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Abstract

During meiotic prophase, sister chromatids are organized into axial element (AE), which

underlies the structural framework for the meiotic events such as meiotic recombination and

homolog synapsis. HORMA domain-containing proteins (HORMADs) localize along AE and

play critical roles in the regulation of those meiotic events. Organization of AE is attributed to

two groups of proteins: meiotic cohesins REC8 and RAD21L; and AE components SYCP2

and SYCP3. It has been elusive how these chromosome structural proteins contribute to the

chromatin loading of HORMADs prior to AE formation. Here we newly generated Sycp2 null

mice and showed that initial chromatin loading of HORMAD1 was mediated by meiotic cohe-

sins prior to AE formation. HORMAD1 interacted not only with the AE components SYCP2

and SYCP3 but also with meiotic cohesins. Notably, HORMAD1 interacted with meiotic

cohesins even in Sycp2-KO, and localized along cohesin axial cores independently of the

AE components SYCP2 and SYCP3. Hormad1/Rad21L-double knockout (dKO) showed

more severe defects in the formation of synaptonemal complex (SC) compared to Hor-

mad1-KO or Rad21L-KO. Intriguingly, Hormad1/Rec8-dKO but not Hormad1/Rad21L-dKO

showed precocious separation of sister chromatid axis. These findings suggest that meiotic

cohesins REC8 and RAD21L mediate chromatin loading and the mode of action of HOR-

MAD1 for synapsis during early meiotic prophase.
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Author summary

During meiotic prophase, homologous chromosomes undergo pairing/synapsis. HORMA

domain-containing proteins (HORMAD1, HORMAD2) localize along unsynapsed chro-

mosome axis and monitor homolog synapsis. However, molecular mechanisms how

mouse HORMA domain-containing proteins that do not contain a definitive DNA-bind-

ing domain localize to the axis chromosome remains elusive. In particular, because chro-

mosome axis is generated by meiotic cohesins (RAD21L, REC8) and axial element (AE)

components (SYCP2, SYCP3), it has been elusive how those chromosome structural pro-

teins contribute to the loading of HORMAD proteins onto the chromosomes. This was

due to the unavailability of Sycp2 KO mouse that should allow deep analysis of chromo-

some dynamics in the complete absence of AE. To solve this issue, in the present study,

we newly generated Sycp2 null mice, in which AE structure was completely abolished.

This allowed us to assess meiotic cohesins and AE components separately, in terms of

their roles on chromatin loading of HORMAD proteins. The most notable among our

findings is that the localization of HORMAD1 on the chromatin is initially mediated

through meiotic cohesins prior to axis formation. Intriguingly, our genetic study suggests

that HORMAD1 in collaboration with meiotic cohesins plays distinct roles in sister chro-

matid cohesion, homolog synapsis and meiotic recombination during the early meiotic

prophase.

Introduction

Meiosis is a special mode of cell division that produces haploid gametes in sexually reproduc-

ing organisms. During meiotic prophase, homologous chromosomes (homologs) undergo

pairing/synapsis, and meiotic recombination, yielding chiasmata whereby two homologs are

physically connected [1–4].

Following pre-meiotic DNA replication at preleptotene, chromosomes are organized into

proteinaceous structures, termed axial element (AE) or chromosome axis, which is assembled

by the main components SYCP2 [5,6] and SYCP3 [7]. AE provides a scaffold for recruiting

meiotic recombination machineries to promote double-strand break (DSB) introduction and

repair [8,9] and for assembly of the synaptonemal complex (SC) [3,10,11].

Meiotic cohesin complex plays crucial roles not only in sister chromatid cohesion but also

in axis formation, which underlies a structural basis for AE formation [12,13]. During meiotic

prophase I, mitotic SCC1/RAD21-type cohesin is replaced with a meiosis-specific REC8-type

[14,15] and RAD21L-type cohesins [16–18]. Chromatin loading of REC8 and RAD21L pre-

cede the loading of the main AE components SYCP2 and SYCP3 during early meiotic pro-

phase, so that “cohesin axial core” is pre-formed and subsequently act as a framework to

organize the AE [19]. REC8 and RAD21L show mutually exclusive localization along the axis,

forming distinct cohesin-enriched domains [16,17]. Genetic studies demonstrated that REC8

and RAD21L play different roles in sister chromatid cohesion, DSB formation, meiotic recom-

bination, and homolog pairing/synapsis [20–25]. Thus, it is assumed that these meiosis-spe-

cific chromosome events are exerted through specific actions of REC8 and RAD21L to the axis

binding factors during early meiotic prophase. However, the interplay between distinct cohe-

sin-enriched domains and axis components remained largely elusive.

In mice, meiotic recombination is initiated by the introduction of DSBs that are generated

by SPO11 [26,27] and TOPO6BL [28,29]. HORMA domain-containing proteins (HORMAD1,

HORMAD2) localize to unsynapsed axes and functions for the surveillance of asynapsis and
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the activation of ATR in unsynapsed regions [30–35]. HORMAD1 and its associated protein

IHO1 plays an essential role in DSB formation by recruiting SPO11-accessory factors, REC114

and MEI4, to the axes [36,37]. It was hypothesized that HORMAD1/IHO1 [38] plays a role in

tethering DSB hotspots marked by H3K4me3 and H3K36me3 to the axis through the interac-

tion with methyltransferase PRMD9 [39–44] for the formation of DSB by SPO11/TOPO6BL

complex. In yeast, Hop1 [45], a homolog of HORMAD1, localizes to the axis through Red1

and mediates DSB formation by recruiting Mei4/Rec114/Mer2 complex to the axis [46–48],

suggesting the evolutionally conserved roles for HORMAD1/Hop1 in the initiation of meiotic

DSBs.

The molecular mechanisms how mouse HORMAD1 and HORMAD2 that do not contain a

definitive DNA-binding domain localize to the unsynapsed axis remain elusive. Although the

HORMA domain of HORMAD2 directly interacts with SYCP2 in vitro through its N-terminus

[49], it remained unknown whether HORMAD1 does. Previously, it was shown that HOR-

MAD1 localization on the chromosome was retained in hypomorphic Sycp2 mutant [6,31].

However, because truncated SYCP2 protein was still expressed in that hypomorphic Sycp2
mutant [6,31], it remained elusive whether the HORMAD1 localization depended on SYCP2.

Also in Sycp3-KO, where both SYCP3 and SYCP2 were absent from chromosomes [19], HOR-

MAD1 still remained along the unsynapsed chromosomes [35]. Thus, it is yet to be addressed

whether HORMAD1 localization depends on other axis-proteins besides the AE components

SYCP2 and SYCP3. Further, it was not explored how HORMAD1 is loaded onto the chromo-

somes prior to axis development. Here we asked three questions (1) how HORMAD1 initially

localizes onto the chromatin prior to axis development at early meiotic prophase, (2) whether

HORMAD1 localization depends on other axis-proteins besides AE components (SYCP2 and

SYCP3), and (3) whether meiotic cohesins have any role in HORMAD1 localization indepen-

dently of AE components (SYCP2 and SYCP3). To address these issues, we newly generated

Sycp2 null mice, in which SYCP2 and SYCP3 were depleted from the chromosomes. This

allowed us to assess meiotic cohesins and AE components separately, in terms of their roles on

chromatin loading of HORMAD1 and HORMAD2. The most notable among our findings

was that the localization of HORMAD1 on the chromatin was initially mediated through mei-

otic cohesins prior to axis formation, whereas SYCP2 stabilized the interaction between HOR-

MAD1 and meiotic cohesins. We demonstrate that HORMAD1 interacts with both meiotic

cohesins, RAD21L and REC8, in vivo and localizes along the “cohesin axial core” in the

absence of AE components. Our comprehensive genetic analyses indicate that meiotic cohe-

sins mediate the mode of action of HORMAD1 for synapsis. The present study highlights pre-

viously unforeseen modes of HORMAD1 function exerted through meiotic cohesins.

