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Abstract

Introgression is a common evolutionary phenomenon that results in shared genetic material
across non-sister taxa. Existing statistical methods such as Patterson’s D statistic can
detect introgression by measuring an excess of shared derived alleles between populations.
The D statistic is effective to detect genome-wide patterns of introgression but can give spu-
rious inferences of introgression when applied to local regions. We propose a new statistic,
D*, that leverages both shared ancestral and derived alleles to infer local introgressed
regions. Incorporating both shared derived and ancestral alleles increases the number of
informative sites per region, improving our ability to identify local introgression. We use a
coalescent framework to derive the expected value of this statistic as a function of different
demographic parameters under an instantaneous admixture model and use coalescent sim-
ulations to compute the power and precision of D*. While the power of Dand D" is compara-
ble, D* has better precision than D. We apply D* to empirical data from the 1000 Genome
Project and Heliconius butterflies to infer local targets of introgression in humans and in
butterflies.

Author summary

Characterizing how pervasive introgression is across the tree of life is an outstanding ques-
tion in evolutionary biology. To address this question, we need to detect and quantify
introgression to investigate how natural selection has acted on introgressed genetic varia-
tion. The D statistic is a widely used method to detect introgression at the genome level,
but this method cannot accurately detect introgression locally in the genome. To improve
its performance at the local level, we incorporate ancestral variation shared between the
donor and recipient populations. We show, theoretically and with simulations, that re-
introduced ancestral alleles into the recipient population also contain information to
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detect introgression. Using both shared derived and ancestral variation, we define a new
statistic, D", that can be used to detect the location of introgressed regions in a genome
with a history of introgression.

Introduction

Analyses of both modern and ancient DNA have revealed that introgression is a common evo-
lutionary process in the history of many species. Introgression has been found in swordtail fish
[1], Heliconius butterflies [2,3], and from Neanderthals and Denisovans to modern-day non-
African populations [4-8] as well as many other systems. These observations suggest that
introgression is pervasive and thus determining its relative contribution to the evolution of a
species is of evolutionary interest [9]. Therefore, detecting and quantifying introgressed seg-
ments in the genome is necessary to begin measuring its biological importance. Introgression
may introduce both adaptive and deleterious variation in the recipient population. For exam-
ple, Tibetans inherited a beneficial haplotype at the EPASI gene from Denisovans through
gene flow that facilitated high altitude adaptation to the hypoxic environment in the Tibetan
plateau [10-13] which is an example of adaptive introgression—positive selection acting on
introgressed variants [10,14-16]. Similarly, purifying selection has also acted on introgressed
variation [17-20] to remove deleterious introgressed variants and under specific conditions
can mimic signatures of adaptive introgression [18,21].

The most widely-used method to detect introgression using data from one or more individ-
uals from each of four populations is the ABBA-BABA statistic, also known as Patterson’s D
statistic [4,5]. This statistic has been used to detect introgression from Neanderthals and Deni-
sovans into modern humans [4,22,23] as well as other systems. The D statistic uses species tree
and gene tree discordances within a 4-population tree with two potential targets of introgres-
sion defined as population 1 (P,) and population 2 (P,); a donor population (P3) as the source
of gene flow to P; or P,, and an outgroup population (P,, see Fig 1A and 1B). The patterns of
biallelic single nucleotide polymorphisms (SNP) generated by these gene trees (dotted lines in
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Fig 1. Species and gene trees depicting informative sites due to gene flow. (A) Shared derived allele between population 2 and population 3, or ABBA site,
and (B) shared ancestral allele between population 2 and population 3, or BAAA site, due to gene flow from population 3 to population 2. The ancestral allele is
denoted A and the derived allele is denoted B. Tp, is the time of divergence between population 4 and the ancestral population of population 1, population 2
and population 3. Tp; is the time of divergence between population 1 and the ancestral population of population 1 and population 2. Tp, is the time of
divergence between population 1 and population 2. Tgg denotes the time of gene flow from donor population to recipient population.

https://doi.org/10.1371/journal.pgen.1010155.9001
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Fig 1A and 1B) provide information on the shared ancestry between lineages in each popula-
tion. The D-statistic looks at patterns when the gene tree does not match the species/popula-
tion tree, which can be due to chance through Incomplete Lineage Sorting (ILS) or gene flow
from the donor population into P; or P,. While ILS will generate an equal number of discor-
dant sites shared between P; and P, and P; and P,, introgression will result in an excess of
shared sites between P5 and either P; or P,. D is a measure of this excess number of shared
derived alleles.

The D statistic was designed to detect genome-wide gene flow but has also been used to
look for signals of gene flow in local regions of the genome. However, studies have found that
D produces spurious inferences of gene flow when applied to areas of the genome with low
nucleotide diversity [24,25]. A previous study [25] partitioned butterfly genomes into small 5
kb windows and computed the D statistic in each window which showed that the D statistic
becomes more unreliable when considering windows of low nucleotide diversity, because the
variance of D is maximized in these windows. To improve inference of introgression in small

windows [25] propose a new statistic, f » that is a better estimator of the true introgression pro-
portion. More recently [24] proposed to improve the D statistic by including the number of
sites with an BBAA pattern—which is reduced in the presence of introgression—in the
denominator of the D statistic.

In this study, we propose a new statistic, D", to detect introgression in genomic windows.
In addition to using the shared derived variation measured in the D statistic, D" also leverages
shared ancestral variation between the donor population and the recipient population. Intro-
gression introduces not only mutations that accrued in the donor population before the gene
flow event, but also re-introduces ancestral alleles in the recipient population. Following [5],
we derive the theoretical expectations for the D" statistic under a coalescent framework to
study its properties as a function of the admixture proportion. We use simulations to measure
its power, false positive rate and precision compared to the D statistic. We also measure its per-
formance by applying it to humans and butterflies. We find that the D" statistic is more precise
at detecting introgressed regions than the D statistic due to its lower false positive rate in small
genomic regions, making it a useful statistic to identify local targets of introgression.

Methods
D" statistic

Patterson’s D statistic uses species and gene tree discordance within a 4-population tree with
two populations as potential targets of introgression, population 1 (P,) and population 2 (P,).
Population 3 (P5) is a source of gene flow to either P, or P,, and population 4 (P,) serves as an
outgroup (Fig 1). The patterns of biallelic single nucleotide polymorphisms (SNP) generated
by the gene trees provide information on the shared ancestry between lineages in each popula-
tion. Both the D and D" statistic look at site patterns yielded when the gene tree does not
match the species tree. A mutation will convert an ancestral allele (A), determined by the allele
present in the outgroup, into a derived allele (B). An ABBA site (Fig 1A) describes a derived
allele shared between P; and P,, while a BABA site occurs when a derived allele is shared
between P; and P;. An ABBA or BABA site could arise due to incomplete lineage sorting (ILS)
or gene flow. Under coalescent expectations, incomplete lineage sorting will generate equal
numbers of gene trees with ABBA or BABA sites. An ABBA site can only be generated in a
gene tree where P; and P, coalesce first before they find a common ancestor with P;. On the
other hand, a BABA site only occurs on gene trees where P, and P; coalesce first before they
find a common ancestor with P,. We expect an excess of ABBA sites when there is gene flow
from P5 to Ps.
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The D statistic measures an excess of ABBA or BABA sites [4,5]. D is the normalized differ-
L
ABBA;—BABA;

ence between ABBA and BABA sites, D = &=L

&=l The D statistic assumes that the fre-
> . ABBA/-BABA;
quency of ABBA and BABA sites due to ILS is approximately equal. Therefore, an excess of
shared derived sites between P; and P,, or ABBA sites, indicates gene flow from P; to P, as
shown in Fig 1A. Conversely, an excess of BABA sites indicates gene flow from P to P;.

We extend this idea by making use of the fact that introgressed regions are inherited in
chunks that contain both shared derived alleles and ancestral alleles that are introduced into
the recipient population. D" leverages the shared ancestral alleles between P; to P, to increase
the amount of data about shared genetic variation in low nucleotide diversity regions. Sites
where the ancestral allele is shared between P; and P, and the derived allele is only found in P,
are BAAA sites (Fig 1B). In ABAA sites the ancestral allele is shared between P; and P, while
P, has a derived allele. D* incorporates both shared derived alleles and ancestral alleles to
strengthen our inferences of introgression.

