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Abstract

Phenotypic differences across sexes are pervasive, but the genetic architecture of sex dif-

ferences within and across phenotypes is mostly unknown. In this study, we aimed to

improve detection power for sex-differentially contributing SNPs previously demonstrated to

be enriched in disease association, and we investigate their functions in health, pathophysi-

ology, and genetic function. We leveraged GIANT and UK Biobank summary statistics and

defined a set of 2,320 independent SNPs having sexually dimorphic effects within and

across biometric traits (MAF > 0.001, P < 5x10-8). Biometric trait sex-heterogeneous SNPs

(sex-het SNPs) showed enrichment in association signals for 20 out of 33 diseases/traits at

5% alpha compared to sex-homogeneous matched SNPs (empP < 0.001), and were signifi-

cantly overrepresented in muscle, skeletal and stem cell development processes, and in cal-

cium channel and microtubule complexes (FDR < 0.05, empP < 0.05). Interestingly, we

found that sex-het SNPs significantly map to predicted expression quantitative trait loci (Pr-

eQTLs) across brain and other tissues, methylation quantitative trait loci (meQTLs) during

development, and transcription start sites, compared to sex-homogeneous SNPs. Finally,

we verified that the sex-het disease/trait enrichment was not explained by Pr-eQTL enrich-

ment alone, as sex-het Pr-eQTLs were more enriched than matched sex-homogeneous Pr-

eQTLs. We conclude that genetic polymorphisms with sexually dimorphic effects on biomet-

ric traits not only contribute to fundamental embryogenic processes, but later in life play an

outsized role in disease risk. These sex-het SNPs disproportionately influence gene expres-

sion and have a greater influence on disorders of body and brain than other expression-reg-

ulatory variation. Together, our data emphasize the genetic underpinnings of sexual

dimorphism and its role in human health.

Author summary

Risk for many diseases and related manifestations differs by sex. Here, we build on prior

work to study a large set of anthropometric and biometric traits that could inform health

differences by sex. We define a well-powered list of 2,320 sex-het SNPs showing sex-het-

erogeneity across multiple traits. We find that sex-het SNPs influence a large set of dis-

eases and health-related traits. The sex-het SNPs are in/near genes with roles in skeletal
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and muscle development and are involved in regulating gene expression and DNA meth-

ylation, two important functions of the genome. We conclude that genetic variation with

sexually dimorphic effects on biometric traits not only contributes to fundamental

embryogenic processes but plays a role in disease risk later in life and is involved in the

regulation of gene expression and epigenetic processes. Our results suggest that sex-het-

erogeneous SNPs link human physiology and pathology.

Introduction

Most complex diseases show some degree of sex difference, in prevalence, manifestations,

symptoms, comorbidities, and/or treatments and their side effects, requiring sex-personalized

healthcare [1]. Biological differences between women and men are evident in physiology, yet

genetic loci on the sex chromosomes have not yet explained sex differences in many heritable

metabolic, autoimmune, and neuropsychiatric conditions and their underlying quantitative

risk traits [2]. Potential autosomal origins of sex bias and the mechanisms by which the biology

of sex may shape disease risk and outcomes are still not fully explored [3–5].

We previously hypothesized and tested several potential contributors to the genetics of sex

bias in autism spectrum disorder (ASD) [6] and nine other complex diseases [7]. Using a novel

approach to understanding sex differences in health via sexually-dimorphic physical traits, we

identified autosomal SNPs showing sex-heterogeneity in their association with secondary sex

characteristics (eight anthropometric measures) and tested the role of these SNPs in disease.

We hypothesized that sex-heterogeneous (sex-het) SNPs, enriched for the biology of sexual

dimorphism by definition, may contribute to disease biology, even if the anthropometric traits

used to identify them appear unrelated to a disease of interest. Strikingly, we found that

anthropometric sex-het SNPs (AH-SNPs) were enriched in association with all eight anthro-

pometric measures, ASD, and 5 of 9 common, complex diseases, including some without sex

differences in prevalence [6,7]. Our interpretation of this result was that the same mechanisms

acting on secondary sex characteristic differences may influence disease risk through funda-

mental early developmental processes. However, the mechanisms by which sex-het SNPs act,

their functions and roles in the genome, cells, and pathophysiology have not yet been clarified.

Here, we follow up our previous observation with improved detection power for sex-het

SNPs within and across 20 biometric traits, thanks to publicly available summary statistics

from UK Biobank and GIANT consortium. To characterize the role of sex-het SNPs, we inves-

tigate 1) enrichment in disease/trait association signal to confirm the importance to human

health, 2) overrepresented biological processes to identify pleiotropic mechanisms, and 3) reg-

ulatory element overlap to identify specific genomic functions. We ultimately generate hypoth-

eses about the role of biometric sex-het SNPs in physiology and disease. Our work contributes

to clarifying autosomal mechanisms involved in sex differences across complex phenotypes, in

order to advance our understanding of sex differences in health.

Materials and methods

Datasets

We downloaded sex-specific genome-wide summary statistics (Table 1) from Genetic Investi-

gation of ANthropometric Traits (GIANT) consortium (S1 File) for 12 quantitative anthropo-

metric traits: height and weight (2013), body mass index (BMI), hip circumference (HIP),

BMI-adjusted HIP (HIPadjBMI), waist circumference (WC), BMI-adjusted WC (WCadjBMI),
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waist-hip ratio (WHR), BMI-adjusted WHR (WHRadjBMI) (2015), BMI adjusted for physical

activity (BMIadjPA), BMI-adjusted WHR adjusted for physical activity (WHRadjBMIadjPA),

BMI-adjusted WC adjusted for physical activity (WAISTadjBMIadjPA) (2017). We down-

loaded UK Biobank sex-specific genome-wide summary statistics from Neale lab (S1 File) for

eight additional anthropometric and biometric traits: basal metabolic rate, body fat percentage,

forced expiratory volume (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), sys-

tolic blood pressure (SBP), diastolic blood pressure (DBP), weight (Table 1). As reported in a

meta-analysis of BMI and height traits between UK Biobank and GIANT studies [8], the two

studies might partially overlap. The authors concluded that the overlap is small and likely has

minimal effect. However, we have performed multivariate analysis across UK Biobank and

GIANT with METAL that implemented–overlap ON option to ensure the meta-analysis was

robust to overlapping samples (see below). The datasets from GIANT consortium included

about 2.7M SNPs and up to 171,977 females and 152,893 males. The datasets from UK Biobank

included ~13.8M SNPs and up to 193,627 females and 166,489 males.

Trait-specific sex-het SNPs

As a genome-wide implementation to assess differences in effect between males and females

for each SNP within each biometric trait, we combined male-specific summary statistics with

female-specific summary statistics with the fixed-effects meta-analysis commands (e.g., meta-

analysis of Female BMI + Male BMI) in METASOFT (S1 File). However, instead of the meta-

analysis trait association results, we extracted the marginal effects and the Cochran’s Q test of

Table 1. Sex-specific GWAS and genomic inflation factor (lambda) for Cochran’s Q.

