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Abstract

Late-Onset Alzheimer’s disease (LOAD) is a common, complex genetic disorder well-

known for its heterogeneous pathology. The genetic heterogeneity underlying common,

complex diseases poses a major challenge for targeted therapies and the identification of

novel disease-associated variants. Case-control approaches are often limited to examining

a specific outcome in a group of heterogenous patients with different clinical characteristics.

Here, we developed a novel approach to define relevant transcriptomic endophenotypes

and stratify decedents based on molecular profiles in three independent human LOAD

cohorts. By integrating post-mortem brain gene co-expression data from 2114 human sam-

ples with LOAD, we developed a novel quantitative, composite phenotype that can better

account for the heterogeneity in genetic architecture underlying the disease. We used itera-

tive weighted gene co-expression network analysis (WGCNA) to reduce data dimensionality

and to isolate gene sets that are highly co-expressed within disease subtypes and represent

specific molecular pathways. We then performed single variant association testing using

whole genome-sequencing data for the novel composite phenotype in order to identify

genetic loci that contribute to disease heterogeneity. Distinct LOAD subtypes were identified

for all three study cohorts (two in ROSMAP, three in Mayo Clinic, and two in Mount Sinai

Brain Bank). Single variant association analysis identified a genome-wide significant variant

in TMEM106B (p-value < 5×10−8, rs1990620G) in the ROSMAP cohort that confers protec-

tion from the inflammatory LOAD subtype. Taken together, our novel approach can be used

to stratify LOAD into distinct molecular subtypes based on affected disease pathways.
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Author summary

One of the challenges of identifying risk variants for late-onset Alzheimer’s disease

based on transcript abundance from post-mortem brain tissue is the inherent heteroge-

neity of human cohorts. This is evident from studies that have employed increasingly

larger cohorts without detecting any new risk variants. In this study, we have developed

a novel methodology to decompose transcriptomic data into submodules to reduce

experimental noise and increase power by accounting for patient heterogeneity. We

demonstrate the effectiveness of our submodules by identifying associated variants that

are either novel or have been implicated previously in late-onset Alzheimer’s disease. A

systems-level understanding of the transcriptome is especially important for translating

human disease-associated variants into models that can accelerate the development of

therapies.

Introduction

Late-onset Alzheimer’s disease (LOAD) is the most common form of dementia in the elderly.

The clinical features associated with LOAD are an amnesic type of memory impairment, dete-

rioration of language, and visuospatial deficits. In the later stages of the disease, symptoms

may include motor and sensory abnormalities, gait disturbances, and seizures. Without

advances in therapy, the number of symptomatic cases in the United States is predicted to rise

to 13.2 million by 2050 [1].

Many common, complex diseases such as LOAD present with heterogeneous phenotypes

due to interactions between genetic and environmental factors affecting a range of pathways

and processes. LOAD has no simple form of inheritance and is governed by a common set of

risk alleles across multiple genes that, in combination, have a substantial effect on disease pre-

disposition and age of onset [2]. Genome-Wide Association Studies (GWAS) have become an

important tool for identifying variants in complex diseases [3,4]. GWAS for LOAD have iden-

tified variants in over 500 genes as potential risk factors with the ε4 variant in APOE as the

strongest contributor to overall disease risk [2,5]. LOAD has a strong polygenic component

and an estimated heritability of up to 80% [6]. It has been challenging to transition from the

identification of associated genetic variants to the molecular mechanisms that lead to the accu-

mulation of amyloid plaques and helical tau filaments [7]. Furthermore, there is mounting evi-

dence that the observed heterogeneity in LOAD is associated with multiple distinct subtypes

[8,9].

Gene co-expression modules tend to consist of genes that belong to the same cellular

pathways or programs and help explain the global properties of the transcriptome as it

relates to disease risk [10]. Networks-based co-expression module approaches have been

used to identify causal variants in Late-Onset Alzheimer’s disease [7,11]. However, such

studies have failed to account for the heterogeneity of mechanisms that lead to complex dis-

eases. Here, we analyze whole genome sequencing (WGS) and whole transcriptome data

from three independent human cohorts from the Accelerating Medicines Partnership—Alz-

heimer’s Disease (AMP-AD) Consortium. We use gene co-expression modules to develop

quantitative phenotypes that account for the complex genetic architecture and heterogene-

ity of LOAD to more effectively map associated variants using genome-wide association.