S°7 (ABBA, — BABA,) + (BAAA, — ABAA))

1)+ = — 1
S°7 (ABBA, + BABA,) + (BAAA, + ABAA,) M

When the sample size is bigger than one, we can write down the equation for D" as a func-
tion of the observed derived allele frequencies in populations Py, P,, P; or P,. If the frequency
of the allele at site i for population j is p,, and we have L sites,

p
p

il)ﬁimﬁis(l _Pi4> _ﬁil(l _Pi2)Pi3(1 _Pi4)) + (ﬁil(l _ﬁ&)(l _ﬁﬁi)(]‘ _ﬁi4) — (1 _pil)ﬁiQ(l _[)13)(1
il)ﬁizﬁis(l _1314) +ﬁi1(1 _ﬁiZ)ﬁiS(l _1314» + (ﬁil(l _Pi2>(1 _ﬁii%)(l _IAM) + (1 _Pu)f)m(l _ﬁiS)(l

3 |~

i4
While in this paper, we mostly focus on comparisons between D™ and D, note that we could
also define a statistic D,,,c.rq that measures the excess of shared ancestral alleles between P5

and P, in a similar manner that the D statistic measures an excess of shared derived alleles
between P; and P,:

"1 BAAA, — ABAA,
ancestral 25:1 BAAAI + ABAAI

D 3)

D gpcestrar is Normalized and ranges from -1 to 1, with D o0 = 1 indicating gene flow from
P5 to P, and D, eqra = —1 indicating gene flow from P to Py. D, o501 approximates zero
under the null hypothesis of no gene flow.

Durand et al. (2011) used a coalescent framework to derive the expectation of the D statistic
under an instantaneous admixture model (IUA). The probability of getting an ABBA or BABA
site is dependent on the mutation rate and the expected branch length of the branch where a
mutation yields an ABBA site (T sppa) or the branch where a mutation yields a BABA site
(Tgapa)- The mutation rate p is assumed to be constant. Therefore, the expected number of
ABBA or BABA sites can be estimated by calculating the expectation of branch lengths of
Tappa and Tpapa and multiplying by the mutation rate [5]. Similarly, we can compute the
probability of getting an ABAA or BAAA site (see S1 Appendix), and we derived the expected
lengths of Tgaaa and Tapaa following the same framework. The full derivation of the expecta-
tion of Tgaps and Tapaa is in S1 Appendix. We find that the analytical expectation of D" is

(.“*E[TABBA] — :“*E[TBABAD + (IU’*E[TBAAA] — .“*E[TABAA])
(U*E[T yppy] + 1*E[Tyup,]) + (W¥E[Typus] + pE[Tp44]) .

E[D'] = (4)
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As is true of ABBA and BABA sites, the expected number of BAAA and ABAA sites are
equal when there is no gene flow. This is because, under no gene flow, we expect a similar
amount of ancestral allele sharing between P; and P; and between P, and P;. In the case of the
BAAA and ABAA sites, we expect a similar amount of BAAA and ABAA sites under no gene
flow assuming the same mutation rate in P; and P,. As the admixture proportion from P; to
P, increases, the number of BAAA sites exceeds the number of ABAA sites. The expected dif-
ference is a function of the admixture proportion fand the branch lengths of Tp; and Tgp:

E[TABBA - TBABA] = E[TBAAA - TABAA] :f(TPS - TGF) (5)

Simulations to verify theoretical results for n = 1

To verify the theoretical results under the demographic model depicted in Fig 2, we calculate
the expected branch lengths of Tapga, Teasa> Teasa and Tapaa and expectation of D and D*
using mspms simulations (see Figs 3 and S4) for a range of admixture proportions (f). We ran
1,000,000 simulations of independent loci and averaged the branch lengths of Tagpa, Tpapas
Tpaaa and Tapaa from the Newick tree file output of each locus. The branches Tagpa, Tanas
Tpaaa and Tapa, are the branches where a mutation would yield an ABBA, BABA, BAAA or

Tps = 16000 generations

Tp, = 4000 generations

Tge = 1600 generations

Ps

Fig 2. Demographic model for msprime simulations. (P;) and (P,) are sister populations that are closely related to (P3). P; and P, diverged at
time Tp, (4,000 generations ago) and the ancestral population of P, and P, (P;,) diverged from P; at time Tp; (16,000 generations ago). There is
gene flow from (P3) to (P,) at time T (1,600 generations ago) with an admixture proportion f= 3%. Divergence time of populations shown
follow the demography of modern humans.

https://doi.org/10.1371/journal.pgen.1010155.9002
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Fig 3. Analytical and simulated expected branch lengths of Txgpa, Tsasa> Taaa and Tapaa. The analytical (lines) and simulated (dots) expected branch
lengths of Tappa, Tpapa> Teaaa and Tapaa for different proportions of admixture fbetween P5 and P,. The solutions to the analytical expectations match the
simulated expectations. The branch length of T g, is the branch that would produce an ABBA site pattern. The expectation of Tappa (E[Tappal) can be used
to calculate the expected number of ABBA sites. The same is true for Tgapa, Tpasa> and Tapaa for their respective site patterns. With no admixture (f= 0) the
expected branch lengths for ABBA and BABA sites are equal (E[Tsppal = E[Tpagal), as are the expected branch lengths for BAAA and ABAA sites (E[Tpaaal
= E[Tapaal) because the number of ABBA sites equals BABA sites and the number of BAAA sites equals the number ABAA sites due to ILS. As the admixture
proportion increases, the expectation of Tappa and Tappa increases due to excess ABBA and BAAA sites. The difference in Tgaaa and Tapaa (Teaaa—T apaa)
is equal to the difference in Tappa and Tpapa (Tassa—TBABA)-

https://doi.org/10.1371/journal.pgen.1010155.g003

ABAA site, illustrated in S1 Fig. We simulated small, independent loci with 250 sites per loci
and a mutation rate of 10~° per bp per generation and no recombination. We also calculated D
and D" from the number of ABBA, BABA, BAAA and ABAA sites per locus and averaged D
and D" across all 1,000,000 loci. An example mspms simulation command for 1,000,000 inde-
pendent loci with 1 sample taken from each of the 4 populations for an admixture proportion
of 3% is:

mspms 4 1000000 -t0.1-141111-es0.120.97-¢j0.153-€j0.2512-¢j0.523-¢j2034 -T.

Simulations to benchmark D" using n = 1 for all populations

To evaluate the precision and recall of D and D" we ran coalescent simulations using the soft-
ware msprime [26]. The simulations followed the model depicting the evolutionary history of
modern humans (Fig 2). The African and Eurasian populations are P; and P,, respectively,
and P; is the Neanderthal population. The African-Eurasian and Neanderthal divergence time
Tp; was set 16,000 generations ago and the Eurasian and African divergence time T'p, was set
4,000 generations ago [16]. The time of gene flow (Tgg) between Neanderthals and Eurasians
was set 1,600 generations ago [16]. We use an admixture proportion (f) of 3%. All simulations
had a constant N_ of 10,000, a mutation rate of 1.5¥10~° per bp per generation and a recombi-
nation rate of 10~° per bp per generation following [16]. We ran 100 simulations of 20 MB
genomes with n = 1 for Py, P, and P3, and, in each run, we sampled a single haplotype to com-
pute D" using Eq 1. D" can also be applied to populations with a sample size greater than 1.
We ran 100 msprime simulations with n = 200 genomes for P; and P, and n = 2 for P; and
computed D" using derived allele frequencies (Eq 2). The full code for simulations can be
found in a GitHub repository (https://github.com/LeslyLopezFang/Dplus).

To evaluate the performance of D under different values for the admixture proportion,
recombination rate and mutation rate under this demography, we ran 100 msprime
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simulations with the new parameter value for a 20 MB genome for n = 1 for Py, P, and P;
under a model with no admixture and a model with admixture. We considered the following
cases: f = 2%, 5% and 10%, a mutation rate of half the default mutation rate of 1.5*10~° per bp
per generation, a mutation rate that was double the default mutation rate of 1.5*10~° per bp
per generation, a recombination rate that was half the default recombination rate of 10~ per
bp per generation, and a recombination rate that was double the default recombination rate of
1078 per bp per generation.

