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Abstract

Background

Tuberculosis (TB) remains a major public health problem globally, even compared to

COVID-19. Genome-wide studies have failed to discover genes that explain a large propor-

tion of genetic risk for adult pulmonary TB, and even fewer have examined genetic factors

underlying TB severity, an intermediate trait impacting disease experience, quality of life,

and risk of mortality. No prior severity analyses used a genome-wide approach.

Methods and findings

As part of our ongoing household contact study in Kampala, Uganda, we conducted a

genome-wide association study (GWAS) of TB severity measured by TBScore, in two inde-

pendent cohorts of culture-confirmed adult TB cases (n = 149 and n = 179). We identified 3

SNPs (P<1.0 x 10–7) including one on chromosome 5, rs1848553, that was GWAS signifi-

cant (meta-analysis p = 2.97x10-8). All three SNPs are in introns of RGS7BP and have

effect sizes corresponding to clinically meaningful reductions in disease severity. RGS7BP

is highly expressed in blood vessels and plays a role in infectious disease pathogenesis.

Other genes with suggestive associations defined gene sets involved in platelet homeosta-

sis and transport of organic anions. To explore functional implications of the TB severity-

associated variants, we conducted eQTL analyses using expression data from Mtb-stimu-

lated monocyte-derived macrophages. A single variant (rs2976562) associated with mono-

cyte SLA expression (p = 0.03) and subsequent analyses indicated that SLA

downregulation following MTB stimulation associated with increased TB severity. Src Like
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Adaptor (SLAP-1), encoded by SLA, is highly expressed in immune cells and negatively reg-

ulates T cell receptor signaling, providing a potential mechanistic link to TB severity.

Conclusions

These analyses reveal new insights into the genetics of TB severity with regulation of plate-

let homeostasis and vascular biology being central to consequences for active TB patients.

This analysis also reveals genes that regulate inflammation can lead to differences in sever-

ity. Our findings provide an important step in improving TB patient outcomes.

Author summary

Severity of tuberculosis (TB) is an important determinant of transmission, morbidity,

mortality, disease experience and quality of life; it can be affected by human genetic varia-

tion. In this study, we performed a genome wide study (GWAS) to examine the role of

human genetic variation on TB severity, as measured by the Bandim TBscore, a metric

developed for resource-limited environments. Three single nucleotide polymorphisms

(SNPs) in one gene, RGS7BP, associated with severity. This gene is expressed in blood ves-

sels and plays a role in infectious disease pathology. In addition, we used the GWAS data

to identify pathways linked to TBscore, and found that the platelet homeostasis and trans-

port of organic anion pathways both associated with severity. Functional analyses were

also performed, examining the effects of stimulation withMycobacterium tuberculosis, the

causative agent of TB. Down regulation of the gene encoding Src Like Adaptor (SLAP-1)

that is highly expressed in immune cells and negatively regulates T cell receptor signaling

associated with MTB exposure, providing a potential mechanistic link to TB severity.

Together these findings indicate that host factors involved in regulation of platelet homeo-

stasis and vascular biology affect TB severity. These findings may lead to new ways to

decrease disease severity.

Introduction

Pulmonary tuberculosis (TB) caused more deaths per year than any other pathogen prior to

the COVID-19 pandemic [1]. It is the leading cause of death among people infected with

human immunodeficiency virus (HIV) [2]. Although incidence is decreasing globally, TB is

re-emerging in Sub-Saharan Africa and Southeast Asia [3]. The bacterium,Mycobacterium
tuberculosis (MTB), causes most TB and is transmitted via airborne droplets from coughing

and sneezing by people with active disease. Therefore, it can be a very mobile pathogen in the

age of frequent global travel, making global exposure high; between one fourth and one third

of the entire global population is latently (asymptomatically) infected. However, far fewer peo-

ple develop active disease than are infected. In 2020, only 10 million people had active disease

with 1.5 million people dying of it [1].

As compared to studies of disease susceptibility or resistance, few studies have focused on

TB severity, an important determinant of transmission, morbidity, mortality, as well as disease

experience and quality of life [4,5]. Determinants of TB severity remain uncertain due to het-

erogeneous definitions. Measures of severity include the Bandim TBscore (a validated out-

come based on 11 clinically relevant symptoms, S1 Table), bacillary load, and radiologic

findings (e.g. enumeration of pulmonary lesions or area, presence of cavitation) [6–17]. In this
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study, we chose to use TBscore as it is: 1) based on simple measures of relevant and meaningful

clinical parameters that can be ascertained in the resource-limited environments where TB is

most prevalent; 2) has previously been validated through comparisons to other measures of TB

disease progression and severity [18–20]; and 3) at presentation, it is predictive of mortality in

TB patients receiving treatment, associated with quality of life, and even a one point increase is

clinically meaningful in some contexts [18–22]. As such, the TBscore presents several advan-

tages in terms of ease of measurement and prediction of clinical outcomes. Earlier genetic

studies of severity phenotypes focused on candidate genes and not genome-wide analyses,

making it likely additional genetic variants elsewhere in the genome associate with TB severity.

Notably, some of the severity associating genes (i.e., IFNG, SLC11A1,MCP1, TLR variants, and

HLA variants) are similar or identical to those implicated in previous studies of susceptibility

or resistance to TB [23]. However, the overlap in genes for risk and severity may simply be due

to the fact that candidate gene studies tended to choose the same genes for the two phenotypes.