Furthermore, the method presented in this paper can be used to identify variants in other

complex diseases.
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Results

Description of post-mortem transcriptome study populations

To define novel quantitative phenotypes for LOAD, we obtained 26 post-mortem brain co-

expression modules (doi.org/10.7303/syn11932957.1) that were harmonized from three inde-

pendent cohorts of the AMP-AD consortium (Fig 1A, S1 Fig). This included post-mortem

brain samples of 623 decedents from the ROSMAP cohort for the dorsolateral prefrontal cor-

tex (DLPFC) brain region, 271 decedents from the Mayo cohort for the temporal cortex (TCX)

brain region, and 364 decedents from the MSBB cohort for the frontopolar prefrontal cortex

(FP), inferior temporal gyrus (IFG), parahippocampal gyrus (PHG) and superior temporal

gyrus (STG) brain regions (Fig 1A). Approximately one-third of the patients were diagnosed

Fig 1. Method used in this study to map genetic drivers of LOAD pathology in the ROSMAP cohort. (A) RNA-Seq was performed on post-mortem brain samples

from patients with Late-Onset Alzheimer’s Disease (LOAD). A modified procedure using seven different WGCNA protocols, followed by merging by clustering methods,

was performed to obtain four modules based on gene co-expression. (B) Each of the 26 modules was subjected to iterativeWGCNA, a procedure that repeatedly performs

WGCNA on expression data to generate highly correlated gene sets and exclude weakly correlated genes. 68 submodules were generated from the 26 modules. (C) The

eigengene, or first principal component, was calculated for a subset of 48 submodules from four brain regions (DLPFC, TCX, FP, PHG) and used as a quantitative trait for

single-variant association mapping. Furthermore, the eigengene expression for LOAD cases was used to perform cluster analysis and generate subtypes of LOAD cases.

The Euclidean distance of each patient from each subtype centroid was used as additional quantitative trait–the subtype specificity metric–in a single-variant association

mapping. ROSMAP mapping was used as the baseline, with the Mayo and MSBB cohorts serving as replicates.

https://doi.org/10.1371/journal.pgen.1008775.g001
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with LOAD, while two-thirds were considered controls. The control group included elderly

with normal cognition, as well as mild cognitive impairment and other forms of dementia. An

overview of the post-mortem brain samples used in our analysis pipeline is provided in S1 and

S2 Tables. Details on post-mortem brain sample collection, tissue and RNA preparation,

sequencing, and sample quality control can be found in published work related to each cohort

[12–14]. Multiple variables, such as sex, age of death, and sequencing batch effects were used

as covariates in the normalization process to remove possible confounding factors across

cohorts (Methods) [15].

Refinement of 26 human co-expression modules identifies disease-

associated transcriptomic signals

We performed an iterative gene list pruning process using the iterativeWGCNA approach [16]

to refine the 26 human co-expression modules from the AMP-AD consortium (S3 Table).

Each of these 26 modules contains several thousand co-expressed genes, implicated in multiple

disease processes across multiple cell types. Therefore, it is often difficult to assign a cell-type-

specific role for expression modules linked to a certain brain region. Our approach resulted in

68 distinct subsets, or submodules, of highly correlated genes that were exclusive to each mod-

ule (Fig 1B, S4 Table). Genes that were not highly correlated to any submodule were removed

since they are less likely to contribute to the overall signal of the submodule and more likely to

introduce noise. We then annotated the 68 co-expression submodules to identify molecular

pathways and processes that are significantly enriched within submodules across the six brain

regions from the three independent LOAD cohorts (S2 Fig). Pathway enrichment analysis was

performed using GO terms, KEGG pathways, and Reactome pathway data sets to highlight the

biological specificity of co-expression signals captured by the different submodules (S5 Table).

We identified multiple functional consensus clusters across the 68 submodules, which showed

a significant overlap in functional enrichment for similar biological pathways and processes

across the six brain regions (S2 Fig). These functional consensus clusters associated with the 68

submodules revealed gene sets for specific biological pathways, including tau-protein kinase

activity, neuroinflammation, myelination, and cytoskeletal reorganization (S2 Fig). Further-

more, incorporating information from previously defined cell-type-specific markers derived

from bulk and single cell RNA Sequencing (RNA-Seq) [17] showed that refining the 26 co-

expression modules into 68 submodules resulted in multiple novel submodules enriched for

cell-type-specific markers (Fig 2, S3 Fig).

Single-variant association mapping of submodule eigengenes across

cohorts

To map the genetic drivers of biological disease-associated signals resolved by submodules, we

performed single-variant association mapping of submodule eigengenes (Fig 1C) using whole-

genome sequencing data from the AMP-AD knowledge portal (doi.org/10.7303/

syn10901601). We then applied a variance component linear mixed model implemented in the

EMMAX software to identify novel genetic loci associated with submodule eigengenes (Meth-

ods) [18]. Eigengenes were defined as the first principle component of the gene expression

data associated with each of the 68 submodules. They capture most of the variation in gene co-

expression and reduce noise associated with the transcriptomic data. We included eigengene

expression data from four of the brain regions (TCX, PHG, FP, DLPFC), focusing on tissues

from the frontal cortex, temporal cortex, and hippocampus due to their relevance to LOAD

neuropathology [19]. QQ plots indicate minimal effects of genomic inflation, and conse-

quently population substructure, on the analyses (S4 Fig).
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Genome-wide suggestive and significant loci were detected for submodules in the four

brain regions (Fig 3, S6–S9 Tables). We identified multiple loci that were replicated across the

