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Abstract

To discover novel catabolic enzymes and transporters, we combined high-throughput

genetic data from 29 bacteria with an automated tool to find gaps in their catabolic pathways.

GapMind for carbon sources automatically annotates the uptake and catabolism of 62 com-

pounds in bacterial and archaeal genomes. For the compounds that are utilized by the 29

bacteria, we systematically examined the gaps in GapMind’s predicted pathways, and we

used the mutant fitness data to find additional genes that were involved in their utilization.

We identified novel pathways or enzymes for the utilization of glucosamine, citrulline, myo-

inositol, lactose, and phenylacetate, and we annotated 299 diverged enzymes and trans-

porters. We also curated 125 proteins from published reports. For the 29 bacteria with

genetic data, GapMind finds high-confidence paths for 85% of utilized carbon sources. In

diverse bacteria and archaea, 38% of utilized carbon sources have high-confidence paths,

which was improved from 27% by incorporating the fitness-based annotations and our cura-

tion. GapMind for carbon sources is available as a web server (http://papers.genomics.lbl.

gov/carbon) and takes just 30 seconds for the typical genome.

Author summary

For many microbes, we know little about them beyond their genome sequences. In princi-

ple, we could use genome sequences to predict microbes’ traits, such as which carbon

sources they can eat, but first we need to identify more of the genes involved. We built an

automated tool, GapMind, to annotate the transporters and enzymes for utilizing 62 com-

mon carbon sources, and used GapMind to identify gaps: transporters or enzymes that

should be present, to explain how a bacterium uses a carbon source, but could not be

found in the genome. By comparing these gaps to large-scale genetic data for 29 bacteria,

we identified hundreds of novel transporters and enzymes, and a new metabolic pathway

for consuming glucosamine. When we added these novel genes to GapMind, its results

for diverse bacteria and archaea improved significantly.

PLOS GENETICS

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010156 April 13, 2022 1 / 27

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Price MN, Deutschbauer AM, Arkin AP

(2022) Filling gaps in bacterial catabolic pathways

with computation and high-throughput genetics.

PLoS Genet 18(4): e1010156. https://doi.org/

10.1371/journal.pgen.1010156

Editor: Bernhard O. Palsson, University of

California San Diego, UNITED STATES

Received: November 23, 2021

Accepted: March 18, 2022

Published: April 13, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pgen.1010156

Copyright: © 2022 Price et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The code for

GapMind, including the rules that describe carbon

catabolism, is available in the PaperBLAST code

base (https://github.com/morgannprice/

PaperBLAST). The code and the analysis results

https://orcid.org/0000-0002-4251-0362
https://orcid.org/0000-0003-2728-7622
https://orcid.org/0000-0002-4999-2931
http://papers.genomics.lbl.gov/carbon
http://papers.genomics.lbl.gov/carbon
https://doi.org/10.1371/journal.pgen.1010156
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010156&domain=pdf&date_stamp=2022-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010156&domain=pdf&date_stamp=2022-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010156&domain=pdf&date_stamp=2022-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010156&domain=pdf&date_stamp=2022-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010156&domain=pdf&date_stamp=2022-04-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pgen.1010156&domain=pdf&date_stamp=2022-04-13
https://doi.org/10.1371/journal.pgen.1010156
https://doi.org/10.1371/journal.pgen.1010156
https://doi.org/10.1371/journal.pgen.1010156
http://creativecommons.org/licenses/by/4.0/
https://github.com/morgannprice/PaperBLAST
https://github.com/morgannprice/PaperBLAST


Introduction

Genome sequences are now available for tens of thousands of bacterial species [1], and for

most of these bacteria, little else is known about them. In principle, the genome sequence

could allow us to predict the capabilities of the organism, such as what nutrients it can use, but

in practice this is challenging. For instance, metabolic models can be generated automatically

from a genome sequence, and these metabolic models can be used to predict which carbon

sources the organism can grow on, but these predictions are only 50–70% accurate [2,3]. More

accurate predictions are not currently feasible because annotations of the functions of trans-

porters and enzymes are often erroneous [4,5] and because new families of transporters and

enzymes and new catabolic pathways continue to be discovered. Also, even if the genome con-

tains genes for the necessary proteins, the proteins might not be expressed.

To discover novel catabolic enzymes and transporters on a large scale, we used a combination

of large-scale mutant fitness data and computation. First, we built an automated tool to annotate

catabolic pathways. GapMind for carbon sources uses a similar approach as GapMind for amino

acids [6]. GapMind relies on known pathways (mostly from MetaCyc [7]) and a database of

experimentally-characterized proteins. Given a genome and a carbon source, GapMind identifies

the most plausible pathway for consuming the compound, and it highlights any gaps.

Next, we used large-scale mutant fitness data from 29 heterotrophic bacteria [4,8] to try and

fill these gaps. For each of these bacteria, a pool of tens of thousands of barcoded transposon

mutants was grown in various defined media and the change in each mutant’s abundance was

quantified by DNA sequencing. If the initial version of GapMind (developed without using the

fitness data) had any gaps, we tried to fill the gaps by using genes that were important for fit-

ness during growth on that carbon source, but were not important in most other conditions.

Using this approach, we identified functions for hundreds of diverged proteins. Highlights

include a new pathway for the utilization of glucosamine; a new family of citrullinases; a new

family of aldolases that are involved in myo-inositol catabolism; the first identification of

genes for 3’-ketolactose hydrolases, which are involved in lactose catabolism; and a novel oxe-

pin-CoA hydrolase for phenylacetate catabolism. By using PaperBLAST to find papers about

homologs of the candidate genes [9], we also identified over 100 relevant proteins that were

experimentally characterized but whose function was not described in curated databases such

as Swiss-Prot [10], BRENDA [11], MetaCyc [7], CAZy [12], or TCDB [13].

We incorporated all of these additional enzymes and transporters into GapMind, and we

asked how much the coverage of catabolism in diverse bacteria and archaea had improved. We

relied on the IJSEM database, which reports carbon sources utilized by diverse bacteria and

archaea [14]. (The International Journal of Systematic and Environmental Microbiology pub-

lishes species descriptions, which often report carbon sources that are utilized by the type strain.)

Across diverse bacteria and archaea with sequenced genomes, coverage by high-confidence paths

was improved by 11% (from 27% to 38%) after the incorporation of annotated and curated pro-

teins into GapMind. We also used the fitness data from the 29 heterotrophic bacteria to confirm

that GapMind usually selects the correct pathway and genes for utilizing each carbon source.

Overall, we filled many gaps in carbon catabolism, and we improved our understanding of catab-

olism in diverse prokaryotes significantly, but much remains to be discovered.

Results and discussion

Overview of GapMind for carbon sources

GapMind describes the utilization of 62 carbon sources, including 19 amino acids, 19 simple

sugars or sugar acids, 5 disaccharides, and 11 organic acids (Fig 1). GapMind describes the
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uptake of each compound and enzymatic transformation until the compound reaches central

metabolism. For the catabolism of the standard amino acids, GapMind does not describe

transamination reactions, such as the conversion of L-alanine to pyruvate, because these trans-

aminases tend to be non-specific and genetically redundant (see [6]). For central intermediates

such as pyruvate, GapMind only describes their uptake; similarly, for L-alanine and L-aspar-

tate, which are converted to central metabolites by transamination, GapMind describes only

their uptake. More broadly, GapMind does not represent central metabolism or the produc-

tion of ATP; for instance, GapMind represents the utilization of acetate by its uptake and con-

version to acetyl-CoA, but not the generation of energy from acetyl-CoA (such as by the

tricarboxylic acid cycle and the glyoxylate shunt). GapMind only includes pathways that yield

fixed carbon and hence allow growth, so many fermentative pathways that yield energy and

by-products are not included. For instance, some anaerobic bacteria can ferment leucine to

isovalerate (3-methylbutanoate), isocaproate (4-methylpentanoate), and CO2; this process gen-

erates energy but does not yield any fixed carbon, and is not represented in GapMind. Gap-

Mind also does not represent uptake through outer membrane porins: porins are often non-

specific (as in Escherichia coli) or unnecessary (as in most archaea and Firmicutes).

