that fat-3 and ads-1;fat-3 survived longer than wild type worms on TBHP,

even though ads-1 single mutants died much faster (Fig 2B). These data show that in both

DGLA-induced ferroptosis and in whole-body oxidative stress, endogenously synthesized

long-chain PUFAs exacerbate the severity of oxidative stress, especially in the absence of ether

lipids.

Our previous studies showed that C. elegans mutant strains with altered PUFA content were

either more sensitive or more resistant to sterility induced by dietary DGLA, depending on the

amount of endogenously synthesized DGLA in the strains [39]. Two of the sensitive strains

were knockouts that eliminated either FAT-1 (omega-3 desaturase) or FAT-4 (Delta-5 desatur-

ase). Both mutant strains accumulate high levels of DGLA, but the fat-1 mutants also accumu-

late high levels of AA, while the fat-4 mutants lack AA and accumulate the unusual omega-3

fatty acid eicosatetraenoic acid (ETA; 20:4(n-3)) (Fig 2A and S1 Table). Both strains lack eicosa-

pentaenoic acid (EPA; 20:5(n-3)), the most abundant C20 PUFA in wild type C. elegans (Fig 2A
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and S1 Table). We hypothesized that mutants deficient in both ether lipid biosynthesis and

accumulating excess omega-6 PUFAs, including DGLA and AA, would be hyper- sensitized to

TBHP-induced whole-body oxidative stress and DGLA-induced germ cell ferroptosis. We rea-

soned that increased, long chain oxidizable omega-6 PUFAs that drive ferroptosis, as

Fig 2. Endogenously synthesized PUFAs differentially modulate ferroptosis and peroxide-induced oxidative stress. (A) Relative fatty acid composition of strains

used for this study determined using gas chromatography-mass spectrometry. Complete composition of each strain with averages and standard deviations are

displayed in S1 Table. SA-stearic acid (18:0), Pla-plasmalogen, OA-oleic acid (18:1(n-9)), cVA-cis-vaccenic acid (18:1(n-7)), LA-linoleic acid (18:2(n-6)), ALA-alpha

linolenic acid (18:3(n-3)), GLA-gamma linolenic acid (18:3(n-6)), STA-stearidonic acid (18:(4n-3)), DGLA-dihomo-gamma linolenic acid (20:(3n-6)), AA-arachidonic

acid (20:(4n-6)), ETA-eicosatetraenoeic acid (20:(4n-3)), EPA-eicosapentaenoic acid (20:(5n-3)). (B,C, and D) Survival of young adult wild type, ads-1, fat-3, and ads-1;
fat-3 on 14.7mM tert-buryl hyderoperoxide (TBHP) ((E, F) Percentage (%) sterility in young adult worms of the indicated genotype raised on DGLA In (B, C, and D)

approximately 100–200 worms were used for each strain per treatment. Statistical significance for survival was determined using log rank tests (Mantel Cox) and is

shown in S2 Table. In (E and F), each dot represents an independent experiment of 50 worms for each treatment. Statistical significance was determined using a two-

way ANOVA with Tukey’s test for multiple comparisons shown in S2 Table. For (E and F), fatty acid composition and sterility data are reported in S1 Table. Statistical

differences compared to WT are � P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001.

https://doi.org/10.1371/journal.pgen.1010436.g002
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demonstrated in germ cell death via DGLA in ads-1 mutants, might also sensitize ether lipid

deficient mutants with high omega-6 PUFAs in TBHP-induced whole-body oxidative stress

[13, 36, 41]. To test this hypothesis, we generated the ads-1;fat-1 and ads-1;fat-4 double mutants

and induced peroxide stress. For TBHP-induced whole-body oxidative stress, we found that

compared to the WT control, the fat-1, ads-1, and ads-1;fat-1 double mutants all were more sen-

sitive than WT (Fig 2C, P<0.02 for all mutants compared to wild type, S2 Table). However, the

ads-1;fat-4 strain showed opposite results, with fat-4 and ads-1;fat-4 worms showing increased

resistance to the TBHP-induced oxidative stress than WT (Fig 2D).

This finding shows an important difference between TBHP-induced stress and germ cell

ferroptosis due to DGLA. Interestingly, without adding any additional DGLA, we observed

sterility and germ cell loss in the ads-1;fat-1 strain. After adding dietary DGLA to these strains,

we found that these double mutant animals were very sensitive to low levels of dietary DGLA

(Fig 2E). Since the fat-1 worms were fertile in unsupplemented conditions, it is apparent that

the presence of ether lipids was protective in the context of excess endogenously synthesized

omega-6 PUFAs. Similarly, the ads-1;fat-4 double mutants were also sterile on media that did

not contain dietary DGLA and they were very sensitive to low levels of dietary DGLA (Fig 2F).