Fig 3. Manhattan plots of single-variant association of select submodule eigengenes in ROSMAP. Eigengene expression for each submodule was used as a

quantitative trait when performing single-variant mapping. Multiple submodule eigengenes were associated with SNPs at a genome-wide significance level of p = 5×10−8

(red dotted line). Loci of interest are annotated with the gene closest to the region. Some SNPs were also detected at a genome-wide suggestive level of p = 1×10−5 (yellow

dotted line). DLPFCblue_3 contains genes related to the TREM2/TYROBP pathway, an important network of genes related to microglial activation during

neuroinflammation of the brain. Submodules were associated with both unique and overlapping loci. For example, DLPFCbrown_1 and DLPFCyellow_2 are derived

from separate co-expression modules but were both associated with the TMEM106B locus. Similarly, DLPFCyellow_1 and DLPFCyellow_2 were derived from the same

co-expression module but were associated with a mix of overlapping and unique loci.

https://doi.org/10.1371/journal.pgen.1008775.g003

Fig 2. Cell-type specificity of modules is refined in submodules. (A) Cell-type specific marker genes reported by McKenzie et al. were used to annotate modules and

submodules for astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes. The top 100 marker genes for each cell-type were used. The iterativeWGCNA

procedure generated submodules that were more cell-type specific than their modules of origin. (B) A Sankey diagram demonstrating which cell-type specific markers

from modules were found in submodules for the ROSMAP cohort. (C) The top enriched Reactome pathways for ROSMAP submodules based on gene set enrichment

analysis.

https://doi.org/10.1371/journal.pgen.1008775.g002
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three cohorts at a genome-wide significant level. For instance, rs1990620 is a known LOAD-

associated variant in TMEM106B that was identified as genome-wide significant in the DLPFC

region from the ROSMAP cohort and was replicated (p< 5×10−2) in the remaining three

brain regions from the Mayo and MSBB cohorts. This highlights the usefulness of our newly

derived quantitative phenotypes to identify genetic variants associated with specific co-expres-

sion submodules driving disease pathology.

Stratification of LOAD cases based on 68 AMP-AD co-expression

submodules

We next assessed if submodule composite phenotypes could be used to better account for the

observed heterogeneity in the genetic architecture of LOAD by clustering patients based on

their co-expression profiles (Fig 1C). Clustering was performed to determine subtypes of

LOAD cases for four brain regions (TCX, PHG, FP, DLPFC). The NbClust R package was

used to identify the optimal number of clusters for different clustering methods by polling

with the majority rule across 30 indices [20]. The NbClust package identified two subtype clus-

ters for the ROSMAP (DLPFC region) and MSBB cohorts (FP, PHG regions), while three clus-

ters were observed for the Mayo cohort (TCX region). An example for the ROSMAP cohort is

shown in Fig 4. The number of cases in each identified subtype cluster was balanced across all

three cohorts (S10 Table). A comparison of the different methods in terms of cluster assign-

ment indicates that results are not affected substantially by the choice of clustering method in

either of the cohorts (S11 Table). Notably, our newly defined molecular subtypes were not

enriched for common LOAD-associated covariates, such as sex, APOEε4 genotype, or years of

education (Fig 4C, S5 Fig). Furthermore, eigengene expression profiles for each subtype were

used to assess the association of each subtype with molecular and biological pathways associ-

ated with submodules (Fig 4D). We observed no significant enrichment of cognitive or neuro-

pathological measures between the subtypes for the DLPFC region (S5 Fig).

Single-variant association mapping of subtype specificity metric in

ROSMAP

In order to determine genetic variants associated with subtype classification, we used the

Euclidean distances of each patient from the centroid of each subtype as a quantitative trait for

genetic mapping. We performed genome-wide mapping for LOAD subtype association using

the 623 patients of the ROSMAP cohort due to the larger sample size when compared to the

MSBB and Mayo cohorts.

