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Abstract

Understanding the relationship between natural selection and phenotypic variation has

been a long-standing challenge in human population genetics. With the emergence of bio-

bank-scale datasets, along with new statistical metrics to approximate strength of purifying

selection at the variant level, it is now possible to correlate a proxy of individual relative fit-

ness with a range of medical phenotypes. We calculated a per-individual deleterious load

score by summing the total number of derived alleles per individual after incorporating a

weight that approximates strength of purifying selection. We assessed four methods for the

weight, including GERP, phyloP, CADD, and fitcons. By quantitatively tracking each of

these scores with the site frequency spectrum, we identified phyloP as the most appropriate

weight. The phyloP-weighted load score was then calculated across 15,129,142 variants in

335,161 individuals from the UK Biobank and tested for association on 1,380 medical phe-

notypes. After accounting for multiple test correction, we observed a strong association of

the load score amongst coding sites only on 27 traits including body mass, adiposity and

metabolic rate. We further observed that the association signals were driven by common

variants (derived allele frequency > 5%) with high phyloP score (phyloP > 2). Finally, through

permutation analyses, we showed that the load score amongst coding sites had an excess

of nominally significant associations on many medical phenotypes. These results suggest a

broad impact of deleterious load on medical phenotypes and highlight the deleterious load

score as a tool to disentangle the complex relationship between natural selection and medi-

cal phenotypes.

Author summary

This study aims to augment our understanding of the complex relation between natural

selection and human phenotypic variation. We developed a load score to approximate the
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relative fitness of an individual and correlate it with a set of medical phenotypes. Associa-

tion tests between the load score amongst coding sites and 1,380 phenotypes in a sample

of 335,161 individuals from the UK Biobank showed a strong association with 27 traits

including body mass, adiposity and metabolic rate. Furthermore, an excess of nominal

associations at suggestive levels was observed between the load score amongst coding sites

and medical phenotypes than would be expected under a null model. These results suggest

that the aggregate effect of deleterious mutations as measured by the load score has a

broad effect on human phenotypes.

Introduction

One of the primary questions of interest in the study of human population genetics is the rela-

tion between natural selection and the evolution of human phenotypes, from quantitative traits

to complex disease. With the emergence of biobank-scale datasets, along with new statistical

metrics to approximate strength of purifying selection at the variant level, it is now possible to

both estimate the net impact of deleterious mutations for each individual in a large population

sample and correlate it to a range of medical phenotypes exhibited by that individual. This pro-

vides an opportunity to simultaneously study the genetics of individuals within a relatively

homogenous population and the potential impact of natural selection on annotated

phenotypes.

A large body of literature exists on evolution and estimation of the deleterious mutation

load from human population samples, with particular emphasis on cross-ancestry compari-

sons [1–6]. Rather than a comparison between human populations, we aimed to assess the dis-

tribution of deleterious loads—the sum of all purifying selective effects in each individual’s

genome—within a single human population. While the mutation load generally represents a

population-wide average of this quantity, we estimated the same object for each individual in

the population to produce a “load score” that counts the net effect of deleterious variation in

each individual’s genome, a count of derived alleles weighted by an estimate of the selective

disadvantage for each variant. When compared to the mean of the population, this per-indi-

vidual load score can be interpreted as a component of the relative fitness of each individual.

In this study, we aim to augment our understanding of the relation between natural selec-

tion and human phenotypes by focusing on the net impact of purifying selection on the fitness

of each individual, and correlating this quantity to the set of phenotypes acting on that individ-

ual. Previously, this has been difficult for two reasons: first, we do not have a direct measure of

the fitness of individual humans that can be estimated from genetic information, and second,

there were no large databases available to quantify the wide range of phenotypes possessed by

each individual. Biobank-scale datasets that contain both individual genotypes and pheno-

types, such as the UK Biobank [7,8], finally provides access to both large-scale phenotypic

descriptions of each individual and some part of their genetic sequence.

We ventured to apply computational tools that predict aspects of purifying selection for

individual alleles to published genotypes of 335,161 white British individuals from the UK Bio-

bank to estimate the fitness impact of derived variation present in each imputed genome in

this sample. Most of the variation in the sample exists at appreciable frequencies, and is likely

under relatively small selective disadvantage, but in aggregate the fitness impact can be sub-

stantial. Using this representation of each individual’s relative fitness, we probed correlations

between the impact of common deleterious variation in an individual’s genome and their per-

sonal phenotypic makeup. This provides a different lens into questions about the relation
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between fitness vis-à-vis mutation load and human traits by looking at a per-individual mea-

sure correlated to fitness, rather than focusing on the distribution of selective effects in the

population as a whole. This allows us to ask which phenotypes, if any, are highly correlated to

the aggregation of deleterious variation, and probe the relation between the ensemble of phe-

notypes and fitness loss due to common variation in individuals.

Results

Comparison of four deleteriousness prediction scoring methods

The additive effects of deleterious variation can be quantified in aggregate by a genome-wide

score representing the net action of purifying selection on an individual under the assumption

that effects of individual variants can be summed additively. Multiple methods have been

developed to characterize purifying selection, including methods that predict deleterious selec-

tion acting on the level of a single allele (fitCons [9], FATHMM-MKL [10], deltaSVM [11],

Funseq2 [12]), methods that measure evolutionary conservation (phyloP [13], phastCons [14],

GERP++ [15], SiPhy [16]) and methods that predict the effect of an allele on molecular func-

tion (CADD [17], DANN [18], GenoCanyon [19], Eigen and EigenPC [20]). Although these

scores are formulated as tests for strong selection or for molecular function, rather than as esti-

mates of the strength of selection, they are also correlated to the strength of selection, and are

often used as proxies for strength of selection [4,21,22]. In this study, we compared the pre-

dicted deleteriousness of alleles for four widely used scoring methods that approximate delete-

riousness of a variant—GERP++, phyloP, CADD, and fitCons—with their effects on allelic

frequency in human population genetic data to select the most appropriate measure for com-

putation of the additive load.

