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Abstract

Kohlschütter-Tönz syndrome (KTS) manifests as neurological dysfunctions, including early-

onset seizures. Mutations in the citrate transporter SLC13A5 are associated with KTS, yet

their underlying mechanisms remain elusive. Here, we report that a Drosophila SLC13A5

homolog, I’m not dead yet (Indy), constitutes a neurometabolic pathway that suppresses

seizure. Loss of Indy function in glutamatergic neurons caused “bang-induced” seizure-like

behaviors. In fact, glutamate biosynthesis from the citric acid cycle was limiting in Indy

mutants for seizure-suppressing glutamate transmission. Oral administration of the rate-lim-

iting α-ketoglutarate in the metabolic pathway rescued low glutamate levels in Indy mutants

and ameliorated their seizure-like behaviors. This metabolic control of the seizure suscepti-

bility was mapped to a pair of glutamatergic neurons, reversible by optogenetic controls of

their activity, and further relayed onto fan-shaped body neurons via the ionotropic glutamate

receptors. Accordingly, our findings reveal a micro-circuit that links neural metabolism to sei-

zure, providing important clues to KTS-associated neurodevelopmental deficits.

Author summary

Kohlschütter-Tönz syndrome (KTS) is a neurodevelopmental disorder linked to two dis-

tinct genomic loci encoding the citrate transporter SLC13A5 and synaptic protein

ROGDI, respectively. An early-onset seizure is the most prominent neurological symptom

in KTS patients, yet how these genes contribute to the control of seizure susceptibility

remains poorly understood. Our study establishes behavioral models of seizure in Dro-
sophila mutants of KTS-associated genes and demonstrates a genetic, metabolic, and neu-

ral pathway of seizure suppression. We discover that the metabolic flux of the Krebs cycle

to glutamate biosynthesis plays a critical role in scaling seizure-relevant glutamate trans-

mission. We further map this seizure-suppressing pathway to a surprisingly small number

of glutamatergic neurons and their ionotropic glutamate transmission onto a key sleep-

promoting locus in the adult fly brain. Given that the excitatory amino acid glutamate is

considered a general seizure-promoting neurotransmitter, our findings illustrate how glu-

tamatergic transmission can have opposing effects on seizure susceptibility in the context
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of a micro-neural circuit, possibly explaining drug-resistant epilepsy. This seizure-sup-

pressing locus in the Drosophila brain is also implicated in metabolism, circadian

rhythms, and sleep, revealing the conserved neural principles of their intimate interaction

with epilepsy across species.

Introduction

Kohlschütter-Tönz syndrome (KTS) is a genetic disorder that manifests as developmental

abnormalities such as tooth dysplasia, intellectual disability, and early-onset epileptic encepha-

lopathy [1]. Whole-exome sequencing has revealed molecular lesions that are associated with

KTS, identifying mutations in two independent loci, ROGDI [2–6] and SLC13A5 (solute car-

rier family 13 member 5) [7–10], as the genetic causes of KTS. Homologs of the two KTS-asso-

ciated genes are relatively well conserved across different species. Accordingly, animal models

for ROGDI or SLC13A5 serve as essential genetic resources to elucidate the physiological func-

tion of the gene products and their mechanisms underlying the KTS pathogenesis.

SLC13A5 is a plasma membrane transporter of intermediates of the tricarboxylic acid

(TCA) cycle, also known as the citric acid cycle or Krebs cycle, that displays the highest affinity

for citrate [11,12]. The Drosophila homolog of SLC13A5 is I’m not dead yet (Indy), named for

the long lifespan of loss-of-function mutants [13], although the longevity phenotype might be

sensitive to genetic background or calorie intake [14–16]. As expected based on its citrate-

transporter activity, loss of Indy function phenocopies physiological changes in calorie-

restricted animals, including low body weight, low triglyceride levels, and high sensitivity to

starvation [16,17]. In fact, calorie restriction down-regulates Indy expression in Drosophila,

whereas Indy mutants display low expression levels of insulin-like peptides [16]. Mitochon-

drial physiology is also altered in Indy mutant flies (i.e., increased mitochondrial biogenesis,

decreased electron transport chain function), likely via a mechanism dependent on peroxi-

some proliferator-activated receptor gamma coactivator-1α [16–18].

Consistent with this, depletion of an INDY homolog in worms extends life span and leads

to a “lean” phenotype, likely via an AMPK-dependent pathway [19,20]. In mice, genomic dele-

tion of the mammalian Indy homolog (mIndy), as well as liver-specific mINDY depletion,

results in a protection against obesity, fatty liver, and insulin resistance upon feeding a high-fat

diet—metabolic conditions comparable to those observed in flies and worms [21–23]. Notably,

gene expression profiles in mIndy mutant mice largely resemble those in calorie-restricted ani-

mals [21]. mIndy expression in mice is also altered by metabolic challenge (e.g., starvation,

fatty-liver disease conditions), and distinct transcription factors (e.g., CREB, STAT3, ARNT,

PXR) have been implicated in this adaptive regulation of mIndy transcription [24–27].

While there is abundant genetic evidence for Indy function in metabolism [28–30], much

less is known about the function of ROGDI homologs. A Drosophila genetic screen initially

identified rogdi as one of the genes associated with memory formation [31] and emerging evi-

dence suggests a role of ROGDI homologs in neurons [3,5,32,33]. The crystal structure of

human ROGDI protein displays a leucine-zipper-like four-helix bundle and a characteristic

beta-sheet domain, hinting at how KTS-associated ROGDI mutations would impair the overall

structure and stability of the encoded protein [34]. Nonetheless, how metabolic or neural func-

tions of the KTS-associated gene products are coupled to the neurodevelopmental pathogene-

sis underlying KTS remains elusive.

In this study, we demonstrate that Drosophila mutants of KTS-associated genes display sei-

zure-like behaviors. We further provide compelling evidence that Indy links the flux of the
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TCA cycle in a specific set of glutamatergic neurons to the scale of their neural transmission to

achieve metabolic control of seizure susceptibility. Given that early-onset seizure is one of the

most prominent symptoms in KTS patients, our findings provide important insights into the

neural mechanism responsible for the development of KTS.

Results

Indy acts in glutamatergic neurons to suppress bang-induced seizure

The early-onset seizure is one of the most prominent neurological symptoms observed in KTS

patients. We hypothesized that Drosophila mutants of KTS-associated genes might recapitulate

genetic conditions in KTS patients and display seizure-like behaviors. After a mechanical stim-

ulus (vortexing for 25 s), wild-type flies immediately recovered a normal posture and resumed

their locomotion (Fig 1A). By contrast, Indy mutants homozygous or trans-heterozygous for

loss-of-function alleles exhibited “bang-induced” seizure-like behaviors (e.g., severe wing-flap-

ping, abdominal contractions, leg-twitching, or failure to stand upright), as reflected in a high

seizure index and prolonged recovery time (Fig 1B and S1 Movie). The bang-sensitive seizure

(BSS) phenotypes in Indy mutants were comparable to those observed in other seizure

mutants, such as easily shocked or slamdance but weaker than bang senseless mutants [35–37]

(S1A Fig). Moreover, Indy mutant seizure displayed transient resistance to the second

mechanical stimulus after the first BSS (S1B Fig), indicating the seizure threshold shifts during

the refractory period as observed in other bang-sensitive mutants [38]. To map a neural locus

responsible for Indy mutant BSS, we silenced Indy expression by overexpressing an RNA inter-

ference (RNAi) transgene in select groups of cells and examined subsequent effects on BSS

(S2A Fig). INDY depletion in vesicular glutamate transporter (VGlut)-expressing neurons

phenocopied BSS in Indy mutants (Fig 1C), whereas the Indy RNAi in other groups of neurons

defined by their specific neurotransmitters (e.g., GABAergic, cholinergic, or dopaminergic

neurons) did not induce BSS (S2B Fig). The INDY-depletion phenotypes were confirmed by

independent Indy RNAi transgenes (i.e., IndyRNAi #2, #3, and #4), possibly excluding off-target

effects (S2C Fig). We generated a mutant INDY transgene that harbored a KTS-associated

allele (S3 Fig, INDYT245M) and expressed mutant INDY proteins with no citrate transporter

activity [7–9,39]. Overexpression of INDYT245M in VGlut-expressing neurons similarly

induced BSS in a wild-type Indy background (Fig 1C). Moreover, transgenic expression of

wild-type Indy cDNA in VGlut-expressing neurons was sufficient to rescue BSS in Indy
mutants (Fig 1D). These results suggest that Indy function in glutamatergic neurons is neces-

sary and sufficient for seizure suppression. We further found that rogdi mutants displayed BSS

comparably to Indy mutants (S4A Fig), and its seizure-suppressor function was similarly

mapped to glutamatergic neurons (S4B–S4D Fig). Nevertheless, our subsequent analyses

focused on elucidating Indy-dependent mechanisms of seizure control since the molecular

function of ROGDI has been poorly defined.