Genome wide association mapping revealed various significant variants across subtypes in

ROSMAP decedents (S6 Fig, S9 Table). Several variants in TMEM106B reached our genome-

wide significance threshold after multiple testing correction (p< 5×10−8). TMEM106B is a

known modifier of neurodegenerative disease and cognitive aging, which has been previously

linked with cognitive performance [21]. Among the variants we identified in TMEM106B, one

genome-wide suggestive allele was identified for LOAD Subtype B (p< 4×10−6, rs1990620G)

in ROSMAP. This association with the protective rs1990620G variant reached a genome-wide

significant level with three of our previously mapped co-expression submodules from the

ROSMAP cohort (Fig 3): DLPFCbrown_2 (p = 3.72x10-07), DLPFCbrown_1 (p = 8.91x10-11),

and DLPFCyellow_2 (p = 5.88x10-14). The DLPFCbrown_1 submodule is enriched for genes

related to myelination and lysosomal activity (KEGG pathways hsa00600 and hsa04142), while

DLPFCyellow_2 is enriched for genes related to endocytosis and potassium channel activity

(KEGG pathway hsa04144 and Reactome pathway R-HSA-1296071). We replicated the sub-

type specific association of the protective rs1990620G variant in the TCX brain region from
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Mayo cohort (Subtype B, p = 0.041), while we did not observe a significant association with

variants in TMEM106B in the FP and PHG brain regions in the MSBB cohort. To our knowl-

edge, this is the first report associating protective TMEM106B variants with molecular LOAD

endophenotypes that link disruption of lysosomal and myelination pathways to disease sub-

types. This is in line with results from a study in mice which showed that loss of TMEM106B
function rescued lysosomal phenotypes related to frontotemporal dementia [22]. Furthermore,

the identified protective allele rs1990620G disrupts a known CCCTC-binding factor (CTCF)

site, which has been shown to modify the inflammatory response in the course of aging [23].

Differential expression analysis of haplotype carriers of the protective rs1990620G variant in

Fig 4. Clustering on eigengene expression in ROSMAP data generates two subtypes. (A) Eigengene expression was used to cluster LOAD cases into subtypes using

K-Means clustering for the DLPFC region. The number of clusters were determined by democratizing results across 30 mathematical indices using the NbClust R package.

Two clusters with similar number of cases were generated. (B) Silhouette plots were generated by four different clustering methods. The mean silhouette width of a cluster

represents how similar objects are to the centroid of the cluster, and the mean silhouette width of all objects represent how well the data have been clustered. In the case of

ROSMAP, the K-means method had the highest mean silhouette width across all LOAD cases. We performed a similar analysis for other brain regions. (C) No significant

differences in proportion of sex, APOEε4 genotype, and years of education between subtypes. (D) A strong immune and neuronal signal in the scaled eigengene

expression profile of the subtypes compared to control decedents (including MCI).

https://doi.org/10.1371/journal.pgen.1008775.g004
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TMEM106B showed an up-regulation of neuroactive ligand receptor interactions, while dece-

dents carrying the risk variant showed significant up-regulation for pathways related to neu-

roinflammation (KEGG pathway hsa04380) (S7 Fig). Besides the association with TMEM106B
in Subtype B, protective variants nearMTUS2 were identified which are in close vicinity to

HMGB1, a locus that has been previously implicated in brain atrophy [24]. In order to provide

a better overview of the associated loci, we generated a directed network to visualize loci that

were associated with different modules, submodules, subtypes, and diagnostic criteria for the

ROSMAP cohort (Methods). Interestingly, we observed that while certain loci were uniquely

associated with single modules or submodules, a community of shared loci was associated with

modules and submodules annotated for microglia, endothelial cells, astrocytes, and oligoden-

drocytes (Fig 5). A separate community of loci was associated with modules and submodules

annotated for proteostasis (Fig 5). Many of the loci associated with diagnostic criterion in the

ROSMAP cohort were independent from these two communities (Fig 5). Only one locus was

identified which showed a suggestive association with both Braak stage and Subtype B in our

analysis.

Fig 5. Network of endophenotypes and associated loci. We created a directed network describing the loci detected from the multiple analyses in this study. Blue nodes

represent loci. Red nodes represent phenotypes. An edge from a phenotype to a genetic locus signifies that the locus is associated with that phenotype. Diagnostic

phenotypes (red edges; right) were associated with some of the loci detected in this study. The module eigengenes (yellow edges), submodule eigengenes (green edges), and

subtypes (blue edges) were associated with both overlapping and unique loci (center and left). A community of loci was associated with multiple submodules associated

with microglia, endothelial cells, astrocytes, and oligodendrocytes (center). A small community of loci was associated with submodules related to proteostasis (left).

https://doi.org/10.1371/journal.pgen.1008775.g005
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Suggestive SNPs in ROSMAP are replicated in the Mayo and MSBB cohorts

To assess the validity of our genetic findings in ROSMAP, we aimed to replicate our results

across three brain regions from the Mayo (TCX brain region) and MSBB (PHG, FP brain

regions) cohorts (Fig 1C). In addition, we compared our results to a catalog of recently pub-

lished GWAS results in order to evaluate the novelty of our findings.