Under negative or purifying selection, natural selection acts to reduce the population fre-

quency of deleterious mutations. This effect is more able to overcome genetic drift as the

strength of selection increases. As a result, we expect to observe a higher number of rare alleles

and a lower number of common alleles in regions of the genome that are under negative selec-

tion, relative to putatively neutral regions. This can be seen as a shift of the allele frequency

spectrum (AFS) towards rare alleles, with a steeper slope of the AFS indicating stronger purify-

ing selection. We evaluated the extent to which each scoring method captures the deleterious-

ness of an allele by grouping alleles by the scores provided by each method and measuring the

slope of the resulting AFS. The more strongly a score is related to the strength of selection, the

more marked the increase in slope will be for high-scoring alleles relative to lower scoring

alleles.

We evaluated this correlation using whole genome sequencing data from a non-Finnish

European population in the Genome Aggregation Database (gnomAD) [23]. For each scoring

method, we grouped alleles by score and compared the non-normalized derived allele fre-

quency spectra for each group (see Material and Methods). Fig 1 plots the log of the derived

allele frequency (DAF), and shows a consistent pattern across all scores: the higher the score,

the steeper the slope of the log DAF (S1 Table). This indicates that, for all scores shown, higher

scores are associated with sites under stronger negative selection, as expected. While all four

scores show this pattern, CADD and phyloP show clearer separations between DAF spectra

than fitCons and GERP++. In the case of fitCons, this underperformance is likely due to its

incorporation of functional genomic signatures that may increase its performance at identify-

ing functional regions, but detract from its performance at identifying sites under purifying

selection. In the case of GERP++, the underperformance is more surprising, since GERP+

+ and phyloP are very similar methods. The difference in performance may be explained by

differences in how the final scores computed by the two methods are defined, or by the fact
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that the scores were calculated using two different multiple sequence alignments: the phyloP

scores were calculated from UCSC’s alignment of 100 vertebrate sequences generated using

the MultiZ method [24], while the GERP++ scores were calculated from the Ensembl

Fig 1. Derived allele frequency spectra of different score categories for each deleteriousness prediction scoring method. For each scoring method, polymorphic

sites are grouped into score intervals by the value of the score annotated at the sites. Each solid line represents derived allele frequency spectrum of polymorphic sites

belonging to one score interval and three dashed lines represent derived allele frequency spectra of three control categories: synonymous (syn), missense (mis), and loss

of function (LOF) variants.

https://doi.org/10.1371/journal.pgen.1009337.g001
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alignment of 111 mammalian sequences generated using the EPO-Extended method [25]. For

comparison, we also calculated DAF spectra for synonymous sites, missense sites, and loss of

function sites (LOF). Based on this comparison, phyloP scores between 5 and 7.5 appear to be

similarly deleterious to missense sites (nearly the same DAF slope) and phyloP scores greater

than 7.5 appear to be under similar purifying selection to LOF sites. The equivalent numbers

for CADD are 20 to 25 for missense and greater than 30 for LOF.

To further compare between CADD and phyloP, we examined the DAF distribution for

protein coding variants and noncoding variants separately. Both scores performed similarly

for coding variants, but phyloP showed better separation in noncoding variants (S1 Fig). This

is as expected, since CADD uses more features when scoring coding variants than noncoding

variants, while the phyloP method is identical for coding and noncoding sites. For this reason,

we concluded that phyloP has the most consistent relationship between score and strength of

negative selection, and selected phyloP as our weight for our load score computation.

Per-individual load scores in UK Biobank

We calculated a per-individual deleterious load score by summing the total number of derived

alleles per individual, weighting each derived allele by its phyloP score to account for the

strength of purifying selection. We considered three load scores: a genome-wide load score, a

coding-specific load score, and a non-coding-specific load score. Each score was computed for

335,161 unrelated, white-British ancestry individuals in the UK Biobank using 6,774,062 vari-

ants from imputed genotypes (95,850 coding and 6,678,212 non-coding) with positive phyloP

scores (positive scores denote uniform purifying selection, while negative scores denote clade-

specific selection). The observed population distribution across all sampled individuals appear

very close to normal for each of our three scores (Kolmogorov-Smirnov Tests P-values = 0.32;

0.55; 0.20 for all variants, non-coding, and coding, respectively, Fig 2). This is the expected

result if the phyloP scores of derived alleles are identically distributed across the entire popula-

tion, due to the Central Limit Theorem. By contrast, if the white-British population contained

distinct subpopulations with dramatically different distributions of phyloP scores among

derived alleles, we would expect to see a sum of multiple normal distributions with different

means, resulting in a skewed or multi-modal distribution.

Significant association between load score of coding variants and

anthropometric and metabolic traits

To explore the overall effect of deleterious mutations on specific clinically measured pheno-

types, we tested the association of each of the three load scores (genome-wide, coding and

non-coding) with 1,380 traits, after adjusting for age, sex, genotyping chip, and assessment

center. To account for potential confounders, we further included a set of geographical and

socioeconomic variables available in the UK Biobank data as additional covariates (S2 Table).

We note that many of these variables are significantly associated with the load score but the

effects are small. Nonetheless, careful consideration was taken to add these as covariates in our

association tests (S2 Table).