GapMind describes the utilization of carbon sources with 1,309 steps, where each step cor-

responds to a group of proteins that have the same function as an enzyme, a transporter, or a

component thereof. (Enzymes and transporters with multiple subunits are represented with

one “step” per subunit.) 493 steps are enzymes and 816 steps are transporters. These steps are

represented by the sequences of 6,742 experimentally-characterized proteins and by 164 hid-

den Markov models of protein families from TIGRFAMs [15]. Most of these functionally-

Fig 1. The 62 carbon sources described in GapMind.

https://doi.org/10.1371/journal.pgen.1010156.g001
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characterized proteins are from curated databases, but 11% were identified from fitness data

while building GapMind, and 2% were curated from the literature while building GapMind

(Table 1). 56% of these proteins are from bacteria, 6% are from archaea, and 38% are from

eukaryotes.

Based on these steps, GapMind describes the utilization of each carbon source with alter-

nate rules. For example, pyruvate can be transported by nine different types of transporters,

three of which have more than one component. Most of the carbon sources can be degraded

by more than one metabolic pathway: the exceptions are deoxyribonate, D-lactate, L-leucine,

L-serine, L-tyrosine, and seven carbon sources for which only transport is represented.

Given the steps and potential pathways, and a genome of interest, GapMind searches for

candidates for each step, and then selects the best path for the utilization of each carbon source

(Fig 2). This aspect of GapMind for carbon sources is almost unchanged from GapMind for

amino acid biosynthesis [6]. Briefly, GapMind searches the predicted proteins for candidates

by using ublast (a fast alternative to protein BLAST) or HMMer [16,17]. A candidate from

ublast is considered high-confidence if it is at least 40% identical (amino acid sequence) to a

characterized protein, the alignment has at least 80% coverage, and the candidate is more simi-

lar to proteins known to perform this step than to characterized proteins with other functions.

Similarity near this threshold (40–50% identity and 80% coverage) corresponds to an esti-

mated 73% accuracy for annotating enzymes, but just 32% accuracy for annotating transport-

ers (see Materials and Methods). Other candidates from ublast are medium-confidence if they

are at least 30% identical with 80% coverage and are less similar to characterized proteins with

other functions, or if they are at least 40% identical with 70% coverage (regardless of similarity

to proteins with other functions). A candidate from HMMer is considered high-confidence if

the alignment covers 80% of the model and the protein is not too similar to proteins with

other functions (no alignment with 40% identity and 80% coverage). Given the confidence

level for each step, GapMind looks for a path that has all high-confidence steps, or has no low-

confidence steps, or has the highest total score. (Each high-confidence step scores +1, each

medium-confidence step scores -0.1, and each low-confidence step scores -2.) GapMind for

carbon sources typically takes about 30 seconds to analyze a genome.

We will first describe the novel biology we discovered while building GapMind, and then

assess the quality of its results.

Table 1. The sources of the experimentally-characterized proteins that perform the steps in GapMind. The total is

less than the sum of the entries because many proteins appear in more than one database.

Source Proteins

Swiss-Prot (characterized subset) 2,421

BRENDA 2,099

MetaCyc 1,137

CAZy 1,108

TCDB 766

From fitness data (this study) 716

CharProtDB 435

From fitness data (previous) 428

EcoCyc 331

From literature (this study) 125

Total 6,742

https://doi.org/10.1371/journal.pgen.1010156.t001
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Glucosamine utilization via putative transmembrane transacetylase NagX

Fitness data from five diverse bacteria showed that the protein NagX is involved in the utiliza-

tion of glucosamine as the sole source of carbon or nitrogen (Fig 3A–3E). The NagX family of

transmembrane proteins is often found in operons for chitin utilization [18], but its function

is not known. In four of the five bacteria, we found that N-acetylglucosamine 6-phosphate

Fig 2. Example results for Pseudomonas fluorescens FW300-N2E2. A page on the GapMind website shows the 62 compounds in order; this figure shows

screenshots for the first 10 (highest-scoring) and last 10 (lowest-scoring) carbon sources. Hovering on a step shows the description and the best candidate, if

any. (Some transporter components are named by the genes’ locus tags; none of these locus tags are from P. fluorescens FW300-N2E2 itself.) Clicking on a step

shows all the candidates for that step. Clicking on a compound shows alternate pathways.

https://doi.org/10.1371/journal.pgen.1010156.g002
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deacetylase NagA was also involved in glucosamine utilization (Fig 3A–3D). And in four of the

five bacteria, the transporter NagP or another putative sugar transporter were also involved in

glucosamine utilization (Fig 3A, 3B, 3D and 3E).

Fig 3. Role of NagX in glucosamine utilization. (A-E) Fitness data from five different bacteria with glucosamine or NAcGln as the sole source of carbon or

nitrogen. As a control, we also show fitness with D,L-lactate or glucose as the carbon source. Each colored cell shows the fitness value for a gene in an individual

experiment. The fitness of a gene is the log2 change in the relative abundance of mutants in that gene during 4–8 generations of growth (from inoculation at

OD600 = 0.02 until saturation). Cells with strongly negative fitness are dark blue. (F) The proposed role of NagX.

https://doi.org/10.1371/journal.pgen.1010156.g003
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NagX proteins are distantly related (25–31% amino acid identity) to human heparan-α-glu-

cosaminide N-acetyltransferase (HGSNAT), which transfers acetyl groups from cytoplasmic

acetyl-CoA to terminal glucosamine residues in lysosomal heparan sulfate [19]. Similarly, we

propose that NagX is a transmembrane transacetylase that uses cytoplasmic acetyl-CoA to

convert periplasmic glucosamine to N-acetylglucosamine (NAcGln). Although NagX is much

shorter than HGSNAT, with 309–395 amino acids instead of 663, NagX contains the entire

catalytic domain (PFam PF07786; [20]). Furthermore, the catalytic histidine which carries the

acetyl group across the membrane is conserved: for instance, His72 of Shewana3_3111 aligns

to His297 of HGSNAT (SwissProt Q68CP4). Once NAcGln is formed, it can be transported

across the membrane and phosphorylated (such as by NagP and NagK, or by a phosphotrans-

ferase system), followed by deacetylation by NagA. Our proposal explains why NagA, NagP,

and NagK are involved in glucosamine utilization as well as NAcGln utilization. Our proposal

also explains why NagX is important for the utilization of glucosamine but not NAcGln (Fig

3A–3E, although NagX might be involved in NAcGln utilization in Caulobacter crescentus).
We also noticed that in Echinicola vietnamensis KMM 6221, a putative acetyl-CoA synthase

(acs) is important during glucosamine utilization (Fig 3E), but not in most other conditions

(not shown); we speculate that it produces acetyl-CoA for NagX.

NagX is also distantly related to a putative N-acetylmuramate transporter (TfMurT) from

Tannerella forsythia [21]. So we also considered that NagX might be a glucosamine trans-

porter. However, this seems inconsistent with the involvement of the deacetylase NagA and of

other sugar transporters in glucosamine utilization.