Down-regulation of glutamate transmission induces BSS in Indy mutants

To determine if glutamate transmission actually contributes to BSS phenotypes in Indy
mutants, we genetically manipulated the expression of VGLUT, a vesicular transporter that

incorporates glutamate into synaptic vesicles [40], and examined subsequent effects on Indy-

dependent BSS. The heterozygosity of VGlut did not induce seizure-like behaviors in wild-type

flies (Fig 2A); however, it substantially increased seizure susceptibility in Indy heterozygous

mutants. VGLUT overexpression in glutamatergic neurons partially but significantly rescued

BSS phenotypes in INDY-depleted flies (Fig 2B). It has been shown that VGLUT overexpres-

sion increases synaptic vesicle size in larval motor neurons and their spontaneous release of
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Fig 1. Loss of Indy function in glutamatergic neurons induces BSS. (A) Experimental design for the quantitative

analysis of bang-induced seizure-like behaviors in Drosophila. A group of flies (n = 5) was vortexed for 25 s, after

which post-stimulus responses were video recorded. Seizure-like behaviors, including wing-flapping and abdomen-

twitching, were scored in individual flies. (B) Quantitative analyses of BSS in Indy mutants homozygous or trans-

heterozygous for loss-of-function alleles. A seizure index was calculated as the ratio of the number of BSS-positive flies

to the total number of flies tested in each experiment (n = 20; 5 flies per group × 4 groups per experiment) and

averaged from three independent experiments. Recovery time was calculated individually for BSS-positive flies as the

latency to normal posture after vortexing and was averaged for each genotype (n = 7–29 flies). Percent seizure was

calculated as the percentage of BSS-positive flies per genotype at each second after vortexing (n = 60 flies; 20 flies per

experiment × 3 experiments). Data represent means ± SEM. n.s., not significant; ��P< 0.01, ���P< 0.001, as

determined by one-way ANOVA with Holm-Sidak’s multiple comparisons test (seizure index) or by Kruskal Wallis

test with Dunn’s multiple comparisons test (recovery time). (C) Silencing of Indy function in glutamatergic neurons by

transgenic overexpression of IndyRNAi or KTS-associated IndyT245M is sufficient to induce BSS. Quantitative analyses of

BSS in individual flies were performed as described above. Data represent means ± SEM (seizure index, n = 60 flies in 3

independent experiments; recovery time, n = 5–39 flies). ���P< 0.001, as determined by one-way ANOVA with

Holm-Sidak’s multiple comparisons test. (D) Transgenic overexpression of wild-type INDY in glutamatergic neurons

rescues BSS in Indy mutants. Data represent means ± SEM (seizure index, n = 60 flies in 3 independent experiments;

recovery time, n = 5–33 flies). n.s., not significant; ��P< 0.01, ���P< 0.001, as determined by two-way ANOVA with

Holm-Sidak’s multiple comparisons test.

https://doi.org/10.1371/journal.pgen.1009871.g001
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glutamate at the larval neuromuscular junction [40–42], whereas it could lead to neurodegen-

eration in a cell type-specific manner [42,43]. Nonetheless, no gross effects of VGLUT overex-

pression were detected on the seizure susceptibility in wild-type flies (Fig 2B). We further

mapped two glutamate receptors, N-methyl-D-aspartic acid receptors (Nmdar1 and Nmdar2)

and glutamate-gated chloride channel (GluClα), that mediate Indy-dependent BSS in trans-

heterozygous mutants (Fig 2C). However, hemizygous Nmdar2 mutants exhibited significant

BSS even in a wild-type Indy background. These genetic interactions suggest that down-scaling

of glutamate transmission via the ionotropic glutamate receptors may underlie BSS pheno-

types in Indy mutants.

A metabolic link between the TCA cycle and glutamate transmission

underlies Indy-dependent seizure suppression

Two classes of presynaptic neurons—glutamatergic and GABAergic—are intrinsically coupled

to astrocytes via the glutamate/GABA-glutamine cycle, mediating excitatory and inhibitory

transmissions, respectively. An imbalance in their activity is associated with neurological dis-

orders, including a seizure [44–46]. In contrast to the mammalian central nervous system, ace-

tylcholine is the primary excitatory neurotransmitter in the fly brain whereas glutamate plays

this role at the neuromuscular junction [47–49]. Nonetheless, our genetic evidence indicated

that low glutamate transmission likely induced seizure-like behaviors in Indy mutants. We

thus examined if the loss of Indy function impaired the biosynthesis of glutamate or GABA.

Our quantitative assessment of free amino acids revealed that glutamate levels were substan-

tially reduced in Indy mutants (Fig 3A). In contrast, no significant differences in GABA levels

were detected between wild-type and Indy mutant flies. Considering that glutamate

Fig 2. Down-regulation of glutamatergic transmission is responsible for Indy-dependent BSS. (A) Heterozygosity of VGlut induces BSS in heterozygous Indy mutants.

Quantitative analyses of BSS in individual flies were performed as described in Fig 1. Data represent means ± SEM. ���P< 0.001, as determined by one-way ANOVA with

Holm-Sidak’s multiple comparisons test (seizure index, n = 55–60 flies in 3 independent experiments) or by Welch’s ANOVA with Dunnett’s multiple comparisons test

(recovery time, n = 7–32 flies). (B) Overexpression of wild-type VGLUT suppresses BSS induced by transgenic depletion of INDY in glutamatergic neurons. Data

represent means ± SEM (seizure index, n = 55–60 flies in 3 independent experiments; recovery time, n = 5–34 flies). n.s., not significant; �P< 0.05, ��P< 0.01,
���P< 0.001, as determined by one-way ANOVA with Holm-Sidak’s multiple comparisons test. (C) Heterozygosity of ionotropic glutamate receptor Nmdar or GluClα
induces BSS in heterozygous Indy mutants. Significant Indy x glutamate receptor interaction effects on seizure index (P = 0.0047 for Nmdar1; P = 0.0023 for Nmdar2;

P = 0.0009 for GluClα) and recovery time (P = 0.0136 for Nmdar2; P = 0.0049 for GluClα) were detected by two-way ANOVA. Data represent means ± SEM (seizure

index, n = 60 flies in 3 independent experiments; recovery time, n = 2–37). �P< 0.05, ��P< 0.01, ���P< 0.001, as determined by Holm-Sidak’s multiple comparisons test.

https://doi.org/10.1371/journal.pgen.1009871.g002
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dehydrogenase (GDH) mediates the interconversion of glutamate and α-ketoglutarate—one

of the TCA cycle intermediates (Fig 3B)—we reasoned that loss of INDY-dependent import of

extracellular citrate might limit glutamate biosynthesis via the TCA cycle.