Results

HORMAD1 interacts with chromosome axis proteins and cohesins

HORMAD1 localizes along the unsynapsed chromosome axes during meiotic prophase. How-

ever, it remained elusive how HORMAD1 that does not contain a definitive DNA-binding

domain is initially loaded onto the chromatin during early meiotic prophase. In order to eluci-

date the initial mode of HORMAD1 loading onto the chromatin during early meiotic pro-

phase, we investigated HORMAD1-interacting proteins by immunoprecipitation (IP) of

HORMAD1 from nuclear extracts of mouse testes. For this purpose, preleptotene/leptotene

spermatocytes, whose chromosome axes labelled with SYCP3 were yet to be fully developed,

were enriched by holding the development using WIN 18,446, an inhibitor of retinoic acid

(RA) synthesis. Then the mice were injected with RA and the spermatocytes were collected 8

days after the injection [50] (Fig 1A). Chromatin extracts were prepared from testes, which
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Fig 1. HORMAD1 interacts with cohesin and chromosome axis proteins. (A) WT neonatal male mice were

subjected to consecutive injection of a RA synthesis inhibitor WIN18,446, followed by injection of RA. Seminiferous

tubule section at 8 days post treatment were stained for SYCP3, STRA8, SYCP1(Cy5) and DAPI. Scale bar: 25 μm.

Proportion of the meiotic prophase stages of spermatocytes is shown on the right. n: number of SYCP3 positive cells

examined. preL: SYCP3+/STRA8+ preleptotene, Lep: SYCP3+/STRA8- leptotene. As weak staining of SYCP1 over

spermatocyte nuclei was detected even in preleptotene and leptotene, spermatocytes with thread-like pattern of SYCP1

staining was defined as Z./P.: zygotene or pachytene. (B) The immunoprecipitates by anti-HORMAD1 antibody from

the chromatin-bound fraction of the testis were subjected to liquid chromatography tandem-mass spectrometry

(LC-MS/MS) analyses. The proteins identified by the LC-MS/MS analyses are listed with the number of peptide hits
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were estimated to contain spermatocytes in preleptotene (~34%), leptotene (~56%) and

SYCP1-thread+ zygotene/pachytene (~7.5%) (Fig 1A). Mass spectrometry (MS) analysis of

the HORMAD1 immunoprecipitates identified chromosome axis proteins, in addition to the

known interactors of HORMAD1 such as HORMAD2 [51] and IHO1[36] (Fig 1B and 1C and

S1 Data). SYCP2 and SYCP3, the main components of AE, were substantially identified in the

HORMAD1 immunoprecipitates. This indicated HORMAD1 directly or indirectly interacts

with SYCP2 and SYCP3 in vivo, suggesting that the AE components SYCP2 and SYCP3 are

among the primary axial proteins that binds to HORMAD1. It should be mentioned that

SYCP1, a component of the transverse filament of SC, was also detected in HORMAD1

immunoprecipitates (Fig 1B and 1C), despite the enrichment of preleptotene/leptotene sper-

matocytes by WIN18,466. This is presumably due to extracts derived from the residual sper-

matocyte population that had reached zygotene when the testes were collected 8 days after RA

injection (Fig 1A).

Notably, consistent with a previous study [35], cohesin subunits such as STAG3/SA3,

SMC3, SMC1β, PDS5A, PDS5B and RAD21L were also detected in the MS analysis of HOR-

MAD1 IP (Fig 1B), albeit with lower frequency. In mouse meiosis, there are two distinct types

of meiosis-specific cohesin complexes, which possess either of the kleisin subunits REC8 or

RAD21L. Therefore, we further analyzed the interaction of HORMAD1 with these meiosis-

specific cohesin complexes. HORMAD1 IP followed by western-blot (WB) analysis further

confirmed that REC8 and RAD21L as well as common cohesin subunits STAG3 and SMC3

were indeed immunoprecipitated with HORMAD1, suggesting that HORMAD1 interacts

with both REC8- and RAD21L-cohesins (Fig 1D). Although SMC1β but not SMC1α was

detected in the MS analysis of HORMAD1-IP (Fig 1B), by WB analysis SMC1α was detected

in the HORMAD1-IP (Fig 1D). This suggested that small amount of SMC1α-containing cohe-

sin, below the detection limit of MS analysis, interacted with HORMAD1. Reciprocal IP of

REC8 and RAD21L followed by MS analysis further supported the above assumption that

HORMAD1 interacted with both REC8- and RAD21L-cohesins (Fig 1C and 1E and S1 Data).

Therefore, we hypothesized that HORMAD1 may have the ability to localize onto the chroma-

tin through meiotic cohesins, either dependently or independently of SYCP2.

HORMAD1 and HORMAD2 localize along the cohesin axial core in the

absence of SYCP2

Previous study showed that HORMAD1 localization remained on the chromosome in hypo-

morphic Sycp2 mutant spermatocytes expressing truncated SYCP2 protein lacking the coiled

coil domain [6,31]. HORMAD1 also remained on the chromosome in Sycp3-KO, in which

SYCP2 together with SYCP3 was absent from the chromosome [35]. However, it still remained

elusive whether HORMAD1 localization was independent of SYCP2 protein, because previous

hypomorphic Sycp2 mutant spermatocytes still expressed truncated SYCP2 protein that

retained the putative HORMAD2 binding sites at the N-terminus. In order to precisely exam-

ine the impact on chromatin loading of HORMAD1 by loss of SYCP2, we generated Sycp2

and Mascot scores. (C) The immunoprecipitates by anti-REC8 and anti-RAD21L antibodies from the chromatin-

bound fraction of the testis were subjected to LC-MS/MS analyses as in (B). (D) WB analysis of HORMAD1

immunoprecipitates with indicated antibodies. HORMAD1 immunoprecipitates were run on 4–12% NuPAGE Bis-

Tris in MOPS-SDS buffer. � indicates a band that cross-reacted to IgG heavy chain. (E) WB analysis of REC8 and

RAD21L immunoprecipitates with indicated antibodies. REC8 and RAD21L immunoprecipitates were run on 4–12%

NuPAGE Bis-Tris in MOPS-SDS buffer (for immunoblots of REC8, HORMAD1 and Actin) and 7% NuPAGE Tris-

Acetate in Tris-Acetate-SDS buffer (for immunoblots of SMC3, STAG3 and RAD21L). � indicates a band that cross-

reacted to IgG heavy chain.

https://doi.org/10.1371/journal.pgen.1009048.g001
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null mice. We deleted Exon2-Exon44 that includes the entire protein coding region of Sycp2
loci in C57BL/6 fertilized eggs by the CRISPR/Cas9 system (Fig 2A). WB of Sycp2-KO testis

showed that SYCP2 protein was completely absent (Fig 2B), indicating that the targeted Sycp2
allele was null. In Sycp2-KO testis, the axis-associated proteins, HORMAD1, HORMAD2 and

cohesins, were present comparably to WT, whereas SYCP3 protein was slightly reduced (S1A

Fig). Histological analysis confirmed that the Sycp2 null allele caused arrest of spermatogene-

sis, and as a consequence mature sperms were lost (S1A and S1B Fig) as expected. Although

aggregations and short stretches labeled by SYCP3 were observed, continuous extended

stretches of SYCP3 were absent in Sycp2-KO spermatocytes (Fig 2C). Sycp2-KO spermatocytes

exhibited continuous stretches labeled by SMC3, a common subunit of cohesin (Fig 2D), sug-

gesting that cohesin axial core was formed without SYCP2, which was similar to the previous

observation in Sycp3-KO [19,35]. HORMAD1 exhibited dotty signals at early leptotene-like

stage in Sycp2-KO (Fig 2E). DSBs labelled by γH2AX were detected at a lower level in Sycp2-

KO compared to WT (Fig 2F). Accordingly, the number of RAD51 foci were markedly

reduced in leptotene-like spermatocytes from Sycp2-KO compared to WT (Fig 2G), which was

consistent with the recent study on zebra fish Sycp2 mutant [5]. It is worth noting that despite

the localization of HORMAD1 (Fig 2E), Sycp2-KO spermatocytes exhibited reduced number

of RAD51 foci just like the Hormad1-KO spermatocytes (Fig 2G) [31–33,36,52]. Previously, it

was shown that IHO1 appeared on chromatin at preleptotene, localized along the axis depen-

dently on HORMAD1 and was required for efficient DSBs formation together with MEI4,

REC114 and ANKRD31 [36,53,54]. IHO1 colocalized (~60%) along SMC3 in WT at leptotene,

but less (~30%) in Sycp2-KO (Fig 2H), suggesting that axial localization of IHO1 was reduced

in the absence of SYCP2. These observations suggested that DSB formation might be compro-

mised in Sycp2-KO. SYCP1 were observed in Sycp2-KO spermatocytes (Fig 2I), suggesting that

homologous or non-homologous synapsis progressed as has been shown in Sycp3-KO [19,35].