Citrulline utilization via putative citrullinase CtlX

Using fitness data from Phaeobacter inhibensDSM 17395 (BS107), Pseudomonas simiae
WCS417, and Pseudomonas fluorescens FW300-N2E3, we previously identified [4] a family of

putative hydrolases that are involved in citrulline utilization (Fig 4A–4C). These hydrolases,

which we will call CtlX, are distantly related to arginine deiminases, which hydrolyze arginine

to citrulline and ammonia. We previously proposed that the arginine deiminase reaction

might run in reverse [4]. But eQuilibrator estimates that the reverse reaction is thermodynami-

cally unfavorable, with an equilibrium constant of under 10−6 M-1 [22]. If arginine deiminase

is operating in reverse, then the genes for converting citrulline to arginine (argGH) should be

dispensable. We lack fitness data for argGH from P. simiaeWCS417 or P. inhibens BS107, but

in P. fluorescens FW300-N2E3, argG and argH were very important for fitness with citrulline

as the sole source of either carbon or nitrogen (Fig 4A). Furthermore, the arginine deiminases

and related enzymes that act on substrates with guanidino groups (-NH-C (= NH2
+)-NH2)

have two conserved substrate-binding aspartate residues [23], while CtlX has asparagines at

these positions instead (FTRD! FPNN and HLD!HTN).

We noticed that CtlX is often encoded adjacent to ornithine cyclodeaminase ocd or orni-

thine/arginine N-succinyltransferase aruG (Fig 4D). These enzymes are also involved in citrul-

line utilization (Fig 4A–4C), which suggests that ornithine is an intermediate. This led us to

consider that CtlX might hydrolyze citrulline to ornithine and carbamate (Fig 4E). The

replacement of substrate-binding aspartates with asparagines seems consistent with an amide

substrate.

Unfortunately, citrulline is not included in the IJSEM database [14], so we do not have a

large data set of citrulline-utilizing bacteria. But ctlX is present in four of the five bacteria we

have studied that grow with citrulline as the sole source of carbon. (Besides the three bacteria

shown in Fig 4, ctlX is present in P. fluorescens FW300-N1B4, but we lack fitness data for the

gene.) From a study of bacteria that can use citrulline as the sole source of carbon [24], we
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Fig 4. Putative citrullinase CtlX. (A-C) In diverse bacteria, ctlX and either ornithine cyclodeaminase (ocd) or ornithine/arginine succinyltransferase (aruFG)

are important for the utilization of citrulline as a carbon source. The color-coded cells show fitness values, which are log2 changes in the relative abundance of

mutants in each gene. (D) Gene neighborhoods of ctlX. The drawing is modified from Gene Graphics [25]. (E) Pathways of citrulline utilization.

https://doi.org/10.1371/journal.pgen.1010156.g004
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found two with genome sequences, and both encode ctlX (C8E02_RS07400 from Vogesella
indigofera ATCC 19706 = DSM 3303, and DM41_RS32400 from Burkholderia cepaciaNCTC

10743 = ATCC 25416 = DSM 7288). Furthemore, ctlX from B. cepacia is encoded adjacent to

ocd (Fig 4D). So CtlX is widespread in citrulline-utilizing bacteria.

To further investigate the role of CtlX, we collected additional fitness data for P. fluorescens
FW300-N2E3, P. simiaeWCS417, and P. inhibensDSM 17395 during growth with varying

concentrations of citrulline or ornithine as the sole source of carbon. We had expected that

CtlX would be important for the utilization of citrulline, but not ornithine. Instead, we

observed that CtlX was important for the utilization of both citrulline and ornithine in all

three bacteria. We suspect that ornithine is being converted to citrulline and then arginine by

enzymes of the arginine biosynthesis pathway, and that CtlX is important for fitness because it

counteracts this. First, P. fluorescens FW300-N2E3 has three ways to consume arginine: the

arginine succinyltransferase pathway, the arginine decarboxylase pathway, and arginine deimi-

nase ArcA, which converts arginine to citrulline. Genes from all three pathways are strongly

detrimental to fitness during growth on ornithine; in other words, mutants in these pathways

are enriched after growth on ornithine (S1 Fig). This suggests that an excess of arginine is

being formed (although we do not understand why disrupting just one of three catabolic path-

ways is beneficial). Second, in P. simiaeWCS417, several genes from the arginine succinyl-

transferase pathway are important for fitness during growth on ornithine (S2 Fig). This is

consistent with flux to arginine in excess of requirements for protein synthesis, although these

genes could be involved in ornithine catabolism instead, as AruFG can succinylate both argi-

nine and ornithine [26]. We also noticed that all four transposon insertions within the ctlX of

P. simiaeWCS147 have the antibiotic resistance marker in the antisense orientation, which

might prevent expression of the downstream ornithine cyclodeaminase (ocd) in these strains.

Ocd is important for utilization of ornithine (S2 Fig), so the phenotype of insertions in ctlX
could be a polar effect. Third, in P. inhibensDSM 17395, arginase (which hydrolyzes arginine

to ornithine and urea) was very important for fitness during growth on either ornithine or cit-

rulline, which again implies excess flux to arginine (S3 Fig). Because of the complexity of cit-

rulline and arginine metabolism, biochemical studies will be needed to prove the function of

CtlX. In the current release of GapMind, we assume that CtlX converts citrulline to ornithine.

The only citrullinase from bacteria that has been reported before, Ctu from Francisella
tularensis [27], is not homologous to CltX (PFam PF00795, not PF02274). Also, many Pseudo-
monas can use ornithine carbamoyltransferase and carbamate kinase (both in reverse) to con-

sume citrulline and form ATP (Fig 4E). (Both of the Pseudomonas with the putative

citrullinase also encode carbamate kinase, but Phaeobacter inhibensDSM 17395 does not.) In

Pseudomonas aeruginosa, these enzymes are repressed under aerobic conditions [28], and all

of our experiments with citrulline were conducted aerobically, so the carbamate kinase path-

way may not have been expressed. Although the carbamate kinase pathway generates one

more ATP per molecule of citrulline than the citrullinase pathway, the first step of the carba-

mate kinase pathway (ornithine carbamoyltransferase in reverse) is thermodynamically quite

unfavorable, with an estimated equilibrium constant of 5 � 10−6 [22]. So we speculate that the

citrullinase pathway is faster, which would explain why it is preferred when oxygen is

available.

An alternative 2-deoxy-5-keto-D-gluconate 6-phosphate aldolase for myo-

inositol utilization

2-deoxy-5-keto-D-gluconate 6-phosphate aldolase (EC 4.1.2.29) is involved in myo-inositol

catabolism via inosose dehydratase and 5-deoxy-D-glucuronate. As far as we know, the only
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previously-characterized enzymes are IolJ from Bacillus subtilis [29] and a similar protein

from Phaeobacter inhibens, PGA1_c07220, which was identified using fitness data [4]. Of the

11 bacteria for which we have fitness data with myo-inositol as the sole carbon source, just two

encode IolJ-like proteins, so we searched for alternative aldolases using the fitness data. We

noticed that in the other nine bacteria, a putative 2-deoxy-5-keto-D-gluconate kinase (IolC) is

fused to an uncharacterized domain, DUF2090 (PFam PF09863). All of these fusion proteins

were important for fitness during myo-inositol utilization but not in most other conditions

(Fig 5).

DUF2090 is related to aldolases: for instance, D-tagatose-bisphosphate aldolase LacD from

Streptococcus pyogenes (PDB:5ff7) has a statistically significant alignment to PF09863.9 (uncor-

rected E = 6.5�10−8, hmmsearch 3.3.1). The catalytic residues of LacD are Lys126 and Glu164

[30]. When we aligned LacD and the DUF2090 fusion proteins (via the PFam model and

hmmsearch), we found that these catalytic residues were fully conserved. For instance,

BPHYT_RS13910 from Burkholderia phytofirmans PsJN has Lys493 and Glu531. We propose

that DUF2090 is the missing 2-deoxy-5-keto-D-gluconate 6-phosphate aldolase.