GIANT genomic inflation factor

Height 0.780

Weight 0.818

BMI 0.780

BMI adj PA 0.890

HIP 0.861

HIPadjBMI 0.849

WC 0.842

WCadjBMI 0.898

WHR 0.912

WHRadjBMI 0.939

WHRadjBMI adj PA 0.968

WAISTadjBMIadj PA 0.939

UK Biobank genomic inflation factor

Basal metabolic rate 1.039

Body fat percentage 1.048

FEV1 1.018

FVC 1.016

PEF 1.022

Systolic Blood Pressure 1.017

Diastolic Blood Pressure 1.029

Weight 1.034

Abbreviations: BMI: body mass index; adj = adjusted for; PA: physical activity; WC: waist circumference; WHR:

waist hip ratio; FEV1:forced expiratory volume; FVC: forced vital capacity; PEF: peak expiratory flow rate.

Genomic inflation factor for Cochran’s Q.

https://doi.org/10.1371/journal.pgen.1010147.t001
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heterogeneity[9] to assess the sex differences in SNP effects on each trait. We observed little

inflation for this statistic (lambda median = 0.94, Table 1). For each trait, we defined sex-het

SNPs as those meeting Cochran test PQ< 5x10-8 and MAF > = 0.1%. We compiled the sex-het

SNPs from each trait, and we extracted a set of SNPs in low linkage disequilibrium (r2< 0.2)
with differential contribution to females and males for each trait.

Multi-trait sex-het SNPs

To determine sex-heterogeneity estimates across 20 biometric traits and to increase the statisti-

cal power of the univariate analysis, we planned to use METAL software (below), which

requires βhet and SEhet as input. Thus, we estimated a heterogeneity Z-score for each SNP and

each trait based on the METASOFT output, where Zhet = (β Female– β Male) / sqrt(var(β
Female) + var(β Male)). For each SNP, we converted Zhet to βhet and SEhet: βhet = Zhet / sqrt(2p

(1− p)(n + Zhet^2)) and SEhet = 1 / sqrt(2p(1− p)(n + Zhet^2)) where p is the allele frequency;

N is the sample size (number of males + number of females). Note that P-values from

Cochran’s Q and Zhet tests are highly correlated (median rho = 0.87).

We performed a meta-analysis across 20 traits using METAL (S1 File), as it is optimized to

perform cross-trait analysis, including the option overlap ON for potential overlapping sam-

ples across GIANT and UK Biobank. Input included βhet, SEhet along with the corresponding

PQ and the direction of the effect: positive if |βfemale|> |βmale|, and negative if |βfemale|< |βmale|.

We applied the MAF > 0.001 cutoff and P< 5x10-8 significance threshold to the results of the

multivariate meta-analysis, and we extracted a set of non-redundant SNPs. For each significant

SNP from the multivariate analysis, we verified the results of the univariate analysis for each

biometric trait, and we extracted the leading trait (minimum heterogeneity P-value) and the

corresponding best Cochran test PQ. We combined the univariate and multivariate significant

sex-het SNPs across biometric traits, and we performed a clumping LD analysis in PLINK

(option–clump; S1 File) using the best Cochran test PQ for each SNP. We extracted a final set

of sex-het independent tagging SNPs within and across biometric traits in low linkage disequi-

librium (r2< 0.2) (S1 Table). Additionally, when the female absolute value marginal effect

(beta estimate) of a given female SNP on our sex-het list was greater than the absolute value

marginal effect of the same SNP in males, we tagged the given SNP as female-driven sex-het
SNPs and vice versa when larger beta was observed in males (S1 Fig).

Empirical P value

We assessed this set of biometric sex-het SNPs for enrichment of genetic signal compared to

permuted lists of SNPs equally associated with biometric traits, but not sexually dimorphic,

using similar methods for permuted sets as testing the sex-het sets of interest. We sampled

1,000 sets of random sex-homogeneous SNPs. We excluded the sex-het SNPs and all the SNPs

in linkage disequilibrium (r2> 0.2) with them, matching the allele frequency (+/- 0.001 for

MAF<0.01, +/- 0.02 for MAF>0.01) and the combined-sex marginal effect (+/-75 positions in

a ranked list) of the leading sex-het trait for validation with empirical P-values (empP). We

used 100 (or 1,000 random sets to better refine the p-values) based on the complexity of the

analyses described below, setting the significance thresholds at empP = 0.05. We compared the

minor allele frequency distribution of the sex-het SNPs to the median MAF of UKBB traits

and to the median of random sex-homogeneous SNP sets (S2 Fig).

Enrichment of sex-het SNPs in disease and trait association signals

To identify pleiotropic effects between sex-het SNPs and disease, we assessed the enrichment

of the sex-het SNPs in a large set of disease and trait association results. We downloaded
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publicly available summary statistics (S1 File and Table 2) for N = 16 diseases regardless of sex

bias in prevalence: Alzheimer’s diseases (late onset), adult-onset asthma, anorexia nervosa

(AN), chronic kidney disease (CKD), lacunar stroke, heart failure, post-traumatic stress disor-

der (PTSD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders

(ASD), bipolar disorder (BIP), major depressive disorder (MDD), schizophrenia (SCZ), and

cross-disorder association with 5 neuropsychiatric disorders, Tourette syndrome (TS), type 2

diabetes (T2D), insomnia. We did the same for N = 17 quantitative traits regardless of mean

sex differences: alcohol use disorders identification test (AUDIT), age at completed education,

age at first birth, automobile speed propensity, dietary fat intake, educational attainment,

Table 2. Enrichment of biometric trait sex-heterogeneous SNPs in summary statistics for N = 16 diseases and N = 17 human phenotypes.