Calculating precision, recall and false positive rate in simulated human data

We ran msprime simulations described in the Methods section titled “Simulations to bench-
mark using n = 1 for all populations” using the parameters shown in Fig 2 without an instance
of admixture at T to construct a null distribution for D and D" by sampling a genome from
each population and computing D and D" in 50 kb non-overlapping windows. We take the sig-
nificance threshold values for D and D" from their respective null distributions. For a p-value
of 0.05, we get a signal of gene flow from P; to P, from the significance thresholds defined at
the top 2.5% values from the null distribution of D and D" (see Fig 4). Undefined values
(denominator divided by 0) of D or D* where no informative sites were present in the window
were dropped.

When we sample a single lineage (n = 1) from each population, an introgressed window is
defined as a window that has at least 10% of bases in the window overlapping with introgressed
tracts from the chromosome sampled from P,. A 50 kb window would then have at least 5 kb
bases that are introgressed from P; for the sampled chromosome from P,. Windows that have
an overlap with introgressed tracts but that are less than 10% of the bases in the window are
dropped. Most of the windows have an overlap of at least 50% of the window with introgressed
tracts (S2 Fig). When the sample size is more than 1, we have to redefine what is an intro-
gressed window, and compute D and D" using our frequency-based definitions.

To compute recall, true positives are introgressed windows that are statistically significant,
while the false negatives are introgressed windows that are not statistically significant. The
false positives for the simulated data are windows that have no introgressed bases but are statis-
tically significant. Precision measures the probability of a window truly being introgressed
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Fig 4. Null distribution and false positive rate for D and D" in simulations with no gene flow. D and D* were calculated in 50 kb windows of 100 runs of a
20 MB simulated genome under a model with no admixture. (A) The average of the null distribution of D and D" is zero with a standard deviation of 0.74 for D
and 0.26 for D*. The null distribution for D (red) is multi-modal at the tails with the tails (-1 and 1) accounting for 43.2% of the values of D. The null
distribution of D* (blue) is centered around its average of zero. (B) False positive rates for D (red) and D" (blue) of null distribution. The p-value in the x-axis is
used to set a significance threshold to get a false positive rate in the y-axis. D has a false positive rate of 43.2% with p-values less than 0.43. The false positive rate
of D" is similar to the corresponding p-values up until p-value> = 0.94.

https://doi.org/10.1371/journal.pgen.1010155.g004
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Fig 5. Precision and recall of D and D" in simulations. The Precision-Recall of D and D" for simulations with an admixture proportion of 3. D (red) and D"
(blue) were computed in non-overlapping 50 kb windows of 100 simulations of a 20 MB genome from each population with an admixture proportion of 3%
(f=0.03). (A) Precision and (B) recall are shown as a function of the p-value (0.01-1) used to get a significant threshold value of D and D"

https://doi.org/10.1371/journal.pgen.1010155.9005

given that its D" value is statistically significant. Precision is the percentage of true positives
out of the sum of true positives and false positives, or 1 —false discovery rate. Recall measures
how many of the introgressed windows are statistically significant and is the percentage of true
positives out of the sum of true positives and false negatives. Here, false positive rate is the per-
centage of false positives from windows without introgression (false positives and true nega-
tives; see Figs 4 and 5).

We also compute recall when the sample size is bigger than one. However, in this case, it
will be harder to detect windows with introgressed tracts at low frequency in the recipient pop-
ulation. Therefore, in simulations where we sample n = 200 chromosomes from P,, we rede-
fine what is an introgressed window so that two conditions need to be true. First, a window
needs to contain at least one introgressed tract that survives in at least 10% of the 200 chromo-
somes from P,. Second, the length of the tract (or the sum of the tract lengths if more than one
tract in a window pass the first condition) is at least 10% of the window (which is 10% of 50 kb
or 5kb). For an example see S3 Fig. In S10A Fig shows recall for D, D" and djas a function of
the proportion of introgression. In S10B Fig, the proportion of introgression is set to f = 10%
and recall is computed as a function of the required tract-frequency in P, within a window
(first condition necessary to define a window as introgressed).

Testing violations of a strict molecular clock

D" assumes a strict molecular clock such that all populations have the same mutation rate.
When there is no gene flow, we can assume an equal number of ABBA and BABA sites, as well
as an equal number of BAAA and ABAA sites. To test violations to this assumption we ran
msprime simulations with n = 1 chromosome for Py, P, and P; where we increase the muta-
tion rate of either P, or P, by increasing all of the divergence times Tp,, Tp; and Tgr by Tp, in
the model depicted in Fig 2. For example, to double the mutation rate of P, we increase all
divergence times by Tp, and sample P, at time t = 0 and sample P, at Tp,. P is sampled right
after the modified Tgr since P; is an archaic population.

We ran 100 msprime simulations using n = 1 chromosome for P;, P, and P; under the new
divergence times with no introgression and with introgression (f = 3%). The performance of
D" can be calculated using the null distribution with the new divergence times to assess statisti-
cal significance. Introgressed windows are windows where at least 10% of the bases in the 50
kb window are introgressed tracts for the haplotype from P,. We considered four cases: 1) P,
with a mutation rate double the mutation rate of P,, 2) P; with a mutation rate ten times the
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mutation rate of P,, 3) P, with a mutation rate double the mutation rate of P; and 4) P, with a
mutation rate ten times the mutation rate of P;.

Application of D" in modern-day humans

To evaluate the performance of D" at identifying introgressed regions in empirical data we
apply D" to previously detected regions of Neanderthal introgression in modern-day humans.
We assume that introgressed segments inferred in [7] using the Altai Neanderthal genome
[27] are the true introgressed segments. From the 1000 Genomes Project [28] we used an indi-
vidual from the YRI (Yoruba in Ibadan, Nigeria) population for P; and an individual from the
GBR (British from England and Scotland) population for P,. P; is the Altai Neanderthal
genome [27]. The ancestral allele of each position was taken from the ancestral allele listed in
the 1000 Genome Project. For the GBR individual we used a Neanderthal introgression map
including all the haplotypes inferred to be Neanderthal with a probability > 90% in [7]. We
calculated D and D" in non-overlapping 50 kb windows using one autosomal chromosome of
each individual from all three populations, discarding the first and last window of each chro-
mosome. Note that here we assume that the phasing of the GBR individual is perfect, so we are
able to compute two D* and two D values for each window in the genome. However, we use
the same chromosome in the YRI individual to compute the two D" values for the GBR indi-
vidual. Since phase is unavailable for the Neanderthal genome, we randomly sampled one of
the Neanderthal alleles at each site. Each window had two D and D* values, one for each auto-
somal chromosome of the sampled GBR individual.

To find significance thresholds for the empirical data, we use all of the D and D" values
from all of our windows (two per window) to build the empirical distributions for D and D*. If
the maximum of the two D (or D*) values in a window is in the top 2.5% of D and D" values
for the empirical distribution, then it will be called statistically significant. To compute recall,
we need to define a true introgressed window that will be called a true positive or false negative
based on the empirical distribution of D and D" values. We defined a true introgressed win-
dow as a window with a set minimum percentage of bases that overlap with a Neanderthal
introgressed segment (inferred in [7]). We used different values for the minimum percentage
of bases needed to overlap with the Neanderthal segment for a window to be called intro-
gressed. Using the empirical distribution, we call a window “introgressed” (or a true positive)
when the maximum of its two D" values are statistically significant (i.e. values are in the top
2.5% of the distribution) and it has at least a pre-defined percentage of overlap with a Neander-
thal introgressed segment (e.g. 5% to 100% in intervals of 5%, x-axis of Fig 6). Recall was then
calculated by dividing the number of true positives by the total number of windows defined as
true introgressed windows (based on having at least a pre-defined percentage of overlap with a
Neanderthal introgressed segment). We assume that the introgression maps capture true posi-
tives or a subset of them; however, we cannot assume that regions not included in the intro-
gression maps are true negatives. Therefore, we do not assess false positives or precision.

We also took computed recall mimicking the empirical approach in simulated data where
we know what the ground truth is. Specifically, in our simulations we sampled one individual
(n =2 chromosomes) from P,, P, and P5 and computed D and D" for each chromosome from
the individual in P, and also obtained the maximum D and D" value per window. In the simu-
lated data, we only considered one value (10%) for the minimum percentage of overlap
between a window and an introgressed tract. We computed precision and recall using all the D
and D" values from all the windows as the null distribution.