In contrast, genome-wide analyses may better define how the genetics of TB risk or progres-

sion do or do not correlate across severity definitions and may inform distinct functional

aspects of TB host genetics.

Understanding the link between DNA variants and RNA expression can inform an under-

standing of immunological responses and TB pathogenesis. Directly linking genetic variation

to immunological function is critical in identifying valid targets for new therapeutics and vac-

cines [24–28]. This understanding can be partially achieved using bioinformatic databases that

annotate function of specific genotypes by connecting tissue specific gene expression or aggre-

gating SNPs from analyses into functional pathways (e.g., gene set enrichment analysis, GSEA)

and can also be achieved by expression quantitative trait locus (eQTL) studies [27,29–32]. We

identified nine studies that have tied gene expression to tuberculosis phenotypes, but only four

of them assessed the role of DNA variants in the regulation of gene expression, and none

examined the regulation of gene expression in the context of clinical TB severity (S2 Table).

While bioinformatic databases can provide valuable information, they are limited because the

cells and tissues available are not always the most relevant to a given phenotype (e.g. TB sever-

ity) and they are not under conditions that recapitulate disease related exposures (e.g. active

TB) [32]. Further, some eQTL’s are only associated with gene expression in specific contexts,

such as an active MTB infection. In the case of MTB infection, resident alveolar macrophages

and recruited monocyte-derived macrophages are early targets of MTB in the lung, making

these cells informative with respect to the regulation of gene expression in the context of active

infection [33]. This situation has, however, yet to be explored [34,35]. Thus, datasets contain-

ing MTB stimulated macrophages can provide functionally relevant information on how vari-

ants associated with severity affect RNA expression during MTB infection in vitro.

In the present study, we first conducted a case-only genome-wide association study

(GWAS) of TBscore to identify variants associated with TB severity. We then followed-up

these associated loci in a different set of subjects without active TB disease, utilizing data from

monocyte-derived macrophages before and after in vitro stimulation with MTB to observe

how severity associated variants from our GWAS analysis associated with changes in gene

expression in the context of active infection. This study addresses the aforementioned gaps in

the current literature on active TB severity by 1) studying the genomic underpinnings of TB

severity using a meaningful, replicable, and validated clinical phenotype; and 2) bridging the

gap between genetic variants and immunological function by studying gene expression in the

macrophage response, as well as that of other immune cells. Our underlying hypothesis is that

genomic variation in humans affects the immunological response to active TB disease, as mea-

sured by gene expression, and that this correlates with clinical severity.
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Results

Study population

To discover the major genetic variants associated with TB severity, we examined 328 subjects with

pulmonary TB (Table 1, 149 subjects in Cohort 1 and 179 in Cohort 2). There were statistically

significant differences between the cohorts with respect to HIV status and TBscore, with Cohort 2

having more HIV+ subjects and a lower average TBscore. Both cohorts included more males than

females, most subjects were HIV-, and the average age was just under 29 in both cohorts.

Genome-wide association results

Individually, the two cohorts showed no sign of genome-wide inflation (S1 and S2 Figs) in

their Q-Q plots or genomic control statistics (λ<1.0). PCA analysis revealed that none of the

top 10 PC’s were associated with TBscore in either cohort. Based on this and the low amount

of variation explained by the PC’s, we decided not to include them in the initial regression

equation (S3 and S4 Figs). The Q-Q plot for the full range of meta-analytic P-values appears to

deviate from the line but the genomic control parameter (λ) was 0.98, indicating little to no

genome-wide inflation (Fig 1). Neither cohort showed any SNPs that were GWAS significant

when considered individually (S5 and S6 Figs). There were a total of 11,323 SNPs showing an

association with P<0.05 in both cohorts and beta values with the same direction of effect (i.e.

both negative or both positive) (S3 Table). Of these, 10,750 SNPs passed the I2 threshold for

heterogeneity (S3 Table). Out of the 10,750, there was one SNP on chromosome 5 (rs1848553)

that was GWAS significant with a meta-analytic P-value of 2.97x10-8 and a beta of -0.97

(Table 2 and Fig 2). Two other SNPs in this gene are close to genome wide significant as well

(p = 7.78x10-8 for both, Table 2 and Fig 3).

We conducted sensitivity analysis to evaluate the impact of PCs, and this analysis demon-

strated that the association of rs1848553 at a GWAS significant level is not sensitive to the PC’s

being in the regression equation in the analyses (S4 Table and S1 Methods). In addition, to

assess whether the top to PCs had any impact on association with TBscore, we adjusted each of

the 10,750 SNPs that passed heterogeneity threshold and there were no major changes in

results (S4 Table).

Lastly, the role of HIV status was assessed stratifying analyses by HIV status. As the number

of HIV+ individuals was small (n = 58), we compared HIV- to the entire data set. The effect

sizes (betas) were similar in HIV- and all individuals, but as expected p values were less signifi-

cant due to reduced sample sizes and an extra degree of freedom (S5 Table).

Annotation for GWAS Significant SNP: rs1848553

SNP rs1848553 is a C to T allele change, the MAF in the two cohorts combined was 24.7%, and

did not vary much between cohorts (S6 Table). The T allele is generally very rare in 1000G

Table 1. Cohort Characteristics.