We discovered no phenotype significantly associated with either the genome-wide load

score or non-coding load score (Bonferroni P value threshold = 1.2x10-5). However, 27 traits

were significantly associated with the load score calculated from coding SNPs; these included

body mass, metabolic rate, and several adiposity traits such as body mass index and waist cir-

cumference (Table 1). Some of these traits have been found under directional selection in con-

temporary populations [26–28].
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Fig 2. Distribution of load score. Histogram of three load scores computed from three sets of variants: coding variants (coding load score), non-coding variants (non-

coding load score), and both coding and non-coding variants (genome-wide load score). Each load score was computed for 335,161 unrelated, white-British ancestry

individuals.

https://doi.org/10.1371/journal.pgen.1009337.g002

Table 1. Association between coding load score and 27 traits.

Trait Sample size beta SE P-value

Arm fat-free mass (right) 329238 -0.0073 0.0012 6.61×10−10

Arm fat-free mass (left) 329182 -0.0074 0.0012 7.93×10−10

Arm predicted mass (left) 329170 -0.0073 0.0012 1.12×10−9

Leg fat mass (left) 329295 -0.0090 0.0015 1.39×10−9

Basal metabolic rate 329326 -0.0074 0.0012 2.83×10−9

Arm predicted mass (right) 329235 -0.0069 0.0012 3.76×10−9

Weight 334221 -0.0098 0.0017 3.98×10−9

Whole body water mass 329333 -0.0068 0.0012 8.68×10−9

Leg fat mass (right) 329311 -0.0086 0.0015 1.02×10−8

Whole body fat-free mass 329306 -0.0067 0.0012 1.24×10−8

Whole body fat mass 328780 -0.0103 0.0018 1.80×10−8

Leg fat percentage (left) 329297 -0.0064 0.0011 2.66×10−8

Trunk fat-free mass 329057 -0.0065 0.0012 3.55×10−8

Trunk predicted mass 329019 -0.0064 0.0012 5.07×10−8

Trunk fat mass 329118 -0.0100 0.0019 1.21×10−7

Leg predicted mass (right) 329303 -0.0063 0.0012 1.54×10−7

Leg fat-free mass (right) 329303 -0.0063 0.0012 1.96×10−7

Leg fat-free mass (left) 329280 -0.0062 0.0012 3.18×10−7

Leg predicted mass (left) 329275 -0.0062 0.0012 3.77×10−7

Leg fat percentage (right) 329316 -0.0058 0.0012 5.74×10−7

Arm fat mass (right) 329242 -0.0092 0.0018 6.38×10−7

Body mass index (BMI) 334097 -0.0092 0.0019 7.25×10−7

Arm fat mass (left) 329188 -0.0090 0.0018 1.15×10−6

Waist circumference 334612 -0.0080 0.0016 1.35×10−6

Body fat percentage 329134 -0.0066 0.0014 2.98×10−6

Hip circumference 334579 -0.0088 0.0019 3.29×10−6

Impedance of arm (left) 329313 0.0061 0.0013 5.25×10−6

SE: standard error

https://doi.org/10.1371/journal.pgen.1009337.t001
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Stratification by derived allele frequency showed that these association signals are more

pronounced when limiting to variants that are common (DAF> 5%) but not close to fixation

(DAF< 70%), while stratification by phyloP score shows that they are more pronounced

when limiting to variants with higher phyloP scores (phyloP>2, S3 and S4 Tables). We there-

fore performed an additional stratification analysis by both DAF and phyloP score (S5 Table).

We observed that the signals are mostly driven by common variants (5< = DAF<70%) with

higher phyloP score (phyloP>2). This class of variants notably contributes a large fraction

(mean: 0.38 and sd: 0.005 per individual) towards the per individual coding load score. This

analysis necessarily excludes extremely rare alleles, which are not well captured by the process

of genotyping and imputation. It is not clear how significant the aggregate contribution of

these alleles to the per individual load score would be.

To assess the effect of our weighting procedure, we calculated an unweighted load score,

the per-individual mutation burden, that simply counts derived alleles with no reference to

phyloP or other measures of selection. When using this score, all significant association signals

observed for the coding load score disappeared and no significant association for genome-

wide and non-coding unweighted score was detected (S2 Fig). We further tested the associa-

tions with burden scores while restricting to only rare variants (DAF< 5%) or only common

variants (5%< DAF< 70%, S2 Fig), however no significant association was observed. This is

likely due to the domination of the mutation burden by alleles under effectively no purifying

selection, highlighting the need for a weighting scheme to identify correlations to the relative

per-individual fitness.

To assess whether the observed significant associations are sensitive to reference bias, we

included as a covariate the number of non-reference sites per individual in our association

testing for the top results in Table 1 (S6 Table). Similarly, associations between the phenotypes

and load score remain significant when restricted to variants at which reference alleles are the

same as predicted ancestral alleles (S7 Table). We also re-computed load scores using phy-

loPNH scores, which are phyloP scores calculated without human reference genome [4], and

obtained similar but slightly less significant results, with all the 27 phenotypes yielded p-

value < 6.13x10-4 (S8 Table). Association results were very consistent, suggesting that refer-

ence bias is not likely a confounder.

Associations with coding load score are enriched for nominal associations

with disease

Phenome wide association test results showed that no single disease is significantly associated

with the load score (all P> 0.05 after accounting for multiple tests using Bonferroni correc-

tion). However, rather than the load score having a strong effect on a single disease, we

hypothesized that the load score may have subtle effects on many diseases, leading to an excess

of weak associations that do not individually reach statistical significance. To test this hypothe-

sis, we compared the number of phenotypes nominally associated with the load score (p-

value < 0.05 without multiple test correction) to a null distribution generated by random per-

mutation of individual load score values (Material and Methods). For this analysis, we

restricted to associations with clinical phenotypes defined by phecodes. Out of 539 phecodes,

46, 24, and 27 phecodes (S9 Table) were found to be nominally associated with coding load

score, non-coding load score, and genome-wide load score respectively. The number of nomi-

nally significant associations for coding load score was significantly larger than the expected

number under the null model (P = 0.005), supporting this hypothesis (Fig 3). However, this

analysis was not statistically significant for the genome-wide load score and the non-coding

load score (P>0.05) (S3 Fig), suggesting that diseases are largely correlated to the effect of
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variants in coding regions. We repeated the permutation analysis for the unweighted burden

score as negative controls. As expected, enrichment of weak association between burden scores

and diseases were not statistically significant (S4 Fig).