In Sycp2-KO, HORMAD1 localization was mutually exclusive to SYCP1 (Fig 2I) whereas

SMC3 localization overlapped with SYCP1 (Fig 2J), suggesting that HORMAD1 dissociated

from the synapsed regions of the cohesin axial core.

Notably, despite the absence of SYCP2, these dotty signals of HORMAD1 emerged along

the cohesin axial core labeled by either RAD21L or REC8 in leptotene-like Sycp2-KO sper-

matocytes (Fig 3A and 3B). Around 40% of HORMAD1 staining localized along the cohesin

axial core labeled by SMC3 in leptotene-like Sycp2-KO spermatocytes, while WT leptotene

spermatocytes showed more than 60% co-localization (Fig 3C), suggesting that axial localiza-

tion of HORMAD1 was partly reduced in the absence of SYCP2. HORMAD2 also localized

along the cohesin axial core labeled by SMC3 in leptotene-like Sycp2-KO spermatocytes (Fig

3D). Colocalization of IHO1 with HORMAD1 was significantly reduced in Sycp2-KO sper-

matocytes (Fig 3E), suggesting that IHO1-HORMAD1 interaction depends on SYCP2. Cru-

cially, the cohesin subunits SMC3, REC8 and RAD21L were detected in HORMAD1-IP in

Sycp2-KO extracts (Fig 3F), suggesting that HORMAD1 had the ability to interact with meiotic

cohesins independently of SYCP2. We noticed that HORMAD2 was detected in HORMA-

D1-IP in Sycp2-KO extracts, suggesting that HORMAD1 interacted with HORMAD2 inde-

pendently of SYCP2. IHO1 was reduced in Sycp2-KO chromatin fraction and was not detected

in HORMAD1-IP from Sycp2-KO chromatin extracts, supporting the above assumption that

DSB formation might be compromised in Sycp2-KO (Fig 2H). It should be mentioned that

HORMAD1 was detected in HORMAD1 IP at a lower level in Sycp2-KO compared to WT

(Fig 3F). Since the expression of HORMAD1 was comparable in Sycp2-KO and WT (S1A Fig),

maybe HORMAD1 protein became less soluble in Sycp2-KO and did not bind to the HOR-

MAD1-antibody used for this IP. When the IP-products were normalized with HORMAD1

detected in HORMAD-IP, the amount of meiotic cohesins and HORMAD2 bound to
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Fig 2. Generation of Sycp2 complete null mouse. (A) The targeted Exon2-Exon44 deletion allele of Sycp2 were generated by the

introduction of CAS9, the synthetic gRNAs designed to target intron1 and Exon44 (arrowheads), and ssODN into C57BL/6 fertilized

eggs. Two lines of KO mice were established. Line #17 of Sycp2-KO mice were used in most of the experiments, unless otherwise

stated. (B) WB analysis of testis extracts prepared from WT and Sycp2-KO mice (P18). See also supplementary S1A Fig for

immunoblots of other axis-associated proteins. (C) Chromosome spreads of WT and Sycp2-KO spermatocytes were stained for

SYCP2 and SYCP3. Note that Sycp2-KO spermatocytes showed aggregation or short stretches of SYCP3. (D) Chromosome spreads

of WT and Sycp2-KO spermatocytes were stained for SMC3 and SYCP3. Note that Sycp2-KO spermatocytes showed elongated

stretches of SMC3, suggesting that cohesin axial core was generated in Sycp2-KO. (E) Chromosome spreads of WT and Sycp2-KO

spermatocytes were stained for HORMAD1 and SYCP3. Enlarged images are shown on the most right. (F) Chromosome spreads of

WT and Sycp2-KO spermatocytes were stained for SMC3 and γH2AX. (G) Chromosome spreads of WT, Sycp2-KO and Hormad1-

KO spermatocytes were immunostained as indicated. Stage of Sycp2-KO spermatocytes was determined by REC8. The images of
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HORMAD1 were comparable in Sycp2-KO and WT. Altogether, these results suggested that

HORMAD1 and HORMAD2 localized to unsynapsed cohesin axial core independently of

SYCP2.

HORMAD1 is in close proximity to meiotic cohesin before axis formation

In meiotic prophase, REC8- and RAD21L-cohesins appear on the chromatin prior to AE for-

mation and show mutually exclusive cytologically recognized domains [16]. Given that HOR-

MAD1 interacts with both REC8- and RAD21L-cohesins and localizes along the cohesin-axis,

the distances between HORMAD1 and RAD21L or REC8 on spread chromatin of preleptotene

spermatocytes were assessed. Preleptotene spermatocytes were identified by dotty cohesin sig-

nals that represent RAD21L or REC8, and patchy EdU labelling pattern that represents late S

phase [36] (Fig 4A). In WT spermatocytes, RAD21L, REC8 and HORMAD1 exhibited punc-

tate signals at preleptotene and early leptotene, whose median number ranged around 500–

1500 per nucleus (Fig 4B). Those dots were diminished in Rad21L-KO, Rec8-KO and Hor-
mad1-KO mice, respectively (see also Fig 6), indicating that they represented bona fide locali-

zation of those proteins rather than immunostaining backgrounds. These observations imply

that HORMAD1 and cohesins are initially enriched on a limited number of cytologically rec-

ognized domains rather than being localized evenly on the whole chromatin. Notably, ~ 10%

of RAD21L dots and ~ 5% of REC8 dots were juxtaposed to those of HORMAD1 within 1

pixel proximity during preleptotene (Fig 4C), and this fraction increased to ~ 30% of RAD21L

dots and ~ 15% of REC8 dots when they were counted for 3 pixel proximity of HORMAD1

(Fig 4C). Conversely, ~ 10% and ~ 9% of HORMAD1 dots were juxtaposed to RAD21L and

REC8 dots within 1 pixel proximity, respectively, and ~ 31% and ~27% within 3 pixel proxim-

ity, respectively (Fig 4C). Further, the super-resolution single molecule localization analysis

using STORM microscopy demonstrated that the HORMAD1 dots, if not all, were juxtaposed

closely to RAD21L- and REC8-enriched domains (Fig 4D), consistent with aforementioned

assumption. Indeed, linear scanning of immuno-localization signals along the extended fibers

of the chromatin indicated that HORMAD1 associated with RAD21L and REC8 on the chro-

matin (Fig 4E). In preleptotene Sycp2-KO spermatocytes, juxtaposition of HORMAD1 to

RAD21L dots was reduced compared to WT (Fig 4F and 4G). Also, juxtaposition of HOR-

MAD1 to REC8 dots in preleptotene Sycp2-KO spermatocytes was reduced to a level close to

random overlap (Fig 4F and 4G). These results suggested that association of HORMAD1 with

cohesins might be stabilized by SYCP2.

leptotene (-like) spermatocytes are shown (upper). The number of RAD51 dots per nuclei is shown in a scatter plot (right). The

numbers of the cells analyzed are shown below the graph. Red bars indicate median. n.d.: not detected. Statistical significance was

assessed by one-way ANOVA followed by Turkey’s multiple comparisons test with a single pooled variance. �: P< 0.05, ��: P< 0.01,
���: P< 0.001. (H) Chromosome spreads of WT and Sycp2-KO spermatocytes were stained for SMC3 and IHO1. Enlarged images

are shown on the right panels. Co-localization of IHO1 with SMC3 was quantified by counting IHO1 staining within 5 pixel distance

from SMC3 threads (right). n: number of cells examined. To assess random overlaps, the co-localization was measured without

(black and red plots) or with (blue plots) rotation of the IHO1 image by 90˚ clockwise relative to the SMC3 image. Statistical

significance was assessed by one-way ANOVA followed by Turkey’s multiple comparisons test with a single pooled variance. ��:

P< 0.01, ���: P< 0.001. (I) Chromosome spreads of WT and Sycp2-KO spermatocytes were stained for SYCP1 and HORMAD1.

Enlarged images are shown on the three right panels. Note that Sycp2-KO spermatocytes showed shortly elongated stretches of

SYCP1, suggesting that homolog or non-homolog synapsis occurred in Sycp2-KO, but HORMAD1 was depleted from

SYCP1-localized threads. (J) Chromosome spreads of WT and Sycp2-KO spermatocytes were stained for SYCP1 and SMC3.

