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Abstract

Genetic prediction of complex traits has great promise for disease prevention, monitoring, and

treatment. The development of accurate risk prediction models is hindered by the wide diver-

sity of genetic architecture across different traits, limited access to individual level data for

training and parameter tuning, and the demand for computational resources. To overcome the

limitations of the most existing methods that make explicit assumptions on the underlying

genetic architecture and need a separate validation data set for parameter tuning, we develop

a summary statistics-based nonparametric method that does not rely on validation datasets to

tune parameters. In our implementation, we refine the commonly used likelihood assumption

to deal with the discrepancy between summary statistics and external reference panel. We

also leverage the block structure of the reference linkage disequilibrium matrix for implementa-

tion of a parallel algorithm. Through simulations and applications to twelve traits, we show that

our method is adaptive to different genetic architectures, statistically robust, and computation-

ally efficient. Our method is available at https://github.com/eldronzhou/SDPR.

Author summary

Recently there has been much interest in predicting an individual’s phenotype from

genetic information, which has great promise for disease prevention, monitoring, and

treatment. It has been found that there is great variation in the genetic architecture under-

lying different complex traits, including the number of genetic variants involved and the

distribution of the effect sizes of genetic variants. How to model such genetic contribution

is a key aspect for accurate prediction of complex traits. So far, most existing methods

make specific assumptions about the shape of the genetic contribution. If these assump-

tions are not correct, the prediction accuracy might be compromised. Here we propose a

method that learns the shape of the genetic contribution without making any explicit

assumptions. We found that our method achieved robust performance when compared

with other recently developed methods through simulation and real data analysis. Our

method is also practically more feasible, since it supports the use of public summary statis-

tics and consumes only small amount of computational resources.
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Introduction

Results from large-scale genome-wide association studies (GWAS) offer valuable information

to predict personal traits based on genetic markers through polygenic risk scores (PRS) calcu-

lated from different methods. For one individual, PRS is typically calculated as the linear sum

of the number of the risk alleles weighted by the effect size for each marker, such as single

nucleotide polymorphism (SNP) [1]. PRS has gained great interest recently due to its demon-

strated ability to identify individuals with higher disease risk for more effective prevention and

monitoring [2].

Appropriate construction of PRS requires the development of statistical methods to jointly

estimate the effect sizes of all genetic markers in an accurate and efficient way. Statistical chal-

lenges associated with the design of PRS methods largely reside in how to account for linkage

disequilibrium (LD) among the markers and how to capture the genetic architecture of traits.

Meanwhile, practical issues to be addressed include making use of summary statistics as input,

as well as reducing the computational burden.

One simple method to compute PRS is to use a subset of SNPs in GWAS summary statistics

formed by pruning out SNPs in LD and selecting those below a p value threshold (P+T) [1]. P

+T is computationally efficient, though the prediction accuracy can usually be improved by

using more sophisticated methods [3]. At present, most of the existing methods that allow the

use of summary statistics as input assume a prior distribution on the effect sizes of the SNPs in

the genome and fit the model under the Bayesian framework. Methods differ in the choice of

the prior distribution. For example, LDpred and LDpred2 assume a point-normal mixture dis-

tribution or a single normal distribution [3,4]. SBayesR assumes a mixture of three normal dis-

tributions with a point mass at zero [5]. PRS-CS proposes a conceptually different class of

continuous shrinkage priors [6]. In reality, there is wide diversity in the distribution of effect

sizes for complex traits [7]. Therefore, there may be model specification for choosing a specific

parametric prior if the true genetic architecture cannot be captured by the assumed parametric

distribution. A natural solution is to consider a generalizable nonparametric prior, such as the

Dirichlet process [8]. Dirichlet process regression (DPR) was shown to be adaptive to different

parametric assumptions and could achieve robust performance when applied to different traits

[9]. However, DPR requires access to individual-level genotype and phenotype data and has

expensive computational cost when applied to large-scale GWAS data.

In this work, we derive a summary statistics-based method, called SDPR, which does not

rely on specific parametric assumptions on the effect size distribution. SDPR connects the

marginal coefficients in summary statistics with true effect sizes through Bayesian multiple

Dirichlet process regression. We utilize the concept of approximately independent LD blocks

and overparametrization to develop a parallel and fast-mixing Markov Chain Monte Carlo

(MCMC) algorithm [10,11]. Through simulations and real data applications, we demonstrate

the advantages of our methods in terms of improved computational efficiency and more

robust performance in prediction without the need of using a validation dataset to select tun-

ing parameters.