Finally, we assess how recall is affected when phasing is unavailable. In this case, we use the
same YRI, GBR and Neanderthal individuals and randomly sample a haplotype (n = 1 for all 3
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Fig 6. Recall of D and D" in human data. The recall of D and D" in non-overlapping 50 kb windows. Windows
overlap with Neandertal introgression maps [7] from 5% to 100%. The populations are as follows: P;: YRI, P,: GBR, Ps:
Altai Neandertal, P,: Ancestral Alleles. Data for humans from 1000 Genomes Project [28] and data for Altai
Neandertal from [27].
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populations) at every position to create a single haploid genome for each population. We parti-
tioned the haploid genomes in non-overlapping 50 kb windows and compute D* values for
each window. We do this experiment 100 times and compute recall for each experiment.

Application of D" in Heliconius butterflies

D was applied to Heliconius butterflies and found to have high variance in areas of low nucleo-
tide diversity [25]. To assess whether D" reduces variance in these areas of low nucleotide
diversity we recreated Fig 3 from [25] using the same Heliconius genome data from [29]. They
show values of D as a function of nucleotide diversity m for P, (the recipient population) in
non-overlapping regions of 5 kb. Only biallelic alleles were used. D was computed using
derived allele frequencies and we also use the frequencies from the four populations to com-
pute D" (Eq 2).

f,[25] and dy[24] were also computed for the 5 kb non-overlapping windows. f, was only

applied to windows where D is positive. The equation for f , written in terms of derived allele
frequencies with p,, as the maximum of p,, and p, is

Zf:l((l _1311)13;2131‘3(1 _[)M)) — (ﬁil(l _[)i2)13i3(1 _[)1'4))
ZiL:1((1 _ﬁil)ﬁiDﬁiD(]' _ﬁi4)) - (‘ﬁil(l _ﬁiD)ﬁiD(]' _ﬁi4))

drincorporates BBAA sites where only P, and P, share a derived allele. The equation for dyin
terms of allele frequencies is

ZiL:1((1 _ﬁil)ﬁibﬁi:}(l _ﬁm)) _ (ﬁn(l _ﬁiZ)f)i:S(]' _ﬁi4))

fd:

_ﬁn)ﬁizﬁis(l _IA’M) +ﬁilﬁi2(1 _131'3)(1 _IA’M)) + ((ﬁil(l _[)iQ)ﬁB(l _IA’M)) +[)i1f)i2(1 _1313)(1 _ﬁi4))

Four samples were used, one each from H. melpomene aglaope (P,), the recipient popula-
tion H.m. amaryllis (P,), the donor population H. timareta thelxinoe (P3). The outgroup (P,)
consisted of a sample from species in the silvaniform clade including H. hecale, H. ethilla, H.
paradalinus sergestus and H. pardalinus ssp. nov. The ancestral state of an allele was deter-
mined by the outgroup if the allele was fixed within the outgroup. Otherwise, it was the major
allele of all four populations. The wing pattern loci HmB and HmYb are defined in [25]. Code
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was adapted from [25] with details in GitHub repository (https://github.com/LeslyLopezFang/
Dplus).

Similar to the method to find recall described in “Calculating precision, recall and false pos-
itive rate in simulated human data.”, we calculate recall for D, D*, f » drand Dgpcestrar. The win-
dows that overlap the HmB and HmYb loci are considered introgressed windows. Recall here
is the number of these introgressed windows that the introgression statistic identifies as intro-
gressed. Each window has one value for each statistic, and we find the statistical thresholds for
each statistic by finding the top 2.5% value of the distribution.

Results
Theoretical results

The expectation for the values of D and D™ is dependent on the lengths of the branches that
produce each site pattern. Tppa is the length of the branch starting from the time of the most
recent common ancestor of P, and P; until that lineage coalesces with P; (which happens in
the ancestral population P,; under the instantaneous admixture model). The average length
of the Tappa branch increases with the migration rate (Fig 3). A mutation on this branch pro-
duces an ABBA site pattern. Tgapa is then the length of the branch from the time of the most
recent common ancestor of P; and P; until that lineage coalesces with P,. Tgasa and Tapaa
are the external branches of P, and P,, respectively. When there is no gene flow, the average
length of the external branches of P; or P, are equal. With gene flow between P, and Ps, the
external branch of P; will be longer than the external branch of P,; therefore, the expectation
of Tpaaa increases with the admixture proportion f.

The analytical and theoretical expectation of Tsppa, Tpapa> Tpaaa and Tapaa are shown in
Fig 3. The theoretical expectation of each branch takes into account all scenarios that could
produce each site pattern, including gene flow and no gene flow (S1 Appendix). The simulated
expected branch lengths approximate the theoretical expected branch lengths at all the admix-
ture proportions (f) calculated. When there is no admixture, the number of ABBA sites is
equal to the number of BABA sites as any sharing of derived alleles between P; and P, (or P
and P,) is due to incomplete lineage sorting. In the case of ancestral sharing and under a
model of no admixture, the number of BAAA sites and ABAA sites will be equal because we
assume equal mutation rates in P, and P,.

For all values of migration between P, and P3, the expected branch lengths that can lead to
aBAAA (Tgaana) or a ABAA (Tppan) site are always greater than the expected branch lengths
that can lead to an ABBA (T sgga) or BABA site (Tgapa). Therefore, if we assume a constant
mutation rate, we expect to see more ABAA sites than BABA sites and more BAAA sites than
ABBA sites. In Fig 3, assuming a constant mutation rate multiplied with the analytical and sim-
ulated expected branch lengths, there are 5-6 times more BAAA and ABAA sites than ABBA
and BABA sites.

Interestingly, our theoretical results also show that even though the number of BAAA and
ABAA is higher (than ABBA or BABA), the difference between Tpaaa and Tagas (Tpasa—
Tapaa) is equal to the difference (T appa—Tpapa)- Therefore, for all admixture proportions
between P, and P3, the expected difference of BAAA and ABAA sites (BAAA—ABAA) is
equal to the expected difference of ABBA and BABA sites (ABBA—BABA). These observations
suggest that leveraging ancestral shared variation can be informative about introgression and
provides justification for defining D" which leverages both ancestral and derived allele sharing
to maximize the number of informative sites used in a genomic window. This increase in
informative sites can provide greater predictive accuracy for detecting local gene flow.
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D has a high false positive rate in small genomic windows

We calculated D and D" for 50 kb windows on simulated genomes following the demography
in Fig 2 with no admixture event at Ty to get the null distribution of D and D" (Fig 4A). The
null distribution of D is a multimodal distribution with large peaks at the tails as well as zero.
The average of D is 0 with a standard deviation of 0.74. The tails (D = 1 and D = —1) account
for 43.2% of the distribution. These peaks at the tails cause a high false positive rate of 43.2%
for D at p-values less than 0.43 (Fig 4B) because the significance threshold for Dis 1 or -1.
Therefore, we have low power to assess statistically significant values of D. In contrast D* has a
null distribution centered on zero. The average of D" is 0 and the standard deviation is 0.26.
The null distribution is much narrower than the null distribution of D and does not have
peaks at the tails. As expected, the false positive rate of D" approximates the p-value set to find
significant values of D" up until a significance threshold approaches 0 for high p-values (p-val-
ues > = 0.94) (Fig 4A).

D" has better precision than D in simulated data

We calculated precision and recall for 50 kb windows of 100 simulations with a 20 MB simu-
lated genome shown in Fig 5 following the demography in Fig 2. Undefined values were
dropped (see Methods) so more windows were analyzed for D* than D because D had more
undefined values. While precision measures the accuracy of windows giving a signal of gene
flow from P; to P, through statistical significance, recall measures how many introgressed win-
dows the statistic can detect without considering false positives. We obtained precision and
recall for p-values from 0.01-1 (Fig 5). Each p-value has a corresponding significant threshold
value from the null distribution in Fig 4A in which values of D or D" greater than the threshold
are statistically significant. For realistic p-values (i.e. p-values 0.01, 0.02, 0.03, 0.04 and 0.05),
D" has better precision than D; At these realistic p-values, precision for D" ranges from
29.48% to 53.30% and the precision of D is 7.65% (Fig 5A). For these p-values, D has better
recall than D" (Fig 5B) with recall for D* ranging from 12.46% to 23.33% and recall for D
equaling 34.33%. For D, precision and recall are the same (7.65% and 34.33% p-values < 0.43,
because the D value is 1 since the null distribution is multimodal with peaks at the tails (Fig
4A). It should be noted that these results are robust to different window thresholds—i.e., intro-
gressed tracts covering at least 5%, 10%, and 25% of a 50kb window (524 Fig). Notably, when
we consider a more complex human demography (see S5 Fig), the recall and precision is
58.71% and 37.34% at a p-value of 0.05 (S6 Fig). One of the reasons the recall is higher under
the more complex model is because the effective population size of Neanderthals is smaller.
This means that the Neanderthal sequenced used to compute the D statistics is more closely
related to the actual Neanderthals that introgressed into modern humans.