Overall, these data indicate that accumulation of excess DGLA in mutant strains is not detri-

mental in the context of TBHP-induced oxidative stress, but points to a role for AA and EPA

in promoting and accelerating the effects of TBHP.

Differential promotion of ferroptotic germ cell death and peroxide-

induced whole-body oxidative stress by dietary C20 PUFAs

Whether DGLA and TBHP induce the same form of cell death was unclear at the start of our

studies. Understanding these differences is important as TBHP is commonly used to model

general oxidative stress but may not accurately model the ferroptosis phenotype observed in

mammalian cells and other systems. Since the ads-1;fat-1 and ads-1;fat-4 double mutant

strains showed different results in the TBHP survival studies and the germ cell ferroptosis

assays, we verified the specificity of C20 PUFAs in both assays by supplementing WT worms

with exogenous DGLA, AA, and EPA (Fig 3A and S1 Table). We found that at similar doses of

these PUFAs, only dietary DGLA promoted ferroptotic germ cell death (Fig 3B). However,

when supplementing WT worms with these PUFAs and placing them on TBHP-supplemented

media, remarkably, the worms treated with 0.1mM DGLA survived as well as WT (Fig 3C)

and survived longer when treated with 0.2mM DGLA (Fig 3C and 3D). On the other hand,

AA and EPA pre-treated worms died much faster than unsupplemented worms in a dose-

dependent manner (Fig 3C and 3D). Thus, these data clearly demonstrate a difference between

ferroptosis and TBHP-induced whole-body oxidative stress, because ferroptotic germ cell

death is triggered specifically by DGLA, while whole-body oxidative stress is accelerated by

AA and EPA, which are the most unsaturated PUFAs found in C. elegans.

The mediator component, MDT-15, protects from ferroptotic germ cell

death and peroxide-induced whole-body oxidative stress in the absence of

ether lipids

The global genetic regulation of oxidative cell death sensitivity is poorly understood. We

sought to link the observed changes in ferroptosis and oxidative stress sensitivity to specific

transcriptional regulators. An important feature in the ads-1 mutants besides the lack of ether-

linked lipids is the significant change in fatty acid composition, especially the increase in the

saturated fatty acid, stearic acid (SA; 18:0), and the depletion of MUFAs [36]. We previously

found that strains carrying loss of function mutations in regulators of fatty acid desaturation,
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including nhr-49, nhr-80, and sbp-1 were very sensitive to DGLA-induced ferroptosis [42]. To

examine fatty acid desaturation in the context of ether lipids, we made use of mutations in the

transcriptional mediator complex component MDT-15/MED15, for which both gain of func-

tion and loss of function mutations are available.

MDT-15 is an evolutionarily conserved co-activator in eukaryotic transcriptional regula-

tion of fatty acid desaturation, and in stress-response [35, 43, 44]. In C. elegans, knockdown

and loss-of-function mdt-15 mutant strains display increased SFAs, and reduced MUFAs and

PUFAs [43, 45]. Furthermore, transcriptional analyses convey that they not only have reduced

fatty acid desaturase expression, but of reduced stress response-related genes as well and are

Fig 3. Exogenous 20-carbon PUFAs differentially modulates ferroptosis and peroxide-induced oxidative stress. (A) Relative fatty acid composition in wild type

worms treated with DGLA, AA, and EPA determined using gas chromatography-mass spectrometry. SA-stearic acid (18:0), Pla-plasmalogen, OA-oleic acid (18:1(n-

9)), cVA-cis-vaccenic acid (18:1(n-7)), LA-linoleic acid (18:2(n-6)), ALA-alpha linolenic acid (18:3(n-3)), GLA-gamma linolenic acid (18:3(n-6)), STA-stearidonic acid

(18:(4n-3)), DGLA-dihomo-gamma linolenic acid (20:(3n-6)), AA-arachidonic acid (20:(4n-6)), ETA-eicosatetraenoeic acid (20:(4n-3)), EPA-eicosapentaenoic acid

(20:(5n-3)) (B) Percentage (%) sterility of wild type wormsraised on the indicated fatty acids. (C and D) Survival of young adult worms raised on the indicated fatty

acids before exposure to 14.7mM tert-butyl hydroperoxide (TBHP). In (B) each dot represents an independent experiment of 50 worms for each treatment. Statistical

significance was determined using a two-way ANOVA with Tukey’s test for multiple comparisons summarized in S2 Table. In (C and D) approximately 100–200

worms were used for each strain per treatment. Statistical significance for survival was determined using log rank tests (Mantel Cox) is shown in S2 Table. In (B, C and

D), fatty acid compositions are reported in S1 Table.

https://doi.org/10.1371/journal.pgen.1010436.g003
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very sensitive to TBHP stress [35, 43, 45]. Recently, mdt-15 gain-of-function mutants have

been generated and found to increase membrane fluidity and protect from SFA toxicity from

high glucose diet and toxic metal stress [46–50].