When we examined the genomes of diverse myo-inositol-utilizing microbes from the

IJSEM database [14], we found that none contained IolJ, but 7 of 15 (47%) contained

DUF2090, and in each case, DUF2090 was fused to IolC. Just 22 of 232 genomes (9%) from

organisms not known to utilize myo-inositol contained DUF2090, which was significantly less

(odds ratio 0.12, P = 0.0005, Fisher exact test). (To identify members of DUF2090, we used

hmmsearch with PF09863.9 and the trusted cutoff, and proteins that had higher bit scores for

alignments to the DeoC/LacD family (PF01791.9) than to PF09863.9 were ignored.) If we com-

bine the 11 myo-inositol-utilizing bacteria with fitness data with the 15 microbes from IJSEM,

then of the 26 genomes, 16 encode IolC-DUF2090 and just 2 encode IolJ. Thus, DUF2090 is

associated with myo-inositol utilization, which supports our prediction that DUF2090

domains are 2-deoxy-5-keto-D-gluconate 6-phosphate aldolases.

Lactose utilization via a putative periplasmic 3’-ketolactose hydrolase

In Caulobacter crescentus, lactose is thought to be consumed via oxidation to 3’-ketolactose

and hydrolysis to glucose and 3-ketogalactose [31]. The lactose 3-dehydrogenase has three

known components, which are encoded by lacABC, and all three components are required for

lactose utilization [31]. As far as we know, there is no experimental evidence for 3’-ketolactose

hydrolysis by C. crescentus, nor has this activity been linked to sequence. But a 3’-ketolactose

hydrolase was partially purified from Agrobacterium tumefaciens, which also contains lactose

3-dehydrogenase [32]. The enzyme from A. tumefaciens produced glucose; the other product

could not be determined, but it is expected to be 3-ketogalactose [31].

We found that in C. crescentusNA1000, CCNA_01705 is important for lactose utilization

(Fig 6A). Across 198 fitness experiments with diverse growth conditions, including 14 carbon

sources, we identified a strong defect for mutants in CCNA_01705 (gene fitness of -2 or less)

only during growth on lactose (3/3 replicates) or on the trisaccharide raffinose (1/3 replicates;

Fig 6A). CCNA_01705 is encoded near the lactose 3-dehydrogenase (Fig 6B) and contains a

single DUF1080 domain (PF06439). The only characterized proteins with this domain archi-

tecture that we are aware of are the 3-ketotrehalose hydrolase BT2157 [8] and the endo-

xanthanase/lichenase THTE_1561 [33]. Since 3-ketotrehalose and 3’-ketolactose are similar

compounds, we propose that CCNA_01705 is the 3’-ketolactose hydrolase of C. crescentus.
CCNA_01705 has a putative signal peptide [34] and we propose that it is located in the peri-

plasm. LacABC is membrane bound and oxidizes lactose in the periplasm [31], so 3’-ketolac-

tose would be hydrolyzed there as well.

PLOS GENETICS Filling gaps in bacterial catabolic pathways with computation and high-throughput genetics

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010156 April 13, 2022 10 / 27

https://doi.org/10.1371/journal.pgen.1010156


Fig 5. IolC-DUF2090 fusion proteins are important for myo-inositol utilization. Each point shows a gene fitness value (x axis) from a

separate experiment. Values under -4 are shown at -4. The y axis is arbitrary. Experiments with myo-inositol as the sole source of carbon are

highlighted.

https://doi.org/10.1371/journal.pgen.1010156.g005
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Fig 6. A putative 3’-ketolactose hydrolase from the DUF1080 family is involved in lactose utilization. (A) Fitness data for Caulobacter crescentus
NA1000 grown in different carbon sources (data from [4]). (B) LacABC-type dehydrogenases are encoded near DUF1080 in diverse lactose-utilizing

bacteria. (C) Fitness data from Pedobacter sp. GW460-11-11-14-LB5 grown in different carbon sources (data from [4,8]). Missing fitness values are shown

in grey.

https://doi.org/10.1371/journal.pgen.1010156.g006
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The lactose dehydrogenase of C. crescentus is also reported to act on salicin (a phenolic β-

glucoside), and lacABC are required for salicin utilization in some genetic backgrounds [31].

Consistent with this, in our fitness data, lacABC is important for growth on salicin (Fig 6A).

LacABC was also important for growth on raffinose, a trisaccharide (Fig 6A). CCNA_10705

had a milder phenotype on raffinose or salicin than on lactose (Fig 6A), but another DUF1080

protein is encoded nearby (CCNA_01698) and is important for utilization of raffinose (Fig

6A). The two DUF1080 proteins could be genetically redundant during utilization of salicin

(presumably acting on 3-ketosalicin). A 3-ketoglycoside hydrolase from Agrobacterium tume-
faciens acts on a variety of 3-ketoglucosides [35], so we suspect that CCNA_10705 is active on

3-ketosalicin and some other 3-ketoglycosides as well as on 3’-ketolactose.

What is the fate of the putative products of 3’-ketolactose hydrolysis, glucose and 3-ketoga-

lactose? Glucose is probably taken up by a transporter (CCNA_01159) and consumed by the

Entner-Doudoroff pathway (CCNA_02136-CCNA_02133); these glucose utilization genes are

important during growth on lactose (Fig 6A). Also, upstream of lacB are a transporter, two

sugar epimerases and a sugar reductase (Fig 6B) that are important for lactose utilization (Fig

6A); these genes could be involved in the utilization of 3-ketogalactose, possibly by reduction

to a hexose. In fact, there is biochemical evidence for a 3-ketoglucose reductase in A. tumefa-
ciens [36].

There are two well-described pathways for lactose utilization: lactose hydrolase (β-galactosi-

dase); or phosphorylation to lactose 6’-phosphate and hydrolysis by a phospho-β-galactosidase

[7]. C. crescentus does have β-galactosidase activity [31], and it encodes a putative β-galactosi-

dase, CCNA_00830, which is 60% identical to a characterized β-galactosidase from Xanthomo-
nas campestris [37]. Mutants of CCNA_00830 gene were only mildly reduced in abundance

after growth in lactose, and had similar phenotypes during growth in other carbon sources

(Fig 6A). The β-galactosidase pathway may occur in parallel with the lactose oxidation path-

way. Alternatively, as lactose oxidation is required for the induction of β-galactosidase expres-

sion [31], utilization could occur primarily via β-galactosidase, and the mild phenotype for

CCNA_00830 could be due to genetic redundancy (there are two other medium-confidence

candidates for β-galactosidase). In this hypothetical scenario, the expression of both geneti-

cally-redundant β-galactosidase genes must depend on lactose oxidation, so we consider it

unlikely.

A putative lactose dehydrogenase from Pedobacter sp. GW460-11-11-14-LB5 is also impor-

tant for the utilization of lactose, salicin, and several other glycosides (Fig 6C). This strain

encodes ten DUF1080 proteins and at least five putative β-galactosidases, but we did not iden-

tify phenotypes for any of the DUF1080 or β-galactosidase genes with lactose as the carbon

source (all fitness values were between -0.4 and +0.2). This could be due to genetic

redundancy.

Among the microbes in the IJSEM database, we found that the presence of DUF1080 in the

genome is associated with lactose utilization: DUF1080 is present in 40% of lactose-utilizing

microbes but only 14% of other microbes (odds ratio = 4.1, P = 5.2 � 10−5, Fisher exact test).

(DUF1080 proteins were identified using the trusted cutoff for PF06439.11.) Of the 57 lactose-

utilizing genomes from the IJSEM database, 14 appear to encode neither β-galactosidase nor

phospho-β-galactosidase. (No high- or medium-confidence candidates were identified by

GapMind.) Of these 14 genomes, four encode proteins similar to LacA (40% identity and

above) and DUF1080, and in three of these genomes, the LacA and DUF1080 proteins are

encoded near each other, along with other proteins that are similar to the gene cluster from C.

crescentus (Fig 6B). A caveat is that two of these bacteria (Halomonas titanicae BH1 and Algori-
phagus aquaeductus T4) were reported to have β-galactosidase activity [38,39]; however, the

third, Indibacter alkaliphilus LW1, is β-galactosidase negative [40].
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These results suggest that LacABC and DUF1080 proteins function together in the utiliza-

tion of lactose by diverse bacteria. (C. crescentus is an α-Proteobacterium, while Pedobacter
and Indibacter are Bacteroidetes.) Although the fate of the 3-ketogalactose is unknown, in the

current release of GapMind, we assume that LacABC and DUF1080 suffice to release periplas-

mic glucose, which can then be consumed.