Diseases study N overlapping sex-het SNPs % enrichment sex het SNPs E/O EmpP^

ADHD Demontis 2019[34] 1124 7.93 56.2/89 0.11

Adult onset asthma Ferreira 2019[35] 1405 7.62 70.3/107 0.027

Anorexia nervosa Watson 2019[36] 1169 8.30 58.5/97 0.027

ASD Grove 2017[37] 1323 7.18 66.2/95 0.044

BIP Mullins 2021[38] 1307 9.042M� 65.4/118 0.096

CKD Wuttke 2019[39] 1625 7.20 81.3/117 NS

Cross psychiatric disorders Lee 2019[40] 1083 12.74 54.2/138 0.001

Heart failure Shah 2020[41] 1323 7.25F� 66.2/96 0.014

Insomnia Jansen 2019[42] 1533 7.50 76.7/115 0.079

Lacunar stroke Traylor 2020[43] 1182 6.52 59.1/77 0.15

Late-onset Alzheimer’s Kunkle 2019[44] 1523 5.32 76.2/81 NS

MDD Wray 2018[45] 1786 5.48 89.3/98 NS

PTSD Nievergelt 2018[46] 1400 6.43 70.0/90 NS

PGC-SCZ See S1 File 1291 13.78 64.6/178 <0.001

Tourette syndrome Yu 2019[47] 1349 5.49 67.5/74 NS

Type 2 diabetes Xue 2018[48] 732 13.27 36.6/97 0.008

UKBB-Age at completed education See S1 File 2312 8.22 115.6/190 0.005

Age at first birth Barban 2016[49] 673 8.62 33.7/58 0.011

AUDIT Sanchez-Roige 2018[50] 2285 6.30 114.3/144 NS

Automobile speed propensity Karlsson-Linner 2019[51] 2103 7.75F� 105.2/163 0.020

Dietary fat intake Meddens 2021[52] 2105 5.84 105.3/123 NS

Educational attainment Lee 2018[53] 1784 13.85 89.2/247 <0.001

Intelligence quotient (IQ) Savage 2018[54] 1529 11.34 76.5/173 0.003

N sexual partners Karlsson-Linner 2019[51] 2103 8.99 105.2/189 <0.001

Neuroticism Turley 2018[55] 1595 7.46M� 79.8/119 0.029

UKBB-Overall health rating See S1 File 2312 9.86 115.6/228 <0.001

Risk behavior Karlsson-Linner 2019[51] 2103 7.23 105.2/152 0.075

Total cholesterol Willer 2013[56] 670 7.61 33.5/51 0.001

Triglycerides Willer 2013[56] 669 7.47 33.5/50 0.005

HDL cholesterol Willer 2013[56] 670 7.61 33.5/51 0.005

LDL cholesterol Willer 2013[56] 669 6.87 33.5/46 0.019

Fetal own birthweight Warrington 2019[57] 2172 7.92 108.6/172 0.066

Maternal fetal birthweight Warrington 2019[57] 2126 7.99 106.3/170 0.009

� Chi square test P< = 0.05

^empirical p-value estimated on 1000 random set

Abbreviations: E/O expected and observed based on 5%

https://doi.org/10.1371/journal.pgen.1010147.t002
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intelligence quotient (IQ), number of sexual partners, neuroticism, overall health rating, risk-

taking behavior, total cholesterol, triglycerides, HDL cholesterol, LDL cholesterol, fetal own

birthweight, maternal fetal birthweight. We extracted the overlapping SNPs between the set of

sex-het SNPs and summary statistics for each disease/trait. Then, we calculated the percentage

of overlapping SNPs at P<0.05 and tested whether it was significantly different from the null

expectation of 5%. We validated the results by applying the same methods to 1,000 random

sets of sex-homogeneous SNPs and estimating an empirical p-value based on the sets for

which a greater proportion of overlapping SNPs show P<0.05 association compared with the

observed sex-het SNPs (empP) (Table 2).

Overrepresentation of sex-het SNPs in biological processes

We annotated genes to each sex-het SNP using ANNOVAR (S1 File). When the SNP was in

UTR regions, splicing sites, exonic regions, or intronic regions, we assigned the corresponding

gene. For intergenic SNPs, ANNOVAR assigned the two closest genes in both directions. To

help determine a reasonable distance cutoff, we used our observation that the number of SNPs

that are within 25kb from the nearest geneA is 2.4x-11x greater than the number of SNPs with

the further geneB within 25kb. For greater distance (25-50kb, 50-100kb, 100-200kb, 200-

500kb, and 500-2000kb), the enrichment in geneA vs. geneB distance rapidly decreased. We

thus selected 25kb as a cut-off and we assigned the closest geneA to each intergenic sex-het

SNP when the SNP and geneA were within 25kb, and we did not assign any gene to intergenic

SNPs when the distance from the nearest gene and the SNP was > 25kb to reduce noise in our

downstream gene-based analyses. We combined the list of corresponding genes (S2 Table)

and the nearest genes assigned to proximal intergenic sex-het SNPs into our final sex-het gene

list. We compared the resulting gene list to the products of published methods MAGMA [10]

(35kb upstream, 10kb downstream) and FUMA GENE2FUNC [11] and provide Table 3A and

3B in S3 Table of alternative gene lists.

We used our sex-het gene list to perform overrepresentation analysis (ORA) in Gene Ontol-

ogy (GO) pathways, biological processes, and cellular components using PANTHER (S1 File).

We extracted the nominally significant results (FDR< 0.05). We performed the same analysis

for 100 sets of permuted sex-homogeneous SNPs and sex-homogeneous gene lists derived

with the same parameters. We used sex-homogeneous gene lists to calculate empirical p-values

(empP) (Table 3 and S4 and S5 Tables).

Enrichment of sex-het SNPs in gene sets

We performed enrichment analysis in estrogen and androgen responsive gene sets, previously

analyzed [6,7]. Briefly, the androgen-responsive (AR) gene list was selected from Androgen

Responsive Gene Database (ARGDB) for a total of 2,613 genes of which 2,500 matched the

inclusion criteria. An estrogen-responsive (ER) gene list was selected from Estrogen Respon-

sive Genes Database (ERGDB), with a total of 1,384 genes of which 1,148 matched the inclu-

sion criteria [12,13]. We previously found enrichment in ER and AR gene sets only in four

diseases by sex [7]. These two databases have not been updated from our previous publication.

We calculated the proportion of overlap within the gene sets, and we estimated the empirical

p-value using 100 permuted SNP sets as described above (results not shown).

Enrichment of sex-het SNPs in regulatory regions

To assess whether the sex-het SNPs show regulatory function, we assessed the overlap with a

set of 50 baseline annotations of regulatory elements publicly available (S1 File). We calculated

the proportion of overlap within the regulatory elements for each category and we estimated
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the empirical p-value using 100 permuted SNP sets, as described above. The results for baseline

annotations reported in Finucane et al. [14] are shown in S6 Table.

Enrichment of sex-het SNPs in meQTLs

To assess the overlap of biometric trait sex-het SNPs with genetic variants affecting methyla-

tion (meQTLs) at fundamental timepoints for development, we downloaded a comprehensive

genome-wide cis and trans meQTL longitudinal analysis in cord blood DNA and maternal

blood during pregnancy of participants in the Avon Longitudinal Study of Parents and Chil-

dren (ALSPAC) [15]. We performed enrichment analysis to assess the overlap between sex-het

SNPs and unique meQTLs (P<1x10-14) as described in Gaunt et al. [16]. We assessed the num-

ber of unique CpG probes for each sex-het meQTL SNP. We estimated an empirical p-value

(empP) using 1,000 random matched SNP sets as described above (Table 4).

Table 3. Enriched GO biological processes and cellular components in biometric trait sex-heterogeneous mapping genes (in/within 25kb distance) using ORA.