Cohort 1 Cohort 2 Total P

Patients 149 179 328

Age ± SD 28.7 ± 9.8 28.8 ± 8.2 28.7 ± 8.9 0.91

Males (%) 81 (54.4%) 103 (57.5%) 184 (56.1%) 0.64

HIV+ (%) 15 (10.1%) 43 (24%) 58 (17.7%) 0.001*
TBscore ± SD 6.2 ± 2.1 5.5 ± 2.2 5.8 ± 2.2 0.002*

Differences in age and TBscore were analyzed using a Student’s t-test and differences in the percentage of males and HIV+ subjects were analyzed using Z-statistics. For

both tests, P<0.05 was considered a significant difference.

https://doi.org/10.1371/journal.pgen.1010387.t001
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reference populations. However, in African populations, the T allele is much more common

(21%) than in other continental populations, where the T allele ranged from 0–2.6% (S7

Table). The beta value indicates each copy of the minor allele is associated with just under a

1-point decrease in the TBscore in the additive model. This represents a clinically meaningful

reduction in severity [18], as well as an important reduction in the risk of mortality. Consider-

ing each T allele is associated with nearly a 1-point reduction in TBscore, T/T homozygotes

have nearly a 2 point reduction in TBscore relative to C/C homozygotes (Fig 4). The beta and

P-values did not vary across cohorts and the I2 for this SNP was <1%, indicating little to no

heterogeneity. The GWAS significant SNP, rs1848553, is located within an intron of the pro-

tein-coding RGS7BP gene [36]. There are 18 other SNPs in the same area (63.6Mb to 64.0Mb)

on chromosome 5 that show an association with TBscore with P<1x10-5, including the 2 SNPs

Fig 1. Quantile-quantile plot for meta-analytic p-values of association between SNPs and TBscore. The quantile-

quantile (Q-Q) plot shows the inverse log(10) of the observed p-values on the Y-axis relative to what is expected if

there was no association on the x-axis. Deviations above the line indicate an association with the outcome. If the line

deviates at the low quantiles, then this is considered evidence to suggest genome-wide inflation of the test statistics,

which typically indicates unmeasured confounding (λ = 0.98).

https://doi.org/10.1371/journal.pgen.1010387.g001
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that had a P<1x10-7 (Fig 3 and Table 2). RGS7BP codes for a protein that regulates trafficking

of G-proteins between the nucleus and the plasma membrane [37].

In previous work we included lineage x SNP interaction terms in analyses of data that

overlapped with the present study and demonstrated that lineage itself did not associate

with TBscore [38]. Further, both this prior paper as well as an earlier candidate gene study

demonstrate that the lack of first-order association between lineage and TBscore (i.e. lack of

significance in the absence of interaction) is a hallmark of likely co-evolution [39]. There-

fore, we included lineage as a first order covariate in sensitivity analysis for all SNPs with

P<1e-05 in the original analysis for association between SNP and TBscore (without adjust-

ment for lineage) (S8 Table). This sensitivity analysis showed that there was a slight increase

in P-value due to an increase in degrees of freedom, but the lineage variable itself was not

associated with TBscore even when included in the regression model using linear

adjustment.

Table 2. Annotation for Top 10 SNPs for Association with TBscore, Sorted by P-Value.

SNP CHR:BP Ref/Alt Gene Location Meta-analytic P-Value Meta-analytic β MAF in Cohort 1 MAF in Cohort 2

rs1848553 5:63805731 C/T RGS7BP Intron 2.97x10-8 -0.97 23.7% 25.1%

rs6870654 5:63831964 T/C RGS7BP Intron 7.78 x10-8 -0.83 41.7% 37.1%

rs6894580 5:63832264 G/A RGS7BP Intron 7.78 x10-8 -0.83 41.7% 37.1%

rs2829189 21:25966515 A/T None CTCF Binding Site 1.30 x10-7 1.23 12.5% 13.3%

rs60496505 5:63840208 A/C RGS7BP Intron 1.83 x10-7 -0.80 43.0% 38.3%

rs11210569 1:38805929 T/C LOC105378657 Intron 1.89 x10-7 0.89 26.3% 26.2%

rs6873254 5:63823469 A/G RGS7BP Intron 1.98 x10-7 -0.79 37.5% 37.9%

rs4816976 21:25967403 C/T None Intergenic 2.04 x10-7 1.19 12.8% 13.3%

rs2829200 21:25978459 G/C None Intergenic 2.58 x10-7 1.23 10.2% 13.0%

rs11208579 1:65534491 A/G JAK1 Promoter 2.91 x10-7 1.33 8.6% 13.8%

Location and minor allele in the 1000G project were ascertained from Ensembl Genome Browser v104. Ref/Alt refer to the reference and alternative alleles (which were

the major and minor alleles, respectively). Copies of the alternative allele are what the beta value is showing in the regression equation.

https://doi.org/10.1371/journal.pgen.1010387.t002

Fig 2. Manhattan plot for meta-analytic p-values of association between SNPs and TBscore. The Manhattan plot shows the inverse

log(10) of the p-values for the association between each SNP and TBscore on the y-axis and the x-axis represent the physical location

of each SNP on the chromosomes, which are in order from 1–22.

https://doi.org/10.1371/journal.pgen.1010387.g002
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Fig 3. LocusZoom plot for region surrounding rs1848553. The LocusZoom plot shows the region surrounding

rs1848553 on chromosome 5, using an LD panel and reference genome from the AFR super-population in the 1000G

project. Yellow and orange indicate higher levels of LD.