Given these findings, we asked if the mdt-15(et14) gain-of-function (herein referred to as

mdt-15(gof)) could ameliorate the severity of survival and germ cell ferroptosis of ads-1
mutants after exposure to TBHP and DGLA. We generated the mdt-15(gof);ads-1 double

mutant strain and compared it to WT and mdt-15(tm2182) (herein mdt-15(lof)). We found

that the mdt-15(lof) strain was highly susceptible to DGLA-induced ferroptosis, while the mdt-
15(gof) were resistant (Fig 4A). Interestingly, ads-1;mdt-15(gof) displayed ferroptotic germ cell

death comparable to WT (Fig 4A), suggesting that even in the absence of ether lipids, the mdt-
15(gof) aided in a return to homeostasis in the ads-1 background. Since the mdt-15(lof) were

previously shown to be sensitive to TBHP stress, we next placed the mdt-15(gof) and ads-1;
mdt-15(gof) on TBHP supplemented plates. The mdt-15(gof) strikingly survived much longer

than WT on TBHP (Fig 4B). ads-1;mdt-15 also survived much longer than ads-1, but had a

similar return to homeostasis when compared to WT worms (Fig 4B). Overall, these data sug-

gest that mdt-15(gof) returns the ether-lipid deficient ads-1 mutants to WT levels of oxidative

stress protection from DGLA-induced ferroptosis or in peroxide-induced whole-body oxida-

tive stress assays.

We next examined the lipid composition of these strains and found that compared to ads-1,

there was a modest reduction in overall SFA in ads-1;mdt-15(gof) (18.9%) compared to ads-1
(20.9%) while the MUFA composition increased to 13.7% in ads-1;mdt(gof) versus 10.0% in

ads-1 (Fig 4C and S1 Table). This shows that compared to ads-1, ads-1;mdt-15(gof) lipid com-

positional changes are influenced by enhanced activity of MDT-15. Since MDT-15 is a tran-

scriptional co-activator of fatty acid desaturation as well as genes involved in oxidative stress

response, we asked if mdt-15(gof) is influencing fatty acid desaturation or oxidative stress

responses in ads-1 mutants on a transcriptional level. We measured the basal levels of tran-

scription of three genes involved in oxidative stress response (gst-4, gst-6, and sod-3) and three

genes involved in the conversion of saturated fatty acids to MUFAs (fat-5, fat-6, and fat-7). We

found that mdt-15(lof) and ads-1 had lower expression of fat-5 and fat-7, while mdt-15(gof)
showed higher expression of the same genes (Fig 4D). When assessing oxidative stress

response-related genes, gst-4, gst-6, and sod-3, we found that mdt-15(lof) was the only strain to

have a significantly lower expression of these three genes compared to WT, and all other

strains were not significantly changed (Fig 4E). Overall, these data suggest that transcription

regulation of MUFA synthesis in ads-1;mdt-15(gof) is playing a key role in protection from

DGLA-induced ferroptosis and peroxide-induced whole-body oxidative stress.

Endogenous and dietary MUFAs protect from DGLA-induced ferroptosis

sensitivity

We and others previously showed that dietary MUFAs are protective in ferroptotic cell death

[12, 13]. We previously showed that fat-2 mutants encoding the delta-12 desaturase, which

accumulate OA and lack C20 PUFAs, were highly resistant to DGLA-induced ferroptosis. Sim-

ilarly, co-treatment of DGLA with OA protected germ cells in both WT and ads-1 worms [13].