An alternative oxepin-CoA hydrolase for phenylacetate utilization

Phenylacetate is an end product of phenylalanine fermentation, and phenylacetate or phe-

nylacetyl-CoA are common intermediates in the degradation of phenylalanine and other

aromatic compounds. The aerobic pathway for phenylacetate utilization [41,42] begins by

activation to phenylacetyl-CoA, oxygenation to 1,2-epoxyphenylacetyl-CoA, isomeriza-

tion to oxepin-CoA, hydrolytic ring-opening to 3-oxo-5,6-didehydrosuberyl-CoA semial-

dehyde, and oxidation to 3-oxo-5,6-didehydrosuberyl-CoA. Additional thiolase,

isomerase, dehydrogenase, and enoyl-CoA hydratase enzymes convert this to acetyl-CoA

and succinyl-CoA (Fig 7A). In E. coli, the ring opening reaction and the next step in the

pathway, the oxidation of 3-oxo-5,6-didehydrosuberyl-CoA semialdehyde, are catalyzed

by PaaZ, which combines an enoyl-CoA hydratase (ECH) domain that performs ring

opening with an aldehyde dehydrogenase domain [43]. But in many other bacteria that

encode this pathway, the 3-oxo-5,6-didehydrosuberyl-CoA semialdehyde dehydrogenase

is a separate protein (for instance, PacL, [43]). To our knowledge, the oxepin-CoA hydro-

lase from these bacteria has not been identified. Teufel and colleagues did identify a pro-

tein (ECH-Aa) that had some activity as an oxepin-CoA hydrolase, but ECH-Aa was

~1,000 times more active as a crotonyl-CoA hydratase than as oxepin-CoA hydrolase, so it

is not clear if ECH-Aa’s oxepin-CoA hydrolase activity is physiologically relevant [43].

To study this question, we analyzed fitness data from Paraburkholderia bryophila
376MFSha3.1 with phenylacetate as the carbon source (Robin Herbert and Trenton Owens,

personal communication). Most of the genes of the aerobic pathway were identified in the

genome and were important for phenylacetate utilization, including the phenylacetate-CoA

ligase paaK, the oxygenase paaABCDE, the isomerase paaG, a pacL-like 3-oxo-5,6-didehydro-

suberyl-CoA semialdehyde dehydrogenase, the thiolase paaJ, and the enoyl-CoA hydratase

paaF (Fig 7B). The only missing steps were the oxepin-CoA hydrolase and the 3-hydroxyadi-

poyl-CoA dehydrogenase (PaaH). Using the fitness data, we identified candidates for both

steps.

First, a putative enoyl-CoA hydratase, H281DRAFT_04594 was important for phenylace-

tate utilization (Fig 7B). A closely related protein from Burkholderia sp. OAS925 (97% identity)

is also important for phenylalanine utilization (Ga0395975_5191, fitness = -4.1 and -3.9, Marta

Torres, personal communication), which confirms our genetic data. We predict that these pro-

teins provide the missing oxepin-CoA hydrolase activity. H281DRAFT_04594 is related to

enoyl-CoA hydratases that form (3S)-hydroxyacyl-CoA from 2-trans-enoyl-CoA, while the

ECH domain of PaaZ is related to enoyl-CoA hydratases that form (3R)-hydroxyacyl-CoA.

Both families of hydratases use acid-base chemistry to act on CoA thioesters, and neither oxe-

pin-CoA nor the hydrolysis product have chiral centers (except within the coenzyme A

group), so either type of ECH domain could catalyze the hydrolysis of oxepin-CoA.

H281DRAFT_04594 is 32% identical to enoyl-CoA hydratase from rat liver, whose catalytic

mechanism has been studied [44]. The side chains that participate in catalysis (E144 and

Q162) are not conserved in H281DRAFT_04594: the corresponding residues are S118 and

M135, respectively. This suggests that H281DRAFT_04594 has another function, which is con-

sistent with our proposal.
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Fig 7. Phenylacetate utilization via an alternative oxepin-CoA hydrolase. (A) The aerobic pathway for phenylacetate utilization. (B) Fitness data from

P. bryophila 376MFSha3.1 growing in minimal media with phenylacetate or glucose as the carbon source. Except for the experiments with 20 mM glucose,

the media also contained 1% dimethylsulfoxide (by volume).

https://doi.org/10.1371/journal.pgen.1010156.g007
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Second, the gene for the 3-hydroxyadipoyl-CoA dehydrogenase PaaH was not clearly iden-

tified, but there are at least three 3-hydroxyacyl-CoA dehydrogenases that might have this

activity. One of them, H281DRAFT_00361, was important for phenylacetate utilization (Fig

7B). A close homolog from B. phytofirmans PsjN was also important for phenylacetate utiliza-

tion (BPHYT_RS13545, fitness = -1.7 or -2.0; data from [45]). H281DRAFT_00361 is 49%

identical to PimB from Rhodopseudomonas palustris; the pim operon is involved in dicarbox-

ylic fatty acid degradation [46], which suggests that PimB may be active on 3-hydroxyadipoyl-

CoA (the 3-hydroxyacyl-CoA intermediate in adipate degradation). H281DRAFT_00361 has

an ECH domain as well as an aldehyde dehydrogenase domain; we do not have a proposal for

the role of its ECH domain.

Annotation of 299 diverged enzymes and transporters

While developing GapMind, we used the fitness data to identify transporters and enzymes that

were important for utilization of various carbon sources, and hence to predict these proteins’

functions. Overall, we annotated 716 proteins, comprising 555 enzymes and 161 transporters

or transporter components. (Proteins whose functions we had previously identified from the

fitness data are not included in these counts.) Many of these proteins are distantly related to

previously-characterized proteins from the seven curated databases that GapMind relies on

(Fig 8A). For proteins that were over 40% identical to one or more characterized proteins, 22%

(117 of 534) had a different function than their best hit. For example, PS417_22145 from Pseu-
domonas simiaeWCS417 is 88% identical to GtsA from P. putida KT2440, which is reported

in the transporter classification database (TCDB) to be the substrate-binding component of a

Fig 8. Similarity of the proteins that we annotated to previously-characterized proteins from seven curated databases. Panel A shows the 716 proteins that

we annotated using fitness data, and panel B shows the 125 proteins that we annotated using the scientific literature. Homologs were identified using protein

BLAST against a database of 125,685 experimentally-characterized proteins. We required E< 0.001 and 70% coverage of both the query and the subject.

Proteins whose functions we had previously identified using the fitness data were not included in the database.

https://doi.org/10.1371/journal.pgen.1010156.g008
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glucose transporter. PS417_22145 was important for the utilization of D-glucose 6-phosphate

(fitness = -3.2 and -2.0) and D-xylose (fitness = -1.8 and -1.6) but not in most other conditions

(data of [4,45]; also, the other components of this ABC transporter had similar phenotypes).

Glucose 6-phosphate may be hydrolyzed to glucose before uptake, which would explain why a

glucose transporter is important for fitness; but the phenotype during growth on D-xylose sug-

gests that PS417_22145 binds xylose as well as glucose. Indeed, in strains of P. putida that were

engineered to utilize xylose, GtsA is required for xylose utilization [47]. This information is

not in TCDB: since the xylose-utilizing strains of P. putida had mutations in GtsA, it is not

clear if the wild-type protein from P. putida binds to xylose. But GtsA from Pseudomonas
simiaeWCS417 does seem to be involved in xylose transport. Overall, we used the fitness data

to identify functions for 299 diverged proteins that have a different function than their closest

characterized homolog or are less than 40% identical to any characterized protein in the

databases.