https://doi.org/10.1371/journal.pgen.1010387.g003

Fig 4. Boxplot of TBscore by rs1848553 (GWAS significant SNP) genotype. Distribution of TBscore by genotype.

https://doi.org/10.1371/journal.pgen.1010387.g004
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Chest X-Ray analysis

Of the 169 SNPs showing an association with TBscore at P<1 x10-5, 165 of these showed the

same direction of effect in the chest X-ray (CXR) analyses: i.e., the beta value for association

with TBscore was<0 and the OR for association with CXR extent was<1, or the TBscore asso-

ciation beta was >0 and the CXR OR was>1 (S7, S8 and S9 Figs, and S4 and S9 Tables).

While the direction of effect was consistent in 97.6% of the SNPs that showed an association

with TBscore at the P<1 x10-5 threshold, 20 of the 165 SNPs showed an association with CXR

extent with P<1 x10-5. Thus, the consistency in the direction of effects provides evidence that

the TBscore is a similar and valid measure for quantifying clinical severity.

Decile regression analyses

The decile regression for rs1848553 and TBscore was consistent with a negative or zero beta

value for the whole range of the TBscore (S10 Fig). This analysis shows that for effect of

rs1848553 genotype, there is a stronger effect at the highest end of the TBscore deciles than

elsewhere, but the effect never reverses direction. Thus, it appears that genetics has the greatest

influence on severity among the subset of active TB patients who have most severe or most

mild disease, and it makes the least impact on those with TBscores close to the mean.

Examination of prior published results related to susceptibility and severity

We examined our genome-wide TBscore association results for 12 previously identified TB

susceptibility SNPs and 3 SNPs in our data showed association with TBscore gene regions

associated with disease (P<0.05) (S10 Table)[40]. IFNG, TLR4, and VDR all showed P<0.05

for the association with TBscore, and SLC11A1 had P = 0.053. Most of the gene regions exam-

ined did not show a statistically significant association, indicating that there are likely unique

sets of genes that drive severity versus susceptibility. To follow-up our previously identified

association with IL12B variants [17], we examined the association between any SNPs +/- 50kb

from IL12B with P<0.05 for association with TBscore in Cohort 2 only, because Cohort 1 was

included in our previous publication [17]. We identified three SNPs with P<0.05 in this region

(S11 Table) in this analysis. These findings add further evidence that there are likely distinct

sets of genes associated with susceptibility to and severity of TB disease.

Enrichment analyses

A total of 169 SNP associations had P<1 x10-5 and were used for annotation and enrichment

analysis [41–43]. The analyses showed enrichment for two Reactome pathways: platelet

homeostasis and organic anion transport (Table 3). The genes driving the significance of these

two pathways did not overlap. Nor do any genes overlap between the two pathways (S12 and

S13 Tables). The MAGMA analysis of gene-level associations with TBscore did not show any

significant single gene results at the genome-wide level; the most significant association

(P = 2.1x10-3) was in the PSORS1C2 gene, also known as the psoriasis susceptibility 1 candidate

Table 3. Reactome Gene Set Enrichment Results for SNPs P<1x10-5.

GeneSet N n P-value FDR Genes

Transport of Organic Anions 12 3 1.94E-05 2.90x10-2 SLCO1C1, SLCO1B3, SLCO1A2
Platelet Homeostasis 91 5 4.26E-05 3.19x10-2 LRP8, PRKG1, KCNMB3, GNB4, PPP2R5D

N indicates the number of genes included in the entire set while n shows the number of genes that SNPs mapped to in our data that were a part of the whole set. The

FDR is the P-value for enrichment that has been corrected for the number of databases examined

https://doi.org/10.1371/journal.pgen.1010387.t003
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2 gene that is thought to confer susceptibility to psoriasis. There were 19,220 genes represented

in the summary statistics and the resulting p-value threshold for genome-wide significance at

the gene-level was P<2.6x10-6. While no individual genes or gene sets were found to be signifi-

cant, the MAGMA gene level analysis of tissue specificity showed that the genes represented in

the data are significantly differentially expressed, and specifically up-regulated, in blood vessels

based on tissue specificity data from GTEx v8 (Fig 5).

Using FUMA to determine if any of the 169 SNPs from our GWAS analysis were eQTL’s,

we found that 25 of the SNPs were eQTL’s that associate with expression of 28 genes; some of

the eQTL’s showed an association with more than one gene. There were a total of 150 eQTL

effects across different tissues and databases, as many of the 25 eQTL’s associated with expres-

sion in multiple tissues and/or databases (S11 Fig shows the 28 genes). Interestingly, 5 of the

SNPs with P<1x10-5 were cis eQTL’s for RGS7BP in the same region on chromosome 5 as the

top GWAS hit. This is consistent with the annotations that showed it is a known regulatory

Fig 5. Gene-level tissue specificity from MAGMA analysis and GTEx database. FUMA GWAS uses MAGMA gene-

level analyses and differential gene expression data from GTEx v8 to determine if the genes to which the SNPs are

mapped are significantly differentially expressed in any tissues. This analysis showed that the mapped genes were

significantly upregulated in blood vessels (indicated by the red color).