Fig 3. Enrichment of clinical phenotypes nominally associated with coding load score. Null distribution of the number of clinical phenotypes weakly associated with

coding load score was obtained from 2,000 permutations in total. For each permutation, coding load score was shuffled randomly among 335,161 samples and the

number of association was the count of phenotypes which yielded a p-value< 0.05 in the association tests between permuted load score and 539 phecodes. Red dashed

line indicates the observed number of clinical phenotypes nominally associated with coding load score (n = 46).

https://doi.org/10.1371/journal.pgen.1009337.g003
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Discussion

In this study, we have described a polygenic load score that estimates the deleterious load car-

ried by an individual, and applied this score to 335,161 white British individuals from the UK

Biobank. Our analysis produced two major results: First, while we found no significant associ-

ations between individual medical phenotypes and the genome-wide load score, we found that

more phenotypes are nominally associated with the coding load score than would be expected

under a null model (Fig 3). This suggests that the deleterious load has a broad effect on the

human phenome, rather than being specifically associated with a small number of phenotypes.

This is consistent with Fisher’s Geometric Model of fitness, which proposes that the fitness of a

population is determined by overall phenotypic distance from a theoretical optimal point in a

phenotype space that potentially encompasses the organism’s entire phenome [29,30]. Second,

by restricting to protein coding variation, we found significant associations between the cod-

ing-only deleterious load score and a variety of adiposity phenotypes, along with other anthro-

pometric phenotypes and phenotypes related to metabolic rate. This suggests that adiposity

may be under polygenic selection driven by a large number of coding variants in humans. This

is consistent with previous results obtained from the UK Biobank using an unrelated method-

ology [26]. We found no similar associations with the noncoding deleterious load score, which

is in contrast to numerous studies finding significant genetic associations in noncoding

regions, including associations with the same adiposity traits we found associated with our

coding load score. Since our derived allele frequency spectrum analysis (Fig 1) suggests that

sites with higher phyloP scores are under purifying selection in noncoding regions as well as

coding, the lack of significance in non-coding regions cannot be interpreted as a lack of purify-

ing selection in these regions or poor sensitivity to selection in these regions. It may instead

indicate that selection acts on phenotype associations in noncoding regions in a different way

from how it acts in coding regions, possibly due to the small effect size of individual noncoding

variants.

There are several limitations to our method. We computed the load score from imputed

genotypes rather than sequenced whole genomes, which gives us little information about

extremely rare variants in the population, masking potentially large contributions to the load

from variants under the strongest selection. As a future topic of research, the same methodol-

ogy can be applied to include rare variants, which would shed light on the relative contribution

of common and rare variation to the phenotypic associations of load. Previous studies have

shown that rare variation contributes substantially to differences in deleterious load between

human populations, so we may expect it to have a significant impact on individual load in this

context as well [1,2]. Furthermore, the phyloP score used to estimate the deleteriousness of

alleles measures only the likelihood that a site is evolving under constraint in vertebrates, and

is not a direct estimate of the selective effect of a variant in humans. It is possible that the use

of vertebrate-level conservation has reduced our ability to identify recent selection on human

phenotypes, particularly those that are human specific. However, the fact that selection on adi-

posity traits was also detected by a method [26,27] that does not rely on phyloP suggests that

this result is not spurious. This feature of the phyloP score also makes it difficult to measure

the effect of dominant or recessive selection, which may contain additional important insights.

Finally, we did not incorporate any measure of positive selection in the computation of the

load score. Scores similar to phyloP that could be used to detect positive selection do exist, but

they rely on measures of nucleotide diversity and haplotype structure within larger regions of

the genome, and are difficult to apply to single nucleotides as would be required to incorporate

them into this analysis [31]. Methods to detect positive selection in the human lineage on finer

scales are an area of ongoing research, and such methods could be incorporated into this
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approach in the future. All these methodological constraints limit the range of variation we

identify as contributing to an individual’s load score, and this limitation may be biased with

respect to trait associations. In particular, we might expect rare variation or positive selection

to reveal a different set of trait associations than the ones we find here by investigating com-

mon variation under purifying selection. This could potentially expand the scope of associated

phenotypes beyond adiposity traits, a possibility that is also supported by the presence of nom-

inal associations with many phenotypes unrelated to adiposity (S9 Table). Nevertheless, we do

expect common variation under purifying selection to underlie a large fraction of common

disease phenotypes, and therefore to provide valuable insights about the action of natural

selection in humans.

One potentially exciting application for this approach is applying it to different populations

to discover population-specific insights into phenotypic associations with deleterious load.

Since PhyloP scores can be calculated without any reference to specific human populations

[4], there is no reason in principle that this method could not be applied to biobank data from

other populations, given a sufficient number of samples. However, a few cautions are neces-

sary. First, it is well known that comparisons of genetic associations and polygenic risk are

unreliable across different ancestries [32], that signals of polygenic selection can easily be con-

founded by population structure or admixture [33,34], and that mutation load specifically dif-

fers substantially between populations based on their demographic history [1,2]. This makes it

difficult to compare load scores directly between individuals of different ancestry, and also

would likely make it difficult to apply this approach to admixed populations or populations

with heterogeneous ancestry. Second, the approach of genotyping and imputation is entirely

dependent on the availability of appropriate genotyping arrays and imputation panels, neither

of which is necessarily available for all populations. It will be essential to use sequencing data

for any population that is not well represented in these resources. Finally, many traits are

strongly influenced by social, cultural, and environmental factors which may differ dramati-

cally across populations, resulting in differences between populations that are not necessarily

related to natural selection in a straightforward way. This is certainly true of the adiposity traits

we identify in this study. Results of such studies should therefore be interpreted with caution.