Curation of enzymes and transporters from the literature

While developing GapMind, we identified 125 proteins that have published experimental data

about their function, are relevant to the utilization of the 62 carbon sources, but are not

included in any of the curated databases. For example, in Pseudomonas putida KT2440, the

putative lactonase PP_1170 is important during growth on D-glucuronate and D-galacturo-

nate (fitness < -2, Mitchell Thompson and Matthias Schmidt, personal communication), but

not in over 100 other experiments (all fitness� -0.5). A uronate dehydrogenase (PP_1171) is

also important for glucuronate utilization, which indicates that P. putida uses an oxidative

pathway and suggests that PP_1170 is a glucurono-1,5-lactonase. This reaction is not linked to

protein sequences by any of the curated databases we used, so at first we thought we had iden-

tified a novel enzyme. But by using PaperBLAST [9], we found that PP_1170 is 72% identical

to PSPTO_1052, which hydrolyzes D-glucurono-1,5-lactone in vitro [48]. GapMind now asso-

ciates the glucurono-1,5-lactonase reaction with PP_1170, PSPTO_1052, and five other lacto-

nases studied by [48].

Of the 125 proteins we curated from the literature, 61 are enzymes and 64 are transporters.

The majority of these proteins are quite diverged from characterized proteins in the databases,

or have different functions (Fig 8B). The median similarity to the most-similar characterized

protein is 38%.

Quality of GapMind’s results

To assess the quality of GapMind’s results, we examined its predictions for organisms that are

reported to grow, or not, with these compounds as the sole source of carbon. First, we com-

pared GapMind’s results to growth data for 29 heterotrophic bacteria across 57 of the 62 car-

bon sources in GapMind [4,8]. (Deoxyinosine, deoxyribonate, mannitol, phenylacetate and

sucrose were not included because we do not have comprehensive growth data.) As shown in

Fig 9A, GapMind identified a high-confidence path for 85% of carbon sources that support

growth, and for just 24% of other carbon sources. For carbon sources that are utilized, trans-

port steps on the best path are more likely to be low- or medium-confidence than enzymatic

steps are (5.9% vs. 2.6%, P = 1.5 � 10−7, Fisher exact test). We suspect that this reflects the

greater difficulty of annotating transporters by similarity, and also the greater difficulty of

identifying transporters from fitness data because they are often genetically redundant (see

below).

Cases where the organism doesn’t grow, despite having high-confidence candidates for all

of the necessary steps, could indicate inadequate expression of those genes. For example,
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EcoCyc reports that E. coli K-12 does not grow aerobically at 37˚C on 11 of the carbon sources

in GapMind, despite containing all of the proteins necessary for their uptake and catabolism.

These compounds are arginine, asparagine, aspartate, cellobiose, citrate, ethanol, glutamate,

lysine, proline, putrescine, and L-serine. Of the eight nitrogen-containing compounds, seven

(all except glutamate) support the growth of E. coli as the sole source of nitrogen, which con-

firms that they are taken up and metabolized.

We also used the fitness data to check if GapMind selected the correct genes for consuming

each carbon source. We considered steps that were on the best path, and which had just one

high-confidence candidate, because otherwise the genes for the step might be genetically

redundant. We analyzed genes that encode enzymes and transporters separately.

When fitness data is available for that gene and condition, 82% of genes that encode

enzymes were important for fitness in the condition (Fig 9B). To understand why some of

these genes were not important for fitness, we examined a random sample of 20 cases. In 12 of

the 20 cases, GapMind identified another high-confidence path as well. For example, in Shewa-
nella loihica PV-4, acetate might be converted to the central metabolite acetyl-CoA by acetyl-

CoA synthase (acs) or else by acetate kinase (in reverse) and phosphate acetyltransferase (ackA
and pta). E. coli K-12 uses both pathways to consume acetate [50], so the lack of a phenotype

for ackA in S. loihica could indicate genetic redundancy with acs. More broadly, if GapMind

identifies two high-confidence pathways, it arbitrarily chooses the one with more steps. (Our

intuition is that one step might be annotated erroneously, but the presence of several steps is

unlikely unless the pathway is present.) GapMind might guess wrong, or the two pathways

might be genetically redundant. For another 6 of the 20 cases we examined, genes for other

Fig 9. Quality of GapMind’s results. (A) Confidence of the best path for utilized and non-utilized carbon sources, across 57 carbon sources and 29

heterotrophic bacteria with fitness data. A path is low confidence if it has any low-confidence steps (and similarly for medium confidence). Proportions are

from 700 utilized cases and 953 non-utilized cases. (B) Whether high-confidence and non-redundant genes on the best path were important for fitness.

Proportions are from 962 genes that encode transporters and 1,254 genes that encode enzymes. Genes lack fitness data if they have insufficient coverage by

transposon insertions (usually these are essential or short genes). A phenotype is “specific” if the gene has little phenotype in most other conditions [4]. (C)

Confidence of the best path for utilized carbon sources across diverse bacteria and archaea. The phylum assignments are from the Genome Taxonomy

Database [49], and “other phyla” includes 14 phyla with less than 100 organism x compound pairs each. There were 54 pairs for archaea.

https://doi.org/10.1371/journal.pgen.1010156.g009
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steps on the selected path were important for fitness during growth on the carbon source,

which suggests that GapMind selected the correct path.

For genes that encode transporters on the best path, and for which fitness data is available,

56% were important for fitness in the condition (Fig 9B). We examined a random sample of 20

cases where the transporter gene was not important for fitness. In most of those cases (18/20),

GapMind identified another high-confidence transporter as well, so the genes for the two

types of transporters might be genetically redundant. Overall, enzymes and transporters that

are part of GapMind’s best path for consuming a compound are usually important for fitness

during growth with that compound as the sole source of carbon and energy, and most of the

exceptions could be due to genetic redundancy.

Increased coverage of catabolism in diverse bacteria and archaea

Fitness data for these 29 heterotrophic bacteria was used to improve GapMind, so our analyses

so far show the best-case performance. As a more realistic test, we examined GapMind’s results

for diverse bacteria and archaea from the IJSEM database [14]. Overall, GapMind found high-

confidence paths for 38% of utilized compounds, and it found medium-confidence paths for

another 25% of utilized compounds (Fig 9C). Among the α,β,γ-Proteobacteria and Firmicutes,

which are relatively well studied, GapMind found high-confidence paths for 51% of utilized

compounds, while in other microbes, GapMind found high-confidence paths for just 20% of

utilized compounds, which is significantly less (P = 5 � 10−43, Fisher exact test). Even for the α,

β,γ-Proteobacteria, which account for 26 of the 29 bacteria with fitness data that were used to

improve GapMind, the coverage of utilized carbon sources by high-confidence paths was

much lower for bacteria from IJSEM than for the bacteria with fitness data (51% vs. 87%).

Much remains to be discovered about the catabolism of these carbon sources.

A “naive” version of GapMind that uses only proteins from curated databases, and does not

take advantage of the fitness data or our curation of the literature, finds high-confidence paths

for just 27% of utilized compounds (instead of 38%), and finds medium- or high-confidence

paths for just 53% of utilized compounds (instead of 63%). In other words, the additional bio-

logical knowledge in GapMind helps to explain about 10% of carbon catabolism in diverse bac-

teria and archaea.

Conclusions

We suspect that for diverse bacteria, we simply do not know enough to make predictions

about what carbon sources they can use. For the 62 compounds whose catabolism is repre-

sented in GapMind, and across diverse bacteria and archaea that utilize the compound, Gap-

Mind finds a complete path, with at least a medium confidence candidate for each step, for

63% of cases.