Another gene that is regulated by MDT-15 is fat-5, which encodes a Delta-9 desaturase that

specifically desaturates palmitic acid (PA;16:0) to palmitoleic acid (POA; 16:1(n-7)). In the

worm, POA is readily elongated to cis-vaccenic acid (cVA; 18:1(n-7)), the most abundant fatty

acid in phospholipids and neutral lipids in C. elegans. Therefore, we examined whether cVA is

also protective in ferroptosis. To test this, we used a genetic approach to parse OA from cVA

by using the double mutant fat-6;fat-7 animals, that lack OA but are enriched for cVA (Fig 5A)
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[51]. Upon placing fat-6;fat-7 on DGLA supplemented media, we found that they were highly

resistant to DGLA-induced germ cell ferroptosis (Fig 5B), suggesting that, much like in fat-2,

endogenous cVA are also protective from ferroptosis as well.

To extend these genetic findings, we tested whether dietary cVA would be protective in

DGLA-induced ferroptosis. Upon repeating our previous experiment with 0.1mM OA and

varying doses of DGLA, both WT and ads-1 worms were protected from DGLA-induced fer-

roptosis (Fig 5C). When worms were supplemented with 0.1mM cVA in conjunction with

Fig 4. The mediator complex, MDT-15, plays a protective function through increased expression of Delta-9 desaturases in ether lipid deficiency. (A) Percentage

(%) sterility in young adult worms of the indicated genotype raised on dihommo-gamma linolenic acid (DGLA). (B) Survival of young adult worms exposed to 14.7mM

tert-butyl-hydroperoxide (TBHP). (C) Relative fatty acid composition determined with gas chromatography-mass spectrometry of strains used in (A) and (B). (D and E)

Fold-change of basal mRNA levels in mutant worms relative to wild type worms grown on standard nematode growth media. mRNA levels were normalized to cdc-42
and Y45F10D.4. In (A) each dot represents an independent experiment of 50 worms for each treatment. Statistical significance was determined using a two-way

ANOVA with Tukey’s test for multiple comparisons summarized in S2 Table. In (B) approximately 100–200 worms were used for each strain per treatment. Statistical

significance for survival was determined using log rank tests (Mantel Cox) and is shown in S2 Table. In (C), values do not add up to 100% because dietary cyclopropane

fatty acids and several others are not displayed in this chart. The complete fatty acid composition and sterility data are reported in S1 Table. In (D and E), student’s t-tests

were performed to determine statistical significance and summarized in S2 Table. Statistical differences compared to WT are NS, not significant, � P<0.05, ��P<0.01,
���P<0.001, ����P<0.0001.

https://doi.org/10.1371/journal.pgen.1010436.g004
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varied doses of DGLA, we found that WT and ads-1 worms both were strongly rescued and

had reduced sterility, similar to supplementation with OA (Fig 5C). Because MUFAs, espe-

cially OA, were shown to play a role in lifespan [52], and were observed to be protective from

ferroptosis in mammalian systems through reducing lipid peroxidation [12], we asked if the

protection conferred by OA in the absence of ether lipids would lead to reduced lipid peroxi-

dation. We measured MDA in worms treated with DGLA, OA, VA, or DGLA combined with

OA and VA, and found significant reduction in lipid peroxidation end products when OA and

VA are included in the dietary mixture (Fig 5D). Overall, these data show that dietary

C18-MUFAs powerfully suppress germ cell ferroptosis by reducing lipid peroxidation prod-

ucts, which are key molecular executioners of ferroptotic cell death.

Fig 5. Dietary MUFAs are protective in DGLA-induced ferroptosis through inhibition of lipid peroxidation. (A) Relative fatty acid composition of worms of the

indicated genotype as determined with gas chromatography-mass spectrometry. SA-stearic acid (18:0), Pla-plasmalogen, OA-oleic acid (18:1(n-9)), cVA-cis-vaccenic acid

(18:1(n-7)), LA-linoleic acid (18:2(n-6)), ALA-alpha linolenic acid (18:3(n-3)), GLA-gamma linolenic acid (18:3(n-6)), STA-stearidonic acid (18:(4n-3)), DGLA-dihomo-

gamma linolenic acid (20:(3n-6)), AA-arachidonic acid (20:(4n-6)), ETA-eicosatetraenoeic acid (20:(4n-3)), EPA-eicosapentaenoic acid (20:(5n-3)) (B and C) Percentage

(%) sterility in young adult worms of the indicated genotype raised on the indicated fatty acids. In (B and C) each dot represents an independent experiment of 50 worms

for each treatment. Statistical significance was determined using a two-way ANOVA with Tukey’s test for multiple comparisons summarized in S2 Table. Fatty acid

composition and sterility for (B, C, and D) are reported in S1 Table. In (D) each data point represents an independent experiment of 1,250 worms for each treatment.