GO Biological process N genes in human genome

reference

N genes assigned to sex-het

SNPs

expected number of

genes

dir FE FDR EmpP#

protein-DNA complex assembly (GO:0065004) 254 1 14 - 0.07 9.1x10-3 0.01

muscle structure development (GO:0061061) 460 51 25.35 + 2.01 4.6x10-3 0.01

muscle cell differentiation (GO:0042692) 235 29 12.95 + 2.24 4.3x10-2 0.01

exocytic process (GO:0140029) 67 13 3.69 + 3.52 4.7x10-2 0.01

protein-DNA complex subunit organization

(GO:0071824)

294 3 16.2 - 0.19 3.9x10-2 0.02

stem cell differentiation (GO:0048863) 154 22 8.49 + 2.59 4.3x10-2 0.02

skeletal system development (GO:0001501) 471 50 25.96 + 1.93 1.1x10-2 0.03

adaptive immune response (GO:0002250) 649 14 35.77 - 0.39 2.1x10-2 0.07
negative regulation of cell migration
(GO:0030336)

267 34 14.71 + 2.31 1.1x10-2 0.08

GO Cellular component

voltage-gated calcium channel complex

(GO:0005891)

17 7 0.94 + 7.47 5.6x10-3 0.01

calcium channel complex (GO:0034704) 26 8 1.43 + 5.58 8.7x10-3 0.01

dynein complex (GO:0030286) 62 11 3.42 + 3.22 3.0x10-2 0.01

microtubule associated complex (GO:0005875) 120 16 6.61 + 2.42 4.8x10-2 0.01

cellular_component (GO:0005575) 11293 689 622.36 + 1.11 6.3x10-3 0.01

cellular anatomical entity (GO:0110165) 11122 680 612.94 + 1.11 6.4x10-3 0.01

glutamatergic synapse (GO:0098978) 17 7 0.94 + 7.47 6.0x10-3 0.06

#Empirical p-value estimated on 100 random sets

https://doi.org/10.1371/journal.pgen.1010147.t003

Table 4. Overlap between sex-heterogenous SNPs and (A) SNPs influencing DNA methylation (meQTLs), and (B) elastic-net predicted SNPs influencing gene

expression across 49 tissues, 13 brain tissues (Pr-eQTLs).

A. meQTLs sex-heterogenous SNPs % Overlap EmpP# N probes EmpP# range probes per meQTL SNP

Cord blood 134 5.8 0.001 275 <0.001 1–21

Maternal blood 156 6.7 0.001 358 <0.001 1–24

B. Pr-eQTLs sex-heterogenous SNPs % Overlap EmpP# N eGenes EmpP# range eGenes per Pr-eQTL SNP

Across tissues 505 21.76 <0.001 1706 0.106 1–29

Brain tissues 264 11.37 0.001 598 0.017 1–6

#Empirical p-value estimated on 1000 random set

https://doi.org/10.1371/journal.pgen.1010147.t004
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Enrichment of sex-het SNPs in SNPs predicting gene expression under

elastic-net model

We downloaded SNPs predicting gene expression in 49 tissues in GTEx (version 8) under an

elastic-net variable selection model using PrediXcan (S1 File). Then, we extracted the propor-

tion of overlap between the sex-het SNPs and the SNPs predicting genetically-regulated

expression of genes (eGenes) across tissues and across brain tissues under an elastic-net model

(from here Pr-eQTLs) and we compared the proportions derived by the same analysis of 1,000

sets of sex-homogeneous SNPs to estimate the empirical p-value (empP) (Table 4). We per-

formed ORA on the set of eGenes regulated by sex-het Pr-eQTL SNPs across brain tissues (S7

Table). To assess whether the significant and suggestive enrichment in association signals for

diseases/traits is driven by gene expression, we re-calculated the sex-het enrichment among

the subset of association signals for SNPs predicting gene expression. We validated the analysis

assessing the empirical p-value after creating 1,000 sets of permuted sex-homogenous SNPs

that are also Pr-eQTLs matching the frequency of the sex-het SNPs (S8 Table).

Results

Our overall study design was based on definition of sex-heterogeneous SNPs that act differ-

ently on males and females across biometric traits. First, we assessed whether these SNPs have

an outsized role on pathology with a survey of common disease and health-relevant traits.

Next, we assessed overrepresented functional properties of the genes associated with these

SNPs to determine common physiology. Finally, we assessed genomic roles of the defined

SNPs to identify mechanisms of action. Our study design is summarized in Fig 1.

Biometric trait sex-heterogeneous SNPs

We previously found that SNPs having suggestively sexually-dimorphic association with

anthropometric traits (AH-SNPs, PQ< 0.0001) were relevant for ASD as well as other complex

diseases and clinically-relevant quantitative traits [6,7]. To follow up this observation, we first

wanted to identify an updated and more powerful set of sex-het SNPs. We expanded our

approach to consider all measurable (biometric) traits, and we leveraged 12 sets of recent

GIANT consortium sex-specific genome-wide summary statistics (Table 1). The female sample

size is up to 171,977 and the male sample size is up to 152,893 individuals. Then, we took

advantage of well-powered UK Biobank sex-specific genome-wide summary statistics from

Fig 1. Outline of the presented analyses. We selected a set of sex-heterogeneous SNPs differentially influencing

biometric traits. 1) Enrichment of sex-het SNPs in quantitative risk factors and diseases to define a role of sex-

heterogeneity in physiology and pathology. 2) Overrepresentation analysis (ORA) of proximal genes assigned to sex-

het SNPs in pathways, biological processes and cellular components. 3) Overlap of sex-het SNPs with regulatory

elements, predicted eQTLs, and meQTLs.

https://doi.org/10.1371/journal.pgen.1010147.g001
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Neale lab (S1 File) to include 8 additional biometric traits analyzed on up to 193,627 females

and 166,489 males, such as basal metabolic rate, body fat percentage, forced expiratory volume

(FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), systolic blood pressure (SBP),

diastolic blood pressure (DBP), weight (Table 1). We applied two complementary analysis

approaches: 1) within trait (univariate analysis) sex-heterogeneity and 2) multiple trait meta-

analysis of sex-heterogeneity (multivariate analysis) to extract the set of sex-het SNPs (see

Materials and Methods).

First, for each of the 20 traits, we applied a heterogeneity test between female and male sum-

mary statistics and we identified 180 independent SNPs that showed heterogeneity of effects

across sexes (Cochran test PQ [4x10-17 - 5x10-8]), mostly in GIANT traits. Second, we applied a

multivariate approach with the aim to power our discovery analysis to identify SNPs that did

not pass the heterogeneity significance threshold set for the univariate analysis but show mod-

est sex-heterogeneity across multiple traits. For each SNP, we estimated the extent to which

female effects outsized male effects using a heterogeneity Z score. Then, we meta-analyzed the

female-male heterogeneity scores and PQ across 20 traits to extract sex-het SNPs (N = 9,680;

Pmeta< 5x10-8) across 20 biometric traits. Finally, we combined univariate and multivariate

results and we compiled 2,320 independent (LD r2< 0.2) sex-het SNPs within and across bio-

metric traits (S1 Table).

Almost all the ultimate sex-het SNPs (2,314/2,320) met the significance threshold in the

multivariate analysis (vs. 6/2,320 appearing trait-specific), primarily from UK Biobank (2,028/

2,320). The leading traits with the maximum sex-heterogeneity for each SNP are reported in

S1 Table. Sex-het SNPs mapped across the entire autosomal genome and were nearly equally

distributed between SNPs with greater (absolute value) effects in females (49.2% female-driven

sex-het SNPs) and males (50.8% male-driven sex-het SNPs) (S1 Fig). The majority were driven

by an effect in only one sex (N = 1,550), with nearly all the remaining SNPs showing nominal

effects in opposite directions (N = 757), rather than differences in magnitude of effect

(N = 13).