Methods

Overview of SDPR

Suppose GWAS summary statistics are derived based on N individuals and p genetic markers,

the phenotypes and genotypes can be related through a multivariate linear model,

y ¼ Xbþ � ð1Þ
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Biobank, we have provided all scripts to reproduce

the results in our manuscript on https://github.

com/eldronzhou/SDPR_paper. Access to data was

obtained under application number 29900. More

specifically, in our analysis, we used version 2 of

UK Biobank imputed genotype (Identifier:

ukb_imp_chr[1-22]_v2.bgen), phenotype

(Identifier: ukb29401.enc_ukb) and in hospital

records (Identifier: ukb_hesin_diag10.tsv,

ukb_hesin_diag9.tsv, ukb_hesin.tsv). For height

and BMI, the GWAS summary statistics were

downloaded from https://portals.broadinstitute.org/

collaboration/giant/images/0/01/GIANT_HEI

GHT_Wood_et_al_2014_publicrelease_

HapMapCeuFreq.txt.gz and https://portals.

broadinstitute.org/collaboration/giant/images/1/15/

SNP_gwas_ mc_merge_nogc.tbl.uniq.gz. For HDL,

LDL, TC and TG, summary statistics were

downloaded from http://csg.sph.umich.edu/willer/

public/lipids2013/. For CAD, summary statistics

were downloaded from http://www.

cardiogramplusc4d.org/data-downloads/. For

breast cancer, summary statistics were

downloaded from http://bcac.ccge.medschl.cam.

ac.uk/bcacdata/oncoarray/oncoarray-and-

combined -summary-result/gwas-summary-

results-breast-cancer-risk-2017/. For IBD,

summary statistics were downloaded from ftp://ftp.

sanger.ac.uk/pub/consortia/ibdgenetics/iibdgc-

trans-ancestry-filte red-summary-stats.tgz. For

T2D, summary statistics were downloaded from

https://www.diagram-consortium.org/downloads.

html. For SCZ and BP, summary statistics were

downloaded from https://figshare.com/articles/

dataset/cdg2018-bip-scz/14672019?file=

28169349 and https://figshare.com/articles/

dataset/cdg2018-bip-scz/14672019?file=

28169361.
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where y is an N×1 vector of phenotypes, X is an N×p matrix of genotypes, and β is an p×1 vec-

tor of effect sizes. We further assume, without loss of generality, that both y and columns of X
have been standardized. GWAS summary statistics usually contain the per SNP effect size b̂

directly obtained or well approximated through the marginal regression b̂ ¼
XTy
N . Under the

assumption that individual SNP explains relatively small percentage of phenotypic variance,

the residual variance can be set to 1 and the likelihood function can be evaluated from

b̂jb � N Rb;
R
N

� �

ð2Þ

where R is the reference LD matrix [3,12].

Like many Bayesian methods, we assume that the effect size of the ith SNP βi, follows a nor-

mal distribution with mean 0 and variance σ2. In contrast to methods assuming one particular

parametric distribution, we consider placing a Dirichlet process prior on σ2, i.e.h a multivariate

linear model,

bi � Nð0; s2Þ; s2 � DPðH; aÞ ð3Þ

where H is the base distribution and α is the concentration parameter controlling the shrink-

age of the distribution on σ2 toward H. To improve the mixing of MCMC and avoid the infor-

mativeness issue of inverse gamma distribution, we follow Gelman’s advice to overparametrize

the model by writing βi = ηγi and use the square of uniform distribution as the base distribu-

tion H [13]. This is explained thoroughly in the section Dirichlet Process Prior of S1 Text.

Dirichlet process has several equivalent probabilistic representations, of which stick-break-

ing process is commonly used for its convenience of model fitting [14]. The stick-breaking

representation views the Dirichlet process as the infinite Gaussian mixture model

bi �
X1

k¼1

pkNð0; s
2

kÞ; pk ¼ Vk

Yk� 1

m¼1

ð1 � VmÞ;Vk � Betað1; aÞ; s2

k � H ð4Þ

In practice, truncation needs to be applied so that the maximum number of components of

the mixture model is finite. We found that setting the maximum components to 1000 was suf-

ficient for our simulation and real data application because the number of non-trivial compo-

nents, to which SNPs were assigned, was way fewer than 1000. The first component of the

mixture model is further fixed to 0 in analogous to Bayesian variable selection. We designed a

parallel MCMC algorithm and implemented it in C++. The details of the algorithm can be

found in the section MCMC Algorithm of S1 Text.

Robust design of the likelihood function

Unlike individual-level data based methods, summary statistics based methods typically rely

on external reference panel to estimate the LD matrix R. Ideally, the same set of individuals in

the reference panel should be used to generate the summary statistics. However, due to the

limited access to the individual level data of original GWAS studies, an external database with

matched ancestry like the 1000 Genomes Project [15] or UK Biobank [16] is usually used

instead to compute the reference LD matrix. It is possible that effect sizes of SNPs in summary

statistics deviate from what are expected given the likelihood function and reference LD

matrix, especially for SNPs in strong LD that are genotyped on different individuals (Table A

in S1 Text). This issue was also noted in the section 5.5 of the RSS paper [12]. Failure to

account for such discrepancy can cause severe model misspecification problems for SDPR and

possibly other methods. One can derive that, if SNPs are genotyped on different individuals,