A total of 1326 unique variants representing 163 loci reached a genome-wide suggestive or

significant p-value (p< 1×10−5) in the DLPFC region when pooled from all 11 DLPFC eigen-

genes and two subtype-specific variant mapping analyses (S12 Table). Of these, 645 SNPs were

replicated in the PHG analyses, 762 SNPs were replicated in the FP analysis, and 482 SNPs

were replicated in the TCX analyses (replication threshold, p< 1×10−2). Overlapping co-

expression submodules across brain regions (S2 Fig) were associated with similar loci.

Of the 1326 variants identified in ROSMAP, 29 variants have also been previously reported

in the NHGRI-EBI catalog (S13 Table). In each case, the most significant SNP from a prior

study was a suggestive SNP in the DLPFC region. Fifteen of these 29 previously reported vari-

ants were suggestive SNPs at the TMEM106B locus in the DLPFC region. These 15 variants

were previously reported for association with traits such as depression [25–27], neuroticism

[26,28–31], coronary artery disease [32], and frontotemporal dementia [33]. The TMEM106B
variant associated with dementia, rs1990620, was replicated with submodule eigengene expres-

sion in three out of four brain regions (DLPFC, TCX, PHG) in the AMP-AD cohorts (S12 and

S13 Tables). An ITGA2B variant (rs5910), previously associated with Parkinson’s disease [34],

was replicated in the TCX and PHG regions (S12 and S13 Tables). Three suggestive ROSMAP

variants at the LMX1B locus were previously reported for association with glaucoma [35–37],

and replicated in the TCX and FP regions (S12 and S13 Tables). Taken together, however, a

significant number of the 163 loci detected in the ROSMAP cohort implicated novel variants

in LOAD processes, many of which were replicated in brain regions from the Mayo and MSBB

cohorts.

Molecular LOAD subtypes differ in their inflammatory response

To better understand the underlying molecular differences across the novel LOAD subtypes,

we performed differential expression analysis for each subtype against a set of controls in the

ROSMAP cohort (Fig 6A, S8 Fig). The set of controls included 471 decedents who were either

cognitively normal or had mild cognitive impairment. Performing this analysis without the

mild cognitive impairment cases yielded essentially the same results (S9 Fig). The Venn dia-

gram in Fig 6B depicts the comparison across the two subtypes. Interestingly, we found that

cases associated with Subtype A showed a stronger transcriptional response with 127 differen-

tially expressed genes (adjusted p< 0.05, absolute log fold change> 0.5) when compared with

controls. Among the most significantly down-regulated genes associated with Subtype A cases

was the stress-response mediator corticotropin-releasing hormone (CRH; Fig 6A). Overacting

CRH signaling has been implicated in inflammatory disorders and LOAD where it has been

proposed as a therapeutic target to reduce the negative effects of chronic stress related to mem-

ory function and amyloid beta (Aβ) production [38]. Cases associated with Subtype B had 40

differentially expressed genes (FDR adjusted p< 0.05, absolute log fold change > 0.5), 39 of

which were down-regulated when compared to controls. Notably, we found that two key pro-

inflammatory mediators of amyloid deposition (S100A8, S100A9) were among the most signif-

icantly down-regulated genes in Subtype B decedents when compared to controls (Fig 6A).

Both genes, which are established inflammatory biomarkers, are part of a complex that serves

as a critical link between the amyloid cascade and inflammatory events in LOAD [39]. Further-

more, we identified multiple pathways linked to S100A8/9 activation, including IL-10 signaling
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and complement activation, that were enriched across down-regulated genes in Subtype B but

not in Subtype A (Fig 6C). In addition, molecular pathways linked to microglia activation, the

immune response, and the stress response were found among the most significant pathways

and gene sets that differ across subtypes (S8 Fig, S14 Table). This highlights that our LOAD

subtypes differ in their inflammatory response and that known LOAD biomarkers might be

used to stratify patients based upon their inflammatory response to the observed disease state.

The same analysis in the Mayo and MSBB cohorts revealed that the corresponding subtypes

can also be distinguished based on their inflammatory response (S10 Fig). However, the signal

derived from the molecular pathway expression profiles in both the Mayo and MSBB cohorts

is not as strong as in the ROSMAP cohort, which is likely due to the smaller sample size and

Fig 6. Differential expression analysis of ROSMAP subtypes reveals heterogeneity in inflammatory response in LOAD cases. (A) Differential expression analysis

comparing each subtype to control decedents for the DLPFC region was performed using the limma R package. We show up-regulated (red, p< 0.05, log fold

change> 0.5) and down-regulated (blue, p< 0.05, log fold change< -0.5) genes in the volcano plot and label genes that have an absolute log fold change> 1 (dotted

lines). (B) Differentially expressed genes (p< 0.05, absolute log fold change> 0.5) show a partial overlap between subtypes. (C) Top Reactome pathways for differentially

expressed genes for both subtypes are reported. Subtype A demonstrates an enrichment of immune and stress-response related pathways across up-regulated genes, while

Subtype B demonstrates a down-regulation of a set of specific immune-related pathways linked to S100A8/A9 activation.

https://doi.org/10.1371/journal.pgen.1008775.g006
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differences in population structure across both cohorts. Although inflammatory markers were

the most differentially expressed, the subtypes are characterized by diametric associations with

the eigengenes of multiple submodules annotated for different pathological processes (Fig 4D).