Sex-het SNPs are enriched in disease and trait association signals

To assess whether SNPs showing sex-het effects in biometric traits are relevant for disease and

quantitative health-related traits, we surveyed 16 diseases and 17 traits and we calculated sex-

het SNP enrichment (percent P<0.05) in association signals at alpha 5%. We found significant

enrichment in 6 out of 16 diseases and 13 out of 17 traits ranging between 7.2% in ASD and

late-onset asthma (empP< 0.04) and 13.8% in both educational attainment and schizophrenia

(empP< 0.001, Table 2) compared with the null expectation of 5%. When we performed the

same analysis with the subset of sex-het SNPs showing greater effects in males or females, we

found most showed no male-driven or female-driven sex het SNP enrichment. Only 4 pheno-

types appeared to show sex-specific enrichment out of 66 sex-specific analyses: nominally

greater male-driven sex-het SNP enrichment in neuroticism and bipolar disorder (FE = 1.5x,

Chi square test P = 0.029), and greater female-driven SNP enrichment in automobile speed

propensity and heart failure (FE = 1.4–1.6x, Chi square test P = 0.04; Table 2).

Tolerance of haploinsufficiency

Sex-het SNPs map in/near 1,325 genes (at distance between 0 kb and 25kb; see Materials and

Methods and S2 Table). Because most GWAS signal is regulatory, we assessed the genes anno-

tated to sex-het SNPs for tolerance of haploinsufficiency (pLI) as a metric of their sensitivity to

expression changes [17]. Compared to reported distributions in the ExAC database [17], the

genes mapped to our sex-het SNPs show substantial enrichment in highly-constrained genes
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pLI>0.9 (22.5%, P<0.000013) and depletion in non-constrained genes pLI<0.1 (38.1%,

P<0.00001), demonstrating the utility of our nearest-gene annotation (S2 Table).

Sex-het SNPs are in/near genes overrepresented in musculoskeletal

development, calcium signaling, and cell anatomy

Since biometric trait sex-het SNPs play a role in disease and risk traits, we aimed to assess

whether sex-het SNPs are in/near genes clustering in specific pathways or physiological func-

tions that might lead to insight about their properties. We performed GO pathway overrepre-

sentation analysis (ORA) on 1,107 mapped genes out of 1,325 genes (excluding unmapped

genes, such as RNA genes), and we compared the enrichment in pathways to the entire set of

20,595 human genes. We did not find significant enrichment in any of 167 tested pathways at

FDR< 0.05.

Then, we analyzed ORA of 15,807 GO biological processes and we found 83 significant pro-

cesses at FDR< 0.05. Out of these processes, seven were significantly underrepresented in

genes assigned to sex-het SNPs and 76 were overrepresented. We performed the same analysis

using random sets of MAF- and association-matched SNPs in order to account for expected

enrichment in trait-associated SNPs (see Materials and Methods). We confirmed that sex het-

erogeneity is driving the underrepresentation for protein-DNA complex subunit organization
(GO:0071824) and assembly (GO:0065004) (FE = 0.07–0.2X; empP< = 0.02), and the border-

line significant adaptive immune response (FE = 0.4X; empP = 0.07), and the overrepresenta-

tion for 5 out of 76 enriched biological processes (FE = 1.9–3.5X): exocytic process
(GO:0140029), muscle cell differentiation (GO:0042692), and muscle structure development
(GO:0061061) at empP< = 0.01, stem cell differentiation (GO:0048863) at empP< = 0.02, and

skeletal system development (GO:0001501) at empP< = 0.03 (Tables 3, S4, and S5). The set of

genes assigned to the 100 random SNP sets (13,788 genes), were slightly and significantly

enriched (FE = 1.04–1.23X) in 42 out of 76 biological processes (FDR< 0.05), indicating that

trait association signal sufficient to show a sex difference may be driving much of the enrich-

ment compared to all human genes. We did not find enrichment of sex-het SNPs in GO hor-

mone-related pathways and biological functions. We separately investigated the proportion of

sex-het SNPs overlapping androgen and estrogen responsive genes (5.2% and 2.4% respec-

tively) from experimental datasets that we previously analyzed [6,7], but we did not find signif-

icant enrichment compared to the sex-homogeneous SNPs (empP> 0.05).

Finally, we tested the overrepresentation of sex-het SNPs in 508 GO cellular components.

We identified 27 cellular components showing overrepresentation of genes assigned to sex-het

SNPs (FDR< 0.05). The set of genes assigned to the 100 random SNP sets (13,788 genes) were

slightly but significantly enriched (FE = 1.04–1.25X) in 8 out of the 27 cellular components

with FDR< 0.05. Six out of the 27 showed significant empirical p-values: voltage-gated calcium
channel complex (GO:0005891; FE = 7.5X), calcium channel complex (GO:0034704; FE = 5.6X),

dynein complex (GO:0030286; FE = 3.2X), microtubule associated complex (GO:0005875;

FE = 2.4X), cellular component (GO:0005575; FE = 1.1X), cellular anatomical entity
(GO:0110165; FE = 1.1X), (empP< = 0.01), and glutamatergic synapse (GO:0098978;

FE = 7.5X, borderline significant empP = 0.06) (Table 3).

Sex-het SNPs overlap regulatory elements, eQTLs and meQTLs

We next characterized the genomic functional roles of the sex-het SNPs. First, we analyzed the

overlap between the set of sex-het SNPs and N = 50 categories of regulatory elements as previ-

ously described (S1 File and S6 Table). Compared to sex-homogeneous permuted SNPs, sex-

het SNPs nominally significantly overlap transcription starting site (TSS; overlap = 2.63%,
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empP< 0.05) [18] but not similarly powered regions such as enhancers, chromatin peaks [19],

transcription factor binding sites (TFBS) or CTCF regions [18] (empP> 0.5; S6 Table). Strik-

ingly, twenty categories (40%) were significantly depleted in sex-het SNPs compared to sex-

homogeneous SNPs (empPsex-hom< 0.05; S6 Table).

Since trait-associated variants from genome-wide association studies tend to overlap with

expression quantitative trait loci, are more likely to be associated with gene expression [20,21],

and have been shown to regulate DNA methylation [22], we hypothesized that sex-het SNPs

extracted from large studies may be involved in the regulation of gene expression and DNA

methylation. Interestingly, we found a small but significant proportion of unique sex-het SNPs

overlapping genetic variants highly associated (P< 1x10-14) with CpG sites influencing DNA

methylation (meQTLs) [22] (5.8% and 6.7% sex-het SNPs intersecting meQTLs in cord blood

and maternal gestational blood, respectively; empP = 0.001, Table 4), previously described in

Gaunt et al, 2016. We also found that 505 (21.8%) sex-het SNPs overlap with SNPs predicted

to regulate gene expression under an elastic net model (Pr-eQTLs) across 49 tissues. Surpris-

ingly, 264 (11.4%) sex-het SNPs overlap with Pr-eQTLs across 13 brain tissues. The cross-tissue

and cross-brain enrichment was significant compared with enrichment of matched sex-homo-

geneous SNPs with equivalent trait-association (median = 17% and 9.6% respectively;

empP< 0.001; Table 4). Male-driven and female-driven sex-het SNPs were equally distributed

in enriched Pr-eQTLs. When excluding brain tissues from the cross-tissue analysis we found

468 (20.2%) sex-het Pr-eQTLs, indicating that most sex-het Pr-eQTLs across brain tissues influ-

ence gene expression in at least one other tissue. The sex-het Pr-eQTLs predict the gene expres-

sion of 1,706 unique eGenes across 49 tissues (Nsex-hom = 1292–1906 eGenes, mediansex-hom =

1590 eGenes; empP = 0.11) and 598 unique eGenes across brain tissues (Nsex-hom = 374–654

eGenes, mediansex-hom = 504 eGenes; empP = 0.017). Sex-het Pr-eQTLs regulate up to 6 unique

eGenes across brain tissues.