To validate this hypothesis, we fed the GDH inhibitor, epigallocatechin gallate [50], to adult

flies and tested its effects on BSS phenotypes. Pharmacological inhibition of GDH robustly

increased both seizure index and recovery time after BSS in Indy mutants, but it did not induce

BSS in wild-type flies (Fig 3C). Similar results were obtained using another GDH inhibitor

(i.e., diethylstilbestrol), excluding possible off-target effects (S5 Fig). Accordingly, these data

suggest that GDH-mediated metabolic flux is limiting for seizure suppression, particularly in

the context of Indy deficiency. To further examine the involvement of the TCA cycle in seizure

suppression, we genetically manipulated isocitrate dehydrogenase 3 (IDH3), a hetero-

Fig 3. Indy-dependent BSS involves a metabolic link between the TCA cycle and glutamate transmission. (A) Indy mutants display low levels of free glutamate that are

rescued by oral administration of α-ketoglutarate (AKG). Flies were fed control or AKG-containing food (20 mM) for 3 d before harvesting. Free amino acids in whole-

body extracts were quantified using ion-exchange chromatography. Relative levels of glutamate and GABA were calculated by normalizing to glycine levels. A significant

Indy x AKG interaction effect on glutamate levels (P = 0.0006) was detected by two-way ANOVA. Data represent means ± SEM (n = 3–4). n.s., not significant;
���P< 0.001, as determined by Holm-Sidak’s multiple comparisons test. (B) Glutamate biosynthesis via the TCA cycle. IDH, isocitrate dehydrogenase; GDH, glutamate

dehydrogenase; GPT, glutamate-pyruvate transaminase; GOT, glutamate-oxaloacetate transaminase. (C) Oral administration of the GDH inhibitor epigallocatechin gallate

(EGCG) exaggerates BSS phenotypes in Indy mutants. Flies were fed control or EGCG-containing food (5 mg/ml) for 3 d before the BSS assessment. Quantitative analyses

of BSS in individual flies were performed as described in Fig 1. Two-way ANOVA detected a significant Indy x EGCG interaction effect on seizure index (P = 0.0025). Data

represent means ± SEM (seizure index, n = 58–60 flies in 3 independent experiments; recovery time, n = 5–43 flies). n.s., not significant; ��P< 0.01, ���P< 0.001, as

determined by Holm-Sidak’s multiple comparisons test. (D) Idh3g heterozygosity induces BSS phenotypes in heterozygous Indy mutants. Significant Indy x Idh3g
interaction effects on seizure index (P = 0.0002 by two-way ANOVA) and recovery time (P = 0.0086 by Aligned ranks transformation ANOVA) were detected. Data

represent means ± SEM (seizure index, n = 50–60 flies in 3 independent experiments; recovery time, n = 8–33 flies). ���P< 0.001, as determined by Holm-Sidak’s multiple

comparisons test (seizure index) or by Wilcoxon rank sum test (recovery time). (E and F) Oral administration of AKG rescues BSS phenotypes in Indy mutants. Flies were

fed control or AKG-containing food (20 mM) for 3 d before the BSS assessment. Data represent means ± SEM (seizure index, n = 50–119 flies in 3 independent

experiments; recovery time, n = 10–56 flies). n.s., not significant; �P< 0.05, ��P< 0.01, as determined by one-way ANOVA with Holm-Sidak’s multiple comparisons test

(seizure index), by Welch’s ANOVA with Dunnett’s T3 multiple comparisons test (E, recovery time), or by Kruskal-Wallis test with Dunn’s multiple comparisons (F,

recovery time).

https://doi.org/10.1371/journal.pgen.1009871.g003
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tetrameric enzyme that converts isocitrate into α-ketoglutarate in the rate-limiting step in the

TCA cycle (Fig 3B). Heterozygosity of the Idh3g mutant allele induced BSS in Indy heterozy-

gous mutants, but not in wild-type flies (Fig 3D). In addition, RNAi-mediated depletion of

individual IDH3 subunit proteins in wild-type glutamatergic neurons alone was sufficient to

induce BSS (S6 Fig). These lines of pharmacological and genetic evidence indicate that reduc-

ing the metabolic flux from the TCA cycle to glutamate biosynthesis may down-scale seizure-

suppressing glutamate transmission, thereby causing BSS phenotypes in Indy mutants.

We further hypothesized that dietary supplements of TCA cycle intermediates should

compensate for the genetic deficits in flies with loss of Indy function and rescue their BSS

phenotypes. Oral administration of α-ketoglutarate indeed ameliorated seizure phenotypes

in Indy mutants in a dose-dependent manner (Fig 3E). Moreover, α-ketoglutarate supple-

mentation restored glutamate levels in Indy mutants to wild-type levels (Fig 3A). Unex-

pectedly, we found that α-ketoglutarate supplementation induced a dose-dependent

increase in seizure index, but not recovery time, in wild-type flies (Fig 3F). A possible

explanation for this observation is that an excess of α-ketoglutarate may lead to an imbal-

ance in the metabolic flux between the TCA cycle and glutamate in wild-type flies, thereby

lowing the threshold for seizure initiation. Alternatively, surplus α-ketoglutarate may

deplete synaptic vesicles containing glutamate by promoting their fusion with the synaptic

membrane [51] (see Discussion).

A pair of glutamatergic neurons mediates Indy-dependent seizure

suppression

Genetic and biochemical analyses in Indy mutants revealed the contribution of low glutamate

transmission to their seizure phenotypes. We found that daily locomotor activity was reduced

in Indy mutants, but their waking activity (i.e., activity count per minute awake) was indistin-

guishable from wild-type control (S7A Fig). Moreover, wild-type and Indy mutants displayed

similar climbing activities in a negative geotaxis assay (S7B Fig). We thus reasoned that the glu-

tamate transmission in Indy mutants might not be limiting for general motor function as

reported previously [13,16,52–54], but a subset of the glutamatergic neurons would be some-

how sensitized to loss of Indy function for seizure control. Our transgenic mapping of the Indy
RNAi phenotypes actually identified a very small group of neurons expressing the neuropep-

tide leucokinin [55] (hereafter, LK neurons) as a neural locus important for Indy-dependent

seizure suppression (Figs 4A and S2B). Introduction of a temperature-sensitive Gal80 trans-

gene allowed us to turn off the Gal4-driven expression of the Indy RNAi transgene at low tem-

perature (i.e., 21˚C) but silence endogenous Indy expression in LK neurons at high

temperature (i.e., 29˚C). The conditional RNAi confirmed that Indy was necessary in adult LK

neurons for seizure suppression (S8 Fig). Conversely, transgenic expression of the wild-type

Indy cDNA in LK neurons was sufficient to rescue BSS in Indy mutants (Fig 4B).

LK neurons can be divided into three groups based on their neuroanatomical positions in

the adult brain and ventral nerve cord [56]. These include lateral horn LK (LHLK), subesopha-

geal ganglion LK (SELK), and abdominal LK (ABLK) neurons (Fig 4A). To determine which

subset of LK neurons contributed to Indy-dependent seizure suppression, we employed addi-

tional Gal80 transgenes that were constitutively expressed in specific subgroups of LK neurons

and inhibited Gal4 activity to restrict their expression of the Indy RNAi transgene. This inter-

sectional strategy revealed that ABLK neurons in the ventral nerve cord, targeted by tsh-Gal80

[57], were dispensable for BSS control (Fig 4A and 4C). In contrast, INDY depletion in a single

pair of LHLK neurons, specifically targeted by a glutamatergic VGlut-Gal80 transgene, was

necessary to induce BSS (Fig 4A and 4C).
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Fig 4. A pair of LK neurons mediates Indy-dependent BSS. (A) A glutamatergic transgene specifically targets a pair of LHLK neurons

among LK neurons. LK neurons in the adult brain (LHLK and SELK) and ventral nerve cord (ABLK) were visualized by transgene

expression of nuclear GFP (nlsGFP). The VGlut-Gal80 transgene suppressed GFP expression only in LHLK neurons. Representative

confocal images of each genotype were shown. (B) INDY overexpression in LK neurons is sufficient to rescue BSS phenotypes in Indy
mutants. Quantitative analyses of BSS in individual flies were performed as described in Fig 1. Data represent means ± SEM. n.s., not

significant; �P< 0.05, ��P< 0.01, ���P< 0.001, as determined by two-way ANOVA with Holm-Sidak’s multiple comparisons test

(seizure index, n = 60 flies in 3 independent experiments) or by Aligned ranks transformation ANOVA with Wilcoxon rank sum test

(recovery time, n = 9–29). (C) INDY depletion in a pair of LHLK neurons is necessary for BSS phenotypes in Indy RNAi flies. LK

neuron-specific expression of the Indy RNAi transgene was inhibited specifically in LHLK neurons by the VGlut-Gal80 transgene. Data

represent means ± SEM (seizure index, n = 55–60 flies in 3 independent experiments; recovery time, n = 3–28 flies). n.s., not significant;
��P< 0.01, ���P< 0.001, as determined by one-way ANOVA with Holm-Sidak’s multiple comparisons test.

https://doi.org/10.1371/journal.pgen.1009871.g004
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A previous study suggested that LK neurons are unlikely glutamatergic [56]. However, we

found additional evidence supporting that LHLK neurons indeed express the glutamatergic

marker VGlut. LK neuron-specific expression of B3 recombinase led to the genomic excision

of VGlut coding sequence flanked by the B3 recombination target sites from the genome-

edited VGlut allele (B3RT-VGlut-B3RT-LexA) [58], thereby driving the downstream expres-

sion of a transgenic LexA driver only in VGlut-expressing LK neurons (S9A Fig). Assessment

of the transgene expression in the adult fly brain revealed that LHLK neurons, but not SELK

neurons, expressed the VGlut-derived LexA (S9B Fig), indicating VGlut expression only in

LHLK neurons. Given these observations, we asked whether Indy controls the glutamate trans-

mission from LHLK neurons for seizure suppression. A transgenic fluorescence sensor for

detecting synaptic release of glutamate [59] validated that INDY depletion in LHLK neurons

lowered the levels of glutamate release (Fig 5A). Transgenic overexpression of wild-type

VGLUT not only rescued the glutamate transmission in INDY-depleted LHLK neurons (Fig

5A) but also suppressed their BSS phenotypes (Fig 5B). These observations indicate that the

glutamate transmission from INDY-depleted LHLK neurons is likely limiting for seizure

suppression.