The deleterious load score presented here provides a new approach to investigate the com-

plex relationship between natural selection acting on individuals, individual medical pheno-

types, and the human phenome at large. We expect that as the available biobank data

continues to grow in size and scope, this method can be applied to larger and more diverse

populations to gain additional insights into how load varies between different populations,

possibly empowering population-specific medical discoveries with deleterious load.

Material and methods

Ethics statement

This research has been conducted using the UK Biobank Resource under Application number

‘16218’. UK Biobank has received ethics approval from the North West Multi-centre Research

Ethics Committee, the National Information Governance Board for Health & Social Care, and

the Community Health Index Advisory Group.

The dependence of derived allele frequency on deleteriousness score

We evaluated the dependence of derived allele frequency of single nucleotide polymorphisms

(SNPs) discovered in the whole genome sequences of 7,509 non-Finnish European individuals

in the GnomAD data set [23] on each of the four candidate annotations for the presence of

purifying selection: GERP++ [15], phyloP [13], CADD [17], and fitcons [9]. 88,060,485 SNPs
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with less than one percent of missing data were considered. Functional effects and deleterious

scores at each SNP were annotated using Whole Genome Sequence Annotator (WGSA) v0.7

[35]. We used functional effects annotated by Variant Effect Predictor (VEP) and determined

derived and ancestral allele status based on the six-way EPO (Enredo, Pecan, Ortheus) multiple

alignments of primate species.

For each deleteriousness score, we divided the SNPs into multiple groups with arbitrarily

defined intervals based on the range of each score. The intervals used were: (0 ~ 0.2, 0.2 ~ 0.4,

0.4 ~ 0.6, 0.6 ~ 0.8) for fitcons, (-10 ~ -7.5, -7.5 ~ -5, -5 ~ -2.5, -2.5 ~ 0, 0 ~ 2.5, 2.5 ~ 5, 5 ~ 7.5,

7.5 ~ 10) for GERP, (0 ~ 5, 5 ~ 10, 10 ~ 15, 15 ~ 20, 20 ~ 25, 25 ~ 30, 30 ~ 35) for CADD, and

(-5 ~ -2.5, -2.5 ~ 0, 0 ~ 2.5, 2.5 ~ 5.0, 5.0 ~ 7.5, 7.5~ 10) for phyloP.

Load score calculation

The load score of each individual was calculated by adding up the number (dosage in case of

imputed SNPs) of derived alleles at each SNP, weighted by the phyloP score at that site, across

the entire genome. Derived alleles were determined based on the six-way EPO alignment, as

described above. Since we are focusing on the effect of purifying selection, only SNPs with pos-

itive phyloP score (positive scores denote uniform purifying selection, while negative scores

denote clade-specific selection) were included. In this paper, we computed three load scores

using three different SNP sets: the coding load score summed only over coding variants, the

non-coding load score summed only over non-coding variants, and the genome-wide load

score computed from both coding and non-coding variants. All load scores were computed

using PRSice-2 software [36] under an additive model. Coding and noncoding variants were

defined based on VEP annotation.

Genotypic and phenotypic data

The UK Biobank consists of genotype, phenotype, and demographic data of more than

500,000 individuals recruited across the United Kingdom. Individual genotypes were gener-

ated from either the Affymetrix Axiom UK Biobank array (~450,000 individuals) or the UK

BiLEVE array (~50,000 individuals), each contains ~0.9 million markers. Additional variants

were then imputed using the Haplotype Reference Consortium (HRC) combined with the

UK10K haplotype resource, with a total of ~96 million variants available in the latest released

imputed data (version 3). To compute per-individual load scores, we restricted to variants

with imputation quality INFO score> = 0.9. We excluded samples that were outliers in het-

erozygosity or missing rates, samples with putative sex chromosome aneuploidy, and samples

with self-reported non-white British ancestry. We also excluded one individual from each pair

of samples with relatedness up to the third degree. This produced a subsample of 335,161 indi-

viduals. All information used to exclude samples is included in the UK Biobank resource page.

UK Biobank provides a wide range of medical phenotypes from base line assessment, bio-

chemical assays, dietary questionnaire, and health records. In the present study, we focused on

2,419 phenotypes which had been selected for heritability estimation by the Neale group

(http://www.nealelab.is/blog/2017/9/15/heritability-of-2000-traits-and-disorders-in-the-uk-

biobank). This subgroup covers phenotypes in most of the core categories, including early life

and reproductive factors, family history, cognitive function, physical measures, lifestyle and

health outcomes.

Phenotype processing and association tests

Among the 2,419 phenotypes considered in our analysis, 619 phenotypes are international

classification of disease (ICD-10) codes from electric health records. We converted ICD codes
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(including ICD-9 and ICD-10 codes) into phecodes using Phecode Maps 1.2 [37,38]. This

resulted in 1,677 unique phecodes in total. Of these, 539 phecodes with the number of cases

greater than 500 were selected for phenome-wide association testing.

The remaining 1,800 phenotypes (2,419–619 ICD codes) were pre-processed using PHE-

SANT [39], a package designed to process phenotypes and run phenome scans in UK Biobank.

The PHESANT pipeline loads each input phenotype as continuous, integer, or categorical

based on the information in the UK Biobank data dictionary; preprocesses and re-categorizes

the phenotype data based on predefined rules; and assigns them into one of the four data

types: continuous, ordered categorical, unordered categorical and binary. Of these 1,800 phe-

notypes, we only considered those with a minimum number of cases or controls equal to 500

and a minimum number of individuals equal to 5,000. This resulted in 841 phenotypes: 75

continuous, 104 ordered categorical, 36 unordered categorical, and 626 binary. In total, 1,380

phenotypes were included in our association analysis.