Thus, the detection of differentially expressed inflammatory markers between subtypes is likely

because inflammation is the strongest post-mortem signal present in transcriptomic data.

Discussion

Common, complex diseases such as LOAD are characterized by phenotypic heterogeneity and

the presence of multiple common variants affecting disease risk. In this study, we present an

analysis that uses transcriptomic co-expression data and whole-genome sequencing from mul-

tiple cohorts to dissect phenotypic heterogeneity and identify potential genetic drivers of com-

plex trait pathology in LOAD.

Here, we used an iterative pruning approach based on 26 human post-mortem co-expression

modules to generate 68 novel submodules that contained genes associated with LOAD specific bio-

logical pathways and molecular processes. Indeed, we observed that genes in the novel submodules

are enriched for functional terms that were specific to pathways associated with LOAD, such as

lipid modification, the TREM2/TYROBP signaling axis, and tau-protein kinase activity. Further-

more, submodules from distinct brain regions clustered independently, suggesting that the genes

captured in each submodule represented signals that were associated with LOAD pathology rather

than cohort- or tissue-specific factors. Notably, our pruning approach identified submodules

which were much more specific for markers of different brain cell types when compared to the ini-

tial co-expression modules. This is in line with recent studies showing that different cell types in

the brain play specific roles at different stages in the pathogenesis of LOAD [40]. Taken together,

our results demonstrate that the novel human co-expression submodules identified in this study

capture cell-type-specific pathways associated with LOAD pathogenesis in the brain.

Mapping the eigengene expression for individual submodules represents a pathway- or pro-

cess-level alternative to expression quantitative trait locus (eQTL) mapping for each individual

transcript. Since the human co-expression submodules represented pathological, cell-type-spe-

cific pathways in LOAD brain tissue, mapping eigengene expression for decedents was

expected to identify genetic drivers of LOAD pathology. RNA-Seq data from post-mortem

brain tissue in human cohorts contains a strong immune signal, as evidenced by repeated

identification of genetic loci related to microglial response in meta-analyses with increasingly

large cohorts [5,41]. Using submodule eigengenes as quantitative traits for single-variant asso-

ciation provided an opportunity to identify genetic drivers of biological processes that are

known to be drivers of early LOAD pathogenesis, such as astrogliosis, neuronal plasticity, mye-

lination, and vascular blood brain barrier interactions [40]. Suggestive variants identified were

unique to subsets of submodules. For instance, the TMEM106B locus was associated at a

genome-wide significant level with the DLPFCbrown_1 and DLPFCyellow_2 eigengenes (Fig

3), representing processes related to oligodendrocytic myelination, lysosomal activity, endocy-

tosis, and potassium channel activity. This novel association between protective variants in

TMEM106B with molecular LOAD endophenotypes linked to lysosomal and myelination dys-

function is potentially of great interest. The TMEM106B locus has been implicated in cognitive

aging, with functional consequences in frontotemporal dementia related to lysosomal activity

[21–23]. A recent transcriptome study implicated protective TMEM106B variants in differ-

ences in neuronal proportions across LOAD patients, supporting the idea that impaired lyso-

somal function may lead to a toxic buildup of waste in the cell, a common process among

many neurodegenerative disorders [42]. Therefore, the presence of TMEM106B variants in

combination with other risk factors might alter the course and severity of neurodegeneration
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across patient subtypes. Furthermore, we identified multiple loci associated with a module

linked to microglia function (DLPFCblue_3). This co-expression module contains members of

the TREM2/TYROBP signaling pathway, an important mediator of neuroinflammation. Vari-

ants in the FAM110A (rs1014897), the CNTNAP5 (rs76854344) and NTM (rs1040103) genes

associated with this inflammatory module have been previously linked to posterior cortical

atrophy, LOAD [43], and white blood cell count [44]. Taken together, we show that quantita-

tive trait mapping using submodule eigengene expression can identify novel genetic variants

impacting relevant disease pathways.