To see how changes in the admixture proportion, mutation and recombination rate affect
the performance of D", we also simulated under different admixture proportions, recombina-
tion rates and mutation rates. We find that precision is sensitive to the admixture proportion
(S7 Fig). For a p-value of 0.05, a higher admixture proportion of f = 5% increases precision by
16% and an admixture proportion of f = 10% increases precision by 36% in comparison to an
admixture proportion of f = 3% shown in Fig 5. In contrast, decreasing the admixture propor-
tion from f = 3% to 2% decreases the precision by 6%. Recall is less sensitive to the admixture
proportion than precision with the biggest change happening for f = 10% with an increase of
4%. The recall and precision for other p-values is shown in S7 Fig.

Changing the mutation rate affects the number of informative sites per window and chang-
ing the recombination rate affects the length of the introgressed segments and the number of
windows that count as introgressed. We show precision and recall for different p-values in

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010155  January 8, 2024 12/25


https://doi.org/10.1371/journal.pgen.1010155

PLOS GENETICS

Leveraging shared ancestral variation to detect local introgression

S8 and S9 Figs for a larger and smaller mutation rate and recombination rate. For a p-value of
0.05, increasing the mutation rate by a factor of two increases precision by approximately 4%
and increases recall by approximately 2% (S8 Fig compared to Fig 5). In contrast, when the
mutation rate is decreased by a factor of two, the precision and recall drop by 4% and 7%
respectively (S8 Fig). Decreasing the recombination rate decreases the number of windows that
are introgressed. These windows contain more overlap with an introgressed segment since the
introgressed segments are longer. By contrast, increasing the recombination rate by a factor of 2
almost doubled the number of windows that are introgressed; however, the introgressed seg-
ments within a window are shorter in length. When the recombination rate decreases by a fac-
tor of two, recall increases by 2% (S9B Fig) and precision increases by 7% (S9A Fig). When the
recombination rate is doubled, recall decreased by 7% (S9E Fig) and precision increases by 2%
(S9D Fig). For p-values of 0.01, 0.02, 0.03, 0.04 and 0.05, the false positive rate for a model with
no gene flow remains relatively constant as the admixture proportion, mutation rate or recom-
bination rate change (S7C, S7F, S7I, S8C, S8F, S9C and S9F Figs).

D" can also be applied to sample sizes greater than one using derived allele frequencies with
Eq 2. For simulations with n>1, we use admixture proportions greater than 3% (see Methods).
We compute D" for simulations with admixture proportions of 10%, 20%, 30%, 40% and 50%
and computed recall (S10A Fig). Note that we have a different definition of what an intro-
gressed window is, which we explained in the Methods section titled “Calculating precision,
recall and false positive rate in simulated human data” and an example is provided in S3 Fig.
For a p-value of 0.05 D" has higher recall than D for all admixture proportions. The recall of
D" increases as the admixture proportion increases. As two conditions need to be met to call a
window introgressed (see Methods), we considered relaxing the first assumption involving the
frequency of the introgressed tract in the recipient population (P,). When we change the fre-
quency of the introgressed tract(s) in P,, recall increases as the frequency of the tract increases
(see S10B and S10C Fig). Furthermore, we ran additional simulations with a realistic admix-
ture proportion of 3% and computed precision and recall for a different set of chromosome
and window thresholds (see S1 Text section “Comparing performance of D and D+ for differ-
ent chromosome and window thresholds”). We find that for realistic p-values D+ will always
have a higher precision and recall than D, which demonstrates that for a realistic admixture
proportion, increased number of sampled chromosomes, and for all pairwise possibilities of
chromosome and window thresholds D+ consistently outperforms D for detecting signals of
introgression at a local scale (S25 and S26 Figs).

D" performs well under moderate violations of the molecular clock

Under a strict molecular clock, we expect the number of ABBA and BABA sites and the num-
ber of BAAA and ABAA sites to be equal under the null model with no gene flow. To assess
the performance of D" when the mutation rate of P, and P, are not equal, we increased the
mutation rate for P, and P, in comparison to each other by a factor of 2 and 10.

When P, has a higher mutation rate the amount of BAAA sites is greater than the amount
of ABAA sites under no admixture (S11A Fig). This skews the distribution and average of D"
towards 1, a signal of introgression from P into P,. Similarly, when P, has a larger mutation
rate, the amount of ABAA sites is greater than the amount of BAAA sites under the model of
no admixture and makes the average of D" negative instead of 0, indicating gene flow from P
to P; (S11B Fig).

For a p-value of 0.05, precision of D" is 31.60% when the mutation rate of P, is double the
mutation rate of P, and precision is 37.22% when the mutation rate of P, is double the muta-
tion rate of P; (S12 Fig). In a more extreme scenario, increasing the mutation rate of either P,
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or P, by a factor of ten decreases the precision in comparison to either P; or P, having double
the mutation rate. At a p-value of 0.05, precision decreases to 23.95% when P, has a higher
mutation rate than P, and precision decreases to 29.36% when P, has a higher mutation rate
than P, (S12 Fig). In general, these results suggest that precision is only mildly affected by the
differences in mutation rate between P, and P,.

When P, is the population with double the mutation rate, recall of D* is 18.35%, and
23.77% when the mutation rate of P is doubled (S12 Fig). When P; is ten times the mutation
rate of P,, recall is 16.32%, and 10.00% when P, is ten times the mutation rate of P, (S12 Fig).
It makes sense that recall is worse when the mutation rate is higher in P, since this increases
the number of ABAA sites, so the difference (BAAA-ABAA) is smaller which means the signal
of introgression is smaller.

D" identifies Neanderthal introgressed regions in modern-day humans

To investigate the behavior of D" in real data, we applied D* to modern-day humans [28] and
an Altai Neanderthal [27] to find if signals of gene flow corresponded to previously identified
Neanderthal introgressed regions. Unlike simulated data, in real human genomes we do not
know the ground truth, and to compare the performance of D and D", we assumed that the
Neanderthal introgressed regions from [7] were the truth. We calculated D and D" windows
for the two phased chromosomes of a single GBR individual from [28] to compute the recall of
D and D" (Fig 6). Since the 50 kb windows will sometimes only partially contain an intro-
gressed segment, we defined a window as introgressed if the window had a minimum percent-
age of bases overlapping with an introgressed segment (see Methods). Statistical significance
was computed using the genome-wide distribution of D* values (or D values) as the null distri-
bution. Recall is the number of these “true” introgressed windows that were called statistically
significant over the total number of introgressed windows (see Methods).

Fig 6 shows that recall for D* was consistently better than D as a function of the minimum
percentage of introgressed bases in a window. The recall decreases as the minimum overlap
between an inferred introgressed segment and a window increases. This happens because the
number of introgressed windows used to calculate recall decreases when we increase the
amount of overlap to call a window introgressed. We note that for this analysis the D" value
assigned for each window was the maximum of the two D" values for each of the two phased
chromosomes in the GBR individual. We tested this method of choosing the maximum of D*
values per window on simulated data (under the demographic history in Fig 2) and computed
the precision and recall for this scenario (see S13 Fig). We found that for a p-value of 0.05 the
recall is 23.56% and precision is 44.69%. Taking the maximum of D" values per window did
not affect the recall in comparison to the recall of D" when only one chromosome from P, is
used to compute D" (see Fig 5). By comparison, the corresponding recall in the empirical data
is around 59% (recall when the point on the x-axis is 10% in Fig 6) which is similar to the recall
under a more complex human demographic model (S6 Fig). The complex human demo-
graphic model (shown in S5 Fig) includes a smaller effective population size for the Neander-
thal population.