Enlarged images are shown on the three right panels. Note that SMC3 still localized along synapsed regions in Sycp2-KO

spermatocytes. Scale bars: 10 μm. Note that because we cannot infer the exact stage from SYCP3 immunostaining pattern in Sycp2-
KO, we refer to those spermatocytes, that exhibit stretched immunostaining pattern of cohesin (SMC3 or REC8) but does not show

SYCP1, as leptotene-like stage spermatocytes.

https://doi.org/10.1371/journal.pgen.1009048.g002
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Fig 3. HORMAD1 localized along the cohesin axial cores in the absence of SYCP2. (A) Chromosome spreads of WT and Sycp2-
KO spermatocytes were stained for HORMAD1 and REC8. Enlarged images are shown on the right. (B) Chromosome spreads of

WT and Sycp2-KO spermatocytes were stained for HORMAD1 and RAD21L. Enlarged images are shown on the right. (C)

Chromosome spreads of WT and Sycp2-KO spermatocytes were stained for SMC3 and HORMAD1 (upper). Enlarged images are

shown on the right. Co-localization of HORMAD1 with SMC3 was quantified by counting HORMAD1 staining within 5 pixel

distance from SMC3 threads. n: number of cells examined. To assess random overlaps, the co-localization was measured without

(black and red plots) or with (blue plots) rotation of the HORMAD1 image by 90˚ clockwise relative to the SMC3 image. Statistical

significance was assessed by one-way ANOVA followed by Turkey’s multiple comparisons test with a single pooled variance. ���:

P< 0.001. (D) Chromosome spreads of WT and Sycp2-KO spermatocytes were stained for SMC3 and HORMAD2. (E)

Chromosome spreads of WT and Sycp2-KO spermatocytes were stained for IHO1 and HORMAD1 (upper). Enlarged images are

shown on the right. Co-localization of IHO1 with HORMAD1 was quantified as in (C). (F) HORMAD1-immunoprecipitates from
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To further examine whether immuno-colocalization of HORMAD1-RAD21L and HOR-

MAD1-REC8 at preleptotene through leptotene represented spatial proximity of those pro-

teins, protein interactions were assessed by in situ Proximity ligation assay (PLA) on spread

chromatin. In WT spermatocytes, PLA foci for HORMAD1-RAD21L were detected through-

out meiotic prophase I (Fig 5A). Those foci were largely diminished in Hormad1-KO back-

ground (Fig 5C), confirming the specificity of the PLA assay. The number of PLA foci for

HORMAD1-RAD21L culminated before early zygotene and declined after zygotene stage (Fig

5C), probably due to the dissociation of HORMAD1 from the synapsed axis [30–33,35]. Cru-

cially, PLA foci for HORMAD1-RAD21L were detected as early as in preleptotene, of which

appreciable fraction (~50%) were apart from SYCP3-stained signals (Fig 5B and 5C). Thus,

HORMAD1 and RAD21L were indeed in close proximity on the chromatin before axis forma-

tion. Similarly, PLA foci for HORMAD1-REC8 were detected throughout meiotic prophase I

(Fig 5B and 5C). PLA foci for HORMAD1-REC8 were detected as early as in preleptotene, of

which ~50% fraction were apart from SYCP3-stained signals. Thus, HORMAD1 and REC8

were indeed in close proximity on the chromatin before axis formation. These observations

suggested that the primary loading of HORMAD1 on the chromatin was mediated by

RAD21L- and REC8-cohesins before axis formation.

Meiotic cohesin is required for chromatin loading of HORMAD1 during

early meiotic prophase

Lacking any one of the meiotic cohesin subunits, RAD21L, REC8, STAG3 or SMC1β partly

affects AE formation and synapsis, and lacking both RAD21L and REC8 affects severely

[13,21–23,25,55–58]. To examine whether RAD21L and REC8 are required for the localization

of HORMAD1 onto the initial loading domains, HORMAD1 was immunostained on the

spread chromatins of Rad21L-KO and Rec8-KO preleptotene spermatocytes. Remarkably, in

Rad21L-KO mice the number of HORMAD1-enriched domains in preleptotene spermato-

cytes was significantly reduced (Fig 6A and 6F), while it was less affected in Rec8-KO mice (Fig

6B and 6F). These observations suggested that, at least in part, RAD21L may play a major role

in the initial loading of HORMAD1 onto the chromatin in preleptotene. As the exact protein

level of HORMAD1 in Rec8-KO and Rad21L-KO was not examined, it is also possible that

HORMAD1 expression was reduced in these mutant testis. We noticed that RAD21L loading

was affected by Hormad1-KO at this stage (Fig 6C and 6D) but not at later stage, suggesting

that RAD21L loading was delayed in the absence of HORMAD1. These suggest that HORMA-

D1-RAD21L interaction may stabilize each other for chromatin loading.

It should be mentioned that HORMAD1 eventually localized along the AE at later stage of

meiotic prophase in Rad21L-KO and Rec8-KO (S2 and S3 Figs). Because HORMAD1 localiza-

tion along the cohesin axial core is reduced and become discontinuous in Sycp2-KO (Fig 2)

and in Sycp3-KO [35,59], it is plausible that AE components stabilize the interaction of HOR-

MAD1 with meiotic cohesins, and as a consequence the axis-localization of HORMAD1 is

stabilized. Therefore, these results suggest that chromatin loading of HORMAD1 may be regu-

lated initially via meiotic cohesins prior to axis development, which is subsequently stabilized

by AE components.

WT and Sycp2-KO testis extracts were probed with indicated antibodies. HORMAD1-immunoprecipitates were run on 4–12%

NuPAGE Bis-Tris in MOPS-SDS buffer. � indicates a non-specific band. Arrowhead indicates the band of HORMAD1. Scale bars:

10 μm.

https://doi.org/10.1371/journal.pgen.1009048.g003
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Fig 4. Partial colocalization of HORMAD1 with meiotic cohesins. (A) HORMAD1 was co-immunolabelled with RAD21L or REC8 on spread

chromatin of WT preleptotene spermatocytes (upper). For visualization, green channels were shifted to the right by three pixels in the magnified

views (middle). Preleptotene cells were identified by patchy EdU labelling pattern that represents late S phase (lower small panel) and by

punctate cohesin staining. Note that slight difference in the localization pattern of RAD21L on the chromatin have been observed among

previous studies [15,16,18,21]. This difference could be due to the sensitivity and/or cross reactivity with RAD21 of the antibodies used. (B) The

number of the immunolabelled dotty signals of RAD21L, REC8 and HORMAD1 are shown in scatter plots. The numbers of the cells observed

are shown below the graph. Red bars indicate mean and SD. (C) Quantification of HORMAD1 dots that overlapped with RAD21L or REC8 dots

(left), and RAD21L or REC8 dots that overlapped with HORMAD1 dots (right) are shown in bar graphs with SD. To show these were not

random overlaps, the co-localization was measured without (black plot) or with (blue plot) rotation of the HORMAD1 image by 90˚ clockwise

relative to the cohesin images. Co-localization was measured by ComDet plugin for ImageJ (see Methods). Co-localization was assessed by two

criteria, either< 1 pixel distance or< 3 pixel distance. Statistical significance was assessed by one-way ANOVA followed by Turkey’s multiple

comparisons test with a single pooled variance. ���: P< 0.001. The numbers of the cells observed are shown below the graph. Red bars indicate

SD. (D) Super-resolution imaging of spread chromatin using N-STORM microscopy showed that HORMAD1-enriched domains (magenta)

PLOS GENETICS HORMAD1 and meiotic cohesins coordinate meiosis-specific chromosome dynamics

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009048 September 15, 2020 11 / 26

https://doi.org/10.1371/journal.pgen.1009048


Meiotic cohesins mediate the mode of action of HORMAD1 for SC

formation

HORMAD1 and HORMAD2 play roles in chromosome synapsis and DSB formation [30–36].

Given that HORMAD1 was enriched at close proximity to meiotic cohesins in early prophase

(Figs 4 and 5), we assessed how HORMAD1 exerts chromosome synapsis in Rad21L-KO or

Rec8-KO.

In Rad21L/Hormad1-dKO background, homologous or non-homologous chromosome

synapsis were substantially impaired in zygotene-like stage compared to Rad21L-KO and Hor-
mad1-KO (Fig 7A), suggesting that HORMAD1 synergistically acts for SC formation with

RAD21L.