Eigengenes represent a dimensional reduction of transcriptomic data onto axes of patho-

logical relevance. Thus, we expected that clustering on the eigengene expression of LOAD

cases would generate pathway-level profiles of putative molecular LOAD subtypes based on

case heterogeneity. We observed that average eigengene expression of different subtypes was

enriched for different submodules in the four brain regions for which subtype analysis was

performed, an example of which is presented for the DLPFC region in Fig 4. Similar diametric

enrichment patterns were identified in the remaining brain regions (S10 Fig). These results

suggest that the biological programs identified by submodules in this study align themselves

along the heterogeneity of transcriptomic data present in LOAD cases across multiple cohorts

rather than differentiating solely based on cases and controls. Furthermore, the stratification

of patients based on submodule expression profiles demonstrated that there is significant vari-

ation in immune response in post-mortem brain tissue (Fig 6, S7 Fig), a process that is consid-

ered a hallmark of LOAD pathogenesis. Variants associated with the subtype specificity metric

overlapped with the variants associated with individual submodule eigengenes (Fig 5). This

suggests that the genetic factors influencing subtypes can be dissected into loci driving specific

submodules. Such dissection of genetic loci can provide the basis for more targeted treatment

of dysfunctional pathways that contribute to different subtypes of LOAD.

Our subtypes in the DLPFC brain region of the ROSMAP cohort represent differences in

transcriptomic profiles of LOAD cases derived from post-mortem RNA-Seq data. A lack of

temporal data makes it challenging to decisively interpret these profiles derived from post-

mortem brain samples. The identified subtypes may represent distinct LOAD endpoints, dif-

ferences in disease severity, environmental effects, or phases of molecular pathology. Neither

of our novel subtypes was associated with cognitive or neuropathological outcome (S5 Fig).

Furthermore, covariates such as sex, APOE genotype, and years of education were not signifi-

cantly enriched in any given subtype (Fig 4C). This suggests that the transcriptomic profiles do

not represent transitions in disease severity and that there are overall risk factors not reflected

in transcriptomic subtypes. Furthermore, both subtypes are associated with unique loci that

belong to the same community of loci detected by submodule mapping (Fig 5), indicating that

the subtypes capture various combinations of genetic elements that lead to LOAD pathology.

While suggestive, these transcriptomic LOAD subtypes will require further validation in

cohorts that adequately account for disease progression.

The methodology presented in this study is not limited to RNA-Seq data and can be per-

formed on other omics datasets, such as proteomics or metabolomics. As such data become

available for the decedents in these cohorts, this analysis can be expanded across these addi-

tional informative dimensions.

Methods

Whole genome sequencing and RNA sequencing data

We obtained whole-genome sequencing and RNA-Seq data from Synapse (https://www.

synapse.org/) for three cohorts from the AMP-AD consortium: the Mayo Clinic, Mount Sinai
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Brain Bank, and Rush University. The Mayo Clinic (Mayo) cohort consists of 276 temporal

cortex (TCX) samples from 312 North American Caucasian subjects consisting of cases char-

acterized with LOAD, pathological aging (PA), progressive supranuclear palsy (PSP), or elderly

controls [13] (doi.org/10.7303/syn5550404). The Mount Sinai Brain Bank (MSBB) cohort con-

sists of 214 frontopolar prefrontal cortex (FP), 187 inferior temporal gyrus (IFG), 160 parahip-

pocampal gyrus (PHG), and 187 superior temporal gyrus (STG) samples characterized with

LOAD, elderly control, or mild cognitive impairment (MCI) (doi.org/10.7303/syn3159438).

The Rush University’s Religious Orders Study and Memory and Aging Project (ROSMAP)

cohort consists of 623 dorsolateral prefrontal cortex (DLPFC) samples of individuals from 40

groups of religious orders from across the United States (ROS) and older adults in retirement

communities in the Chicago area (MAP), characterized with LOAD, elderly control, or MCI

[7,45] (doi.org/10.7303/syn3219045). A summary of samples from each of the cohorts is pro-

vided in S1 and S2 Tables. Sex, age of death, and batch were used as covariates for normaliza-

tion in the ROSMAP and Mayo data. Sex, age of death, race, and batch were used as covariates

for normalization in the MSBB data.

Co-expression modules and iterativeWGCNA

Data on human AMP-AD co-expression modules were obtained for the three cohorts from

Synapse (doi.org/10.7303/syn11932957.1). A recent study has identified these modules as part

of a transcriptome wide LOAD meta-analysis [15]. In brief, a modified procedure using five

different co-expression analysis protocols followed by graph clustering methods was per-

formed to obtain 30 modules across all three cohorts (doi.org/10.7303/syn2580853), 26 of

which corresponded to the six tissue regions used in this study. A summary of these modules

is provided in S3 Table. We focused on tissues from the frontal cortex, temporal cortex, and

hippocampus due to their relevance to LOAD neuropathology [19]. These modules are gener-

ally large, containing thousands of genes that represent multiple functions [15]. In order to

construct more functionally-specific submodules from these AMP-AD co-expression modules,

we subjected them to a repeated pruning process called iterativeWGCNA [16], which includes

performing WGCNA on each AMP-AD co-expression module independently. The gene sets

produced by this process were then pruned to ensure that only highly correlated genes

remained by evaluating the connectivity of the genes to the gene set eigengene. The resulting

gene sets, containing highly correlated genes, were combined and the process was repeated

until the gene sets converged. The algorithm then attempted to reclassify genes from the resid-

ual gene set into submodules. We specified a soft-threshold power of six, a minimum eigen-

gene connectivity of 0.6, and a required module size of 100 to promote the generation of

submodules that capture pathway-level signals. The final set of 68 submodules consisted of

highly correlated and cell-type-specific genes. The submodules were mutually exclusive for a

given cohort but overlapped with submodules from other cohorts. A summary of these submo-

dules is provided in S4 Table. An eigengene for a given submodule is defined as the first princi-

ple component of gene expression data within each submodule.