Statistical analysis was performed with Student’s t-test and P values are reported in S2 Table. � P<0.05, ��P<0.01, ���P<0.001, ����P<0.0001.

https://doi.org/10.1371/journal.pgen.1010436.g005
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Discussion

We previously found that depletion of ether lipids led to increased sensitivity to DGLA-

induced ferroptosis in C. elegans [13], strongly suggesting that they are protective against this

process. Because the vinyl-ether double bond in the subset of ether lipids called plasmalogens

was proposed to act as an endogenous antioxidant that can “trap” lipid peroxides, we tested

whether plasmalogens specifically were involved in the protection against DGLA-induced fer-

roptosis. Surprisingly, when we eliminated the plasmalogen subclass of ether lipids by a knock-

out mutation in the tmem-189 gene, we saw no effect on the severity of germ cell death

induced by DGLA. In addition, in an assay of whole-body oxidative stress induced by the toxi-

cant TBHP, we found that the tmem-189 mutant strain showed similar survival to wild type,

indicating that plasmalogens are not acting as antioxidants to protect cells from DGLA- or per-

oxide-induced oxidative stress. In agreement with this, a recent study found that CRISPR-Cas9

knockout of TMEM189 in mammalian cancer cells also did not alter ferroptotic sensitivity

[19]. In contrast, another study showed that deleting TMEM189 led to increased ferroptosis

sensitization, while overexpression led to increased resistance to ferroptosis, although the pro-

tection was actually due to plasmalogens degrading fatty acyl CoA reductase (FAR1), essen-

tially acting as a feedback inhibitor of ether lipid biosynthesis [20].

Thus, both studies showed that ether lipids themselves are pro-ferroptotic in mammalian

systems, while another study showed little effect of ether lipid deficiency in mammalian cells

[37]. In contrast, ether lipid biosynthesis mutants clearly showed increased sensitivity to fer-

roptosis in C. elegans germ cells. One explanation for this disparity may be attributed to the

compositional differences of ether lipids and plasmalogens in C. elegans and mammalian cells.

In mammals, plasmalogens make up a significant portion of phospholipids and are broadly

distributed in different tissues, with the phosphatidylethanolamine (PE) fraction containing

greater than 50% PE-plasmalogens in human brain, heart, and immune cells such as neutro-

phils, macrophages and lymphocytes, and the phosphatidylcholine (PC) fraction containing

approximately 40% plasmalogens in human heart tissue and neutrophils [21, 53–57]. In addi-

tion, mammals have an abundance of AA in the sn-2 position where, for example, PE-plasma-

logens contain approximately 75% AA in neutrophils and cardiac tissue [57, 58]. C. elegans, on

the other hand, has a smaller cadre of ether lipids. The PE lipids consist of 20% alkyl (o-linked)

ether lipids and 7% plasmalogen (p-linked) ether lipids. Unlike mammals, ether lipids are

undetectable in PC [36, 59]. Additionally, C. elegans alkyl ether lipids are composed of approx-

imately 60% MUFAs and saturated fats, and about 40% PUFAs in the sn-2; while in plasmalo-

gen classes there are equal amounts of both MUFAs and PUFAs in the sn-2 position [36, 59,

60]. Of the PUFAs, only 3% and 12% are AA in the sn-2 in total PE-alkyl ether and PE-plasma-

logen groups, respectively [36]. These data point to the species-specific differences in both

mammals and C. elegans, as well as context-dependent requirements for lipid metabolism

genes [37], and suggest that that PUFA composition in the sn-2 of either alkyl ether lipids or

plasmalogens might drive their pro-ferroptotic role in mammals.

As we probed further into the roles of ether lipids in the protection from DGLA-induced

ferroptosis, we examined endogenous and dietary roles of specific MUFAs and PUFAs. This

allowed us to explore the differences between DGLA-induced ferroptosis and peroxide-

induced whole-body oxidative stress. We found that both treatments promote the generation

of lipid peroxides, which accumulate to higher levels in ether-lipid deficient worms compared

to WT. Moreover, in tmem-189 mutants, these lipid peroxidation end products do not accu-

mulate any more than WT, precluding plasmalogens as endogenous antioxidants as men-

tioned. However, in the absence of endogenously synthesized C20 PUFAs, the presence of

ether lipids was no longer required for protection. Indeed, we found that ads-1;fat-3 mutants
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were resistant to both peroxide-induced oxidative stress (this study) and DGLA-induced fer-

roptosis [13]. However, in the absence of ether lipids, increasing endogenous DGLA through

genetic ablation of the omega-3 desaturase FAT-1 or the Delta-5 desaturase FAT-4, led to