Previously it was demonstrated that sister chromatid axes were locally separated and teth-

ered by inter-sister SC in REC8-free regions during the most advanced zygotene-like stage in

Rec8-KO [21–23], Stag3-KO and Smc1β-KO spermatocytes [60]. It was proposed that the high

density of randomly distributed REC8-cohesin promotes sister chromatid cohesion and pre-

vents illegitimate SC formation [60], while RAD21L-cohesin plays a minor role in sister chro-

matid cohesion [12,21]. Intriguingly, in Hormad1/Rec8-dKO but not in Rec8-KO, sister

chromatid axes were precociously separated in zygotene-like stage (Fig 7C) despite the locali-

zation of RAD21L along the axes (Fig 7D). This phenotype was in sharp contrast to that

observed in Hormad1/Rad21L-dKO (Fig 7A), where REC8 localized along normally tethered

sister chromatid axes (Fig 7B). Therefore, these observations suggested that inter-sister synap-

sis in the absence of REC8 depended on both HORMAD1 and RAD21L. It should be men-

tioned that precocious separation of sister chromatid axes was similarly observed in Spo11/
Rec8-dKO that lacked DSBs [12,21]. Because HORMAD1 plays a role in DSB formation [30–

37] and RAD21L was the sole cohesin in Rec8-KO spermatocytes (Fig 7D), maybe RAD21L-

dependent inter-sister SC was established through HORMAD1-mediated DSBs.

Discussion

Meiotic cohesins mediate initial chromatin loading of HORMAD1 during

early meiotic prophase

The present study showed that initial chromatin loading of HORMAD1 is mediated by meiotic

cohesins before and during axis development. HORMAD1 was initially enriched on a limited

number of cytologically recognized domains of RAD21L and REC8 during preleptotene (Fig

4). Initial chromatin loading of HORMAD1 was mediated at least in part by RAD21L (Fig

6A). In contrast, genetic analysis using Rec8-KO suggested that REC8 plays a minor role in

this process at preleptotene (Fig 6B), despite some fraction of HORMAD1 was in close prox-

imity to REC8 at preleptotene. Then one question is raised: why are DMC1 foci essentially not

and the cohesins RAD21L- and REC8-enriched domains (green) were localized side by side. Scale bars: 10 μm unless indicated. (E)

Immunolabeling of HORMAD1, REC8 and RAD21L on stretched chromatin fibers of preleptotene/leptotene WT spermatocytes confirmed that

HORMAD1, REC8 and RAD21L were loaded onto the chromatin. DNA fiber was labelled with DAPI. (F) HORMAD1 was co-immunolabelled

with RAD21L or REC8 on spread chromatin of Sycp2-KO preleptotene spermatocytes (upper). For visualization, green channels were shifted to

the right by three pixels in the magnified views (middle). Scale bars: 10 μm. (G) Quantification of RAD21L dots that overlapped with

HORMAD1 dots (left), and HORMAD1 dots that overlapped with RAD21L dots (right) in WT and Sycp2-KO preleptotene spermatocytes are

shown as in (C) (left graph). Quantification of REC8 dots that overlapped with HORMAD1 dots (left), and HORMAD1 dots that overlapped

with REC8 dots (right) in WT and Sycp2-KO preleptotene spermatocytes are shown (right graph). Co-localization was assessed by< 3 pixel

distance. Statistical significance was assessed by one-way ANOVA followed by Turkey’s multiple comparisons test with a single pooled variance.
� P< 0.05. �� P< 0.01. ���: P< 0.001. The numbers of the cells analyzed are shown below the graph. n.s.: not specific. Back bars indicate mean

and SD.

https://doi.org/10.1371/journal.pgen.1009048.g004
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affected in Rad21L-KO [20,21] despite the decrease of HORMAD1 in the absence of RAD21L.

Although the exact reason for this paradox is unknown, it is possible that whereas REC8 is dis-

pensable for the initial loading of HORMAD1 onto the chromatin, REC8-cohesin may eventu-

ally compensate the loading of HORMAD1 in Rad21L-KO because HORMAD1 has eventually

Fig 5. HORMAD1 is in close proximity to meiotic cohesins. (A, B) In situ protein-protein proximity between

HORMAD1 and RAD21L (A) or REC8 (B) were analyzed by Proximity Ligation Assay (PLA) shown in green. SYCP3

(magenta) was immunolabelled to analyze the association of PLA signals with the axis. (C) Scatter plot shows the

number of PLA signals per nucleus at different stages during meiotic prophase I (Lower). Hormad1-KO cells were used

as a negative control to assess the specificity of the PLA signals. Quantification of PLA signals that were associated with

SYCP3 is shown on the upper graph. Bar graphs indicate average % of PLA signals associated with SYCP3 threads

(upper). N: the number of the cells observed. Statistical significance was assessed by one-way ANOVA followed by

Turkey’s multiple comparisons test with a single pooled variance. ���: P< 0.001. Scale bars:10 μm.

https://doi.org/10.1371/journal.pgen.1009048.g005
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localized along the axis in Rad21L-KO (S2 and S3 Figs). We observed reduced initial loading

and delayed localization of RAD21L to the axis in the absence of Hormad1 (Fig 6D). This

implies that HORMAD1 also directly or indirectly mediates RAD21L loading through an

unknown mechanism. Although the exact reason is yet to be clarified, it is possible that

RAD21L might be loaded in a DSB-dependent manner as has been shown in budding yeast

SCC1-cohesin [61].

Although MS analysis suggested that SYCP2 substantially associates with HORMAD1 (Fig

1B), SYCP2 is dispensable for the initial interaction between HORMAD1 and meiotic cohesin,

as shown by the establishment of the interaction in Sycp2-KO background (Fig 3). Since the

co-localization of HORMAD1 and meiotic cohesins were detected at lower levels in Sycp2-KO

compared to those in WT (Fig 3), it is possible that the AE component SYCP2 may play a role

in stabilizing HORMAD1-cohesin interaction. The mode of chromosome localization of

Fig 6. Meiotic cohesins are required for initial chromatin loading of HORMAD1 during early prophase. (A—C) Spread chromatin of preleptotene

spermatocytes from Rad21L-KO (A), Rec8-KO (B), and Hormad1-KO (C) mice were immunolabelled for HORMAD1 (magenta), RAD21L (green) and

REC8 (green). (D-F) Scatter plots show the number of immunolabelled HORMAD1 dots in a preleptotene cell. Red lines represent mean and SD. N:

the number of the cells observed. Statistical significance was assessed by one-way ANOVA followed by Turkey’s multiple comparisons test with a single

pooled variance. �: p< 0.05, ���: P< 0.001.

https://doi.org/10.1371/journal.pgen.1009048.g006
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HORMAD1 and HORMAD2 in mouse is partly concordant with the model in yeast. In yeast

meiotic prophase, Rec8 is the sole kleisin subunit of cohesin and the axis localization of Hop1,

the yeast homolog of HORMAD1, requires Rec8 [46] and an axis component Red1/Rec10

[62,63]. In mouse, meiotic cohesins are required for initial chromosome localization of HOR-

MAD1 and HORMAD2 independent of SYCP2 (Figs 2 and 3). In addition, mouse SYCP2 is

required for robust production of DSBs in addition to the presence of HORMAD1 (Fig 2F),

which resembles the yeast model where Red1/Rec10 is required to produce normal level of

DSBs [63,64].

HORMAD1 collaborates with RAD21L and REC8 for SC formation

It has been proposed that REC8 establishes sister chromatid cohesion in a DNA-replication-

dependent manner, whereas RAD21L does probably in a DSB-dependent manner and less

contributes to cohesion [12,21]. In Rec8-KO, where RAD21L is the sole cohesin, sister chroma-

tid axes were tethered by inter-sister synapsis rather than canonical sister chromatid cohesion.