PLOS GENETICS Nonparametric polygenic risk prediction
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then the likelihood function (2) should be modified as

b̂jb � NðRb;R �HÞ ð5Þ

where ˚ is the Hadamard product, Hii ¼
1

Ni
; Hij ¼

Ns ;ij
NiNj

i 6¼ jð Þ; Ni is the sample size of SNP i, Nj

is the sample size of SNP j, and Ns,ij is the number of shared individuals genotyped for SNPs i

and j. Evaluation of likelihood function (5) requires the knowledge about the sample size and

inclusion of each study for each SNP. For example, SNPs of GWAS summary statistics of lipid

traits were genotyped on two arrays in two separate cohorts (GWAS chip: N1�95,000; Metabo-

chip: N2�94,000) [17]. Based on this information, Ns,ij is set to 0 if SNPs i and j were genotyped

on different arrays, N1 if SNP i was genotyped on GWAS chip and SNP j was genotyped on

both arrays, and N2 if SNP i was genotyped on Metabochip and SNP j was genotyped on both

arrays.

In reality, GWAS summary statistics are often obtained through meta-analysis, and infor-

mation above is generally not available. Besides, double genomic control is applied to many

summary statistics, which may lead to deflation of effect sizes [18,19]. Therefore, we consider

evaluating the likelihood function from the following distribution.

b̂

c
jb � N Rb;

Rþ NaI
N

� �

ð6Þ

More specifically, the input is divided by a constant provided by SumHer if application of

double genomic control significantly deflates the effect sizes [18]. Compared with Eq (5), the

correlation between two SNPs is
Rij

1þNa rather than
RijNs;ijffiffiffiffiffiffi

NiNj
p . The connection between Eq (6) and

LDSC is discussed in the relevant section of S1 Text. For simulated data, c was set to 1 and α
was set to 0 for Scenarios 1A-1C, 4 and 5, since there was no above-mentioned discrepancy in

these scenarios. In real data application, Na was set to 0.1 except for lipid traits, and c was set

to 1 except for BMI (BMI c = 0.74 given by SumHer).

Construction and partition of reference LD matrix

We use an empirical Bayes shrinkage estimator to construct the LD matrix since the external

reference panel like 1000G contains a limited number of individuals [20]. LD matrix can be

divided into small “independent” blocks to allow for efficient update of posterior effect sizes

using the blocked Gibbs sampler [6]. At present, ldetect is widely used for performing such

tasks [10]. However, ldetect sometimes produces false positive partitions that violate the likeli-

hood assumption of Eq (2) (Fig A in S1 Text). To address this issue, we designed a simple and

fast algorithm for partitioning independent blocks. The new algorithm ensures that each SNP

in one LD block does not have nonignorable correlation (r2 > 0.1) with SNPs in other blocks

so that the likelihood assumption of Eq (2) is less likely to be violated (Fig A in S1 Text).

Other methods

We compared the performance of SDPR with seven other methods: (1) PRS-CS as imple-

mented in the PRS-CS software; (2) SBayesR as implemented in the GCTB software (version

2.02); (3) LDpred as implemented in the LDpred software (version 1.0.6); (4) P+T as imple-

mented in the PLINK software (version 1.90) [21]; (5) LDpred2 as implemented in the bigsnpr

package (version 1.6.1); (6) Lassosum as implemented in the lassosum package (version 0.4.5)

[22]; and (7) DBSLMM as implemented in the DBSLMM package (version 0.21) [23]. We used

the default parameter setting for all methods. For PRS-CS, the global shrinkage parameter was

PLOS GENETICS Nonparametric polygenic risk prediction
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specified as {1e-6, 1e-4, 1e-2, 1, auto}. For SBayesR, gamma was specified as {0, 0.01, 0.1, 1}

and pi was specified as {0.95, 0.02, 0.02, 0.01}. For LDpred, the polygenicity parameter was

specified as {1e-5, 3e-5, 1e-4, 3e-4, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, LDpred-Inf}. For P+T,

SNPs in GWAS summary statistics were clumped for r2 iterated over {0.2, 0.4, 0.6, 0.8}, and for

p value threshold iterated over {5e-8, 5e-6, 1e-5, 1e-4, 5e-4, 1e-3, 1e-2, 0.04, 0.05, 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. For LDpred2, we ran LDpred2-inf, LDpred2-auto and LDpred2--

grid, and reported the best performance of three options. The grid of hyperparameters was set

as non-sparse, p in a sequence of 21 values from 10−5 to 1 on a log-scale, and h2 within {0.7, 1,

1.4} of h2
LDSC. For lassosum, lambda was set in a sequence of 20 values from 0.001 to 0.1 on a

log-scale, and s within {0.2, 0.5, 0.9, 1}. For DBSLMM, p value threshold was iterated within

{10−5, 10−6, 10−7, 10−8}, r2 was iterated within {0.05, 0.1, 0.15, 0.2, 0.25}, and h2 was set as

h2
LDSC. We tuned the parameters for PRS-CS, LDpred, P+T, LDpred2, lassosum, and

DBSLMM using the validation dataset.