To validate the Indy-relevant link between the TCA cycle and glutamate transmission in

seizure-suppressing LHLK neurons, we performed two additional experiments. First, oral

administration of α-ketoglutarate partially but significantly restored the glutamate transmis-

sion in INDY-depleted LHLK neurons (Fig 5C) and suppressed the BSS phenotypes induced

by loss of Indy function in LK neurons (Fig 5D). Second, IDH3 depletion in LK neurons was

sufficient to induce BSS (S10 Fig), phenocopying the seizure induction by the pan-

Fig 5. LK neurons suppress seizures via metabolic control of glutamate transmission. (A) Overexpression of wild-type VGLUT rescues low glutamate levels in INDY-

depleted LHLK neurons. The fluorescent glutamate sensor, iGluSnFR, was co-expressed with IndyRNAi and wild-type VGLUT transgenes in LK neurons. Fluorescence

images of LHLK neurons in dissected brains were recorded using photoactivated localization microscopy and analyzed using ZEN software. Relative fluorescence was

calculated by normalizing to backgrounds and was averaged for each genotype (n = 19–38). A significant Indy x VGlut interaction effect on the iGluSnFR signal

(P< 0.0001) was detected by Aligned ranks transformation ANOVA. Error bars indicate SEM. n.s., not significant; ���P< 0.001, as determined by Wilcoxon rank sum

test. (B) Overexpression of wild-type VGLUT suppresses BSS caused by the loss of Indy function in LK neurons. Quantitative analyses of BSS in individual flies were

performed as described in Fig 1. Data represent means ± SEM (seizure index, n = 56–60 flies in 3 independent experiments; recovery time, n = 3–37 flies). ��P< 0.01,
���P< 0.001, as determined by one-way ANOVA with Holm-Sidak’s multiple comparisons test. (C) Oral administration of AKG rescues low glutamate levels in INDY-

depleted LHLK neurons. Transgenic flies were fed control or AKG-containing food (20 mM) for 3 d before live-brain imaging. A significant Indy x AKG interaction effect

on the iGluSnFR signal (P = 0.0014) was detected by Aligned ranks transformation ANOVA. Data represent means ± SEM (n = 16–24). n.s., not significant; ���P< 0.001,

as determined by Wilcoxon rank sum test. (D) Oral administration of AKG suppresses BSS caused by the loss of Indy function in LK neurons. Data represent

means ± SEM (seizure index, n = 60 flies in 3 independent experiments; recovery time, n = 3–13 flies). n.s., not significant; �P< 0.05, as determined by one-way ANOVA

with Holm-Sidak’s multiple comparisons test.

https://doi.org/10.1371/journal.pgen.1009871.g005
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glutamatergic IDH3 depletion (S6 Fig). Taken together, these results demonstrate that a pair

of glutamatergic LK neurons mediates Indy-dependent seizure suppression.

LK neuron activity gates the behavioral output from seizure initiation

LK signaling has been implicated in neural physiology and behaviors relevant to metabo-

lism in Drosophila [55,57,60–64]. It has also been shown that Indy mutant flies physiologi-

cally mimic calorie-restricted animals and exhibit low fat levels [16], raising the possibility

that energy deficiency might underlie Indy mutant seizure. Nonetheless, we found some

evidence against this idea. First, a lipid-rich diet did not rescue Indy mutant seizures while

significantly suppressing BSS phenotypes in other seizure mutants [37] (S11A Fig). We

note, however, the lipid-rich diet did not rescue low glucose levels in Indy mutants (S11B

Fig). Second, LK neuron-specific loss of Indy function did not affect the baseline levels of

triglyceride and glucose (S11C Fig) and the corresponding seizure was insensitive to the

lipid-rich supplement (S11D Fig). Finally, hypomorphic mutants of Lk and Lk receptor

(Lkr) genes did not exhibit any detectable phenotypes in seizure index under our experi-

mental conditions (S12 Fig). We thus reasoned that LK neuron activity, but not the LK

signaling or metabolism per se, might be critical for Indy-dependent seizure suppression.

Live-brain imaging revealed that INDY depletion reduced the baseline levels of intracellu-

lar Ca2+ in LHLK neurons (Fig 6A), possibly reflecting their low activity. We asked

whether transgenic manipulations of LK neuron activity could either suppress or mimic

INDY-depletion phenotypes in BSS.

To this end, optogenetic transgenes were combined with different genetic tools to excite or

silence LK neuron activity only during seizure induction for the assessment of their effects on

BSS (Fig 6B). Transgenic flies expressing CsChrimson [65] were exposed to red light to tran-

siently excite LK neurons during a mechanical stimulus. This manipulation significantly sup-

pressed BSS phenotypes in Indy RNAi flies (Fig 6C), whereas the light transition per se

negligibly affected Indy-dependent seizure. These observations validate that Indy RNAi pheno-

types are readily reversible in adult LK neurons within a range of seconds, excluding the possi-

bility that any long-term effects of INDY depletion on neuronal development or metabolic

stress contribute to the seizure control. We consistently found that amber light-dependent

silencing of LHLK neurons by the eNpHR transgene [66] was sufficient to induce BSS, even in

a wild-type background (Fig 6D). These results demonstrate that LK neuron activity inversely

correlates with seizure susceptibility. Nonetheless, the optogenetic inhibition of LK neuron

activity alone did not trigger seizure-like behaviors in the absence of a mechanical stimulus

(S13 Fig). We reason that this neural locus may not initiate seizure-like behaviors but inhibit

the behavioral output from an as-yet-unmapped seizure-initiating locus in the adult Drosoph-
ila brain.

NMDA receptors in dorsal fan-shaped body neurons act downstream of

LHLK neurons to suppress BSS

Although the implication of LK-LKR signaling in Indy-dependent seizure was not evident,

we reasoned that LKR-expressing neurons could still act downstream of LHLK neurons

via the seizure-suppressing glutamate transmission. It has been shown that LKR neurons

are present in distinct parts of the adult fly brain, including the pars intercerebralis, ellip-

soid body, and fan-shaped body (FSB) [55,57,60]. Also, our transgenic expression of the

GFP-fused synaptotagmin 1 revealed LHLK projections in the LH and FSB (Fig 7A). We

thus employed a dorsal FSB (dFSB)-specific Gal4 driver (i.e., R23E10-Gal4) to examine

whether glutamate receptors expressed in dFSB neurons contribute to the susceptibility of
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BSS. We indeed found that dFSB-specific depletion of NMDAR2 was sufficient to cause

BSS phenotypes, comparable to the high seizure index and long recovery time observed in

Nmdar2 mutants (Fig 7B). Neither electrical silencing of dFSB neurons by the inwardly

rectifying Kir2.1 channel [67] nor blocking their synaptic transmission by tetanus toxin

light chain (TNT) [68] significantly affected seizure index; however, both the transgenic

manipulations lengthened the recovery time in BSS-positive animals (Fig 7C). These data

together map the metabolic control of seizure onset to the glutamate transmission

between LHLK and dFSB neurons and suggest that the subsequent output of dFSB neu-

rons may govern the duration of seizure-like behaviors.