Notably, we showed that sister chromatid axes were separated in Hormad1/Rec8-dKO (Fig

7D), which was similar to the phenomena observed in Spo11/Rec8-dKO [12,21]. In contrast, in

Fig 7. HORMAD1 promotes RAD21L-dependent inter-sister SC formation. (A) Spread chromatin of zygotene-like spermatocytes from Hormad1-

KO, Rad21L-KO and Hormad1/Rad21L-dKO were immunolabelled for SYCP3 (magenta) and SYCP1 (green). The frequency distribution of SYCP1

stretches are shown on the bottom. n indicates the number of the spermatocytes analyzed. (B) Spread chromatin of zygotene-like spermatocytes from

Hormad1-KO, Rad21L-KO and Hormad1/Rad21L-dKO were immunolabelled for SYCP3 (magenta) and REC8 (green). (C) Spread chromatin of

zygotene-like spermatocytes from Rec8-KO and Hormad1/Rec8-dKO were immunolabelled for SYCP3 (magenta) and SYCP1 (green). Enlarged images

are shown on the bottom. Arrows indicate sister chromatid axis separations. (D) Spread chromatin of zygotene-like spermatocytes from Rec8-KO and

Hormad1/Rec8-dKO were immunolabelled for SYCP3 (magenta) and RAD21L (green). Scale Bars: 10 μm.

https://doi.org/10.1371/journal.pgen.1009048.g007
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Hormad1/Rad21L-dKO where REC8 is the sole cohesin, sister chromatid axes were intact (Fig

7B). Implication for these observations is that inter-sister SC formation observed in Rec8-KO

depends on RAD21L and HORMAD1. Because HORMAD1 promotes DSB formation [36,52],

RAD21L-dependent inter-sister SC formation observed in Rec8-KO may be established in the

vicinity of HORMAD1/RAD21L-enriched domains.

It has been proposed that HORMAD1, collaborating with IHO1, promotes SPO11-me-

diated DSB by recruiting PRDM9/CXXC1-containing complex from the hotspot DNA loop to

the axis [38]. Another study also suggested that REC8 preferentially associates with PRDM9

on the DNA loop rather than the axis during early prophase [65]. Thus, it is possible that

HORMAD1/REC8-enriched domains may promote DSB hotspot formation by recruiting

PRDM9 containing complex during early prophase. Given that inter-sister SC observed in

Hormad1/Rec8-dKO (Fig 7) was similar to those in Spo11/Rec8-dKO [12,21], it is plausible

that HORMAD1 promotes DSB-dependent inter-sister synapsis and recombination. This idea

is partly consistent with a genetic study showing that HORMAD2 plays a role in inhibiting

inter-sister recombination-mediated DSB repair [66]. Altogether, HORMAD1 may play two

distinct roles in SC formation and DSB formation through the action of meiotic cohesins.

Materials and methods

Animal experiments

Sycp2 (KO) mice were C57BL/6 background. Hormad1-KO mice [33], Rad21L-KO mice [21],

Rec8 (mei8) mutant mice [23] (although the mei8 allele has a point mutation, here it is referred

to as Rec8-KO mice), Spo11-KO mice (Spo11tm1Mjn) [26], were congenic with the C57BL/6

background, and were used for cytological experiments. Mice of the C57BL/6J strain were

obtained from Japan SLC, Inc. (Shizuoka, Japan). Each knockout animal was compared with

littermates or age-matched (12–25 dpp) non-littermates from the same colony. No statistical

method was used to estimate sample size.

Animal experiments were approved by the Institutional Animal Care and Use Committee

(approval #2715, #2809 at The university of Tokyo, approval F28-078, A30-001, A2020-006 at

Kumamoto University). All methods and animal protocols were carried out in accordance

with institutional animal guidelines and regulations.

Generation of Sycp2 knockout mice and genotyping

Sycp2 knockout mouse was generated by introducing Cas9 protein (317–08441; NIPPON

GENE, Toyama, Japan), tracrRNA (GE-002; FASMAC, Kanagawa, Japan), synthetic crRNA

(FASMAC), and ssODN into C57BL/6N fertilized eggs using electroporation. For generating

Sycp2 Exon 2–44 deletion (Δ Ex2-44) allele, the synthetic crRNAs were designed to direct

TTTGCCATCCTAGTAAGTGT (TGG) of the Sycp2 intron 1 and TCTCTAACATTTGAGTC

GGG (AGG) in the Exon44 of the Sycp2. ssODN: 5’-TGCATTTGGAGTCATGTTTTTCATC

TCTAACATTTGAGTCtttattCTTACTAGGATGGCAAAAACTAAAAAGTCTGTTAATA

TGA -3’ was used as a homologous recombination template.

The electroporation solutions contained [10 μM of tracrRNA, 10 μM of synthetic crRNA,

0.1 μg/μl of Cas9 protein, ssODN (1 μg/μl)] for Sycp2 knockout in Opti-MEM I Reduced

Serum Medium (31985062; Thermo Fisher Scientific). Electroporation was carried out using

the Super Electroporator NEPA 21 (NEPA GENE, Chiba, Japan) on Glass Microslides with

round wire electrodes, 1.0 mm gap (45–0104; BTX, Holliston, MA). Four steps of square pulses

were applied (1, three times of 3 mS poring pulses with 97 mS intervals at 30 V; 2, three times

of 3 mS polarity-changed poring pulses with 97 mS intervals at 30 V; 3, five times of 50 mS

transfer pulses with 50 mS intervals at 4 V with 40% decay of voltage per each pulse; 4, five
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times of 50 mS polarity-changed transfer pulses with 50 mS intervals at 4 V with 40% decay of

voltage per each pulse).

The targeted Sycp2 Ex2-44Δ allele in F0 mice were identified by PCR using the following

primers; Sycp2-F1: 5’-GCAAAGATGCATCATCTAAGCACCTC-3’ and Sycp2-R1: 5’-

CAAAGTATGAAGGTACTAACAATTAAAG-3’ for the knockout allele (459 bp). Sycp2-F1

and Sycp2-R2: 5’- ATACTTGGAGGTCTGGTCTCACTGGC-3’ for the Ex2 up stream of wild-

type allele (582 bp). Sycp2-F2: 5’-GCAAAGATGCATCATCTAAGCACCTC3’and Sycp2-R1

for the Exon 44 of wild-type allele (354 bp). The PCR amplicons were verified by sequencing.

Sycp2 knockout mouse lines generated in this study have been deposited to Center for Ani-

mal Resources and Development (CARD, ID 2881).

Preparation of testis extracts and immunoprecipitation

To enrich preleptotene and leptotene spermatocytes, male mice were injected daily with WIN

18,446 (14018, Cayman Chemical, MI, USA) during 3–11 dpp, followed by RA injection at 12

dpp and testes collection after 8 days of the treatment [50,67]. Twenty or more testes (from 10

or more animals) per one IP were collected and pooled for IP-MS experiments. Although we

did not check every testis that was collected for the preparation of testis extracts, enrichment

of preleptotene/leptotene population was assessed by immunostaining in a given testis sample

among the pooled testes. For immunoprecipitation from WT and Sycp2-KO mice, Sycp2-KO

testes were pooled from 7 animals and corresponding control testes were collected from WT

(10 dpp) mice. Testis chromatin-bound extracts were prepared as described previously [21].

Briefly, testicular cells were suspended in low salt extraction buffer (20 mM Tris-HCl [pH 7.5],

100 mM KCl, 0.4 mM EDTA, 0.1% TritonX100, 10% glycerol, 1 mM β-mercaptoethanol) sup-

plemented with Complete Protease Inhibitor (Roche). After homogenization, the soluble chro-

matin-unbound fraction was separated after centrifugation at 100,000 × g for 30 min. The

chromatin bound fraction was extracted from the insoluble pellet by high salt extraction buffer

(20 mM HEPES-KOH [pH 7.0], 400 mM KCl, 5 mM MgCl2, 0.1% Tween20, 10% glycerol, 1

mM β-mercaptoethanol) supplemented with Complete Protease Inhibitor. The solubilized

chromatin fraction was collected after centrifugation at 100,000 × g for 30 min at 4 ˚C.