Genome-wide simulations

We used genotypes from UK Biobank to perform simulations. UK Biobank’s database contains

extensive phenotypic and genotypic data of over 500,000 individuals in the United Kingdom

[16]. We selected 276,732 unrelated individuals of European ancestry based on data field

22021 and 22006. A subset of these individuals was randomly selected to form the training, val-

idation and test datasets. Training datasets contained 10,000, 50,000, and 100,000 individuals,

while validation and test datasets contained 10,000 individuals. We applied quality control

(MAF > 0.05, genotype missing rate< 0.01, INFO > 0.3, pHWE > 1e-5) to select 4,458,556

SNPs from the original ~96 million SNPs. We then intersected these SNPs with 1000G HM3

SNPs (MAF > 0.05) and removed those in the MHC region (Chr6: 28–34 Mb) to form a set of

681,828 SNPs for simulation.

To cover a range of genetic architectures, we simulated effect sizes of SNPs under four scenar-

ios: (1)-(3) bj � pN 0; h2

Mp

� �
þ ð1 � pÞd0, where h2 = 0.5, M = 681828, π, equaled 10−4 (scenario

1A), 10−3 (scenario 1B) and 10−2 (scenario 1C); (4) bj �
P3

i¼1
piNð0; cis2Þ þ ð1 �

P3

i¼1
piÞd0

where c = (1, 0.1, 0.01), π = (10−4, 10−4, 10−2) with σ2 calculated so that the total heritability

equaled 0.5; (5) bj � N 0; h
2

M

� �
. Importantly, scenario 1A-1C satisfied the assumption of LDpred/

LDpred2, scenario 5 satisfied the assumption of LDpred-inf/LDpred2-inf, whereas scenario 4 sat-

isfied the assumption of SBayesR. Phenotypes were generated from simulated effect sizes using

GCTA-sim, and marginal linear regression was performed on the training data to obtain sum-

mary statistics using PLINK2 [24,25]. In each scenario, we performed 10 simulation replicates.

We applied different methods on the training data, and used the 10,000 individuals in the

validation dataset to estimate the LD matrix. Parameters for LDpred, P+T, PRS-CS, LDpred2,

lassosum, and DBSLMM were also tuned using the validation data. We then evaluated the pre-

diction performance on the test data by computing the square of Pearson correlation of PRS

with simulated phenotypes.

Real data application using public summary statistics and UK biobank data

We obtained public GWAS summary statistics for 12 traits and evaluated the prediction per-

formance of each method using the UK Biobank data. Individuals in GWAS do not overlap

with individuals in UK Biobank. For this reason, we did not use the latest summary statistics

of height and BMI [26]. To standardize the input summary statistics, we generally followed the

guideline of LDHub to perform quality control on the GWAS summary statistics [27]. We

removed strand ambiguous (A/T and G/C) SNPs, insertions and deletions (INDELs), SNPs

PLOS GENETICS Nonparametric polygenic risk prediction
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with an effective sample size less than 0.67 times the 90th percentile of sample size. SNPs within

the MHC region were removed except for IBD, since MHC region plays an important role in

autoimmune diseases. The remaining SNPs were then intersected with 1000G HM3 SNPs pro-

vided in the PRS-CS reference panel. Table 1 shows the number of SNPs present in the sum-

mary statistics for each trait after performing quality control.

For UK Biobank, we first selected unrelated European individuals as we did in simulations.

We then applied quality control (MAF > 0.01, genotype missing rate< 0.05, INFO> 0.8,

pHWE > 1e-10) to obtain a total of 1,114,176 HM3 SNPs. UK Biobank participants with six

quantitative traits-height, body mass index (BMI), high-density lipoproteins (HDL), low-den-

sity lipoproteins (LDL), total cholesterol, and triglycerides-were selected based on relevant

data fields (Section selection of phenotypes in S1 Text). Selected participants were randomly

assigned to form validation and test datasets, each composing half of the individuals. Cases for

each of six diseases-coronary artery diseases, breast cancer, inflammatory bowel disease (IBD),

type 2 diabetes, bipolar, and schizophrenia-were selected based on self-reported questionnaire

and ICD code in the electronic hospital record (EHR). Controls were selected among partici-

pants in the EHR based on certain exclusion criteria (Section selection of phenotypes in S1

Text). Validation dataset consisted of an equal number of cases and controls, the rest of which

were assigned to the test dataset (Table 1). Random assignments of individuals to validation

and test datasets were repeated for 10 times.

For six quantitative traits, we reported the prediction R2 of PRS (variance explained by

PRS) defined as R2 ¼ 1 �
SS1

SS0
, where SS0 is the sum of squares of the residuals of the restricted

linear regression model with covariates (an intercept, age, sex, top 10 PCs of the genotype

data), and SS1 is the sum of squares of the residuals of the full linear regression model (covari-

ates above and PRS). For six diseases, we reported the AUC of PRS only for better comparison

of different methods.