Out of the 459 eGenes regulated by sex-het SNPs across brain tissues represented in GO,

only 35 overlapped with the 1,325 genes near/in sex-het SNPs by proximity and thus provided

a semi-independent gene list. We performed ORA on this functionally-defined gene list, and

47 eGenes (3 also included in 1,325 gene list) showed almost 2-fold enrichment in endomem-

brane components for exchange and communication between cells (FDR< 0.05; S7 Table).

Across the diseases and phenotypes significantly or borderline significantly enriched in sex-

het SNPs (26 out of 33; Table 2), we tested the enrichment in association signals across the sub-

set of sex-het Pr-eQTL SNPs compared to the subset of sex-homogeneous Pr-eQTL SNPs to

determine whether the enrichment was driven by the genetic function of the SNPs or their

sex-heterogeneous properties. We found that 13 out of 26 disease/trait-association signals are

enriched in cross-tissue sex het Pr-eQTL SNPs and 5 out of 13 also in cross-brain sex-het Pr-
eQTL SNPs, compared to matching permuted sex-homogenous tissues/brain Pr-eQTL SNPs,

mostly for neuropsychiatric traits and interestingly for total cholesterol, with ASD and AN

showing borderline association (S8 Table). Given the small overlap, we did not test the subset

of meQTL sex-het SNPs for disease/trait enrichment.

Discussion

In the present study, we expanded our previous findings that autosomal common genetic vari-

ants with sexually dimorphic effects on anthropometric traits (AH-SNPs) exceptionally con-

tribute to common disease risk, including diseases without strongly sex-biased prevalence

[6,7]. Starting from our previous observation, here we aimed to improve detection power by

finding a reliable set of sex-heterogeneous SNPs across a large set of biometric traits and

explore their functional roles.
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First, we meta-analyzed a larger (and broader) set of sex-specific summary statistics than

our previous study, 20 well-powered biometric traits from UK Biobank and GIANT cohorts.

We obtained 2,320 independent sex-het SNPs, most of them showing significant heterogeneity

across multiple traits from either GIANT and/or UK Biobank. Next, we characterized their

role across three domains: 1) pleiotropy of mechanisms involving sex-het SNPs and influenc-

ing risk for health-related traits, 2) specific biological processes and cellular components show-

ing sex-het SNP enrichment that may lead to clues about physiology of health dimorphisms,

and 3) specific roles in the genome played by sex-het SNPs that may lead to insight about the

intersection of genetic polymorphism with sex.

Our enrichment analysis confirmed pleiotropy of mechanisms in the roles of biometric sex

heterogeneous SNPs influencing the biology of a large set of neuropsychiatric, cardiovascular

and autoimmune diseases, self-reported characteristics, behavioral, and metabolic traits. We

did not attempt to directly replicate our previous findings, rather we selected traits because

well-powered summary statistics were available, and a variety of organs and systems were rep-

resented. We found enrichment of sex-het SNPs in association signals for diseases that show

female bias (anorexia nervosa, asthma), male-bias (ASD, SCZ), and little bias (heart failure,

type 2 diabetes) in prevalence. Diseases with no sex-het enrichment can show mild sex-bias in

prevalence (e.g., lacunar stroke) or relatively strong sex-bias (e.g., ADHD and Tourette syn-

drome). We were not able to identify shared characteristics across the enriched diseases vs.

non-enriched diseases, but the heterogeneity of genetic data and power across studies is a limi-

tation for direct comparison. For example, the enrichment in cross-neuropsychiatric disorders

[23] was driven by SCZ and ASD, however, previous analyses within the non-enriched BIP,

MDD and ADHD showed more heterogeneity across cohorts than for SCZ and ASD [23].

More than 80% of the risk factor traits showed enrichment in sex-het SNPs, including both

self-reported traits (e.g., overall health rate, educational attainment) and health-related traits

(e.g., total cholesterol, IQ). We found nominal specificity of direction (male vs. female effects)

in only 4 of 33 diseases and traits with no evident relationship between sex and trait, which

could be consistent with our overall finding of the lack of relationship between sex-het enrich-

ment and prevalence differences by sex, or could be a chance finding due to multiple testing,

but in either case is difficult to interpret. Although quantitative traits show better statistical

power than dichotomous diagnoses, these findings suggest a role for sex-het SNPs in physiol-

ogy, likely acting during the human developmental stages.

Since sex-het SNPs showed an exceptional role across relevant human phenotypes, we next

assessed the potential biological mechanisms involving biometric trait sex-het SNPs. In order

to apply biological knowledge, we needed to map sex-het SNPs to genes. We annotated 57%

sex-het SNPs with the corresponding mapping genes and/or the proximal genes (< 25kb dis-

tance). This annotation method was appealing due to its simplicity and prior evidence of the

importance of proximal genes [24], however, incomplete knowledge of the relationship

between associated SNPs and genes is a limitation of our study. Overall, we found strong over-

representation of constrained genes (pLI>0.9), supporting the utility of our annotation (com-

pared to other annotation approaches; Table 3A and 3B in S3 Table). Most of the gene

ontology category overrepresentation we observed naively was also present in permuted sex-

homogeneous SNPs, likely due to allele frequency biases and marginal effects enriched by our

sex-het ascertainment, emphasizing the importance of our empirical assessment. We discuss

only categories specific to sex-het SNPs below.

The gene sets with expression levels influenced by androgens and estrogens showed a small

overlap, and they were not enriched in sex-het SNPs. Previously, we observed that AH-SNPs

showed overlap with AR and ER datasets compared with permuted SNP lists (P< 0.01, each),

although the amount of overlap was small [6]. Since we now include additional biometric traits
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rather than exclusively secondary-sex characteristics, the lack of hormone-driven enrichment

could be due to broader trait ascertainment. Alternatively, we increased signal-to-noise by

using more stringent sex-heterogeneity criteria and refined our matching of the permuted

gene sets with the sex-het SNPs, so the technical changes may also have led to differing signifi-

cance for enrichment and corrected a previous false positive result.

Sex-het SNPs were specifically enriched in important cellular components like calcium

channels and cytoskeletal proteins, such as microtubule-dynein complexes. Interestingly, cal-

cium channel related genes represented on our sex-het list include those important in skeletal

muscle, cardiac, brain, and mitochondrial function. There are some known estrogen-respon-

sive properties for cardiac and mitochondrial calcium channel activity [25]. Sex differences

have also been observed in calcium channel blocker benefits [26]. But across the literature,

evaluation of sex differences in calcium channel functions and health consequences is limited.