2.5 μg of affinity-purified rabbit anti-HORMAD1 and control rabbit IgG antibodies

(Table 1) were crosslinked to 50 μl of protein A-Dynabeads (10002D, Thermo Fisher Scientific,

USA) by DMP (D8388, Sigma-Aldrich, USA). The antibody-crosslinked beads were added to

the testis chromatin-bound extracts prepared from wild type testes. The beads were washed

with high salt extraction buffer. The bead-bound proteins were eluted with 40 μl of elution

buffer (100 mM Glycine-HCl [pH 2.5], 150 mM NaCl), and then neutralized with 4 μl of 1 M

Tris-HCl [pH 8.0]. The immunoprecipitated proteins were run on 4–12% Bis-Tris NuPAGE

(NP0322, Thermo Fisher Scientific) in MOPS-SDS buffer or 7% Tris-Acetate NuPAGE

(EA030552, Thermo Fisher Scientific) in Tris-Acetate-SDS buffer for immunoblotting or

LC-MS/MS analysis. Immunoblots were detected by VeritBlot for IP detection reagent (HRP)

(ab131366, abcam, 1:3000 dilution). For repeated reprobing the immunoblots, immobilon-

PVDF membranes (Merck), that were cut at the appropriate molecular weight, sequentially

immunoblotted and antibodies were striped using Restore Western Blot Stripping Buffer

(Thermo 21059). Immunoblot image was developed using ECL prime (RPN2232, GE health-

care) and captured by FUSION Solo (VILBER) or LAS4000mini (GE healthcare, USA).

Identification of HORMAD1 associated factors by mass spectrometry

The immunoprecipitated proteins were run on 4–12% NuPAGE (Thermo Fisher Scientific) by

1 cm from the well and stained with SimplyBlue (LC6065, Thermo Fisher Scientific) for the in-
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gel digestion. The gel containing proteins was excised, cut into approximately 1mm sized

pieces. Proteins in the gel pieces were reduced with DTT (20291, Thermo Fisher Scientific),

alkylated with iodoacetamide (90034, Thermo Fisher Scientific), and digested with trypsin and

lysyl endopeptidase (Promega, USA) in a buffer containing 40 mM ammonium bicarbonate,

pH 8.0, overnight at 37 ˚C. The resultant peptides were analyzed on an Advance UHPLC sys-

tem (AMR/Michrom Bioscience) coupled to a Q Exactive mass spectrometer (Thermo Fisher

Scientific) processing the raw mass spectrum using Xcalibur (Thermo Fisher Scientific). The

raw LC-MS/MS data was analyzed against the NCBI non-redundant protein restricted to Mus
musculus using Proteome Discoverer version 1.4 (Thermo Fisher Scientific) with the Mascot

search engine version 2.5 (Matrix Science). A decoy database comprised of either randomized

or reversed sequences in the target database was used for false discovery rate (FDR) estimation,

and Percolator algorithm was used to evaluate false positives. Search results were filtered

Table 1. Antibodies used.

REAGENT or RESOURCE SOURCE IDENTIFIER Dilution (IF) Dilution (WB)

Antibodies

rabbit anti-HORMAD1 ProteinTech 13917-1-AP 1:500 1:1000

rabbit anti-HORMAD2 [34] 1:1000 1:1000

mouse anti-HORMAD1 This study 1:500

mouse anti-HORMAD2 This study 1:200 1:500

mouse anti-RAD21L [16] 1:1000

rabbit anti-RAD21L [16] 1:500 1:1000

rabbit anti-RAD51 Santa Cruz sc-8349 1:50

mouse anti-REC8 [16] 1:1000

rabbit anti-REC8 [16] 1:500 1:1000

rat anti-SYCP3 [71] 1:1000

rabbit anti-SYCP1 Abcam ab15090 1:200 1:1000

Mouse anti-SYCP1 [16] 1:200

Mouse anti-SMC1α [16] 1:1000

rabbit anti-SYCP3 Abcam ab15093 1:500 1:1000

guinea pig anti-SYCP3 [67] 1:2000

mouse anti-SA3 [16] 1:1000 1:500

rabbit anti-SMC3 Abcam ab9263 1:1000 1:1000

mouse anti-SYCP2-C This study 1:1000

rabbit anti-SYCP2-C This study 1:500 1:1000

mouse anti-IHO1 This study 1:500

mouse anti-gammaH2A.X(S139) Abcam ab26350 1:2000

rabbit anti-gammaH2A.X(S139) Abcam ab11174 1:2000

rabbit anti-ACTIN CST #4970 1:1000

VeriblotBlot for IP detection reagent (HRP) Abcam ab131366 1:3000

Donkey anti-mouse IgG CF 568 Biotium 20105 1:500 for STORM

Donkey anti-mouse IgG-Alexa Fluour 488 Thermo Fisher Scientific A21202 1:1000

Donkey anti-rabbit IgG-Alexa Fluour 488 Thermo Fisher Scientific A21206 1:1000

Goat anti-mouse IgG-Alexa Fluour 568 Thermo Fisher Scientific A11004 1:1000

Goat anti-rabbit IgG-Alexa Fluour 568 Thermo Fisher Scientific A11011 1:1000

Goat anti-rat IgG-Alexa Fluour 568 Thermo Fisher Scientific A11077 1:1000

Donkey anti-mouse IgG-Alexa Fluour 647 Thermo Fisher Scientific A31571 1:1000

Goat anti-rabbit IgG-Alexa Fluour 647 Thermo Fisher Scientific A21244 1:1000 (1:500 for STORM)

Goat anti-rat IgG-Alexa Fluour 647 Thermo Fisher Scientific A21247 1:1000

https://doi.org/10.1371/journal.pgen.1009048.t001

PLOS GENETICS HORMAD1 and meiotic cohesins coordinate meiosis-specific chromosome dynamics

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009048 September 15, 2020 18 / 26

https://doi.org/10.1371/journal.pgen.1009048.t001
https://doi.org/10.1371/journal.pgen.1009048


against 1% global FDR for high confidence level. Identified proteins were presented after con-

taminants detected in the control IgG IP were subtracted from those in HORMAD1 IP.

Histological analysis

Testes, caudal epididymis and ovaries were fixed in Bouin’s solution, and embedded in paraf-

fin. Sections were prepared on CREST-coated slides (Matsunami) at 6 μm thickness. The slides

were dehydrated and stained with hematoxylin and eosin.

For Immunofluorescence staining, testes were embedded in Tissue-Tek O.C.T. compound

(Sakura Finetek) and frozen. Cryosections were prepared on the CREST-coated slides (Matsu-

nami) at 8 μm thickness, and then air-dried. The serial sections of frozen testes were fixed in

4% paraformaldehyde in PBS for 5 min at room temperature and washed briefly in PBS. After

washing, the serial sections were permeabilized in 0.1% TritonX100 in PBS for 5 min. The sec-

tions were blocked in 3% BSA/PBS, and incubated at room temperature with the primary anti-

bodies in a blocking solution. After three washes in PBS, the sections were incubated for 1 h at

room temperature with Alexa-dye-conjugated secondary antibodies (1:1500; Invitrogen) in a

blocking solution. DNA was counterstained with Vectashield mounting medium containing

DAPI (Vector Laboratory).

Antibody and reagents

Antibodies used in this study were listed in Table 1. Polyclonal antibodies against mouse

SYCP2-C (aa 1271–1500) were generated by immunizing rabbits and mice. Polyclonal anti-

bodies against mouse IHO1 (aa 1–574), mouse HORMAD2 (aa 1–306) and mouse HOR-

MAD1 (aa 4–392) were generated by immunizing mice. All His-tagged recombinant proteins

were produced by inserting cDNA fragments in-frame with pET28c+ (Novagen) for SYCP2-

C, IHO1, HORMAD2, or modified pGEX-4T-2 (Sigma-Aldrich) for HORMAD1 in E. coli
strain BL21-CodonPlus(DE3)-RIPL (Agilent), solubilized in a denaturing buffer (6 M HCl-

Guanidine, 20 mM Tris-HCl [pH 7.5]) and purified by Ni-NTA (30210, QIAGEN) under

denaturing conditions. The antibodies were affinity-purified from the immunized serum with

immobilized antigen peptides on CNBr-activated Sepharose (GE healthcare).

Immunostaining

Chromatin spreads were prepared as described [36] with modifications. Seminiferous tubules

were collected from mice at 8–12 dpp in 300 μL DMEM, and minced using a flathead forceps.