Results

Adaptiveness of Dirichlet process prior

Theoretically, Dirichlet process as an infinite Gaussian mixture model is able to approximate

any continuous parametric distribution, thus including other published parametric

Table 1. Summary information about the sample size and SNPs in GWAS summary statistics and UK Biobank datasets. For binary traits, effective sample size was

used (
4�Ncase�Ncontrol
NcaseþNcontrol

) and the validation datasets consisted of equal numbers of cases and controls. If the summary statistics included sample sizes for individual SNPs, the

median of all SNPs passing QC was reported. For binary traits, the number of cases and controls were reported in the parenthesis.

Trait GWAS sample size GWAS ref 1KG HM3 & UKB & GWAS SNPs UKB validation Sample size UKB testing sample size

Height 252,230 [29] 885,791 138,066 138,066

BMI 233,766 [30] 886,654 137,921 137,920

HDL 94,288 [17] 868,645 37,774 37,774

LDL 89,866 [17] 868,179 40,807 40,807

Total Cholesterol 94,571 [17] 868,167 40,898 40,898

Triglycerides 90,989 [17] 86,8243 40,858 40,857

Coronary artery disease 61,294 (22,233/64,762) [31] 814,337 4475/4475 4475/258,345

Breast Cancer 227,688 (122,977/105,974) [32] 927,706 4539/4539 4539/133,649

Inflammatory bowel disease 32,372 (12,882/21770) [33] 918,369 1840/1840 1839/198,815

Type 2 diabetes 156,109 (26,676/132,532) [34] 974,907 7240/7240 7239/182,292

Bipolar 41,606 (20,129/21,524) [35] 928,032 832/832 832/176,069

Schizophrenia 65,955 (33,426/32541) [35] 941,216 223/223 223/203,471

https://doi.org/10.1371/journal.pgen.1009697.t001

PLOS GENETICS Nonparametric polygenic risk prediction

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009697 July 26, 2021 6 / 17

https://doi.org/10.1371/journal.pgen.1009697.t001
https://doi.org/10.1371/journal.pgen.1009697


distributions as special cases [28]. For example, the density of Dirichlet process prior adapts

well to the density of normal distribution (LDpred-inf), point normal mixture distribution

(LDpred/LDpred2), and three-point normal mixture distribution (SBayesR) (Fig B in S1 Text).

Compared with SBayesR, Dirichlet process prior does not constrain the relationship between

three non-zero normal variance components. We also explicitly incorporate Bayesian variable

selection by setting the first variance component as 0, which is different from PRS-CS. The

adaptiveness of Dirichlet process prior potentially makes it more robust to the distribution of

effect sizes of real traits.

Simulations

We first compared the performance and computational time of SDPR with DPR in a small-

scale simulation setting using 10,000 individuals and 58,432 SNPs on chromosome 1. The

effect sizes were generated under the mixture of Dirichlet delta and three normal distributions

with total heritability fixed as 0.3. We fitted DPR model with four components and 5000

MCMC iterations, and SDPR model with the input of summary statistics. The average R2 of

DPR was 0.227, and the average R2 of SDPR was 0.204 (Fig C in S1 Text). DPR took about 3.5

hours and consumed 10.4 Gb of memory to finish MCMC, while SDPR took only 10 minutes

and used 1.1 Gb of memory. This demonstrated the improved computational efficiency of

SDPR over DPR without loss of much prediction accuracy.

We then compared the performance of SDPR with several other summary statistics-based

methods via genome-wide simulations across different genetic architectures and training sam-

ple sizes. Effect sizes of SNPs were simulated under a point-normal mixture model with

increasing number of causal variants, a point-three-normal mixture model satisfying

SBayesR’s assumption, and a normal model satisfying LDpred-inf’s assumption (details in

Methods). The heritability was fixed as 0.5 and 10 replicates were performed in each simula-

tion setting. Tuning parameters of PRS-CS, LDpred, P+T, LDpred2, lassosum, and DBSLMM

were selected using a validation dataset (N = 10,000). 10,000 individuals in the validation data-

set were used to construct the LD matrix. We evaluated the prediction performance on the

independent test data (N = 10,000) using the squared Pearson correlation coefficient (R2).

The prediction accuracy of all methods generally increased along the sample size of training

data (Fig 1 and Tables B-F in S1 Text). Similarly, all methods performed better when the num-

ber of causal variants was small. Since the standard error of the regression coefficient estimator

in GWAS summary statistics is roughly reciprocal to the square root of the sample size of the

training cohort, the dominance of noise over signal poses significant challenges for accurate

estimation of effect sizes when the training sample size or per SNP effect size is small.