Fig 6. LK neuron activity gates the behavioral output from seizure initiation. (A) INDY depletion reduces intracellular Ca2+ levels in

LHLK neurons. The codon-optimized calcium sensor, jGCaMP7f, was co-expressed with IndyRNAi in LK neurons. The fluorescence signal

in LHLK neurons was analyzed as described in Fig 5A. Data represent means ± SEM (n = 11–12). ���P< 0.001, as determined by Mann-

Whitney test. (B) Experimental design for optogenetic manipulations of neural activity during the assessment of BSS. (C) Optogenetic

excitation of LK neurons substantially suppresses BSS in INDY-depleted flies. Transgenic flies were crossed and kept in constant

darkness. The mechanical stimulus was given under blue light (no excitation) or red light (excitation by CsChrimson), and BSS

phenotypes were then assessed under blue light. Quantitative analyses of BSS in individual flies were performed as described in Fig 1. Data

represent means ± SEM (seizure index, n = 56–60 flies in 3 independent experiments; recovery time, n = 4–33 flies). n.s., not significant;
���P< 0.001, as determined by two-way ANOVA with Holm-Sidak’s multiple comparisons test. (D) Optogenetic silencing of

glutamatergic LK neurons induces BSS in a wild-type background. The mechanical stimulus was given under blue light (no silencing) or

amber light (silencing by eNpHR). Data represent means ± SEM (seizure index, n = 59–60 flies in 3 independent experiments; recovery

time, n = 6–52 flies). n.s., not significant; ���P< 0.001, as determined by two-way ANOVA with Holm-Sidak’s multiple comparisons test.

https://doi.org/10.1371/journal.pgen.1009871.g006
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Discussion

Human genetic studies have previously identified several loss-of-function alleles of ROGDI or

SLC13A5 among KTS-associated loci. In the current study, we behaviorally assessed the sus-

ceptibility to a specific form of seizure-like activity in Drosophila mutants of the KTS-

Fig 7. NMDA receptors in dorsal fan-shaped body neurons relay seizure-suppressing glutamate transmission. (A)

Representative confocal images of dendrites (DenMark, red) and axonal projections (syt.eGFP, green) from LHLK

neurons (top) and mGFP expression from dFSB-specific R23E10-Gal4 driver (bottom) in the adult fly brain. (B)

Depletion of NMDA receptors in dFSB neurons induces BSS. Quantitative analyses of BSS in individual flies were

performed as described in Fig 1. Data represent means ± SEM. ��P< 0.01, ���P< 0.001, as determined by one-way

ANOVA with Holm-Sidak’s multiple comparisons test (seizure index, n = 60 in 3 independent experiments) or by

Welch’s ANOVA with Dunnett’s multiple comparisons test (recovery time, n = 3–34). (C) Genetic silencing of dFSB

neurons lengthens recovery time after BSS. Data represent means ± SEM. n.s., not significant; �P< 0.05, ���P< 0.001,

as determined by one-way ANOVA with Holm-Sidak’s multiple comparisons test (seizure index, n = 60 in 3

independent experiments; recovery time, n = 5–16 for TNT) or by Welch’s ANOVA with Dunnett’s multiple

comparisons test (recovery time, n = 7–14 for Kir). (D) A working model for the neurometabolic pathway of Indy-

dependent seizure suppression.

https://doi.org/10.1371/journal.pgen.1009871.g007
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associated genes. We defined genetic, biochemical, and neural pathways of SLC13A5/Indy-rel-

evant seizure in the context of the citric acid cycle, glutamate metabolism, and glutamatergic

transmission (Fig 7D). We further mapped the reversible and scalable functions of the seizure

suppressor gene to a surprisingly small group of glutamatergic neurons (i.e., a pair of LHLK

neurons) in the adult fly brain. In a broad sense, these findings demonstrate a specific micro-

neural circuit that gates both initiation and duration of seizure-like behaviors.

Given the citrate transporter activity of SLC13A5/INDY, it has been suggested that neuro-

nal energy failure may cause SLC13A5-associated epilepsy [7,8]. Citrate acts as a precursor of

fatty acid biosynthesis while also serving as a key intermediate in the TCA cycle. Accordingly,

an Indy mutation mimics calorie-restricted conditions and thereby causes metabolic and lon-

gevity phenotypes in Drosophila and mouse models, including alterations in lipid metabolism

(i.e., low-fat storage), insulin signaling, and mitochondrial biogenesis [16,21]. Perturbations of

the TCA cycle and altered levels of extracellular TCA metabolites are consistently observed in

SLC13A5-associated KTS patients [69]. In fact, genetic losses of other metabolic enzymes

involved in the TCA cycle (e.g., IDH3, malate dehydrogenase, fumarase hydratase) have been

implicated in several neurological disorders, including early-onset seizure and developmental

delay [70–74]. Nonetheless, there are conflicting reports on the effects of a ketogenic diet on

KTS-associated epilepsy [8].

Genetic or pharmacological manipulations of metabolic enzymes and relevant genes likely

impact on general cell physiology. The long-term metabolic stress may thus lead to pleiotropic

effects and poor phenotypic outcomes, possibly explaining the seizure phenotypes observed in

our genetic models. Nonetheless, several lines of our evidence support a more specific mecha-

nism for Indy-dependent seizure suppression. First, Indy mutants did not display any gross

motor defects, while their seizure phenotypes were mapped very specifically to a small group

of the glutamatergic LK neurons among other broadly defined groups of neurons (e.g.,

GABAergic or cholinergic neurons). Second, Indy displayed specific genetic interactions with

Idh3, VGlut, and select glutamate receptors on BSS in trans-heterozygous conditions, whereas

BSS were not detected in individual heterozygous mutants. Third, genetic enhancement of the

glutamate transmission by VGLUT overexpression in LK neurons was sufficient to suppress

BSS in INDY-depleted flies. Finally, the INDY-depletion phenotypes were readily reversible in

the adult LK neurons (i.e., AKG administration, conditional RNAi) and the optogenetic excita-

tion of INDY-depleted LK neurons only during a mechanical stimulus was sufficient to sup-

press BSS although the possible off-target effects of the Indy RNAi transgene were not

completely excluded. These observations together support our model that impairment of the

metabolic flux between the TCA cycle and glutamate biosynthesis—specifically, the conversion

of α-ketoglutarate to glutamate—down-scales the seizure-suppressing transmission from a

specific subset of glutamatergic neurons, resulting in BSS phenotypes.

Previous studies in animal models have actually implicated low levels of TCA metabolites

and glutamate in epilepsy [73,75–79]. Moreover, co-injection of α-ketoglutarate suppresses

chemically induced epilepsy in mice [80,81], consistent with our results. Intriguingly, the

recent observation that α-ketoglutarate promotes the interaction between synaptotagmin 1

and phospholipids demonstrates an unexpected role of α-ketoglutarate in synaptic vesicle

fusion [51]. Thus, we reasoned that an excess of α-ketoglutarate might deplete synaptic vesicle

pools and thereby interfere with their transmission. This explains why oral administration of

α-ketoglutarate to wild-type flies induces rather than suppresses BSS under our experimental

conditions.

Although Drosophila genetic studies have led to the isolation and characterization of a

number of seizure-related mutants, much less is known about the neural loci responsible for

inducing seizure and sustaining seizure-like activity [82]. For instance, the seizure-suppressing
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function of the potassium-chloride symporter kazachoc and seizure-inducing neural locus in a

BSS mutant of the voltage-gated sodium channel paralytic have been mapped to the mush-

room body in the adult brain [83,84]. Seizure suppression by the product of the transmem-

brane domain gene, julius seizure, was more broadly mapped to cholinergic or GABAergic

neurons but not to glutamatergic neurons [85]. The emergence of a seizure has been thought

to involve three distinct components of neural circuits that mediate seizure initiation, seizure

buildup, and seizure spread, respectively [86]. Modulatory neurons likely regulate the excit-

ability of these neural components and thus shape seizure intensity or duration. Based on this

model, we propose that glutamatergic LK neurons mediate a seizure-inhibitory pathway such

that their conditional silencing de-represses both seizure onset and duration. Accordingly,

down-regulation of the glutamatergic transmission from LK neurons induces BSS, as opposed

to the general involvement of excitatory glutamate in seizure induction [44–46].

Our data suggest that LK signaling is not directly involved in controlling seizure susceptibil-

ity, which makes sense considering the temporal scale of neuropeptide signaling in general.