In the previous analysis, we assumed that the chromosomes of the GBR individual are per-
tectly phased. However, as the phasing is inferred, there could be phasing errors and/or often
phased chromosomes may not be available. When phasing is unavailable, studies randomly
sample a single allele to create a haploid genome (e.g. as in the Neanderthal genome). We
tested how this works in both real and simulated data. We implemented this approach with
the individuals we used for Fig 6 and compute recall 100 times and find that recall for a p-
value of 0.05 is on average 24.07% (see S14 Fig), similar to the recall in the simulated data, with
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recall ranging from 22.39-25.67% for all 100 runs. Therefore, we recommend that when the
phase is not available or is uncertain, the user can randomly sample a chromosome from each
individual as is often done in ancient DNA studies.

D" can detect introgression events in regions of low nucleotide diversity

One of the main reasons the D statistic is not useful for detecting introgression in small regions
of the genome is that the variance of D is high in areas of low nucleotide diversity [25]. To

address this [25] proposed f , as an alternative approach to quantify and detect introgression
in small genomic regions. The numerator of f , is in the same form as that of D; however, the
denominator of f , replaces the derived allele frequency of P, and P; with the maximum

derived allele frequency of P, and P;. This leads to f , having a lower variance in areas of low

nucleotide diversity, thus reducing spurious results in comparison to D. Like f » dyis also
designed to quantify the admixture proportion of small genomic regions [24]. The approach
in dfis to incorporate BBAA sites as fewer sites with this pattern are expected when introgres-
sion occurs between P, and P; or between P; and Ps.

Both f,, drare estimates of the admixture proportion while D and D" are used to detect and

not quantify introgression. To compare D" to f 4 and dywe used the same Heliconius genome
data from [29]. Heliconius butterflies have strong evidence for both genome-wide and adaptive
introgression between species, including mimicry loci for wing patterns [14,29,30]. We use
these data to compute these statistics in windows as a function of nucleotide diversity, since
the relationship between D and nucleotide diversity observed in [29] inspired the develop-
ments of new statistics to detect and quantify introgression in small windows of the genome.
For the four populations, we use H. melpomene aglaope as Py, H. melpomene amaryllis as P, H.
timareta thelxinoe as P3 and the H. hecale, H. ethilla, H. paradalinus sergestus and H. pardalinus
ssp. nov. species in the silvaniform clade as the outgroup (P,). We compute nucleotide diversity

I, f » ds Dand D" in non-overlapping 5 kb windows. Windows from the candidate intro-
gressed loci responsible for the red wing pattern (HmB) and the yellow and white wing pattern
(HmYb) are shown in red and yellow, respectively, in Fig 7. We find similar results as [25]; D
has a high variance and a wide distribution in regions of low nucleotide diversity (Fig 7A). As

nucleotide diversity increases the distribution of D narrows. f , reduces the high variance of
values in areas of low nucleotide diversity (Fig 7B). dralso reduces variance with most of the d
values centered around zero, including windows with the HmB and HmYb loci (Fig 7C). D*
has smaller variance with fewer outliers than D and similar variance to dy(Fig 7D). D" detects
candidate regions of introgression, including windows not detected by D (see S1 Table). Many
of the windows that D" detects as introgressed correspond to the candidate regions for intro-
gression that have been previously suggested in Heliconius butterflies and are associated with
wing patterning (red and yellow points in Fig 7). In fact, D" detects approximately 68.4% of
these candidate introgressed windows. In comparison, D detects 52.6%, dydetects 27.6% and

f , detects 63.1%. We also computed D,,,ceqrr Which only uses the ancestral shared patterns
(ABAA and BAAA), and it detects 63.2% of the windows (S15 Fig), suggesting that using the
ancestral site patterns alone is better behaved than the D statistic, which shows the utility of
using ancestral shared variation.

Discussion

Multiple studies have found that introgression plays an important evolutionary role as it intro-
duces new genetic variation in a population that can be targeted by natural selection; this is an
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Fig 7. Application of D, f » 95 and D" in Heliconius butterfly. (A) D, (B) f » (C) drand (D) D" as a function of
nucleotide diversity in P, in non-overlapping 5 kb windows. P;: H. melpomene aglaope, P,: H. melpomene amaryllis,
P3: H. timareta thelxinoe, Py: H. hecale, H. ethilla, H. paradalinus sergestus and H. pardalinus ssp. nov. from the
silvaniform clade. Red and yellow circles correspond to windows with introgressed loci HmB and HmYb, respectively.
Methods follow Fig 3 from [25] with Helicionius genome data from [29].

https://doi.org/10.1371/journal.pgen.1010155.9007

accelerated process of accumulating new alleles compared to a de novo mutation process.
Therefore, detecting which regions of the genome exhibit signatures of introgression is an
important step to evaluate its relative contribution to evolution. To date, Patterson’s D statistic
is the most widely used metric for detection of introgression genome wide. While D works
well at detecting introgression at the genome-wide scale, some studies have shown that D
might not be the best choice to detect introgression in small regions of the genome. In this
paper, we define a new statistic, D", that leverages both sites with shared ancestral and sites
with shared derived alleles to improve detection of introgression in small genomic windows.

First, we use coalescent theory to understand this statistic’s theoretical properties and derive
the expectation of D" as a function of gene flow. We show that the expected counts of BAAA
sites and ABAA sites are equal under a model of no introgression. As the proportion of admix-
ture increases, one of these two site patterns increases, implying that BAAA and ABAA sites
are informative to detect introgression. Interestingly, our theoretical results also show that the
expected difference in counts of BAAA and ABAA sites equals the expected difference of
ABBA and BABA sites (Fig 3). However, in general there are more BAAA and ABAA sites
than ABBA and BABA sites. D" is more conservative than D with a smaller expectation and
variance than D in small genomic windows (Figs 4 and S1). As a result, D" has less false posi-
tives than D, likely because D" includes more informative sites (Fig 4). Therefore, D" also has
better precision than D in simulated data under the Neanderthal admixture model presented
in Fig 2 (Fig 5A) and under more realistic human demography models (S6 Fig).
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We also apply D" to detect Neanderthal introgression in a non-African individual. Unlike sim-
ulations, in real data we do not know the ground truth. Therefore, we evaluated D* by asking; if
we assume the existing inferred maps [7] are the truth, how often do we call a window intro-
gressed when it completely or partially contains an introgressed segment? Under these assump-
tions, we find that recall is around 59% (see Fig 6) which is similar to the simulation results under
a complex demographic history (see S6 Fig). Overall, our simulations and empirical data suggest
that D" has statistical properties that make it more stable than D at detecting introgression in
small genomic windows and provides an alternative method to detect introgression.

We also evaluated the performance of D" as a function of the admixture proportion, muta-
tion rate and recombination rate, and for the values considered, our simulations show that the
impact on recall or on precision is not too high (S7, S8 and S9 Figs). D" is also robust to realis-
tic violations of the molecular clock under a human demography (512 Fig). We consider cases
when the mutation rate differed (between P1 and P2) by a factor of two or ten. Differences in
mutation rate can mimic signatures of introgression, and do affect the performance of the sta-
tistic (see S11 and S12 Figs). We find that a higher mutation rate in P, than P; would hinder
the performance of D" more than a higher mutation rate in P, than P, because this produces
more ABAA sites. We note, however, that in real data, it will be rare to observe differences in
the mutation rate that are this extreme.

Another factor that could affect the performance of D" is differences in sequencing error in
P1 vs. P2. To evaluate this, we simulated differences in sequencing errors across lineages, and
they do not appear to have a large impact on the overall positive rate of D™ (516, S17 and S18
Figs; S1 Text). Thus, when D" is calculated on a window level we conclude that D" is robust to
differential sequencing errors. Finally, we considered whether D" can distinguish incomplete
lineage sorting (ILS) from introgression at the local level. Using the whole genome, we know
that ILS leads to an equal number of BAAA and ABAA sites, so at the genome level these sites
cancel out. Our simulation results show that D" is better than D at distinguishing ILS at the
local level (see S19-S22 Figs; S1 Text).