SDPR, LDpred2, and SBayesR performed better than other methods in the sparse setting

(Fig 1 Scenarios 1A-1C and Tables B-E in S1 Text). Consistent with others’ findings, we

observed that when the genetic architecture was sparse, the performance of LDpred decreased

as the training sample size increased [6]. In contrast, LDpred2 performed significantly better

than LDpred. Meanwhile, PRS-CS performed worse when the training sample size was small.

In the polygenic setting, SDPR and LDpred-inf/LDpred2-inf performed better than other

methods (Fig 1 Scenario 5 and Table F in S1 Text). Overall, SDPR and LDpred2 performed

well across a range of simulated sparse and polygenic genetic architectures. LDpred2 is

expected to perform well in Scenarios 1A-1C and 5 since it satisfied the assumption of

LDpred2/LDpred2-inf. The robust performance of SDPR demonstrates the advantage of using

Dirichlet process prior to model the genetic architecture.

It is important to note that while SBayesR and SDPR do not need a validation dataset to

tune parameters, they may be more susceptible to heterogeneity and errors in the summary
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statistics. Therefore, we tested whether our modified likelihood function (6) makes SDPR

more robust when dealing with discrepancies between summary statistics and reference panel.

We generated summary statistics from 50,000 individuals under the same setting as scenario

1B. For half of the SNPs (340,914), linear regression was performed on 40,000 individuals to

obtain the marginal effect sizes. According to Eq (5), the correlation of effect sizes of these

SNPs would be 80% of what was expected from the reference panel. Such discrepancy indeed

caused the divergence of SBayesR, while SDPR with modified likelihood function (6) con-

verged and performed well (N = 50,000, Na = 0.25, R2 = 0.422).

Real data applications

We compared the performance of SDPR with other methods in real datasets to predict six

quantitative traits (height, body mass index, high-density lipoproteins, low-density lipopro-

teins, total cholesterol, and triglycerides) and six diseases (coronary artery diseases, breast can-

cer, inflammatory bowel disease, type 2 diabetes, bipolar, and schizophrenia) in UK Biobank.

We obtained public GWAS summary statistics of these traits and performed quality control to

standardize the input (details in Methods; Table 1). A total of 503 1000G EUR individuals

were used to construct the reference LD matrix for SDPR, PRS-CS, LDpred, P+T, LDpred2,

lassosum, and DBSLMM. For SBayesR, we used 5000 EUR individuals in UK Biobank to create

the LD matrix (shrunken and sparse) instead, as it was reported to have suboptimal prediction

accuracy when using 1000G samples [5].

For six continuous traits, the prediction performance was measured by variance of pheno-

type explained by PRS (Fig 2 and Table G in S1 Text). Overall, SDPR, PRS-CS and LDpred2

performed better than other methods, and there was minimal difference of these three meth-

ods. In terms of ranking, SDPR and PRS-CS performed best for height. SDPR and LDpred2

performed best for BMI. SDPR performed best for HDL, LDL and total cholesterol, while

PRS-CS performed best for triglycerides. We observed convergence issues when running

SBayesR on these traits, and followed its manual to filter SNPs based on GWAS P-values and

LD R-squared (—p-value 0.4—rsq 0.9). The filtering approach improved the prediction perfor-

mance of SBayesR, but it still failed to achieve the top tier performance. We suspect that the

convergence issue of SBayesR was also caused by the violation of the likelihood assumption,

similar to what we observed in the simulation. To address this issue, our approach of modify-

ing the likelihood function might be better than the simple filtering approach used in SBayesR

and P+T as it retained all SNPs for prediction.

For six disease traits, the prediction performance was measured by AUC of PRS only (Fig 3

and Table H in S1 Text). Overall, SDPR achieved top tier performance (within 0.003 difference

of AUC of the best method) for five out of six diseases. In terms of ranking, LDpred and

LDpred2 performed best for coronary artery disease. SDPR and PRS-CS performed best for

breast cancer. LDpred2 performed best for IBD. For schizophrenia and type 2 diabetes,

SBayesR performed best. LDpred, SDPR, LDpred2 and SBayesR performed best for bipolar.

Consistent with simulations, SBayesR performed similarly to SDPR when there was no con-

vergence issue (IBD, type 2 diabetes, schizophrenia, bipolar vs height, lipid traits). In general,

PRS-CS performed better when the training sample size was large (height and breast cancer vs

IBD and type 2 diabetes) and LDpred performed better when the training sample size was

Fig 1. Prediction performance of different methods on simulated data with varying samples sizes of the training cohort. Scenarios 1A-1C: mixture of Dirichlet

delta and normal distribution (spike and slab) with number of causal SNPs increasing from 100, 1000 to 10000. Scenario 4: mixture of Dirichlet delta and three

normal distributions. Scenario 5: single normal distribution. The total heritability in all scenarios was fixed to 0.5. Simulation in each scenario was repeated for 10

times. For each boxplot, the central mark is the median and the lower and upper edges represents the 25th and 75th percentile. The median is recorded in the

Table B-E in S1 Text.

https://doi.org/10.1371/journal.pgen.1009697.g001
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small (coronary artery disease, IBD vs height, breast cancer). LDpred2 performed significantly

better than LDpred, achieving highly competitive performance. SDPR performed best among

methods (PRS-CS auto, SBayesR, LDpred2 auto) without the need of parameter tuning

(Table I and J in S1 Text). Taken together, our design of the likelihood function and usage of

Dirichlet process prior empowers SDPR with generally robust performance across different

genetic architectures and training sample sizes.