Nonetheless, we found that the metabolic flux of the TCA cycle in LK neurons and their gluta-

mate transmission onto dFSB neurons might be closely linked to the control of BSS. Evidence

for the involvement of LK neurons in feeding, metabolism, and associated physiology (e.g., cir-

cadian behaviors, sleep, memory) is abundant [55,57,60–64]. The activity of LHLK neurons is

also sensitive to the metabolic state and the time of day [57,60,63]. Thus, we hypothesize that

LK neurons act as a neural sensor that integrates internal cues (e.g., circadian clocks, sleep

state, and metabolic state) while engaging different postsynaptic partners and divergent path-

ways for relevant physiological outputs through distinct signaling molecules. In particular,

dFSB neurons are a key sleep-promoting locus in the adult fly brain, analogous to the sleep-

promoting ventrolateral preoptic nucleus (VLPO) in mammals [87,88]. Given the implication

of VLPO in consciousness loss during epileptogenesis [89], the LK-dFSB pathway may reveal

the conserved neural principles underlying intimate interactions among metabolism, epilepsy,

and sleep [90–92].

Drosophila models of human genetic disorders have proven to be valuable tools for eluci-

dating underlying pathogenic mechanisms. Our findings enrich this body of knowledge by

providing a genetic, biochemical, and neural map of the seizure suppressor pathway related to

KTS. The complexity of the mammalian brain and species-specific organization of excitatory

neurotransmitters in the nervous systems may limit the direct relevance of our working model

to KTS pathogenesis at neural-circuit levels. Nonetheless, given the strong conservation of

SLC13A5/Indy homologs and their physiological function among different species, we propose

that similar cellular mechanisms may underlie early-onset seizures in KTS patients and explain

their relative resistance to generic antiepileptic drugs.

Materials and methods

Drosophila stocks

All flies were maintained in standard cornmeal–yeast–agar medium at room temperature.

w1118 (BL5905; a wild-type control), Indy206 (BL27901), Indy302 (BL27902), Idh3gG9423

(BL30194; CG5028), LkC275 (BL16324), LkrMI06336 (BL41520), LkrMI08640 (BL51094),

Nmdar1EP331 (BL17331), Nmdar2attP (BL84548), GluRIAattP (BL84506), GluRIBattP (BL84507),

mGluRMI02169(BL32830), GluClαglc1(BL6353), VGlutOK371-Gal4 (BL26160), R23E10-Gal4

(BL49032), VGlut-Gal80 (BL58448), tub-Gal80ts (BL7018), 20XUAS-eNpHR3.0.YFP

(BL36350), 20XUAS-IVS-CsChrimson.mVenus (BL55135), 20XUAS-iGluSnFR.A184A

(BL59609), UAS-Denmark, UAS-syt.eGFP (BL33065), UAS-Nmdar2RNAi (#1, BL26019), UAS-

Nmdar2RNAi (#2, BL40846), 20XUAS-IVS-jGCaMP7f (BL80906), Tdc2[B3RT]-LexA;
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UAS-B3R, LexAop2-His2B-mCherry, UAS-His2A-GFP (BL91248), and VGlut[B3RT]-LexA

(BL91249) were obtained from Bloomington Drosophila Stock Center. UAS-IndyRNAi #1

(3979R-1), UAS-IndyRNAi #2 (3979R-3), UAS-Idh3aRNAi (12233R-3), UAS-Idh3bRNAi (6439R-

2), and UAS-Idh3gRNAi (5028R-2) were obtained from National Institute of Genetics. UAS-

IndyRNAi #3 (v9981), UAS-IndyRNAi #4 (v9982), UAS-rogdiRNAi (v107310) was obtained from

Vienna Drosophila Resource Center. parabss, eas2, and sdaiso7.8 were gifts from Dr. Kitamoto

[36] and Dr. Kuebler [37]. VGlut1, VGlut2, and UAS-VGlut were gifts from Dr. DiAntonio

[40]. rogdidel, rogdiP1, UAS-rogdi-3xFLAG, UAS-Kir2.1, UAS-TNT, Lk-Gal4, and tsh-Gal80

have been described previously [32,56,67,68,93]. Indy-PB cDNA was PCR-amplified from a

cDNA clone (RH67364, Drosophila Genomics Resource Center) and inserted into pUAST-

attB-V5 [94]. Subsequently, a T[ACT]>M[ATG] mutation was introduced to the wild-type

cDNA to mimic the KTS-associated 680C>T allele. UAS-Indy and UAS-IndyT245M transgenic

lines were generated by site-specific transformation on the attP40 landing site (BestGene Inc.)

Bang-sensitive seizure analysis

To avoid any genetic-background effects on bang-sensitive seizure, Indy mutant stocks were

outcrossed six times to the wild-type control (w1118) for isogenization. All the behavioral tests

for heterozygous, homozygous, and trans-heterozygous mutants were conducted with the iso-

genized Indy lines and w1118 control. For transgenic lines, seizure behaviors in trans-heterozy-

gous animals were compared to those in all appropriate heterozygous controls. Where

applicable, additional transgenic combinations or independent transgenes were tested for vali-

dation. Unless otherwise indicated, BSS was assessed in male flies. Three to seven-day-old flies

were fed cornmeal–yeast–agar medium in LD cycles at 25˚C for 3 d. They were CO2-anesthe-

tized and harvested into fresh vials containing the same food >3 h before a group of flies

(n = 5 for non-optogenetic experiments; n = 5–10 for optogenetic experiments) was trans-

ferred to an empty vial using an aspirator. Each vial was vortexed at a maximum speed for 25 s

using Vortex-Genie 2 (Scientific Industries, Inc.) and then video-recorded for >30 s using a

cellular phone (LG G5 Pro or Samsung Galaxy Note 8). BSS-positive flies were defined if they

displayed initial paralysis upon mechanical stimulus, followed by uncoordinated movements

such as wing-flapping, abdominal contractions, or leg-twitching before their recovery of a nor-

mal posture. BSS was quantitatively assessed by three parameters. A seizure index was calcu-

lated as the ratio of the number of BSS-positive flies to the total number of flies tested in each

experiment (n = ~20 flies per genotype or condition) and averaged from three independent

experiments. Recovery time was calculated individually for BSS-positive flies as the latency to

normal posture after vortexing and was averaged for each genotype or condition. Percent sei-

zure was calculated as the percentage of BSS-positive flies at each second after vortexing (n =

~60 flies per genotype or condition from all the three experiments). To determine the length

of a refractory period in Indy mutants, the first mechanical stimulus was given to each fly and

then the second mechanical stimulus was given only to BSS-positive animals at the indicated

time after recovery from their first BSS. The seizure index was calculated in each experiment

(n = 10 flies per time point) and averaged from three independent experiments.

Locomotor behavior analysis

Locomotor activities in individual male flies were measured in 1-min bins using the Drosophila
Activity Monitor system (TriKinetics). Daily locomotor activity (total activity count per

12-hour light: 12-hour dark cycle) and waking activity (averaged activity count per minute

awake) were analyzed as described previously [95,96]. For the climbing activity measurement,

a group of 10 male flies was kept in the climbing chamber. Flies were allowed to climb for 5
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seconds after gentle tapping-down. Climbing distance in each fly was measured as the highest

position during the recording.

Oral administration of chemicals

Each chemical was dissolved in 5% sucrose and 2% agar food (behavior food) at the indicated

concentration and fed to flies for 3 d before the BSS assessment. The chemicals tested included

epigallocatechin gallate (EGCG, Sigma), diethylstilbestrol (DES, Sigma), α-ketoglutarate

(Sigma), and KetoCal 4: 1 (fat: carbohydrate plus protein, Nutricia).

Optogenetics

Transgenic flies were grown in light-tight vials and kept in constant dark. They were loaded on

to the behavior food containing 0.1 mM all-trans retinal (Sigma) and entrained at 25˚C for 3

d. A light source with the indicated wavelength was turned on during the mechanical stimula-

tion. A white LED was covered with a 585-nm or 470-nm filter to generate amber or blue light,

respectively, while the 630-nm LED provided red light.

Immunofluorescence imaging

Immunostaining of whole-mount adult brains was performed as described previously [97].

Dissected brains were fixed with 3.7% formaldehyde in PBS, blocked with PBS containing

0.3% Triton X-100 and 5% normal goat serum, and incubated with anti-GFP antibody (Invi-

trogen, A-11122; diluted at 1:1000) or anti-mCherry antibody (Developmental Studies Hybrid-

oma Bank, DSHB-mCherry-3A11; diluted at 1:20) at 4˚C overnight. After washing in PBS

containing Triton X-100, immunostained samples were further incubated with species-specific

Alexa Fluor secondary antibodies (Jackson ImmunoResearch) at 4˚C overnight, washed with

PBS containing Triton X-100, and then mounted using VECTASHIELD mounting medium

(Vector Laboratories). Confocal images were obtained using an FV1000 microscope (Olym-

pus) and analyzed using ImageJ software.