The association between load score and each phenotype was tested using a regression test

in PHESANT: linear regression / lm R function for continuous, ordered logistic regression /

polr R function for ordered categorical, multinomial logistic regression / multinom R function

for unordered categorical, and binomial regression / glm R function with family = binomial

for binary. Besides the commonly used covariates of age, sex, genotyping chip, assessment cen-

ter and 40 principal components, we added five variables as covariates in all association tests

that might denote population structure: birth location, home area population density, Town-

send deprivation index, and UK deprivation index.

Association of 27 adiposity traits with coding load scores stratified by

phyloP score and derived allele frequency

To explore which variants drive the association between the 27 adiposity traits and the coding

load score, we stratified variants by derived allele frequency (rare variants, 0 to 0.05; intermedi-

ate frequency variants, 0.05 to 0.3; common variants, 0.3 to 0.7; and variants near fixation, 0.7

to 1) and phyloP score (0 to 2, 2 to 4, 4 to 6, 6 to 8, and 8 to 10). Simultaneous stratification

was performed with four groups of SNPs: DAF<0.05 and phyloP�2, DAF<0.05 and

phyloP>2, DAF�0.05 and phyloP�2, DAF�0.05 and phyloP>2.

Permutation of phenome-wide association analysis and creation of null

distribution

A null distribution of the number of clinical phenotypes weakly associated with load score was

created by repeatedly running the association test between load scores and phenotypes after

randomly shuffling the load scores of individuals within the tested sample. The phenotypes

included in this permutation analysis were all 539 phecodes. The same set of covariates used in

phenome-wide association study (PHEWAS) tests above was applied. For each permutation,

the number of phenotypes nominally associated with the load score (p-value<0.05) was then

computed. The permutation p-value was calculated as the fraction of permutations for which

the number of nominally associated traits was at least as large as the observed number of nomi-

nally associated traits.

Supporting information

S1 Fig. Derived allele frequency spectra of coding and non-coding variants for different

CADD and phyloP score categories. Top row: Derived allele frequency spectrum of coding

variants. Bottom row: Derived allele frequency spectrum of non-coding variants. Each solid

PLOS GENETICS Effects of purifying selection per individual on 1,380 medical phenotypes in the UK biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009337 January 25, 2021 12 / 17

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009337.s001
https://doi.org/10.1371/journal.pgen.1009337


line represents derived allele frequency spectrum of polymorphic sites belonging to one score

category and three dashed lines represent derived allele frequency spectra of three control cate-

gories: synonymous (syn), missense (mis), and loss of function (LOF) variants.

(TIF)

S2 Fig. Phenotypic association of load (phyloP-weighted) and burden (unweighted) scores.

Quantile-quantile plot of -log10 p-values for the phenotypic association of A) load scores

(weighted by phyloP); B) burden scores (unweighted); C) burden scores restricted to rare vari-

ants (DAF<5%); and D) burden scores restricted to common variants (5%< = DAF<70%).

(TIF)

S3 Fig. Enrichment of clinical phenotypes nominally associated with genome-wide load

score and non-coding load score. Null distribution of the number of clinical phenotypes

weakly associated with genome-wide load score (left) and non-coding load score (right) was

obtained from 2,000 permutations each. For each permutation, the load score was shuffled

randomly among 335,161 samples and the number of associations on the x-axis was the count

of phenotypes which yielded p-value < 0.05 in the association tests between the permuted load

score and 539 phecodes. The red dashed lines indicates the observed number of clinical pheno-

types nominally associated with genome-wide load score (n = 27, left) and non-coding load

score (n = 24, right).

(TIF)

S4 Fig. Enrichment of clinical phenotypes nominally associated with burden scores. Null

distributions of the number of clinical phenotypes weakly associated with burden scores were

obtained using the same procedure to obtain the null distributions for load scores (Figs 3 and

S3). The red dashed lines indicates the observed number of clinical phenotypes nominally

associated with genome-wide burden score (n = 22, left), coding burden score (n = 20, mid-

dle), and non-coding load score (n = 20, right).

(TIF)

S1 Table. Linear regression between slopes and score categories. This table shows the result

of linear regression tests between the slopes of DAF spectra and score category ranks for each

scoring method. The slope of a DAF spectrum is the slope of the best-fit linear regression line.

Score categories from low to high are coded as an integer starting from 1.

(DOCX)

S2 Table. Association between load score and potential confounders. This table shows the

results of association tests between a set of potential confounders and each load score. Logistic

regression was used for each category of population density and linear regression was used for

the others.

(XLSX)

S3 Table. Derived allele frequency stratification analysis. Associations between the 27 phe-

notypes (Table 1) and four load scores computed for four different groups of coding variants

stratified by derived allele frequency: 76,185 variants with DAF2(0,0.05); 10,552 variants with

DAF2[0.05,0.3); 5,530 variants with DAF2[0.3,0.7); and 3,587 variants with DAF2[0.7,1).

(XLSX)

S4 Table. phyloP score stratification analysis. Associations between the 27 phenotypes

(Table 1) and five load scores computed for five different groups of coding variants stratified

by phyloP score: 54,840 variants with phyloP2(0,2]; 19,414 variants with phyloP2(2,4]; 10,865

variants with phyloP2(4,6]; 7,582 variants with phyloP2(6,8]; and 3,315 variants with phyloP2
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(8,10].

(XLSX)

S5 Table. phyloP score and DAF stratification analysis. Associations between the 27 pheno-

types (Table 1) and four load scores computed for four different groups of coding variants

stratified by derived allele frequency and phyloP score: 40,710 variants with DAF2(0,0.05) and

phyloP�2; 35,474 variants with DAF2(0,0.05) and phyloP>2; 11,241 variants with DAF2

[0.05,0.7) and phyloP�2; and 4,839 variants with DAF2[0.05,0.7) and phyloP>2.