Computational time

SDPR is implemented in C++ to best utilize the resources of high-performance computing

facilities. SDPR optimizes the speed of the computational bottleneck by using SIMD program-

ming, parallelization over independent LD blocks, and high-performance linear algebra

library. Besides, SDPR by default runs analysis on each chromosome in parallel because the

genetic architecture may be different across chromosomes. We benchmarked the computa-

tional time and memory usage of each method on an Intel Xeon Gold 6240 processor (2.60

GHZ). For SDPR and PRS-CS, we paralleled computation over 22 chromosomes and used

three threads per chromosome for the linear algebra library (22 ×3 = 66 threads in total). Time

and memory usage were reported for the longest chromosome, which was the rate limiting

step. For LDpred, SBayesR and P+T, no parallelization was used. LDpred2 was run in the

genome-wide mode with 10 threads for parallel computation. DBSLMM and lassosum were

run with 3 threads for parallel computation. The evaluation was based on a fixed number of

MCMC iterations-1000 for SDPR and PRS-CS (default), 4000 for SBayesR (non-default but

achieved generally good performance in simulations and real data application), 100 for

LDpred (default), 1000 for LDpred2 (default). One should keep in mind that the number of

MCMC iterations and threads for parallel computation affects the computation time signifi-

cantly, though we did not explore it in this paper since each method also has different conver-

gence and computational properties.

Table 2 shows that SDPR was able to finish the analysis in 15 minutes for most traits and

required no more than 3 Gb of memory for each chromosome. SBayesR was also fast but the

memory usage was significant for five diseases as no SNPs were removed to improve the con-

vergence. The speed of PRS-CS, LDpred, P+T, LDpred2, lassosum, and DBSLMM was

impeded by the need of iterating over tuning parameters. PRS-CS used less memory because

the largest size of LD blocks output by ldetect was smaller compared with SDPR.

Discussion

Building on the success of genome wide association studies, polygenic prediction of complex

traits has shown great promise with both public health and clinical relevance. Recently, there is

growing interest in developing non-parametric or semi-parametric approaches that make

minimal assumptions about the distribution of effect sizes to improve genetic risk prediction

[9,36,37]. However, these methods either require access to individual-level data (DPR) [9],

external training datasets (NPS) [36], or do no account for LD (So’s method) [37]. Other

widely used methods usually make specific parametric assumptions, and require external vali-

dation or pseudo-validation datasets to optimize the prediction performance [3,6,22]. To

address the limitations of the existing methods, we have proposed a non-parametric method

Fig 2. Prediction performance of different methods for six quantitative traits in the UK Biobank. Selected participants with corresponding phenotypes were

randomly assigned to form validation and test dataset, each composing half of individuals. For PRS-CS, LDpred, P+T, LDpred2, lassosum, and DBSLMM,

parameters were tuned based on the performance on the validation dataset. We repeated the split and tuning process 10 times. The mean of variance of phenotypes

explained by PRS across 10 random splits was reported in the Table G in S1 Text.

https://doi.org/10.1371/journal.pgen.1009697.g002
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SDPR that is adaptive to different genetic architectures, statistically robust, and computation-

ally efficient. Through simulations and real data applications, we have illustrated that SDPR is

practically simple, fast yet effective to achieve competitive performance.

One of the biggest challenges of summary statistics based method is how to deal with mis-

match between summary statistics and reference panel. Based on our experience, misspecifica-

tion of correlation of marginal effect sizes for SNPs in high LD can sometimes cause severe

convergence issues of MCMC, especially for methods not relying on parameter tuning. Our

investigation revealed that even when estimating LD from a perfectly matched reference panel,

if SNPs were genotyped on different individuals, the correlation/covariance of marginal effect

sizes in the summary statistics can be different from what is expected from the reference panel.

We proposed a modified likelihood function to deal with this issue and observed improved

convergence of MCMC. Our approach may be applied in a broader setting given that many

summary statistics based methods assume b̂b � N Rb; RN
� �

or zjb � NðR
ffiffiffiffi
N
p

b;RÞ. When the

sample size is small, the noise and heterogeneity of GWAS summary statistics poses more chal-

lenge for methods trying to learn every parameter from data (PRS-CS auto, LDpred2-auto,

SBayesR, and SDPR). Under such circumstances, it is advantageous for methods like LDpred/

LDpred2 to use an independent validation dataset to select the optimal parameters.