Live-brain imaging

Transgenic flies were loaded on to the behavior food containing 0 mM (control) or 20 mM α-

ketoglutarate (Sigma), entrained at 25˚C for 3 d, and then anesthetized in ice. Whole brains

were dissected out in hemolymph-like HL3 solution (5 mM HEPES pH 7.2, 70 mM NaCl, 5

mM KCl, 1.5 mM CaCl2, 20 mM MgCl2, 10 mM NaHCO3, 5 mM trehalose, 115 mM sucrose)

and then transferred on cover glass in a magnetic imaging chamber (Chamlide CMB, Live Cell

Instrument) filled with HL3 buffer. Fluorescence images from live brains were recorded at

room temperature using photoactivated localization microscopy (ELYRA P.1, Carl Zeiss) with

a C-Apochromat 40x/1.20 W Korr M27 at a pixel resolution of 512 x 512. Fluorescence signals

were quantified by background subtraction and analyzed using ZEN software (Carl Zeiss).

Quantitative transcript analysis

Total RNA was purified from thirty fly heads using TRIzol reagent (Thermo Fisher Scientific).

After DNase I digestion, cDNA was synthesized using M-MLV Reverse Transcriptase (Pro-

mega) and random hexamers. Quantitative real-time PCR was performed using Prime Q-Mas-

termix (GeNet Bio) and LightCycler 480 Instrument II (Roche). The qPCR primers used in

this study were as follows: 5’-TTC ATC GCT TCA CGT CAC TC-3’ (forward) and 5’-TGC

TGA CTT GGT GGA TTT TG-3’ (reverse) for rogdi; 5’-ATC TCC CAC AGG ACG TCA AC-
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3’ (forward) and 5’-GCG ACG AAG AGA AGG ATC AC-3’ (reverse) for pabp (internal con-

trol). Indy primers have been described previously [16].

Amino acid profiling

Male flies were loaded on to behavior food containing either 0 mM (control) or 20 mM α-

ketoglutarate and then entrained in LD cycles at 25˚C for 3 d before harvest. Whole-body

extracts were prepared from 50 flies per condition, and the levels of free amino acids were

quantitatively measured using ion-exchange chromatography as described previously [95,96].

Metabolite measurements

Whole-body extracts were prepared by homogenizing 8 male flies per sample in 200 μl of PBS

containing 0.05% Tween-20. Triglyceride and glucose measurements were performed using

Triglyceride Reagent (Sigma-Aldrich, T2449), Free Glycerol Reagent (Sigma-Aldrich, F6428),

and Glucose Assay Reagent (Sigma-Aldrich, G3293), respectively, according to the manufac-

turers’ instructions.

Statistical analysis

Statistical analyses were performed using GraphPad Prism, R (version 3.5.3), or Microsoft

Excel. Shapiro-Wilk and Brown-Forsythe tests were conducted to check normality (P< 0.05)

and equality of variances (P< 0.05), respectively. For comparisons among multiple samples:

1) Parametric datasets with equal variance were further analyzed by ordinary ANOVA. 2)

Parametric datasets with unequal variance were further analyzed by Welch’s ANOVA (one-

way) or Aligned ranks transformation ANOVA (two-way). 3) Nonparametric datasets with

equal variance were analyzed by Kruskal-Wallis ANOVA (one-way) or Aligned ranks transfor-

mation ANOVA (two-way). 4) Nonparametric datasets with unequal variance were analyzed

by Aligned ranks transformation ANOVA. Post hoc multiple comparisons were performed by

Holm-Sidak’s (ordinary ANOVA), Dunnett’s T3 (Welch’s ANOVA), Wilcoxon rank sum

(Aligned ranks transformation ANOVA), or Dunn’s test (Kruskal-Wallis ANOVA). For com-

parisons between two samples, nonparametric datasets were analyzed by Mann-Whitney U

test. Datasets including any sample size less than 7 were analyzed by Student’s t-test or ordi-

nary ANOVA. Sample sizes and P values obtained from individual statistical analyses were

indicated in the figure legends.

Supporting information

S1 Fig. Indy mutant flies display BSS comparably to other seizure mutants. (A) The seizure

phenotypes in Indy mutants were comparable to those observed in easily shocked (eas2) and

slamdance (sdaiso7.8) but weaker than bang senseless (parabss) mutants. Quantitative analyses of

BSS in individual flies were performed as described in Fig 1. Data represent means ± SEM (sei-

zure index, n = 60 flies in 3 independent experiments; recovery time, n = 2–59 flies). n.s., not

significant; �P< 0.05, ���P< 0.001, as determined by one-way ANOVA with Holm-Sidak’s

multiple comparisons test. (B) Indy mutant seizure displays a refractory period after seizure

recovery. The first mechanical stimulus was given to each fly and then the second mechanical

stimulus was given only to BSS-positive animals at the indicated time after recovery from their

first BSS. The seizure index was calculated in each experiment (n = 10 flies per time point) and

averaged from three independent experiments. Error bars indicate SEM.

(TIF)
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S2 Fig. Loss of Indy function in specific neurons induces BSS. (A) Pan-neuronal overexpres-

sion of IndyRNAi transgene reduces endogenous Indy expression. Total RNA was purified from

fly heads. Quantitative analyses of Indy and poly(A)-binding protein (normalizing control)

mRNAs were performed using real-time PCR with gene-specific primer sets. The relative levels

of Indy mRNA in each genetic background were calculated by normalizing to Elav>Dcr2 con-

trol (set as 1). Data represent means ± SEM (n = 3). ���P< 0.001 as determined by one-way

ANOVA with Holm-Sidak’s multiple comparisons test. (B) A genetic screen identifies VGlut-
and Lk-expressing neurons as neural loci important for Indy-dependent control of the seizure

susceptibility. Quantitative analyses of BSS in individual flies were performed as described in

Fig 1. Data represent means ± SEM (n = 60 flies in 3 independent experiments). ��P< 0.01,
���P< 0.001, as determined by one-way ANOVA with Holm-Sidak’s multiple comparisons

test. (C) The BSS induction by glutamatergic INDY depletion is consistently observed by inde-

pendent Indy RNAi transgenes. Data represent means ± SEM (seizure index, n = 60 flies in 3

independent experiments; recovery time, n = 1–38 flies). �P< 0.05, ��P< 0.01, ���P< 0.001,

as determined by one-way ANOVA with Holm-Sidak’s multiple comparisons test.

(TIF)

S3 Fig. Multiple sequence alignment of SLC13A5 homologs reveals the evolutionary con-

servation of an amino acid residue associated with KTS patients. Drosophila IndyT245M

mutant mimics the gene product of the KTS-associated 680C>T allele. TM, a transmembrane

region.

(TIF)

S4 Fig. Loss of rogdi function in glutamatergic neurons induces BSS. (A) rogdi mutants

homozygous or trans-heterozygous for loss-of-function alleles display BSS. Quantitative analy-

ses of BSS in individual flies were performed as described in Fig 1. Data represent

means ± SEM. ��P< 0.01, ���P< 0.001 as determined by one-way ANOVA with Holm-

Sidak’s multiple comparisons test (seizure index, n = 60 flies in 3 independent experiments) or

by Aligned ranks transformation ANOVA with Wilcoxon rank sum test (recovery time,

n = 7–29 flies). (B) Pan-neuronal overexpression of rogdiRNAi transgene reduces endogenous

rogdi expression in fly heads. Quantitative transcript analyses were performed as described in

S2A Fig. Data represent means ± SEM (n = 3). ���P< 0.001 as determined by one-way

ANOVA with Holm-Sidak’s multiple comparisons test. (C) ROGDI depletion in glutamatergic

neurons is sufficient to induce BSS. Quantitative analyses of BSS in individual flies were per-

formed as described in Fig 1. Data represent means ± SEM (seizure index, n = 60 flies in 3

independent experiments; recovery time, n = 5–27 flies). ���P< 0.001, as determined by one-

way ANOVA with Holm-Sidak’s multiple comparisons test. (D) Transgenic overexpression of

wild-type ROGDI in glutamatergic neurons rescues BSS in rogdi mutants. Data represent

means ± SEM (seizure index, n = 49–60 flies in 3 independent experiments; recovery time,

n = 6–26 flies). n.s., not significant; ��P< 0.01, ���P< 0.001, as determined by two-way

ANOVA with Holm-Sidak’s multiple comparisons test.