increased sensitivity to DGLA-induced ferroptosis. However, for peroxide-induced oxidative

stress, we found opposite results for the two double mutant strains. The ads-1;fat-1 and the fat-
1 worms, which accumulate excess DGLA and AA, were sensitive to TBHP, however, the ads-
1;fat-4 worms, along with the fat-4 worms, were resistant to TBHP, in agreement with another

report that fat-4 RNAi worms survived longer in the context of oxidative stress [61]. Thus, our

genetic and supplementation experiments revealed that an important distinction between

germ cell ferroptosis and peroxide-induced whole-body oxidative stress is that the highly

unsaturated fatty acids AA and EPA were more detrimental in whole-body oxidative stress but

did not trigger ferroptotic germ cell death (Fig 6).

In the context of ferroptosis, MUFAs, particularly OA, have been shown to promote ferrop-

tosis resistance in cancer cell lines, C. elegans, and in a mouse model of cancer [12, 13, 62].

Here we showed that both OA and cVA led to robust protection from DGLA-induced ferrop-

tosis, and this protection was mechanistically conferred through reduced lipid peroxidation

end products. We also found that the mediator complex component, MDT-15, involved in

both fatty acid desaturation and stress response provided protection from both DGLA-

induced ferroptotic germ cell death and in peroxide-induced oxidative stress. Furthermore,

when mdt-15(gof) was crossed into ads-1 mutants, the ads-1;mdt-15(gof) double mutants had a

stress response similar to wild type in both stress modalities, correlating with an increase in

transcription of fat-5 and fat-7. Previously, Han et al showed that exogenous treatment of OA,

POA, and cVA promote life and health span extension when studying epigenetic modifiers of

H3K4me3 in C. elegans [52]. Knockdown of the COMPASS component ash-2/ASH2L leads to

an increase in all MUFAs (POA, OA, and cVA) and this involved MDT-15, as knockdown of

both mdt-15 and ash-2 abolished the increase in MUFAs from ash-2 knockdown [52]. More-

over, another study showed that frailty from aging in C. elegans is correlated with increased

iron and increased MDA levelsresulting in intestinal cell death by ferroptosis. Treatments that

inhibited ferroptosis led to increased life and health span [63]. We show that MUFAs are

strongly protective in the context of ferroptosis of germ cells and reproduction, and it would

be interesting to determine whether MUFAs promote life and health span extension through

the reduction of ferroptosis during aging.

Dietary MUFAs are important for optimal health and consumption of MUFAs has been

associated with better cardiovascular health and reduced levels of diabetes [64–66]. Ferroptosis

has been shown to occur in models of cardiovascular disease [67–70], renal disease [68, 71],

and neurodegenerative diseases [1, 72–74] and ferroptosis-specific inhibitors were shown to

protect in these studies. Our results suggest that dietary MUFAs act therapeutically to prevent

or limit ferroptosis that occurs during these disease states.

Materials and methods

Worm strains and maintenance

All strains were maintained on NGM supplemented with OP50 and incubated at 20˚C. The

following strains were used in this study: N2, wild type; BX10 ads-1(wa3) [36]; BX24 fat-1
(wa9); BX30 fat-3(wa22); BX17 fat-4(wa14); BX52 fat-1(wa9);fat-4(wa14) [39]; XA7702 mdt-
15(ttm2182) [75]; QC152 mdt-15(et14) was a gift from the Pilon lab, University of Gothenburg,

Sweden; The strains BX295 ads-1(wa3);fat-1(wa9); BX291 ads-1(wa3);fat-3(wa22); BX290 ads-
1(wa3);fat-4(wa14);and BX303 ads-1;mdt-15(et14) were generated by crossing ads-1(wa3)
males to hermaphrodites. The F1 generation were allowed to self-cross, and the double
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mutants were identified in the F2 generation using GC/MS analysis for identification of the

presence of homozygous alleles of ads-1(wa3), fat-3(wa22), or fat-1(wa9) or PCR for identifica-

tion of mdt-15(et14) and confirmation of ads-1(wa3) alleles (see below).

Generation of the tmem-189 mutant

The tmem-189(syb2649) allele was made by SunyBiotech. It contains an in-frame 1128 bp dele-

tion generated using CRISPR/CAS9 in the tmem-189 gene on chromosome I. The deletion

spans from just after the start codon and deletes exons 1, 2, 3, and part of exon 4. The resulting

mutant strain was outcrossed 4x to wild type prior to use in these studies. To screen the

mutants during the outcross, the primer sets for tmem-189(syb2649) were: FWD (5’-TCAA

GTGGGAAAGCGTGTGA-3’), and REV (5’-CGCACGCCTAACCAAATCAT-3’). The wild

type amplicon size was 2153bp, while the mutant amplicon 1025bp.