https://doi.org/10.1371/journal.pgen.1010387.g005
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variant. The STRING database analysis of protein-protein interactions (PPIs) did not show

significant enrichment for interactions or for any pathways (S11 Fig).

eQTL analysis of severity associated variants

We next examined whether these suggestive TB severity SNPs were eQTLs in MTB-stimulated

monocytes (cohort characteristics in S14 and S15 Tables). There were four SNPs that showed

significant SNP by stimulation interactions that were significant with FDR corrected P<0.1,

and all of these were cis-eQTL’s (Tables 4 and S15). Upon examining the marginal effects (no

interaction term in model) for these four significant SNPs, only rs2976562 at the Src-like adap-

tor (SLA) gene was significantly associated with expression in the MTB-stimulated stratum

(Table 4). This eQTL did not have a significant effect in media-only. Thus, rs2976562 meets

the definition of a stimulation dependent eQTL, as it is active only within the context of MTB

infection. In the analyses that were stratified by RSTR or LTBI status, this SNP showed a simi-

lar Beta (-0.71), but was not statistically significant (FDR = 0.15), likely due to the decreased

sample size. This indicates that the relationship between rs2976562 and SLA is similar between

RSTR and LTBI, and thus, robust to differences in patients’ clinical characteristics, despite

only being significant when the data are combined. Notably, rs2976562 showed interaction

with MTB stimulation that associated with both SLA and NDRG1 expression, but the associa-

tion with NDRG1 was not significant after FDR correction (Table 4). However, rs2976562 was

also found to be an eQTL for NDRG1 in the eQTLGen cis eQTL’s database during our interro-

gation of publicly available eQTL databases described above (S11 Fig and S16 Table).

MTB stimulation increases the expression of SLA for individuals with CC and CT geno-

types (Fig 6). The T allele for rs2976562 is associated with lower expression of SLA after stimu-

lation with MTB but is associated with a relative increase in SLA expression prior to MTB

stimulation (p = 0.03). Hence, the effect of rs2976562 is dependent on MTB infection status of

the cells. Comparing this to the boxplot of the relationship between rs2976562 and severity

shows that this same allele is associated with increased severity, especially among homozy-

gotes, who appear to have very severe disease on average (Fig 7). Thus, there appears to be a

relationship between downregulation of SLA upon MTB stimulation and more severe TB dis-

ease among T/T homozygotes.

The data show that a statistically significant relationship between SLA expression and

rs2976562 genotype only becomes apparent in the context of MTB stimulation, though the T/

T homozygotes do appear to have higher expression of SLA prior to stimulation but the

Table 4. Severity Associated cis-eQTL’s with P<0.05 for Effect of Interaction Between Stimulation and Genotype on Expression.

SNP Gene P FDR Beta

rs58648494 ANKRD33B 0.004 0.063 0.95

rs8100115 ICAM1 0.0041 0.065 0.81

rs8100115 DNMT1 0.0044 0.065 -0.44

*rs2976562 SLA 0.0049 0.068 -0.67

rs8100115 P2RY11 0.025 0.27 -0.79

rs2976562 NDRG1 0.029 0.28 0.63

rs4459669 KLF16 0.032 0.28 -0.25

rs11210569 MTF1 0.037 0.29 0.38

The p-value and beta is for the interaction between SNP and MTB stimulation and the gene column shows the gene for which the interaction is associated with

expression

*Indicates eQTL that was also significantly associated (P<0.05 after FDR correction) with expression in MTB-stimulated cells (Fig 6)

https://doi.org/10.1371/journal.pgen.1010387.t004

PLOS GENETICS Genetics of TB severity

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010387 March 27, 2023 10 / 25

https://doi.org/10.1371/journal.pgen.1010387.t004
https://doi.org/10.1371/journal.pgen.1010387


Fig 6. Relationship between rs2976562 alleles and SLA expression before and after stimulation with MTB. rs2976562

Genotype Distribution: 96 subjects CC, 44 CT, and 4 TT. P value in media = 0.41, β in media = 0.6, P-value in MTB

stimulated = 0.03, β in MTB stimulated = -0.32.

https://doi.org/10.1371/journal.pgen.1010387.g006

Fig 7. Relationship between rs2976562 alleles and TBscore (severity). Distribution of TBscore by genotype.

https://doi.org/10.1371/journal.pgen.1010387.g007
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relationship was not statistically significant. An examination of population genetic data shows

that the T allele is found at lowest frequency (11%) in African populations, but it is actually the

major allele in Asian and American populations (60–70%) and common in European popula-

tions [44] (S17 Table).

Discussion

Overall, our results show that human genetic variation is associated with TB severity. We

found a single SNP that was GWAS significant, but enrichment analyses and tissue specificity

both revealed variation in several processes related to vascular biology that have been previ-

ously implicated in the inflammatory response to infectious disease. Our eQTL analysis results

indicated that human genetic variation is an important aspect of antigen presentation may

affect the host response to infection with MTB. A better understanding of these mechanisms,

and how they relate to severity and mortality in active TB patients, may lead to greater thera-

peutic insight that can reduce the negative impact of active TB disease on human health.