(XLSX)

S6 Table. Association between coding load score and the 27 phenotypes with number of

non-reference variants included as a covariate. We used the number of non-reference vari-

ants counted for each individual as an additional covariate in our linear regression model to

test the association between load score and the 27 phenotypes (Table 1).

(XLSX)

S7 Table. Association between coding load scores restricted to sites where the human

genome reference allele is the ancestral allele and 27 phenotypes. This table shows the asso-

ciations between the 27 phenotypes (Table 1) and coding load score computed from sites

where the human genome reference allele is same as the annotated ancestral allele.

(XLSX)

S8 Table. Association between coding load scores computed from phyloPNH and 27 phe-

notypes. This table shows the associations between the 27 phenotypes (Table 1) and coding

load score computed using human-free phyloP score (phyloPNH) as weight.

(XLSX)

S9 Table. Clinical phenotypes weakly associated with load scores. This table lists the clinical

phenotypes (defined by phecodes) which nominally associate (p-value<0.05) to genome-wide,

non-coding, and coding load scores.

(XLSX)

Acknowledgments

This research has been conducted using the UK Biobank Resource under Application Number

‘16218’. The content is solely the responsibility of the authors and does not necessarily repre-

sent the official views of the National Institutes of Health.

Author Contributions

Conceptualization: Ha My T. Vy, Ron Do.

Data curation: Ha My T. Vy.

Formal analysis: Ha My T. Vy.

Funding acquisition: Ron Do.

Investigation: Ha My T. Vy, Daniel M. Jordan, Daniel J. Balick, Ron Do.

Methodology: Ha My T. Vy, Ron Do.

Supervision: Ron Do.

Writing – original draft: Ha My T. Vy, Daniel M. Jordan, Daniel J. Balick, Ron Do.

Writing – review & editing: Ha My T. Vy, Daniel M. Jordan, Daniel J. Balick, Ron Do.

PLOS GENETICS Effects of purifying selection per individual on 1,380 medical phenotypes in the UK biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009337 January 25, 2021 14 / 17

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009337.s009
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009337.s010
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009337.s011
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009337.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1009337.s013
https://doi.org/10.1371/journal.pgen.1009337


References
1. Henn BM, Botigue LR, Bustamante CD, Clark AG, Gravel S. Estimating the mutation load in human

genomes. Nat Rev Genet. 2015; 16(6):333–43. Epub 2015/05/13. https://doi.org/10.1038/nrg3931

PMID: 25963372; PubMed Central PMCID: PMC4959039.

2. Henn BM, Botigue LR, Peischl S, Dupanloup I, Lipatov M, Maples BK, et al. Distance from sub-Saharan

Africa predicts mutational load in diverse human genomes. Proc Natl Acad Sci U S A. 2016; 113(4):

E440–9. Epub 2015/12/30. https://doi.org/10.1073/pnas.1510805112 PMID: 26712023; PubMed Cen-

tral PMCID: PMC4743782.

3. Lohmueller KE, Indap AR, Schmidt S, Boyko AR, Hernandez RD, Hubisz MJ, et al. Proportionally more

deleterious genetic variation in European than in African populations. Nature. 2008; 451(7181):994–7.

Epub 2008/02/22. https://doi.org/10.1038/nature06611 PMID: 18288194; PubMed Central PMCID:

PMC2923434.

4. Fu W, Gittelman RM, Bamshad MJ, Akey JM. Characteristics of neutral and deleterious protein-coding

variation among individuals and populations. The American Journal of Human Genetics. 2014; 95

(4):421–36. https://doi.org/10.1016/j.ajhg.2014.09.006 PMID: 25279984

5. Do R, Balick D, Li H, Adzhubei I, Sunyaev S, Reich D. No evidence that selection has been less effec-

tive at removing deleterious mutations in Europeans than in Africans. Nat Genet. 2015; 47(2):126–31.

Epub 2015/01/13. https://doi.org/10.1038/ng.3186 PMID: 25581429; PubMed Central PMCID:

PMC4310772.

6. Simons YB, Turchin MC, Pritchard JK, Sella G. The deleterious mutation load is insensitive to recent

population history. Nat Genet. 2014; 46(3):220–4. Epub 2014/02/11. https://doi.org/10.1038/ng.2896

PMID: 24509481; PubMed Central PMCID: PMC3953611.

7. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access

resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS

Med. 2015; 12(3):e1001779. Epub 2015/04/01. https://doi.org/10.1371/journal.pmed.1001779 PMID:

25826379; PubMed Central PMCID: PMC4380465.

8. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with

deep phenotyping and genomic data. Nature. 2018; 562(7726):203–9. Epub 2018/10/12. https://doi.

org/10.1038/s41586-018-0579-z PMID: 30305743; PubMed Central PMCID: PMC6786975.

9. Gulko B, Hubisz MJ, Gronau I, Siepel A. A method for calculating probabilities of fitness consequences

for point mutations across the human genome. Nat Genet. 2015; 47(3):276–83. Epub 2015/01/20.

https://doi.org/10.1038/ng.3196 PMID: 25599402; PubMed Central PMCID: PMC4342276.

10. Shihab HA, Rogers MF, Gough J, Mort M, Cooper DN, Day IN, et al. An integrative approach to predict-

ing the functional effects of non-coding and coding sequence variation. Bioinformatics. 2015; 31

(10):1536–43. Epub 2015/01/15. https://doi.org/10.1093/bioinformatics/btv009 PMID: 25583119;

PubMed Central PMCID: PMC4426838.