Generation of the ads-1;mdt-15(gof) double mutant strain

Because ads-1(wa3) and mdt-15(et14) are both point mutants, we utilized tetra primer Ampli-

fication-Refractory Mutation System (ARMS)-PCR to generate the ads-1;mdt-15(gof) double

mutant. ARMS-PCR measures allele-specific amplification through designing primers with

mismatches in the 3’ end of the primer with a mismatch specific to the SNP of one allele and

Fig 6. Similarities and differences between DGLA-induced ferroptosis and TBHP-induced oxidative stress. Ether lipid deficiency in C. elegans results in increased

sensitivity to 20-carbon polyunsaturated fatty acids (PUFAs) through germ cell ferroptosis specifically induced by dietary and endogenous dihomo-gamma-linolenic

acid (DGLA; 20:3(n-6)) and to oxidative stress that requires the highly unsaturated PUFAs, arachidonic acid (AA; 20:4(n-6)) and eicosapentaenoic acid (EPA; 20:5(n-

3)). In both cases, the Mediator complex is protective while plasmalogens do not play an active role in protection as an endogenous antioxidant. Monounsaturated fatty

acids (MUFAs) strongly protect worms from DGLA-induced ferroptosis.

https://doi.org/10.1371/journal.pgen.1010436.g006
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another mismatch 2 bases upstream from the 3’ end, and external flanking primers to produce

allele-specific fragments that can be analyzed with PCR [76]. The primers used for screening

ads-1(wa3) were as follows: mutant forward (5’- TGAGGTTTCGAACGACTTGT—3’); wild

type reverse (5’- ATGAACCATGGTGTGCTAGG-3’); flank forward (5’-TGCTCCGTTCG

TGGTCAGCAT-3’); flank reverse (5’-ACGTTGGGAGTGGTGTCCGA-3’). The primers used

for screening mdt-15(et14) were as follows: wild type forward (5’-TCTTGCCTGAGCTGAT

GGTG-3’); mutant reverse (5’- GTGCCTCCAGATCCACAGCT-3’); flank forward (5’- GAA

CTGATGAAGGACCGGTTG-3’); flank reverse (5’- AGCCTGAGTTGGCGAGAAAC-3’). To

screen for the double mutants, single worm PCR was performed, and half the proteinase K

digestion underwent PCR amplification for either ads-1(wa3) or mdt-15(et14) ARMS-PCR

primers and compared to controls. For ads-1(wa3) the flank fragment was 891bp, and the allele

fragments were 395bp and 535bp for WT and mutant, respectively. For mdt-15(et14) the flank

fragment was 962bp, and the allele fragments were 361bp and 661bp for WT and mutant,

respectively.

Peroxide-induced oxidative stress survival assays

Young adult day 1 worms were placed on freshly made NGM plates supplemented with

14.7mM tert-butyl-hydroperoxide (TBHP) before seeding with OP50. For TBHP plates,

roughly 100–200 worms were scored every 1.5 hours as live or dead. Plates were incubated at

20˚C for the duration of the assay. Survival curves and hazard ratios were plotted and analyzed

with GraphPad Prism. P-values were calculated using log-rank (Mantel-Cox) tests.

Measuring lipid peroxidation with TBARS assay

Approximately 1,250 synchronized young adult day 1 worms were washed off NGM plates

into 15mL conical tubes and brought to 5mL M9 containing 15mM TBHP, or no treatment

M9 control, and nutated for 60 minutes. Worms were washed twice with M9 and placed into

1.5mL Bioruptor Plus TPX microtubes (Diagenode, Denville, NJ). Supernatant was removed

and the resulting pellet was frozen in liquid nitrogen and stored at -80˚C until the day of the

assay. Samples were lysed and homogenized using a Bioruptor sonicator bath (Diagenode,

Denville, NJ) set on ‘High’ with 10 cycles of 30 sec pulsing and 30 sec pauses at 4˚C. Samples

were spun down at 20,000xg for 25 minutes at 4˚C. Measurement of lipid peroxidation was

performed using the Cayman Chemical thiobarbituric acid reactive substances assay (TBARS)