While the MAGMA analysis did not show any statistically significant single-gene effects,

the tissue expression analysis of our MAGMA results showed that, collectively, the genes rep-

resented in our severity-associated results are significantly up-regulated in blood vessels in

response to MTB infection. The vascular endothelium plays an important role in thrombosis

and inflammation, and the vasculature is responsible for enabling the extravasation of immune

effector cells in the response to infection[45,46]. Acute changes in blood pressure during active

infection can lead to organ failure and death in COVID-19 (hypertension) and acute sepsis

(hypotension) [47,48]. Further, vasculitis and stroke (particularly in the context of TB menin-

gitis) have been posited as complications of TB disease as a result of inflammation and dysre-

gulation of vascular function [49–51]. If differences in inflammation, coagulation, and

regulation of vascular function lead to more severe outcomes and/or death, then an under-

standing of this phenomenon, and how to address it, could drive improvement in outcomes

and reduction in mortality for active TB patients.

Previous studies of TB susceptibility identified genes that are primarily involved in the host

immune response. However, the genetics of severity appears to incorporate a different biologi-

cal process, namely platelet homeostasis. Specifically, platelet homeostasis was found to be

enriched in the GSEA analyses using FUMA, and platelets are an important part of the

response to both inflammation and infection [52,53]. Platelets are involved in crosstalk

between immune effector cells and aid in the body’s ability to sense pathogens and enable

infection-induced inflammation [52–55]. This inflammation often leads to a state that boosts

coagulation in humans and a previous study showed that TB patients are in a pro-coagulatory

state [56,57]. The damage that dysregulation of platelet homeostasis and coagulation can cause

has also been demonstrated in acute sepsis and septic shock [58]. Notably, septic shock has

been‘previously reported as a common cause of death in pulmonary TB patients [59].That

most genes previously associated with susceptibility did not significantly associate with TB

severity emphasizes that although the two phenotypes have some overlap they are likely geneti-

cally and biologically distinct.

Our eQTL results help clarify the effect that some of the severity associated DNA variants

exert on gene expression. While the GWAS significant SNP was not shown to be an eQTL,

multiple SNPs within the same region as the GWAS significant SNP (rs1848553) appear to be

eQTL’s for RGS7BP, implying that there may be a functional role for this gene in active TB.

The stimulation-dependent eQTL, rs2976562, was an important regulator of SLA in the con-

text of in vitro stimulation in monocytes and resides in a flanking promoter region [60]. While
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this region does not contain the promoter for the SLA gene, it has been associated with expres-

sion of other genes and may be an enhancer for SLA.

The SLA (Src-like adaptor) gene codes for the SLAP-1 protein. The DICE database indicates

that SLA is expressed in a number of immune cells, including monocytes, but that its expres-

sion is highest in T-cells (S12 Fig) [61]. SLAP-1 is an adapter protein that negatively regulates

T-cell receptor signaling, inhibits T-cell antigen-receptor induced activation of nuclear factor

of activated T-cells, and is involved in the negative regulation of positive selection and mitosis

of T-cells [37,62,63]. SLAP has a role in activation and maturation of monocyte and dendritic

cells through downregulation of granulocyte macrophage colony-stimulating factor receptor

(GM-CSFR) [35]. SLAP deficient bone marrow-derived dendritic cells produce less TNF-α
and IL12 in response to LPS, fail to stimulate T-cells in mixed lymphocyte reactions, and are

less effective at inducing IFN-γ secretion from T cells [64]. Thus, a deficiency of SLAP-1 likely

impairs a robust immune response, and reduces ability to generate cytokines (IL12, IFN-γ,

and TNF-α) that are important drivers of the host immune response to active TB infection

[65–67]. Further, variants that code for these proteins have previously been implicated in TB

severity and/or susceptibility. Our results in conjunction with prior literature on the role of

SLA indicate that decreased SLA expression may be associated with more severe disease and

this may be explained by dysregulation in the maturation of monocytes and dendritic cells.

This study is not without limitations: 1) our sample size is small by the standards of many

modern GWAS studies; and 2) there were differences between the two cohorts, namely in

TBscore and in the proportion of HIV+ individuals. The analyses controlled for the latter fac-

tor by adjusting for HIV status and then assessing HIV- individuals only. That said, the geno-

mic control parameter was below 1, so it does not appear that there was significant genome-

wide inflation. Furthermore, we used a stringent I2 threshold to exclude SNPs showing hetero-

geneity of effects. Thus, it is unlikely that differences between the two cohorts substantially

affected the associations. For our eQTL analyses, a more directly related phenotype would

have been cells harvested from patients with active TB, as this was the patient population from

our GWAS analysis. However, the stratified analysis indicated that the association we observed

was similar in latent tuberculosis infected (LTBI) patients, and thus unlikely to be sensitive to

the inclusion of RSTR subjects in the data. The small sample size also affected our eQTL analy-

sis; the strongest association between rs2976562 genotype and SLA expression was among TT

homozygotes, of which there were only 4.

In conclusion, this study demonstrates that TB severity associates with genetic variation

and indicates that variation in both the regulation of platelet homeostasis and vascular func-

tion may be driving outcomes for active TB patients. Our eQTL results indicated that regula-

tion of SLAmay be an important driver of variation in active TB severity due to an impact on

a fundamental aspect of the host immune response to TB disease. Further study of the impact

of SLAmay yield insight into a more effective host immune response that is associated with

less severity and mortality. Future studies should consider the role that infection-induced

inflammation plays in active TB severity, in the hope that mortality and other severe outcomes

might be mitigated or avoided through a better understanding of these processes.