Several of the calcium channel sex-het genes appear to be annotated with sperm motility

(CATSPER1) [27] conditions or be involved in increase in neuronal firing in male central ner-

vous system (CACHD1) [28]. Surprisingly, we found sex-het SNP enrichment in fundamental

proteins like the cytoskeletal proteins that play a wide range of functional and structural roles

in human cells, such as transport, hormone secretion and synaptic transmission [29]. In men,

microtubules are vital for organelle transport and cellular divisions during spermatogenesis

and sperm motility process [30]. In contrast, components of the assembly and organization of

the protein-DNA complex were underrepresented, suggesting their importance in the body

and conservation across sexes. Finally, genes assigned to sex-het SNPs were overrepresented in

muscle, skeletal and stem cell development processes, suggesting that sex heterogeneity in

response to genetic variation is influential from early stages of development, even if manifest-

ing in health and biometric trait sex differences in adulthood.

Most of the regulatory regions tested using the baseline annotation [14] showed no enrich-

ment in sex-het SNPs compared to permuted matched sex-homogeneous SNPs. In fact, a large

proportion (40%) of tested categories were significantly underrepresented in sex-het SNPs,

and further study might demonstrate the importance of cross-sex constraint in genome regula-

tion. Only the overlap with transcription start sites (TSS) was nominally significant, suggesting

that sex-het SNPs may affect gene expression, selection of transcriptional start sites, and tran-

script isoforms. TSS is the major contributor to tissue-specific regulation of gene expression

and TSS choice may also vary across developmental stages or during cell differentiation [31].

However, the other regulatory annotations may have less accuracy and limit the power to

detect enrichment, so it is difficult to interpret the specificity of this category to sex-het SNPs.

Since the assessment of regulatory regions depends on accessibility, it is cell type- and condi-

tion-selective, with only a small fraction of all genome-encoded elements becoming actuated

in a given cellular context [32]. Thus, further experimental investigations will be needed to

refine the annotations and sex-het SNP enrichment.

We investigated in more depth whether sex-het SNPs may play a role in gene expression.

Sex-het SNPs significantly overlapped genetic variants influencing DNA methylation variabil-

ity in cord and maternal blood during pregnancy [16], two tissues that are fundamental for

determining early fetal development. We did not assess other categories specific to methylation

or epigenetic variability. Prior evidence showed that sparse polygenic models are a more effec-

tive approach than single-variant association analysis for prioritizing multiple causal eQTL
variants at a single gene [33]. Thus, we tested SNPs predicting gene expression, and more than

20% of the sex-het SNPs (vs. 17% sex-homogeneous SNPs) significantly overlap with SNPs

predicting gene expression across 49 tissues under an elastic-net prediction model and 11%

(vs. 9.6% sex-homogeneous SNPs) also across brain tissues. The brain expression signal despite

lack of brain biometric trait ascertainment, suggests that the enrichment we observe in
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psychiatric, behavioral and neurological traits (and potentially prominent sex differences in these

traits) could result from pleiotropy in development across tissues. The sex-het Pr-eQTLs signifi-

cantly regulate eGenes across brain tissues, of which a subset is overrepresented in endomem-

brane system components, particularly vesicular proteins involved in transport within the cell,

early secretory pathway and in Golgi structure (S7 Table). Consistent with overrepresentation of

the genes near sex-het SNPs, this observation suggests that fundamental processes for the anatomy

and structure of cells are enriched in sex-heterogeneity. We found overlap between 30–50% sex-

hetmeQTLs and sex-het Pr-eQTLs across tissues and across brain tissues, respectively, suggesting

that these categories may capture the same biological signal. Finally, we re-assessed enrichment in

human phenotypes for sex-het Pr-eQTL SNPs compared to the permuted matched sex-homoge-

neous Pr-eQTL SNPs and found that the enrichment in disease association is not explained by the

genetic function of the SNPs but by the selection for sex-heterogeneity.

In conclusion, our results suggest that sex-heterogenous SNPs are involved not only in sex-

ually dimorphic biometric traits but also contribute disproportionately to disease and health-

related traits. Sex-het SNPs are near genes that during fundamental early stages of develop-

ment will sex-differentially shape the structure of the body. Key cellular functions involved

include calcium signaling and cell anatomical components. Sex-het SNPs map to regions criti-

cal for DNA methylation, transcription start sites and the regulation of expression of genes.

Additional experimental investigations will allow a better understanding of the cell-dependent

and state-dependent role of sex heterogeneous genetic variation in humans.
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36. Watson HJ, Yilmaz Z, Thornton LM, Hübel C, Coleman JRI, Gaspar HA, et al. Genome-wide associa-

tion study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat

Genet. 2019; https://doi.org/10.1038/s41588-019-0439-2 PMID: 31308545

37. Grove R, Hoekstra RA, Wierda M, Begeer S. Exploring sex differences in autistic traits: A factor analytic

study of adults with autism. Autism. 2017; https://doi.org/10.1177/1362361316667283 PMID:

27811194

38. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide associa-

tion study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology.

Nat Genet. 2021; https://doi.org/10.1038/s41588-021-00857-4 PMID: 34002096

39. Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, et al. A catalog of genetic loci associated with

kidney function from analyses of a million individuals. Nat Genet. 2019; https://doi.org/10.1038/s41588-

019-0407-x PMID: 31152163

40. Lee PH, Anttila V, Won H, Feng YCA, Rosenthal J, Zhu Z, et al. Genomic Relationships, Novel Loci,

and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell. 2019; https://doi.org/10.1016/j.

cell.2019.11.020 PMID: 31835028

41. Shah S, Henry A, Roselli C, Lin H, Sveinbjörnsson G, Fatemifar G, et al. Genome-wide association and

Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat Commun.

2020; https://doi.org/10.1038/s41467-019-13690-5 PMID: 31919418

42. Jansen PR, Watanabe K, Stringer S, Skene N, Bryois J, Hammerschlag AR, et al. Genome-wide analy-

sis of insomnia in 1,331,010 individuals identifies new risk loci and functional pathways. Nat Genet.

2019; https://doi.org/10.1038/s41588-018-0333-3 PMID: 30804565

43. Traylor M, Persyn E, Tomppo L, Klasson S, Abedi V, Bakker MK, et al. Genetic basis of lacunar stroke:

a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurol. 2021;

https://doi.org/10.1016/S1474-4422(21)00031-4 PMID: 33773637

44. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj AC, et al. Genetic meta-analysis of diag-

nosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing.