11. Lee D, Gorkin DU, Baker M, Strober BJ, Asoni AL, McCallion AS, et al. A method to predict the impact

of regulatory variants from DNA sequence. Nat Genet. 2015; 47(8):955–61. Epub 2015/06/16. https://

doi.org/10.1038/ng.3331 PMID: 26075791; PubMed Central PMCID: PMC4520745.

12. Fu Y, Liu Z, Lou S, Bedford J, Mu XJ, Yip KY, et al. FunSeq2: a framework for prioritizing noncoding reg-

ulatory variants in cancer. Genome Biol. 2014; 15(10):480. Epub 2014/10/03. https://doi.org/10.1186/

s13059-014-0480-5 PMID: 25273974; PubMed Central PMCID: PMC4203974.

13. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral substitution rates on mam-

malian phylogenies. Genome Res. 2010; 20(1):110–21. Epub 2009/10/28. https://doi.org/10.1101/gr.

097857.109 PMID: 19858363; PubMed Central PMCID: PMC2798823.

14. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al. Evolutionarily conserved

elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 2005; 15(8):1034–50. Epub

2005/07/19. https://doi.org/10.1101/gr.3715005 PMID: 16024819; PubMed Central PMCID:

PMC1182216.

15. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the

human genome to be under selective constraint using GERP++. PLOS Computational Biology. 2010; 6

(12). https://doi.org/10.1371/journal.pcbi.1001025 PMID: 21152010

16. Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. Identifying novel constrained elements

by exploiting biased substitution patterns. Bioinformatics. 2009; 25(12):i54–62. Epub 2009/05/30.

https://doi.org/10.1093/bioinformatics/btp190 PMID: 19478016; PubMed Central PMCID:

PMC2687944.

17. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating

the relative pathogenicity of human genetic variants. Nat Genet. 2014; 46(3):310–5. Epub 2014/02/04.

https://doi.org/10.1038/ng.2892 PMID: 24487276; PubMed Central PMCID: PMC3992975.

PLOS GENETICS Effects of purifying selection per individual on 1,380 medical phenotypes in the UK biobank

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009337 January 25, 2021 15 / 17

https://doi.org/10.1038/nrg3931
http://www.ncbi.nlm.nih.gov/pubmed/25963372
https://doi.org/10.1073/pnas.1510805112
http://www.ncbi.nlm.nih.gov/pubmed/26712023
https://doi.org/10.1038/nature06611
http://www.ncbi.nlm.nih.gov/pubmed/18288194
https://doi.org/10.1016/j.ajhg.2014.09.006
http://www.ncbi.nlm.nih.gov/pubmed/25279984
https://doi.org/10.1038/ng.3186
http://www.ncbi.nlm.nih.gov/pubmed/25581429
https://doi.org/10.1038/ng.2896
http://www.ncbi.nlm.nih.gov/pubmed/24509481
https://doi.org/10.1371/journal.pmed.1001779
http://www.ncbi.nlm.nih.gov/pubmed/25826379
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-018-0579-z
http://www.ncbi.nlm.nih.gov/pubmed/30305743
https://doi.org/10.1038/ng.3196
http://www.ncbi.nlm.nih.gov/pubmed/25599402
https://doi.org/10.1093/bioinformatics/btv009
http://www.ncbi.nlm.nih.gov/pubmed/25583119
https://doi.org/10.1038/ng.3331
https://doi.org/10.1038/ng.3331
http://www.ncbi.nlm.nih.gov/pubmed/26075791
https://doi.org/10.1186/s13059-014-0480-5
https://doi.org/10.1186/s13059-014-0480-5
http://www.ncbi.nlm.nih.gov/pubmed/25273974
https://doi.org/10.1101/gr.097857.109
https://doi.org/10.1101/gr.097857.109
http://www.ncbi.nlm.nih.gov/pubmed/19858363
https://doi.org/10.1101/gr.3715005
http://www.ncbi.nlm.nih.gov/pubmed/16024819
https://doi.org/10.1371/journal.pcbi.1001025
http://www.ncbi.nlm.nih.gov/pubmed/21152010
https://doi.org/10.1093/bioinformatics/btp190
http://www.ncbi.nlm.nih.gov/pubmed/19478016
https://doi.org/10.1038/ng.2892
http://www.ncbi.nlm.nih.gov/pubmed/24487276
https://doi.org/10.1371/journal.pgen.1009337


18. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic

variants. Bioinformatics. 2015; 31(5):761–3. Epub 2014/10/24. https://doi.org/10.1093/bioinformatics/

btu703 PMID: 25338716; PubMed Central PMCID: PMC4341060.

19. Lu Q, Hu Y, Sun J, Cheng Y, Cheung K-H, Zhao H. A statistical framework to predict functional non-cod-

ing regions in the human genome through integrated analysis of annotation data. Sci Rep. 2015;

5:10576. https://doi.org/10.1038/srep10576 PMID: 26015273

20. Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. A spectral approach integrating functional genomic

annotations for coding and noncoding variants. Nat Genet. 2016; 48(2):214–20. Epub 2016/01/05.

https://doi.org/10.1038/ng.3477 PMID: 26727659; PubMed Central PMCID: PMC4731313.

21. Racimo F, Schraiber JG. Approximation to the distribution of fitness effects across functional categories

in human segregating polymorphisms. PLoS Genet. 2014; 10(11):e1004697. Epub 2014/11/07. https://

doi.org/10.1371/journal.pgen.1004697 PMID: 25375159; PubMed Central PMCID: PMC4222666.

22. Huang YF, Siepel A. Estimation of allele-specific fitness effects across human protein-coding

sequences and implications for disease. Genome Res. 2019; 29(8):1310–21. Epub 2019/06/30. https://

doi.org/10.1101/gr.245522.118 PMID: 31249063; PubMed Central PMCID: PMC6673719.

23. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint
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