Rather than trying to predict a microbe’s growth capabilities from its genome sequence,

GapMind annotates potential pathways. These annotations help us examine the microbe’s

potential capabilities and can highlight gaps in our knowledge. Indeed, by using genetic data

to explore the gaps in 29 heterotrophic bacteria, GapMind helped us identify hundreds of

diverged transporters and enzymes. We also identified a novel pathway for glucosamine utili-

zation and putative novel families of citrullinases, 2-deoxy-5-keto-D-gluconate 6-phosphate

aldolases, 3’-ketolactose hydrolases, and oxepin-CoA hydrolases.

The biology we discovered while working on GapMind led to significant improvements in

GapMind’s results for diverse microbes. The coverage of catabolism by medium-confidence

paths improved from 53% to 63%. For example, DUF2090 seems to be the most common form

of 2-deoxy-5-keto-D-gluconate 6-phosphate aldolase, and the putative family of citrullinases

PLOS GENETICS Filling gaps in bacterial catabolic pathways with computation and high-throughput genetics

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010156 April 13, 2022 19 / 27

https://doi.org/10.1371/journal.pgen.1010156


may be a common mechanism for the aerobic utilization of citrulline. GapMind for carbon

sources captures this knowledge in an easy-to-use tool.

We do hope that accurate predictions of growth capabilities will become feasible. We plan

to collect fitness data from more diverse bacteria, which should help to fill many of the gaps,

and for more carbon sources. It will also be important to have a large dataset that includes

cases where the compound does not support growth, as well as utilized compounds. This

would allow us to identify steps that are less important for prediction. For example, transport-

ers or sugar kinases are often challenging to annotate, while some catabolic enzymes are easier

to annotate. Given a large dataset with negative cases, it should be straightforward to estimate

a weighting for each step.

Another possibility is that for traits that are highly conserved, phenotypes could be pre-

dicted from observations for related organisms, instead of focusing on what genes the genome

contains. We are not sure if this will be useful for carbon source utilization, because bacteria

with similar 16S ribosomal RNA sequences often have quite different carbon source utilization

capabilities [2].

Materials and methods

Data sources

We obtained the characterized subset of Swiss-Prot [10], BRENDA [11], MetaCyc [7], CAZy

[12], CharProtDB [51], and EcoCyc [50] via the PaperBLAST database [9], as described previ-

ously [6]. The PaperBLAST database was downloaded in May 2020. For this study, we also

incorporated the experimentally-characterized subset of the transporter classification database

(TCDB) [13] into PaperBLAST and GapMind. The TCDB fasta file was downloaded in March

2020 and the TCDB web site was queried programmatically in April 2020. Proteins from

TCDB were considered to be characterized if they were annotated with a substrate, were linked

to a reference, had a description, and the protein was not described as putative or uncharacter-

ized. If any protein from a multi-component transport system was considered characterized,

then all of the proteins in the system were retained.

Carbon source utilization data for the 29 heterotrophic bacteria with fitness data was taken

from our previous studies [4,8]. For Bacteroides thetaiotaomicron VPI-5482, we checked the

original growth curve data to verify that the compounds that did not have fitness assays did

not support growth as the sole source of carbon. However, we discovered that our original

stock solutions for sucrose and D-mannitol were problematic. In particular, E. coli BW25113

is a K-12 strain (closely related to MG1655) and should not be able to grow on sucrose. In M9

media made with our original stock solution of sucrose, E. coli BW25113 grew, but in media

made with a fresh stock solution, it did not. Similarly, growth of E. coli on mannitol should

require the phosphotransferase uptake protein MtlA and the mannitol 1-phosphate dehydro-

genase MtlD ([52]; data of [53]). In our original fitness assays for E. coli,mtlA andmtlD were

not important for growth on mannitol; instead,manX andmanY, which encode the mannose

phosphotransferase system, were important. When we repeated these experiments with a fresh

stock solution for D-mannitol, we found thatmtlA andmtlD were important for fitness, and

manX andmanY were not. Because of these problems, we did not include our prior data for

mannitol or sucrose.

Fitness data for 29 heterotrophic bacteria was taken from [4,8,45], except that prior data for

mannitol and sucrose were ignored. We also analyzed data for Pseudomonas putida KT2440

([54]; Mitchell Thompson and Matthias Schmidt, personal communication) and for Burkhol-
deria sp. OAS925 (Marta Torres, personal communication). Fitness data was viewed in the Fit-

ness Browser (http://fit.genomics.lbl.gov/)
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Carbon source utilization data for diverse bacteria and archaea was obtained from the

IJSEM database (version 1.0, downloaded in April 2019; [14]). We linked these records to

genome sequences from RefSeq by matching the genus and strain identifiers. Only genomes

with at most 50 scaffolds were considered. This left us with 1,819 pairs of organisms and uti-

lized carbon sources, which cover 45 of GapMind’s 62 compounds, 224 bacteria, and 13

archaea. We obtained the predicted protein-coding genes from RefSeq.

Pooled mutant fitness assays

We collected new fitness data for the utilization of D-mannitol, sucrose, L-citrulline, L-orni-

thine, or phenylacetate by Cupriavidus basilensis FW507-4G11, Dinoroseobacter shibaeDFL-

12, Escherichia coli BW25113, Herbaspirillum seropedicae SmR1, Paraburkholderia bryophila
376MFSha3.1, Phaeobacter inhibens BS107, Pseudomonas fluorescens FW300-N1B4, P. fluores-
cens FW300-N2C3, P. fluorescens FW300-N2E2, P. fluorescens FW300-N2E3, P. simiae
WCS417, or Shewanella sp. ANA-3. These pools of randomly-barcoded transposon mutants

were described previously [4,45,55], and fitness assays were performed as described previously

[55]. Briefly, each pool of transposon mutants was recovered from the freezer in rich media

with kanamycin until it reached mid-log phase. Some of this initial “Time0” sample was saved.

The mutant library was then inoculated at OD600 = 0.02 into a defined medium with the com-

pound of interest as the sole source of carbon, at a concentration of between 5 and 20 mM.

The defined media also included ammonia as a nitrogen source, other mineral salts, and vita-

mins. The culture was grown aerobically at 30˚C until saturation in a Multitron shaker. Geno-

mic DNA was extracted and barcodes were amplified with one of 96 different primer pairs;

both sides of these primers contain unique sequences to ensure accurate demultiplexing. (The

sequences of the P1 primers are available from primers/barseq3.index2 in the source code; the

sequences of the P2 primers are unchanged from [55].) PCR products were combined (up to

96 samples) and sequenced using Illumina HiSeq 4000.

The fitness data was analyzed as described previously [55]. Briefly, the fitness of a strain is

the log2 ratio of the count in the experimental sample (after growth in the media of interest)

versus the count in the Time0 sample, normalized so that the median strain fitness is zero. The

fitness of a gene is the weighted average of the fitness of strains with insertions in the central

10–90% of that gene. Gene fitness values are also normalized to correct for the effect of chro-

mosomal position (because copy number near the origin of replication is higher in faster-

growing cells). Finally, gene values are normalized so that the mode of the distribution is at

zero. The source code for these analyses is available at https://bitbucket.org/berkeleylab/feba;

we used statistics version 1.3.1. The fitness data is available in the Fitness Browser (http://fit.

genomics.lbl.gov) and is archived at https://doi.org/10.6084/m9.figshare.16913530.v1.

Curating pathways

To identify known pathways for the catabolism of each compound, we relied primarily on

MetaCyc. We became aware of a few additional pathways by running PaperBLAST on genes

that were important for utilizing the compound, or by using Google scholar. In the GapMind

website, each pathway is linked to the MetaCyc page or to a publication.