Methods

Ethics statement

The study protocol was approved by the National HIV/AIDS Research Committee of Uganda

and the institutional review board at University Hospitals Cleveland Medical Center. Final

clearance was given by the Uganda National Council for Science and Technology. All partici-

pants provided written informed consent.
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Study participants

TB cases and extensive clinical data were ascertained as part of the Kawempe Community

Health Study (KC Study) [68], a longitudinal household contact study conducted in Kampala,

Uganda from 2002–2017 through the Uganda-CWRU Research Collaboration. The KC Study

enrolled 3,818 total participants, of which there were 872 adult active TB index cases. In the

present case-only analysis of severity, a subset, for whom available genotype data and the infor-

mation necessary for assigning the TBscore exists, were identified from these 872 index cases

(S1 Table). The TBscore, developed for adults, may not appropriate for individuals under 15.

Thus, our sample was limited to TB cases 15 years old and older. We examined two subsets, as

described in our past publications[38,39], that will be referred to as Cohort 1 and Cohort 2

(N = 149 and N = 179, respectively) according to different genotyping platforms available at dif-

ferent times during the study (described below). The Bandim TBscore was constructed as

described previously [19,69]; further details are provided in the S1 Methods.

All TB cases were culture-confirmed based on isolation of MTB from sputum and clinical

characteristics were assessed during the visit at which subjects were diagnosed with active TB.

X-rays were performed at the Uganda Cancer Institute. Additional details about the original

study protocol are described elsewhere [68]. The two subsets differed in percentage of HIV posi-

tive individuals (Table 1); therefore, HIV status was used as a covariate in all regression models.

Previous analyses of microsatellite data from these cohorts indicated no substantial population

substructure, as confirmed by previous principal components (PC) analyses [17,70].

Monocyte transcriptional profiles

A follow-up cohort including 72 Ugandan subjects without active TB infection was included in

a transcriptome-wide study to assess the association between gene expression and variants we

identified in our GWAS. These subjects were ascertained from the KC Study but included only

subjects without active TB because this cohort had both genotype and RNA expression data

available. The follow-up cohort, without active TB infection, was part of an analysis that exam-

ined whole blood and monocytes isolated from highly MTB-exposed, HIV-negative donors in

Uganda [71,72]. Some of these subjects (n = 34) showed resistance (classified using TST and

IGRA) to infection by MTB after repeated exposure, and are referred to as resisters (RSTR), as

previously described [73,74]. In addition to the RSTR subjects, there were donors with latent

tuberculosis (LTBI) defined by concordant positive TST/IGRA. For this study, monocytes were

isolated from PBMCs and then stimulated with MTB for 6 hours. RNA expression levels were

assessed in these samples using RNA-seq with and without stimulation by MTB [75].

Genotyping and QC

Cohort 1 was genotyped on the Illumina Infinium MegaEX chip, comprising 2.1M markers

genome-wide. For Cohort 2, we used the Illumina HumanOmni5 microarray comprising

4.3M markers genome-wide, offering high genome wide coverage of common genetic varia-

tion within African populations [76]. Prior to imputation, only SNPs that had a call rate greater

than 0.98, minor allele frequency (MAF) > 0.05, and did not show deviation from Hardy-

Weinberg equilibrium (p<10−6) before and after imputation in both samples were used in the

analysis. The total number of SNPs that overlapped between the two cohorts after imputation

quality control (see S1 Methods) was 6,421,278 (S13 Fig). Principal components were com-

puted using Plink v1.9 (S3 and S4 Figs).

Our follow-up cohort without active TB used for the analysis of monocyte derived macro-

phages was genotyped separately from TB cases in Cohorts 1 and 2. The genotyping for this

cohort was done on the Illumina MegaEx Chip and had 1,042,921 SNPs prior to imputation.
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To maximize the overlap between the list of SNPs associated with TBscore and those included

in the genotype data for the 72 subjects with RNA-seq data, we imputed SNP calls on the fol-

low-up cohort with the Michigan Imputation Server (Minimac4) with a Minimac R2 >0.3 on

the whole MegaEx chip [77]. The 1000G Phase 3 v5 AFR panel was used as the reference popu-

lation and Eagle2 was used for phasing [78]. After imputation, we restricted the analysis to

SNPs with MAF > 0.05, genotyping rate> 98%, and those that did not violate Hardy-Wein-

berg equilibrium (at p<10−6). Gene expression was measured using RNA-seq in monocyte-

derived macrophages, as previously described (S1 Methods) [72,75].

Genome-wide association analysis

To assess the association between genetic variants and TBscore, we utilized a linear regression

model with sex and HIV status as covariates in Plink v1.9 software. We then combined the sum-

mary statistics from the two cohorts to generate meta-analysis derived p-values. To determine

meta-analysis p-values and beta coefficients across the two cohorts, we utilized random effects

meta-analysis with inverse variance weighting. Based on the Cochrane handbook recommenda-

tions, all variants with an I2 > 40% were excluded from the analysis to reduce heterogeneity

between the cohorts [79]. To be considered GWAS significant, the association between a variant

and TBscore had to have a p<0.05 in both cohorts, the sign of the beta value had to be the same

in both cohorts, and the meta-analysis needed to meet the canonical GWAS threshold (P
<10−8). A power calculation showed that, with our sample size and mean TBscore, we had 48%