(TCA method) assay kit (Ann Arbor, MI) per instructor’s manual and the microplate was read

spectrophotometrically at 535nm on a Bio Tek Cytation 3 plate reader (Winooski, VT). Sam-

ples were normalized to protein using a Pierce BCA assay kit. Statistical analysis was per-

formed with Student’s t-test where statistically significant results had a p<0.05.Fatty acid
supplementation

NGM media was supplemented with Tergitol at final concentration of 0.1% and various

doses of fatty acid salt (purchased from NuCheck Prep) dissolved in water before seeding with

OP50 [77]. Worms were synchronized via alkaline hypochlorite treatment and L1 larvae were

plated onto tergitol control or fatty acids plates at L1 stage and allowed to grow at 20˚C to

reach young adult stage. For the DGLA assay, worms were scored visually under light micros-

copy for absence or presence of germ cell and embryos (scored as sterile or fertile, respectively)

and then collected for GC-MS. For whole-body oxidative stress assays, worms were individu-

ally picked from tergitol control or fatty acid supplemented plates onto the TBHP assay and

scored for survival as mentioned earlier, and a portion of the population was kept for GC/MS

analysis.
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Fatty acid analysis

Fatty acid composition was analyzed by gas chromatography/mass spectrometry (GC/MS)

using the fatty acid methyl ester (FAME) method [51]. For each sample, roughly 400 worms

were collected in water, allowed to settle, and most of the water removed before freezing the

worm pellet. 2.5% sulfuric acid in methanol was added to frozen pellets and then incubated at

70˚C for one hour in a glass tube. FAMEs were extracted in hexane and separated using an

Agilent 7890 GC/5975C MS in scanning ion mode equipped with a SP-1380 column. Relative

amounts of fatty acid methyl esters are reported.

Isolation of RNA and Quantitative RT-PCR analysis

Total RNA was isolated from synchronized L4 worms that were harvested and then frozen in

liquid nitrogen, and then stored at -80˚C. RNA was prepared using TRIzol Reagent (Invitro-

gen, Cat# 15596018) and purified with RNeasy Mini Plus Kit (Qiagen, Cat# 74134) per manu-

facturer’s instructions. The RNA was then converted to cDNA using SuperScript IV Reverse

Transcriptase kit (Invitrogen, Cat# 18090010). Real-time quantitative PCR assays were run on

an Applied Biosystems 7300 Real-Time PCR System (Applied Biosystems, Foster City, CA)

with the following cycling parameters: 3 minutes at 95˚C, then 40 cycles of 95˚C for 15 seconds

and 60˚C for 1 minute. Fluorescence data was collected at the 60˚C step. Each sample was run

in triplicate and normalized to the genes cdc-42 and Y45F10D.4, and all gene differential

expression was normalized to wild type. The RT-qPCR primer sequences used for this study

were as follows: fat-5: FWD (5’-CGATTTGTACGAGGATCCGGTG-3’) and REV (5’-CAGT

GGGAGACACTGTTGATGC-3’); fat-6: FWD (5’-TCTACCAGCTCATCTTCGAGGC-3’)

and REV (5’-GATCACGAGCCCATTCGATGAC-3’); fat-7: FWD (5’-GGAAGGAGACAG

CATTCATTGCG-3’) and REV (5’-GTCTTGTGGGAATGTGTGGTGG-3’); gst-4: FWD

(5’-GATGCTCGTGCTCTTGCTG-3’) and REV (5’-CCGAATTGTTCTCCATCGAC-3’);

gst-6: FWD (5’-TTTGGCAGTTGTTGAGGAG-3’) and REV (5’-TGGGTAATCTGGACGG

TTTG-3’); and sod-3: FWD (5’-GCTGCAATCTACTGCTCGCACTGCTTCAAAGC-3’) and

REV (5’-GGCAAATCTCTCGCTGATATTCTTCCAGTTGGC-3’). The RT-qPCR primer

sequences for the genes used for normalization were: cdc-42: FWD (5’-CTGCTGGACAG

GAAGATTACG-3’) and REV (5’-CTCGGACATTCTCGAATGAAG-3’); Y45F10D.4: FWD

(5’-GTCGCTTCAAATCAGTTCAGC-3’) and REV (5’-GTTCTTGTCAAGTGATCCG

ACA-3’). Statistical analysis was performed with Student’s t-test where statistically significant

results had a p<0.05.

Supporting information

S1 Table. Fatty acid composition, sterility assays, and fatty acid uptake determined by gas

chromatography/ mass spectrometry for Figs 1–5.

(XLSX)

S2 Table. Statistical analyses for assays shown in Figs 1–5.

(XLSX)
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