There are other methods such as f 4 [25] and dy [24] that have been derived from Patterson’s

D to quantify the admixture proportion, f, in small genomic regions. f ; leverages ABBA and
BABA sites, dfleverages ABBA, BABA and BBAA sites, and D" leverages ABBA, BABA, BAAA
and ABAA sites. To compare with these methods, we ran simulations following the demogra-
phy depicted in Fig 2 and computed D, drand D* and found that the performance of D* and d;
are comparable (S10 Fig). We also applied them to a Heliconius butterflies data set, and we

found that similarly to f 4 and dj; the variance of D" is reduced in regions of low nucleotide

diversity. This suggests that like f 4 and ds D" will also not lead to a high number of false posi-
tives, especially in regions of low nucleotide diversity. Indeed, we find that many of the regions
with a signal of introgression from windows contain previously identified candidate intro-
gressed loci. All these statistics have both shared and distinct aspects in how they leverage
genetic patterns, and future studies might focus on integration of these approaches to improve
the detection and quantification of introgression. Specifically, probabilistic models that incor-
porate these site patterns as features might provide better inferences of introgression. We rec-
ognize that all these statistics have been benchmarked to detect or quantify introgression
under very specific and simple demographic scenarios that may not closely reflect the true
demographic histories of actual species or populations. Future studies that compare and con-
trast how different statistics that detect and quantify introgression [24,25,31-34] behave under
more complex demographic scenarios and under different evolutionary time scales will help
characterize the behavior of these statistics and expand our understanding of the power and
limitations of each method.
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In summary, we have shown that ancestral shared variation between a donor and recipient
population is influenced by the introgression proportion. Leveraging this ancestral sharing in
the D statistic through D" can improve inferences of local introgression. D" be applied locally
and on a genome-wide scale (S23 Fig). Our results suggest that shared ancestral variation is
informative for detecting introgression on both local and global scales, and might also be use-
ful for deriving new estimators of the proportion of introgression that may help address how
pervasive introgression is across the tree of life. Beyond their utility to detect introgression,
there is evidence that archaic introgression may have re-introduced ancestral alleles with regu-
latory effects in humans [35], pointing to the importance of studying ancestral shared varia-
tion. We expect that more studies will reveal the effects and consequences of re-introducing
ancestral variation, and that leveraging ancestral information may be informative on ghost
admixture events from uncharacterized ghost populations [27].

Supporting information

S1 Fig. Branches of Tagpa, Teapa> Teaaa and Tagaa. The branch lengths of Tpppa (blue),
Tpapa (vellow), Tpasa (green) and Tppaa (red) correspond to branches where a mutation on
that branch would lead to an ABBA, BABA, BAAA and ABAA site, respectively.

(TIFF)

S2 Fig. Number of introgressed bases in a 50 kb window for simulated genomes following
demographic model in Fig 2. The histogram depicts the distribution of the number of base
pairs within a 50 kb window that have a genealogical history of introgression.

(TIFF)

S3 Fig. Example of an introgressed window when we simulate with n>1. Vertical dash lines
represent the boundaries of a 50kb window. Solid horizontal lines represent chromosomes
and blue rectangles represent introgressed tracts. Two conditions need to be true. First, we
ask, is there at least one introgressed tract (depicted by the blue rectangles) that is present at
frequency of at least 10% in P, (at least present in two chromosomes out of 12 in this example).
In this example there are 3 tracts where that condition is met. We then add up the lengths of
those introgressed tracts and ask: is the sum of lengths of the tracts at least 10% of 50 kb? In
this example, the sum of the lengths of the three tracts is 15 kb. In this example both conditions
are met, so this would be defined as an introgressed window.

(TIFF)

S4 Fig. Theoretical and analytical expectations of D and D+. Analytical (lines) and simulated
(dots) expectation of D (red) and D+ (blue) as a function of the admixture proportion (f) of 0,
0.01, 0.02, 0.05, 0.1, 0.2, 0.5 and 1. The simulated expectations of D and D+ concur with the
analytical expectations. The expectation of D and D+ are both zero when there is no gene flow
and both expectations increase as fincreases.

(TIFF)

S5 Fig. Realistic demographic model of human evolution modified from Ragsdale and
Gravel (2019). The model in Ragsdale and Gravel (2019) has continuous bidirectional migra-
tion but this modified model has three discrete pulses. The first pulse of unidirectional migra-
tion is from the Neanderthal population to the ancestral population of CEU and CHB. The
second and third pulse of unidirectional migration is from the Neanderthal population to the
CHB population and from the Neanderthal population to the CEU population. Solid arrows
represent population divergences and dashed arrows represent gene flow events.

(TIFF)

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010155  January 8, 2024 18/25


http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010155.s001
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010155.s002
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010155.s003
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010155.s004
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010155.s005
https://doi.org/10.1371/journal.pgen.1010155

PLOS GENETICS

Leveraging shared ancestral variation to detect local introgression

S6 Fig. Performance of D and D+ on simulated haplotypes under a modified model from
Ragsdale and Gravel (2019). (A) Precision, (B) recall and (C) false positive of D and D+ calcu-
lated in 50 kb windows for 100 msprime simulations of 20 MB genomes with n = 1 for P;, P,
and P; following the model in [36] modified to include unidirectional pulses of migration,
described in [37]. The false positive rate is under a model with no introgression.

(TIFF)

S7 Fig. Performance of D and D+ on simulated haplotypes with different admixture pro-
portions. (A,D,G) Precision, (B,E,H) recall and (C,F,I) false positive rate for D and D+ calcu-
lated in 50 kb windows for 100 msprime simulations of 20 MB genomes with n = 1 for P;, P,
and P; following the demography in Fig 2 with admixture proportions: (A-C) f = 2%, (D-F)
f=5% and (G-I) f= 10%. The false positive rate is under a model with no introgression.
(TIFF)

S8 Fig. Performance D and D+ on simulated haplotypes with different mutation rates. (A,
D) Precision, (B, E) recall and (C, F) false positive rate for D and D+ calculated in 50 kb win-
dows for 100 msprime simulations of 20 MB genomes with n = 1 for Py, P, and P; following
the demography in Fig 2 with (A-C) half the default mutation rate and (D-F) twice the default
mutation rate. The default mutation rate is 1.5* 10~® per bp per generation. The false positive
rate is under a model with no introgression.

(TIFF)

S9 Fig. Performance of D and D+ on simulated haplotypes with different recombination
rates. (A,D) Precision, (B,E) recall and (C,F) false positive rate for D+ calculated in 50 kb win-
dows for 100 msprime simulations of 20 MB genomes with n = 1 for P;, P, and P; following
the demography in Fig 2 with (A-C) half the default recombination rate and (D-F) twice the
default recombination rate. The default recombination rate is 10~ per bp per generation. The
false positive rate is under a model with no introgression.

(TIFF)

$10 Fig. Performance of D, df and D+ on simulated genomes using derived frequencies.
The recall (p-value of 0.05) of D, df and D+ calculated using derived frequencies in 50 kb win-
dows of 100 msprime simulations of 20 MB genomes following the demography in Fig 2. We
sampled n = 200 chromosomes for P; and P, and n = 2 chromosomes for P;. (A) Recall as a
function of f= 10%, 20%, 30%, 40% and 50%. Here we defined an introgressed window as a
window where two conditions are true: 1) at least one tract is present in at least 20 chromo-
somes in P, (equivalent to a frequency of 10% in P,) and 2) the sum of the introgressed tracts
lengths (that are present within the window at frequency of 10% in P,) is at least 5 kb of the 50
kb window. This is definition described in S3 Fig. (B) Recall when we set f = 10% and we relax
the second condition described in part A. Here we allow the tracts to have frequencies in P, of
0.5%, 5%, 10%, 15%, or 20% (x-axis). (C) Same as B but setting f = 30%.

(TIFF)

S11 Fig. Distribution of D+ when P, and P, have different mutation rates. (A) P, has dou-
ble the mutation rate of P, and (B) P, has double the mutation rate of P;. D+ is calculated in
50 kb windows for 100 msprime simulations of 20 MB genomes with n = 1 for P;, P, and P;
following the demography in Fig 2 with divergence rates increased by a factor of T, to
increase mutation rate of (A) P; or (B) P,.

(TIFF)

$12 Fig. Performance of D+ when P, and P, have different mutation rates. (A, C) Precision,
(B, D) recall for D+ calculated in 50 kb windows for 100 msprime simulations of 20 MB
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genomes with n = 1 for Py, P, and P; following the demography in Fig 2 with divergence rates
increased by a factor of Tp, to increase mutation rate of (A,B) P; or (C,D) P,. The mutation
rate of (A,B) P, is twice and ten times the mutation rate of P, and (C,D) P, is twice and ten
times the mutation rate of P,. The default mutation rate for P, and P, is 1.5* 10~® per bp per
generation.