Followed by adding additional 700 μL of DMEM, testicular cells were broken apart by sequen-

tial steps of pipetting and filtering through a cell strainer (70 μm pore size, BD Falcon). Cells

were treated with EdU (10 μM) (C10340, Thermo Fisher Scientific) at 34 ˚C for 30 min. Cell

suspension was then diluted with 24 mL PBS, and centrifuged at 600 × g for 3 min. Cell pellet

was resuspended in new 1 mL PBS, and centrifuged again at 600 × g for 5 min. Collected cells

were resuspended in 500 μL of 1st hypotonic buffer (1: 1 = PBS: hypotonic buffer [30 mM Tris,

50 mM sucrose, 17 mM citric acid, 5 mM EDTA, 2.5 mM DTT, 0.5 mM PMSF]), and left for 8

min at RT. Treated cells were centrifuged at 600 × g for 5 min, and cell pellet was resuspended

in 2nd hypotonic buffer (1: 2 = PBS: 100mM Sucrose) at 2 × 104 cells/μL concentration. A 3 μL

aliquot of cell suspension was applied to a slide grass spot containing 20 μL of 1% paraformal-

dehyde (PFA) in H2O. Cells were fixed for 1 h in a humid chamber at RT, and air-dried for 1

hr. Cell preparation was washed in 0.4% DRIWELL (Fujifilm, Japan) in H2O over night at 4

˚C, and dried for 30 min. The prepared slides were immediately used for immunostaining or

stored at -80 ˚C for further use.
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Chromatin fiber preparation was made as described previously [68] with some modifica-

tions. Briefly, cell suspension was prepared as described above using mice at 12–25 dpp. For

hypotonic treatment, cells were resuspended in 500–1000 μL of 0.8% sodium citrate for 30

min at RT. 250 μL cell suspension was used for centrifugal spreading to the slide using a Cytos-

pin 4 Cytocentrifuge (Thermo Fisher Scientific) at 2000 rpm for 4 min. The slides were imme-

diately immersed in fiber lysis buffer (0.2 M Urea) for 20 min, then fixed in 4% formalin in

PBS for 10 min. Followed by permeabilization treatment with 0.1% Triton X-100 in PBS for 10

min, the slides were washed with PBS and immediately used for immunostaining or stored at

-80 ˚C for further use.

Immunofluorescence staining was performed as described previously [16,21]. Briefly, the

cell preparation was incubated with 5% BSA in PBS for 30 min at RT, and incubated with the

primary antibodies (Table1). Followed by EdU labeling with Alexa 647 according to manufac-

ture’s instruction (C10340, Thermo Fisher Scientific), DNA was counterstained with DAPI

(VECTASHIELD H-1200, VECTOR Laboratories, CA, USA). Images were captured with a

DeltaVision Elite microscope and images for spread samples were deconvoluted and stacked

using a DeltaVision SoftWorx software (Applied Precision).

For super-resolution imaging using a STORM (Stochastic Optical Reconstruction Micros-

copy) system [69], the cell preparation was incubated with the primary antibodies as above, and

the secondary antibodies conjugated with CF 568 (Biotium, 1:200 dilution) or Alexa Fluor 647

(invitrogen, 1:200 dilution) (Table 1). For photoswitching activity of fluorophores, cell prepara-

tion was then mounted with a freshly made STORM buffer: a mixture of 7 μL of GLOX solution

(glucose oxidase 70 μg/μL [G2133-250KU, Sigma-Aldrich], catalase 3.4 μg/μL [035–12903, Fuji-

film, Japan] in 10 mM Tris, pH 8.0 [AM9856, Thermo Fisher Scientific] containing 50 mM

NaCl), 70 μL of 1 M cysteamine solution (30070-50G, Sigma-Aldrich) containing 0.74% HCl and

620 μL of 50 mM Tris, pH 8.0 (AM9856, Thermo Fisher Scientific) containing 10 mM NaCl, 10%

Glucose. Images were captured using a Nikon Eclipse Ti-E inverted microscope (Nikon Instru-

ments Inc., Japan) equipped with a N-STORM super-resolution microscope system (Nikon

Instruments Inc.) and a sCMOS camera ORCA-Flash 4.0 (Hamamatsu Photonics, Japan). Sam-

ples were excited with a 561 nm laser for CF 568 and a 640 nm laser for Alexa 640. The fluores-

cence emission of CF 568 and Alexa Fluor 647 were collected onto an CFI SR HP Apochromat

TIRF 100XC Oil lens (Nikon Instruments Inc.). 10,000–15,000 images were recorded and data

was acquired using a NIS-Elements imaging software (Nikon Instruments Inc.).

Proximity ligation assay (PLA)

PLA was performed using Duolink PLA system (Sigma-Aldrich) according to the manufac-

ture’s instruction with some modifications. Briefly, spread chromatin preparations were incu-

bated with the supplied blocking solution for 30 min at 37 ˚C, and incubated with polyclonal

rabbit (anti-HORMAD1) and polyclonal mouse antibodies against RAD21L or REC8

(Table 1) that were diluted in Antibody Diluent buffer over night at RT. The slides were incu-

bated with PLUS and MINUS probes (DUO92001, DUO92005, Sigma-Aldrich) for 100 min at

37 ˚C, and these probes were then ligated with the Ligation-Ligase (DUO92014, Sigma-

Aldrich) for 60 min at 37 ˚C. The ligated circular DNA was amplified with the Amplification-

Polymerase solution that contains complementary detection oligonucleotide probes labeled

with a fluorophore (DUO92014, Sigma-Aldrich) for 160 min at 37 ˚C. In situ wash buffer

(DUO82049, Sigma-Aldrich) was used between each step according to the manufacture’s

instruction. The slides were then incubated with polyclonal rat antibody against SYCP3

(Table 1) over night at RT and Alexa-568-labeled secondary antibody (1:1000 dilution, invitro-

gen) in the blocking solution for 1 h at RT, followed by EdU labeling with Alexa 647 (C10340,
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Thermo Fisher Scientific) as above. The preparation slides were mounted with a Duolink in
situ mounting medium with DAPI (DUO8240, Sigma-Aldrich).

Co-localization analysis

Colocalization of two different proteins in immunostaining was analyzed using the ComDet

v.0.4.1 plugin (https://github.com/ekatrukha/ComDet) of Fiji software version 2.0.0 [70]. Dotty

signals of each protein were detected separately in each channel at approximately 3 pixels in size

for HORMAD1/RAD21L/REC8 immunostained dotty signals in preleptotene cells, or 5 pixels

in size for IHO1 dotty signals in leptotene (-like) cells. SMC3 threads in leptotene cells were

detected as segmented particles at approximately 4 pixels in size. Co-localization was defined

based on the maximum distance between the centers of two dots at the threshold of 1, 3 or 5 pix-

els depending on the assay. Colocalization of two different proteins was quantified in percentage.

Statistical analyses

Multiple biological replicates from two or more animals for each strain were analyzed for the

phenotypes. The significance of HORMAD1/RAD21L/REC8 dot counting and pairing assay

was assessed by ordinary one-way Analysis of variance (ANOVA) with Tukey’s correction for

multiple test using GraphPad Prism7 software.

Supporting information

S1 Fig. Generation of Sycp2-KO mouse. (A) WB analysis of testis extracts prepared from

WT and Sycp2-KO mice (P18). The testis extracts were run on 4–12% NuPAGE Bis-Tris in

MOPS-SDS buffer. Immunoblots of axis-associated proteins are shown. (B) Hematoxylin

and eosin staining of the sections from WT and Sycp2-KO testes (eight-week-old). Scale bar:

100 μm. (C) Hematoxylin and eosin staining of the sections from WT and Sycp2-KO mice epi-

didymis (eight-week-old). Scale bar: 100 μm.

(TIF)

S2 Fig. Chromosome axis localization of HORMAD1 and RAD21L in mutant mice. Spread

chromatin of spermatocytes from WT, Rad21L-KO, Rec8-KO, Spo11-KO and Hormad1-KO

mice were immunolabelled for HORMAD1 (magenta) and RAD21L (green). Scale bar: 10 μm.

(TIF)

S3 Fig. Chromosome axis localization of HORMAD1 and REC8 in mutant mice. Spread

chromatin of spermatocytes from WT, Rad21L-KO, Rec8-KO, Spo11-KO and Hormad1-KO

mice were immunolabelled for HORMAD1 (magenta) and REC8 (green). Scale bar: 10 μm.

(TIF)

S1 Data. Raw data of LC-MSMS analyses. The LC-MSMS raw data of control IgG IP, HOR-

MAD1 IP, REC8 IP and RAD21L IP are shown. Whole proteins are listed, that were identified

in control IgG IP, HORMAD1 IP, REC8 IP or RDA21L IP by LC-MSMS analyses. Proteins

after subtraction of those identified in control IgG IP and IgG fragment itself are listed in a

separate tab.

(XLSX)
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