Although we have focused on the polygenic prediction of SDPR in this paper, it can provide

estimation of heritability, genetic architecture, and posterior inclusion probability (PIP) for

fine mapping. These issues will be fully explored in our future studies. SDPR can also be

extended as a summary statistics-based tool to predict gene expression level for transcriptome

wide association studies since a previous study has shown that individual level data based

Dirichlet process model improves transcriptomic data imputation [38].

Although our method has robust performance in comparison with other methods, we cau-

tion that currently for most traits the prediction accuracy is still limited for direct application

in clinical settings. From our perspective, there are three factors that affect the prediction accu-

racy. First, how much heritability is explained by common SNPs for diseases and complex

Fig 3. Prediction performance of different methods for 6 diseases in the UK biobank. Selected participants with corresponding diseases were randomly assigned to

form validation and test dataset (Table 1). For PRS-CS, LDpred, P+T, LDpred2, lassosum and DBSLMM, parameters were tuned based on the performance on the

validation dataset. We repeated the split and tuning process for 10 times. The mean AUC across 10 random splits was reported in the Table H in S1 Text.

https://doi.org/10.1371/journal.pgen.1009697.g003

Table 2. Computational time and memory usage of different methods for 12 traits. The computational time is in hours. Memory usage of each method, as listed in the

parenthesis, is measured in the unit of Gigabytes (Gb). We did not include the time of computing PRS in the validation and test datasets except for P+T, lassosum,

LDpred2, and DBSLMM, because such computation was non-trivial for methods with a large grid of tuning parameters.

Trait SDPR PRS-CS SBayesR LDpred P+T LDpred2 Lassosum DBSLMM

Height 0.20 (2.4) 2.5 (0.7) 0.92 (12.6) 5.0 (15.5) 0.6 (1.1) 5.5 (31.2) 0.50 (2.6) 1.7 (1.1)

BMI 0.18 (2.4) 2.8 (0.7) 0.50 (7.6) 4.9 (15.1) 0.5 (1.1) 5.4 (30.8) 0.45 (2.6) 0.60 (1.1)

HDL 0.20 (2.4) 1.6 (0.7) 0.68 (8.5) 5.1 (15.6) 0.5 (1.1) 3.9 (31.7) 0.41 (2.2) 0.44 (1.1)

LDL 0.22 (2.4) 2.2 (0.7) 0.67 (8.7) 5.1 (15.6) 0.6 (1.1) 5.5 (31.6) 0.42 (2.2) 0.61 (1.1)

Total cholesterol 0.25 (2.4) 2.2 (0.7) 0.48 (8.7) 5.1 (15.4) 0.5 (1.1) 4.1 (31.7) 0.40 (2.6) 0.60 (1.1)

Triglycerides 0.21 (2.4) 2.2 (0.7) 0.50 (8.3) 5.1 (15.5) 0.5 (1.1) 3.5 (31.6) 0.42 (2.6) 0.62 (1.1)

Coronary artery disease 0.23 (2.3) 1.9 (0.7) 0.39 (7.0) 4.7 (14.0) 0.3 (1.1) 3.5 (27.1) 0.33 (2.2) 0.77 (1.1)

Breast cancer 0.20 (2.9) 2.7 (0.7) 0.63 (42.3) 5.5 (16.4) 0.5 (1.1) 4.6 (37.1) 0.42 (2.7) 0.65 (1.1)

IBD 0.28 (2.8) 2.2 (0.7) 0.78 (39.5) 5.1 (16.0) 0.6 (1.1) 3.7 (33.4) 0.45 (2.7) 0.68 (1.1)

Type 2 diabetes 0.31 (2.9) 2.4 (0.7) 0.87 (47.4) 5.5 (17.4) 0.5 (1.1) 4.5 (37.2) 0.51 (2.8) 0.63 (1.2)

Schizophrenia 0.28 (2.7) 2.3 (0.7) 2.6 (42.1) 5.3 (16.4) 0.5 (1.1) 4.4 (36.8) 0.43 (2.3) 0.64 (1.1)

Bipolar 0.28 (2.8) 2.2 (0.7) 1.7 (43.8) 5.3 (16.3) 0.5 (1.1) 4.4 (36.8) 0.45 (2.6) 0.64 (1.1)

https://doi.org/10.1371/journal.pgen.1009697.t002
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traits? Second, if diseases or complex traits have relatively moderate heritability, is the GWAS

sample size large enough to allow accurate estimation of effect sizes? Third, if the above two

conditions are met, is a method able to have good prediction performance? The first two ques-

tions have been discussed in the literatures [7,39,40]. As for method development, we have

focused on addressing the third question in this paper, and think SDPR represents a solid step

in polygenic risk prediction.

Finally, we provide two technical directions for further development of SDPR. First, SDPR

may have better performance after incorporating functional annotation as methods utilizing

functional annotation generally perform better [41]. Second, studies have shown that PRS

developed using EUR GWAS summary statistics does not transfer well to other populations

[42,43]. We can further modify the likelihood function to account for different LD patterns

across populations to improve the performance of trans-ethnic PRS.
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