(TIFF)

S$13 Fig. Precision and Recall for simulated data using the maximum D and D+ value per
window. (A) Precision and (B) recall are computed for 50 kb windows of 100 20 MB simulated
genomes with n = 1 individual from Py, P, and P; using the maximum D and D+ value per
window when D and D+ are calculated for both chromosomes of the P, individual and the
same chromosome for the P, and P individual.

(TIFF)

S$14 Fig. Recall of D" for human empirical data assuming the phase is unknown. D+ was
calculated in 50 kb windows by randomly sampling a haplotype at every position for an indi-
vidual from the African (YRI), non-African (GBR), and archaic (Neanderthal) population,
where this process was replicated 100 times. For each replicate recall was computed as the
number of these “true” introgressed windows that were called statistically significant over the
total number of introgressed windows, where the “true” introgressed windows were deter-
mined by the introgression maps from [7].

(TIFF)

S15 Fig. Application of Dancestral in Heliconius butterfly. Dancestral as a function of nucle-
otide diversity in P, in non-overlapping 5 kb windows. P;: H. melpomene aglaope, P,: H. mel-
pomene amaryllis, Py: H. timareta thelxinoe, P,: H. hecale, H. ethilla, H. paradalinus sergestus
and H. pardalinus ssp. nov. from the silvaniform clade. Red and yellow circles correspond to
windows with candidate introgressed loci HmB and HmYb, respectively. Methods follow Fig 3
from [25] with Helicionius genome data from [29].

(TIFF)

S$16 Fig. Distributions of synthetic sequencing errors in 50kb windows. Assuming a
sequencing error rate of 0.001 and a genome size of 3Gb, 100 replication simulations were con-
ducted for (column A), sequencing errors in only P; (column B), sequencing errors in only P,
(column C), and sequencing errors in both P; and P, (column D). The distributions represent
the observed number of sequencing errors in 50 kb windows with the mean and standard devi-
ation denoted.

(TIFF)

S$17 Fig. Distributions of D and D" for simulations without introgression. Using the demo-
graphic model described in Fig 2 without introgression D (blue) and D+ (green) were calcu-
lated in 50 kb windows from 100 replicate simulations with no sequencing errors (column A),
sequencing errors in only P; (column B), sequencing errors in only P, (column C), and
sequencing errors in both Py and P, (column D), where we simulated a genome size of 100 Mb
and assumed a sequencing error rate of le-4.

(TIFF)

S$18 Fig. False positive rates for D and D*. The p-value in the x-axis is used to set a signifi-
cance threshold to get a false positive rate in the y-axis of null distributions following the
demographic model in Fig 2 without introgression, where D (blue) and D+ (green) were calcu-
lated in 50 kb windows from 100 replicate simulations with no sequencing errors (column A),
sequencing errors in only P, (column B), sequencing errors in only P, (column C), and
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sequencing errors in both P; and P, (column D), where we simulated a genome size of 100 Mb
and assumed a sequencing error rate of le-4.
(TIFF)

S$19 Fig. Distribution of D values conditioned on coalescent histories. Based on 100,000 rep-
licate simulations of unliked loci with a mutation rate of 1.5e-8 the distributions of D are
shown for coalescent histories of ILS with no introgression (top row), and coalescent histories
of ILS (middle row) vs introgression (bottom row) given and admixture proportion of 0.03
and the IUA demographic model described in the methods section for loci of size 10kb (col-
umn A), 20kb (column B), 30kb (column C), 40kb (column D), and 50kb (column E).

(TIFF)

$20 Fig. Quantile-Quantile plot corresponding to D value distributions conditioned on
coalescent histories. Based on 100,000 replicate simulations of unliked loci with a mutation
rate of 1.5e-8 the observed quantiles (y-axis), theoretical quantiles (x-axis), and the line of best
fit with the associated coefficient of determination are shown for coalescent histories of ILS
with no introgression (top row), and coalescent histories of ILS (middle row) vs introgression
(bottom row) given and admixture proportion of 0.03 and the IUA demographic model
described in the methods section for loci of size 10kb (column A), 20kb (column B), 30kb (col-
umn C), 40kb (column D), and 50kb (column E) to assess if the observed D distributions are
normally distributed around mean 0 and scaled by the observed standard deviation of each
respective distribution.

(TIFF)

$21 Fig. Distribution of D+ values conditioned on coalescent histories. Based on 100,000
replicate simulations of unliked loci with a mutation rate of 1.5e-8 the distributions of D+ are
shown for coalescent histories of ILS with no introgression (top row), and coalescent histories
of ILS (middle row) vs introgression (bottom row) given and admixture proportion of 0.03
and the IUA demographic model described in the methods section for loci of size 10kb (col-
umn A), 20kb (column B), 30kb (column C), 40kb (column D), and 50kb (column E).

(TIFF)

$22 Fig. Quantile-Quantile plot corresponding to D+ value distributions conditioned on
coalescent histories. Based on 100,000 replicate simulations of unliked loci with a mutation
rate of 1.5e-8 the observed quantiles (y-axis), theoretical quantiles (x-axis), and the line of best
fit with the associated coefficient of determination are shown for coalescent histories of ILS
with no introgression (top row), and coalescent histories of ILS (middle row) vs introgression
(bottom row) given and admixture proportion of 0.03 and the IUA demographic model
described in the methods section for loci of size 10kb (column A), 20kb (column B), 30kb (col-
umn C), 40kb (column D), and 50kb (column E) to assess if the observed D+ distributions are
normally distributed around mean 0 and scaled by the observed standard deviation of each
respective distribution.

(TIFF)

$23 Fig. Genome-wide power of D and D+ to detect introgression. Power of D (blue) D+
(green) to detect introgression from 100 replicate simulations with a genome size of 100 Mb
for sample sizes of n = 1 (top row) and n = 100 (bottom row) monoploid genomes from P; and
P, under the IUA model described in the methods (column A), and a realistic model of
human demographic history described in Ragsdale and Gravel 2019 for the CEU (column B)
and CHB (column C) populations.

(TIFF)
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$24 Fig. Precision and recall of D and D" in simulations with variable window thresholds.
The Precision-Recall of D (blue) and D" (green) were computed in non-overlapping 50 kb
windows of 100 simulations of a 20 MB genome sampling a single chromosome from each
focal population with an admixture proportion of 3% (f = 0.03). Using window thresholds—
i.e., introgressed tracts covering at least 5% (A & D), 10% (B & E), and 25% (C & F) of a 50kb
window. Precision and recall are shown as a function of the p-value (0.01-1) used to get a sig
nificant threshold value of D and D".

(TIFF)

$25 Fig. Precision and of D and D" in simulations with variable chromosome window
thresholds. The Precision of D (blue) and D" (green) were computed in non-overlapping 50
kb windows of 100 simulations of a 20 MB genome sampling 200 chromosomes from P1 and
P2 and two chromosomes from P3 with an admixture proportion of 3% (f = 0.03). Using all
pairwise combinations of requiring introgressed tracts to be present in at least 5% (top row),
10% (middle row), and 25% (bottom row) of sampled P2 chromosomes and requiring intro-
gressed tracts to cover at least 5% (left column), 10% (middle column), and 25% (right col-
umn) of a 50kb window. Precision is shown as a function of the p-value (0.01-1) used to get a
significant threshold value of D and D".
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$26 Fig. Recall and of D and D" in simulations with variable chromosome window thresh-
olds. The Recall of D (blue) and D" (green) were computed in non-overlapping 50 kb windows
of 100 simulations of a 20 MB genome sampling 200 chromosomes from P1 and P2 and two
chromosomes from P3 with an admixture proportion of 3% (f = 0.03). Using all pairwise com-
binations of requiring introgressed tracts to be present in at least 5% (top row), 10% (middle
row), and 25% (bottom row) of sampled P2 chromosomes and requiring introgressed tracts to
cover at least 5% (left column), 10% (middle column), and 25% (right column) of a 50kb win-
dow. Recall is shown as a function of the p-value (0.01-1) used to get a significant threshold
value of D and D".

(TIFF)
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