In general, pathways were only included if all of the metabolic transformations are known and

are linked to protein sequences, and are reported to occur in bacteria or archaea. However, a few

pathways with one missing reaction were included: deoxyribonate oxidation involves an

unknown glyceryl-CoA hydrolase; aerobic oxidation of benzoyl-CoA involves an unknown

3,4-dehydroadipyl-CoA isomerase (benzoyl-CoA is an intermediate in phenylacetate degrada-

tion); anaerobic degradation of benzoyl-COA involves an unknown 3-hydroxypimeloyl-CoA
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dehydrogenase; and glutamate utilization via (S)-citramalate involves an unknown (S)-citramalate

CoA-transferase. Pathways that we omitted due to a lack of knowledge include: degradation of

cellobiose, maltose, or sucrose by the 3-ketoglycoside pathway; degradation of arginine via

5-amino-2-oxopentanoate; degradation of deoxyinosine via a nucleosidase; degradation of fruc-

tose via phosphofructomutase; fermentation of glutamate via 5-aminovalerate; degradation of

tryptophan via anthraniloyl-CoA monooxygenase/reductase; degradation of tryptophan via

indole and anthranilate; and degradation of tyrosine via 4-hydroxyphenylpyruvate oxidase.

Curating transporters and enzymes

To identify characterized transporters for each compound, we automatically combined candi-

dates from MetaCyc’s transport reactions, TCDB’s substrate descriptions, and characterized

proteins from other databases whose descriptions include the compound as well as the terms

transport, porter, import, permease, or PTS system. Many compounds were described by mul-

tiple terms and also by MetaCyc compound identifiers: for instance, to find transporters for L-

fucose, we used the terms L-fucose, L-fucopyranose, CPD-10329, CPD0-1107, and CPD-

15619. The results were checked manually.

To identify proteins for each enzymatic reaction, we primarily used enzyme classification

(EC) numbers, which are linked to protein sequences by the curated databases. If any TIGR-

FAMs are annotated with that EC number [15], then GapMind also uses TIGRFAM’s models

and HMMer to find candidates for that step.

GapMind does not consider which compartment the reaction occurs in: for example, cello-

biose utilization might involve a periplasmic cellobiase and then uptake of glucose, or uptake

of cellobiose and then a cytoplasmic cellobiase. Since GapMind does not attempt to predict the

subcellular localization of the candidate proteins, any cellobiase it identifies is (unrealistically)

assumed to participate in either pathway. On the GapMind website, the page for a candidate

does include a link to analyze the protein’s sequence with PSORTb 3.0, which predicts protein

localization [34].

Improvements to the GapMind software

To help us define each step, we built a “curated clusters” tool (available at https://papers.

genomics.lbl.gov/cgi-bin/curatedClusters.cgi?set=carbon). This tool clusters the curated pro-

tein sequences that match a search term or are included in a step definition. It can also cluster

the potential transporters for a compound into families of similar transporters. By default, it

clusters at 30% identity and 75% alignment coverage (both ways), but this can be changed. In

particular, many ABC transporters contain two permease subunits that are similar to each

other; to separate the two subunits, we usually clustered these at 40% identity.

The clustering tool is particularly useful for annotating multi-protein transporters and

enzymes. To highlight transporters or enzymes that are likely to be heteromeric, the curated

clusters tool relies on the explicit complexes in MetaCyc and TCDB; the SUBUNIT field of

Swiss-Prot entries; or terms such as “subunit” or “component” in the description.

The clustering tool also helps to identify annotation errors in the source databases. We

checked any sequences that do not cluster with other sequences for that query, are annotated

by only one database, and have unexpected domain content. (The clustering tool shows the

domain content for each protein, using hits from PFam [20].) We identified errors in

BRENDA and MetaCyc and notified the curators.

Another feature of the clustering tool is to find other curated sequences that are similar to

one of the proteins that is associated with the step, but was not included in the step definition.

This sometimes identifies proteins that have the same function but were initially missed due to
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inconsistent annotation. Also, if enzymes from this family are known to be somewhat nonspe-

cific, then we “ignored” similar enzymes that are reported to act on a slightly different sub-

strate (but may also act on the substrate of interest). Usually, GapMind will consider a

candidate to be lower confidence if it is overly similar to a protein with another function, but

any similarity to “ignored” sequences associated with that step is not penalized.

As another way to simplify curation, GapMind now allows steps or rules from one pathway

to be imported into another pathway. This ensures that any improvements to a step definition

can be recorded in just one place.

GapMind for carbon sources considers a much larger number of candidate steps than

GapMind for amino acid biosynthesis. To ensure a reasonable running time, we reduced

the number of candidates considered for each step. For each step x genome pair, GapMind

now considers only the four top candidates by bit score, and it considers at most two candi-

dates with alignments of under 40% identity. This reduces the running time because GapMind

uses ublast to compare every candidate it finds against its database of characterized proteins.

To speed the analysis of these results, GapMind now considers only the top eight characterized

hits (by bit score) for each candidate. Also, GapMind now uses sqlite3 databases instead of tab-

delimited files to access the database of curated proteins, the proteins associated with each

step, and other information about the steps and rules.

Thresholds for high-confidence candidates

For candidates from ublast, the most important criteria for classifying them as high-confidence

are at least 40% identity to a characterized homolog with at least 80% alignment coverage. To

see how these thresholds perform for catabolic enzymes and transporters, we tested them on

the characterized proteins that are associated with steps in GapMind. Specifically, we com-

pared each of these proteins to all other characterized proteins (using ublast), and asked if the

best hit met the thresholds for a high-confidence candidate. If it did, we asked if the best hit

was also associated with that step. Of the 6,742 characterized enzymes in GapMind for carbon

sources, 5,105 had a hit above 40% identity and 80% coverage. For those sequences, the best

hit was associated with the same step in 85% of cases. Of the 1,393 characterized transporters

in GapMind, 1,295 had a hit above these thresholds, and the best hit was associated with the

same step in 61% of cases. The high-confidence candidates from diverse bacteria and archaea

tend to have lower %identity to their best hits than these characterized proteins do (median

57% instead of 72%), so accuracy would be lower in practice. For best hits of 40–50% identity

(near the threshold), the accuracy was 73% for enzymes and 32% for transporters. If we con-

sidered the best hits of characterized proteins from bacteria and archaea only, we got similar

results (71% and 29%, respectively for best hits of 40–50% identity).

The expectation (E) value of the alignment is not considered by GapMind. At a given level

of sequence divergence, log(E) scales linearly with alignment length, so we believe that %iden-

tity is a more informative metric. Also, GapMind runs ublast with a relatively lax threshold

(E� 0.01 against the database of proteins that are linked to steps), but because of the con-

straints on alignment identity and coverage, this has little effect on the results. In the analysis

of 237 diverse bacteria and archaea from IJSEM, the weakest alignments for high-confidence

candidates on the best path had scores of 46.6 bits, which corresponds to E = 3.7 � 10−5 if com-

paring to the database of all characterized proteins.

Comparison to fitness data

If GapMind did not identify a high-confidence path for a compound, and we had fitness data

for the compound, then we attempted to find candidates using the fitness data. We found
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most of these candidates by using specific phenotypes: genes that are important for fitness in

that condition but not in most other experiments [4]. To find genes with weaker or broader

phenotypes, we sometimes used cofitness with genes in the pathway or scatter plots of gene fit-

ness during growth in this condition versus growth in another carbon source. Potential func-

tions of the candidate genes were checked with PaperBLAST, which finds papers about similar

proteins [9]. If we found a plausible candidate for a step and mutants of that gene had the cor-

rect phenotype, we added the protein to an existing step definition or added a new step.

Software versions

GapMind uses ublast from usearch v10.0.240_i86linux32 to find protein similarities and uses

HMMer 3.3.1 for HMM searches. We also used NCBI BLAST 2.2.18. For statistical analyses

and plotting, we used R 3.6.0.
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