Nat Genet. 2019; https://doi.org/10.1038/s41588-019-0358-2 PMID: 30820047

45. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide associ-

ation analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat

Genet. 2018; https://doi.org/10.1038/s41588-018-0090-3 PMID: 29700475

46. Nievergelt CM, Ashley-Koch AE, Dalvie S, Hauser MA, Morey RA, Smith AK, et al. Genomic

Approaches to Posttraumatic Stress Disorder: The Psychiatric Genomic Consortium Initiative. Biologi-

cal Psychiatry. 2018. https://doi.org/10.1016/j.biopsych.2018.01.020 PMID: 29555185

47. Yu D, Sul JH, Tsetsos F, Nawaz MS, Huang AY, Zelaya I, et al. Interrogating the genetic determinants

of Tourette’s syndrome and other tiC disorders through genome-wide association studies. Am J Psychi-

atry. 2019; https://doi.org/10.1176/appi.ajp.2018.18070857 PMID: 30818990

48. Xue A, Wu Y, Zhu Z, Zhang F, Kemper KE, Zheng Z, et al. Genome-wide association analyses identify

143 risk variants and putative regulatory mechanisms for type 2 diabetes. Nat Commun. 2018; 9.

https://doi.org/10.1038/s41467-018-04951-w PMID: 30054458

49. Barban N, Jansen R, De Vlaming R, Vaez A, Mandemakers JJ, Tropf FC, et al. Genome-wide analysis

identifies 12 loci influencing human reproductive behavior. Nat Genet. 2016; 48. https://doi.org/10.

1038/ng.3698 PMID: 27798627

50. Sanchez-Roige S, Palmer AA, Fontanillas P, Elson SL, Adams MJ, Howard DM, et al. Genome-wide

association study meta-analysis of the alcohol use disorders identification test (AUDIT) in two popula-

tion-based cohorts. Am J Psychiatry. 2019; https://doi.org/10.1176/appi.ajp.2018.18040369 PMID:

30336701

PLOS GENETICS How sexually-dimorphic SNPs link human physiology and pathology

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010147 May 5, 2022 17 / 18

https://doi.org/10.1038/s41586-020-2559-3
https://doi.org/10.1038/s41586-020-2559-3
http://www.ncbi.nlm.nih.gov/pubmed/32728217
https://doi.org/10.1534/genetics.117.300435
http://www.ncbi.nlm.nih.gov/pubmed/29074555
https://doi.org/10.1038/s41588-018-0269-7
https://doi.org/10.1038/s41588-018-0269-7
http://www.ncbi.nlm.nih.gov/pubmed/30478444
https://doi.org/10.1016/j.ajhg.2019.02.022
https://doi.org/10.1016/j.ajhg.2019.02.022
http://www.ncbi.nlm.nih.gov/pubmed/30929738
https://doi.org/10.1038/s41588-019-0439-2
http://www.ncbi.nlm.nih.gov/pubmed/31308545
https://doi.org/10.1177/1362361316667283
http://www.ncbi.nlm.nih.gov/pubmed/27811194
https://doi.org/10.1038/s41588-021-00857-4
http://www.ncbi.nlm.nih.gov/pubmed/34002096
https://doi.org/10.1038/s41588-019-0407-x
https://doi.org/10.1038/s41588-019-0407-x
http://www.ncbi.nlm.nih.gov/pubmed/31152163
https://doi.org/10.1016/j.cell.2019.11.020
https://doi.org/10.1016/j.cell.2019.11.020
http://www.ncbi.nlm.nih.gov/pubmed/31835028
https://doi.org/10.1038/s41467-019-13690-5
http://www.ncbi.nlm.nih.gov/pubmed/31919418
https://doi.org/10.1038/s41588-018-0333-3
http://www.ncbi.nlm.nih.gov/pubmed/30804565
https://doi.org/10.1016/S1474-4422%2821%2900031-4
http://www.ncbi.nlm.nih.gov/pubmed/33773637
https://doi.org/10.1038/s41588-019-0358-2
http://www.ncbi.nlm.nih.gov/pubmed/30820047
https://doi.org/10.1038/s41588-018-0090-3
http://www.ncbi.nlm.nih.gov/pubmed/29700475
https://doi.org/10.1016/j.biopsych.2018.01.020
http://www.ncbi.nlm.nih.gov/pubmed/29555185
https://doi.org/10.1176/appi.ajp.2018.18070857
http://www.ncbi.nlm.nih.gov/pubmed/30818990
https://doi.org/10.1038/s41467-018-04951-w
http://www.ncbi.nlm.nih.gov/pubmed/30054458
https://doi.org/10.1038/ng.3698
https://doi.org/10.1038/ng.3698
http://www.ncbi.nlm.nih.gov/pubmed/27798627
https://doi.org/10.1176/appi.ajp.2018.18040369
http://www.ncbi.nlm.nih.gov/pubmed/30336701
https://doi.org/10.1371/journal.pgen.1010147


51. Karlsson Linnér R, Biroli P, Kong E, Meddens SFW, Wedow R, Fontana MA, et al. Genome-wide asso-

ciation analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of

loci and shared genetic influences. Nat Genet. 2019; https://doi.org/10.1038/s41588-018-0309-3 PMID:

30643258

52. Meddens SFW, de Vlaming R, Bowers P, Burik CAP, Linnér RK, Lee C, et al. Genomic analysis of diet

composition finds novel loci and associations with health and lifestyle. Mol Psychiatry. 2021; https://doi.

org/10.1038/s41380-020-0697-5 PMID: 32393786

53. Lee JJ, Wedow R, Okbay A, Kong E, Maghzian O, Zacher M, et al. Gene discovery and polygenic pre-

diction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat

Genet. 2018; https://doi.org/10.1038/s41588-018-0147-3 PMID: 30038396

54. Savage JE, Jansen PR, Stringer S, Watanabe K, Bryois J, De Leeuw CA, et al. Genome-wide associa-

tion meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence. Nat

Genet. 2018; https://doi.org/10.1038/s41588-018-0152-6 PMID: 29942086

55. Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. Multi-trait analysis of genome-

wide association summary statistics using MTAG. Nat Genet. 2018; https://doi.org/10.1038/s41588-

017-0009-4 PMID: 29292387

56. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, et al. Discovery and refine-

ment of loci associated with lipid levels. Nat Genet. 2013; https://doi.org/10.1038/ng.2797 PMID:

24097068

57. Warrington NM, Beaumont RN, Horikoshi M, Day FR, HelgelandØ, Laurin C, et al. Maternal and fetal

genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet. 2019;

https://doi.org/10.1038/s41588-019-0403-1 PMID: 31043758

PLOS GENETICS How sexually-dimorphic SNPs link human physiology and pathology

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010147 May 5, 2022 18 / 18

https://doi.org/10.1038/s41588-018-0309-3
http://www.ncbi.nlm.nih.gov/pubmed/30643258
https://doi.org/10.1038/s41380-020-0697-5
https://doi.org/10.1038/s41380-020-0697-5
http://www.ncbi.nlm.nih.gov/pubmed/32393786
https://doi.org/10.1038/s41588-018-0147-3
http://www.ncbi.nlm.nih.gov/pubmed/30038396
https://doi.org/10.1038/s41588-018-0152-6
http://www.ncbi.nlm.nih.gov/pubmed/29942086
https://doi.org/10.1038/s41588-017-0009-4
https://doi.org/10.1038/s41588-017-0009-4
http://www.ncbi.nlm.nih.gov/pubmed/29292387
https://doi.org/10.1038/ng.2797
http://www.ncbi.nlm.nih.gov/pubmed/24097068
https://doi.org/10.1038/s41588-019-0403-1
http://www.ncbi.nlm.nih.gov/pubmed/31043758
https://doi.org/10.1371/journal.pgen.1010147