power to detect a difference of 1 point on the TBscore at p = 5x10-8 and at a minor allele fre-

quency of 0.25, using an additive model. To be included in further enrichment and annotation

analyses, the meta-analytic P-value had to be below 1x10-5. We chose this latter threshold

because previous studies have shown that some variants that do not meet the GWAS threshold

may still have important regulatory or biological functions, and may be worthy of further study

and follow-up, especially in the context of gene regulation [41–43]. We used FUMA GWAS to

annotate and enrich our SNPs below this threshold. Analyses performed with FUMA included

gene mapping, regulatory annotation, tissue specificity, MAGMA analysis (gene-based analy-

sis), gene set enrichment, and pathway analyses (S1 Methods) [80]. In addition to FUMA, we

utilized GeneCards, Ensembl, DICE, and STRING DB to annotate and enrich our results with

respect to function, expression, and downstream protein interactions [36,37,61,81]. MAGMA is

a computational biology tool that utilizes the significance and direction of effect of multiple

SNPs aggregated together in the same genes [82]. It is similar to a multiple linear principal com-

ponents regression model, using an F-test to compute the gene-level p-value [82].

To look more closely at SNPs that showed GWAS significance, we performed decile regres-

sion on all significant SNPs to determine if and how their relationship with TBscore varied

across the distribution. Decile regression, performed using QuantReg Software in R 3.6.3,

shows how the beta values for the SNPs in the linear regression differ by deciles of the TBscore.

The decile regression utilized the same covariates in the regression equation as the GWAS

analysis (HIV status and sex).

To validate our GWAS summary statistics showing association with TBscore, we also exam-

ined the association between the genetic variants of interest and radiological severity, as deter-

mined by extent of disease using chest X-ray (CXR) data. Extent of lung involvement was

measured using the US National Tuberculosis and Respiratory Disease Association (US

NTRDA) grading system from radiographs taken at the Uganda Cancer Institute and per-

formed on the same patients as the analysis of TBscore (i.e. they were identical to Cohorts 1

and 2) [83]. The US NTRDA grading system includes categories 0–3 based on extent of disease

upon radiological examination (S7 Fig). The categories ranged from 0 as the least extensive
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disease (i.e. least severe) to 3 with the most extensive. For these analyses, we combined catego-

ries 0 and 1 and categories 2 and 3 from the US NTRDA grading system. This was operationa-

lized as a binary variable and the analysis was done using a logistic regression model that

adjusted for sex and HIV status. We tested all SNPs with P<1x10-5 for the association with

TBscore for association with CXR severity.

eQTL analysis

For our eQTL analysis in the follow-up cohort of 72 subjects without active TB, we first gener-

ated a list of genes that were differentially expressed in response to MTB infection, so we could

narrow the list to genes that are regulated in response to active infection. We first analyzed

eQTL’s using the cross linear model that tests for interactions between genotype (coded addi-

tively) and MTB stimulation status and its association with expression in a linear regression

model. For our cross-linear model, if Y = expression, X1 = SNP(additive coding), X2 = Age, X3

= Sex, and X4 = MTB stimulation status, then the regression equation for this analysis was: Y =

β0 +β1X1 + β2X2 + β3X3 + β4 (X4) + β5 (X1X4) + ε. We followed up eQTL’s that showed an

FDR< 0.1 for the interaction term by testing them for association with gene expression in an

analysis that stratified by MTB stimulation. All models were adjusted for age and sex. To meet

the definition of a stimulation dependent eQTL, a SNP had to show a statistically significant

effect (an FDR< 0.1) in the MTB stimulated samples and a non-significant effect in the unsti-

mulated samples (i.e., it had to be active specifically within the context of active MTB infec-

tion). We examined our list of severity-associated SNPs (i.e. those with P<1x10-5 for

association with TBscore) within this list of genes that were differentially expressed in response

to MTB stimulation (e.g., genes with significant interaction terms in the model above). All

eQTL analysis was performed using the Matrix eQTL package in R v3.6.3 [84]. Additional

details about the eQTL analysis are found in the S1 Methods. Thus, the primary goal was to

identify eQTL’s solely active after MTB stimulation, so we could narrow our results down to

variants that play a role within the context of active TB that influenced severity. To determine

if the eQTL effects observed in the whole cohort differ between those who are RSTR or LTBI,

we performed a stratified analysis among only LTBI subjects and observed how this affected

the associations we identified (eg. first order term).

In addition to the eQTL analysis using the data from our monocyte derived macrophage

samples, we used FUMA GWAS to query a number of publicly available eQTL databases with

the severity associated SNPs [80]. FUMA simultaneously queried several databases to see if

these SNPs are eQTL’s for any of the genes and in any of the tissues included in the eQTL cata-

logue, eQTLgen, BIOSQTL, Blood eQTL Browser, DICE, xQTL Server, and GTEx v8 databases

[61,85–90]. In order to enrich these results and look for common biological functions, we

uploaded the list of genes for which these SNPs were eQTL’s into the STRING database [91].

This database can implicate protein-protein interactions (PPIs) between the proteins down-

stream of the genes of interest as well as look for pathway enrichment such as KEGG or Gene

Ontologies. PPIs among genes for which the SNPs from our GWAS analysis showed evidence

of regulation can link their changes in expression to potential functional roles for their associ-

ated proteins and help explain why SNPS associated with severity are regulating these genes.
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