(TIF)

S5 Fig. Oral administration of the GDH inhibitor diethylstilbestrol (DES) exaggerates BSS

phenotypes in Indy mutants. Flies were fed control or DES-containing food (10 or 20 μg/mg)

for 3 d before the BSS assessment. Quantitative analyses of BSS in individual flies were per-

formed as described in Fig 1. Two-way ANOVA detected a significant Indy x DES interaction

effect on recovery time (P = 0.0421). Data represent means ± SEM (seizure index, n = 60 flies

in 3 independent experiments; recovery time, n = 3–49 flies). n.s., not significant; ��P< 0.01,
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���P< 0.001, as determined by Holm-Sidak’s multiple comparisons test.

(TIF)

S6 Fig. Depletion of individual IDH3 subunit proteins in glutamatergic neurons induces

BSS in a wild-type background. Quantitative analyses of BSS in individual flies were per-

formed as described in Fig 1. Data represent means ± SEM. ��P< 0.01, ���P< 0.001 as deter-

mined by one-way ANOVA with Holm-Sidak’s multiple comparisons test (seizure index,

n = 60 flies in 3 independent experiments), by Aligned ranks transformation ANOVA with

Wilcoxon rank sum test (recovery time, n = 8–43 flies for Idh3aRNAi or Idh3bRNAi), or by

Welch’s ANOVA with Dunnett’s T3 multiple comparisons test (recovery time, n = 8–35 flies

for Idh3gRNAi).

(TIF)

S7 Fig. Indy mutant flies do not show general motor defects. (A) w1118 control and Indy
mutant flies show similar waking activities under 12-h light: 12-h dark (LD) cycles. Individual

male flies were transferred to 65 × 5 mm glass tubes containing 5% sucrose and 2% agar food

and entrained in LD cycles. Locomotor activities were indirectly measured by infrared beam

crosses per minute using the Drosophila Activity Monitor system. Daily locomotor activity

(activity/day) and waking activity (activity/min awake) were calculated in each fly on the

fourth LD cycles and averaged (n = 25 and 29 flies for w1118 control and Indy206 mutants,

respectively). Error bars indicate SEM. n.s., not significant; �P< 0.05 as determined by Mann-

Whitney U test. (B) w1118 control and Indy mutant flies display comparable climbing activities.

A group of 10 male flies was kept in the climbing chamber and then allowed to climb for 5 sec-

onds after gentle tapping-down. Climbing distance in each fly was measured as the highest

position during the recording and averaged (n = 30). Error bars indicate SEM. n.s., not signifi-

cant as determined by Student’s t-test.

(TIF)

S8 Fig. Adult LK neurons mediate Indy-dependent BSS. Adult-specific INDY depletion in

LK neurons is sufficient to induce BSS. Transgenic flies were crossed and kept at 21˚C to block

the expression of IndyRNAi transgene using tub-Gal80ts. Adult flies were then incubated at

21˚C (no depletion) or 29˚C (RNAi-mediated depletion) for >24 hours prior to the assess-

ment of BSS at the same temperature. Quantitative analyses of BSS in individual flies were per-

formed as described in Fig 1. Data represent means ± SEM (seizure index, n = 60 flies in 3

independent experiments; recovery time, n = 5–28). n.s., not significant; ��P< 0.01,
���P< 0.001, as determined by one-way ANOVA with Holm-Sidak’s multiple comparisons

test.

(TIF)

S9 Fig. LHLK neurons express the glutamatergic marker gene VGlut. (A) A transgenic strat-

egy for visualizing VGlut-expressing LK neurons by the fluorescent reporter proteins. The

CRISPR-edited VGlut locus includes two B3 recombination target (B3RT) sites upstream of

the LexA-coding sequence. LK neuron-specific overexpression of the B3 recombinase leads to

the genomic excision, thereby allowing LexA expression only in VGlut-expressing LK neurons.

LexA expression could be indirectly visualized by the transgenic mCherry reporter. (B) LHLK

neurons, but not SELK neurons, express B3RT-LexA transgene from the VGlut-deleted locus.

Representative confocal images of LHLK and SELK neurons in the adult fly brain were shown

along with the full genotype.

(TIF)
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S10 Fig. IDH3 depletion in LK neurons induces BSS. Quantitative analyses of BSS in individ-

ual flies were performed as described in Fig 1. Data represent means ± SEM (seizure index,

n = 44–60 in 3 independent experiments; recovery time, n = 8–27). �P< 0.05, ��P< 0.01,
���P< 0.001, as determined by one-way ANOVA with Holm-Sidak’s multiple comparisons

test (seizure index), by Aligned ranks transformation ANOVA with Wilcoxon rank sum test

(recovery time, Idh3a and Idh3b RNAi), or by Welch’s ANOVA with Dunnett’s multiple com-

parisons test (recovery time, Idh3g RNAi).

(TIF)

S11 Fig. Indy-relevant seizure unlikely involves metabolic effects. (A) A lipid-rich diet res-

cues BSS in eas2 mutants but not in Indy206 mutants. Flies were fed control or 5% KetoCal

food for 3 d before the BSS assessment. Quantitative analyses of BSS in individual flies were

performed as described in Fig 1. Two-way ANOVA detected a significant eas x KetoCal inter-

action effect on seizure index (P = 0.0006). Data represent means ± SEM (seizure index, n = 60

flies in 3 independent experiments; recovery time, n = 4–34). n.s., not significant; �P< 0.05,
��P< 0.01, ���P< 0.001, as determined by Holm-Sidak’s multiple comparisons test. (B) The

lipid-rich diet does not rescue low glucose levels in Indy mutants. Flies were fed control or 5%

KetoCal (4: 1 = fat: carbohydrate plus protein) food for 3 d before harvesting. Triglyceride and

glucose levels in whole-body extracts were quantified using standard curves. Two-way

ANOVA detected significant Indy x KetoCal interaction effects on triglyceride (P = 0.0019)

and glucose levels (P = 0.0228). Data represent means ± SEM (n = 5–8). n.s., not significant;
�P< 0.05, ���P< 0.001, as determined by Holm-Sidak’s multiple comparisons test. (C) Loss

of Indy function in LK neurons does not cause a change in metabolite levels. Data represent

means ± SEM (n = 4–5). n.s., not significant as determined by two-way ANOVA with Holm-

Sidak’s multiple comparisons test. (D) The lipid-rich diet does not rescue BSS induced by LK

neuron-specific loss of Indy function. Two-way ANOVA detected no significant Indy x Keto-

Cal interaction effect on seizure index (P = 0.7802 for IndyRNAi; P = 0.1725 for IndyT245M) and

recovery time (P = 0.9534 for IndyRNAi; P = 0.7273 for IndyT245M). n.s., not significant;
�P< 0.05, ��P< 0.01, ���P< 0.001, as determined by Holm-Sidak’s multiple comparisons

test.

(TIF)

S12 Fig. Hypomorphic mutants of Lk and Lkr genes do not display high susceptibility to

BSS. Quantitative analyses of BSS in individual flies were performed as described in Fig 1.

Data represent means ± SEM. n.s., not significant; �P< 0.05 as determined by Mann-Whitney

U test (seizure index, n = 60 in 3 independent experiments for Lk; recovery time, n = 8–9 flies

for Lk) or by one-way ANOVA with Holm-Sidak’s multiple comparisons test (seizure index,

n = 54–58 in 3 independent experiments for Lkr; recovery time, n = 4–10 flies for Lkr).
(TIF)

S13 Fig. Optogenetic silencing of LK neurons per se does not induce seizure-like behaviors

in the absence of a mechanical stimulus. Transgenic flies were crossed and kept in constant

dark. Any behavioral changes upon exposure to blue (no silencing) or amber light (silencing

by eNpHR) condition were examined accordingly. Data represent means ± SEM (seizure

index, n = 30 flies in 3 independent experiments; recovery time, n = 2–6 flies). No significant

differences in seizure index and recovery time were detected by two-way ANOVA with Holm-

Sidak’s multiple comparisons test.

(TIF)

S1 Movie. A video clip for seizure-like behaviors in homozygous Indy206 mutant.

(MP4)
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S1 Data. Numerical raw data in Figs 1, 2, 3, 4, 5, 6, and 7, S1, S2, S4, S5, S6, S7, S8, S10, S11,

S12 and S13 Figs.

(XLSX)
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