Stratification of LOAD cases based on clustering of human co-expression

submodules

Eigengene expression data for TCX, PHG, FP, and DLPFC regions was used to stratify LOAD

cases into subtypes based on each brain region separately. We used the NbClust R package to

determine the optimal number of clusters across different clustering methods by polling with

the majority rule across 30 indices [20]. We tested agglomerative hierarchical approaches

(Ward, UPGMA, WPGMA) and a reallocation approach (K-means) on the eigengene
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expression data and evaluated the within-cluster similarity of cases using silhouettes. The sil-

houette score of a given object (data point) is a measure that simultaneously assesses how simi-

lar this object is to its cluster and how different it is from all the other clusters [46]. A

simulation study suggests that no one clustering method outperforms the other consistently

and that mean silhouette widths can be used to pick the ideal clustering method and compare

clustering across datasets [47]. The silhouette plots revealed that different methods were

required for the different regions to generate clusters with the largest average silhouette widths.

We determined that K-means was an optimal approach for DLPFC, Ward was optimal for

PHG and TCX, and UPGMA was optimal for FP after analyzing silhouette plots of clusters

generated by each method for each region. An example of silhouettes used to determine the

ideal clustering method for the DLPFC region is shown in Fig 4. A summary of the clusters for

each brain region, considered case subtypes, is provided in S10 Table. In the subtypes gener-

ated for the DLPFC region from the ROSMAP cohort, we assessed each subtype for enrich-

ment of cognitive and pathological measures. We used Braak stages as a measure of

neurofibrillary tangle burden and CERAD scores as a measure of neuritic plaque burden

[48,49]. We also assessed the rate of decline in memory, executive function, visuospatial func-

tion, and language across the subtypes. Definitions, collection, and standardization of these

decline measures can be found in previously published work [50].

Differential expression analysis of case subtypes

For differential expression analysis, control decedents were defined as cognitively normal and

MCI decedents for PHG, FP, and DLPFC. In the case of TCX, control decedents included cog-

nitively normal, PSP, and PA decedents. For each of the regions used to stratify LOAD cases

(TCX, PHG, FP, and DLPFC), we performed differential expression analysis to compare gene

expression in LOAD subtypes with control decedents as described above. We repeated this

analysis excluding MCI, PSP, and PA decedents from the control group and got essentially the

same results (S9 Fig). We used the limma R package to perform the differential expression

analysis between subtype and control decedents [51]. We used the clusterProfiler R package to

perform KEGG and Reactome pathway analysis on differentially expressed genes to determine

the signal captured by clustering on eigengene expression data [52].

Single-variant association of eigengene expression and subtype specificity

We used EMMAX [18], a variance component linear mixed model, to perform single-variant

association, using each submodule eigengene as a quantitative trait. In addition, we developed

a subtype specificity metric for each brain region by calculating the Euclidean distance

between the eigengene expression profile of each decedent and the centroid of each subtype

cluster. This resulted in a vector of scores for each subtype that was mapped as a separate trait.

All quantitative trait mapping results had a genomic inflation factor near one, indicating that

there was no significant population substructure effect on the mapping. QQ plot analysis on

the p-values showed no evidence of population substructure or confounding effects (S4 Fig).

Replication of suggestive and significant SNPs in other cohorts

The ROSMAP cohort represented the most adequately powered cohort in the study and was

therefore used as our baseline, while the other cohorts were utilized for assessing replication of

suggestive and significant SNPs. SNPs were considered suggestive with a p-value smaller than

1×10−5 and genome-wide significant with a p-value smaller than 5×10−8, which are standard

cutoffs for GWAS. Suggestive and significant SNPs from the DLPFC region in ROSMAP were

considered replicated in the TCX, FP, and PHG regions if the SNPs were associated with the
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submodule eigengenes or subtype specificity metric of the given region at a p-value of 0.05. In

addition, we compared the ROSMAP loci to prior association studies using summary statistics

obtained from the NHGRI-EBI catalog [53]. Loci were considered replicated in this case if sug-

gestive and significant SNPs from the ROSMAP cohort were reported in these studies at a p-

value smaller than 5×10−8 (Fig 1C and phase 3 in S1 Fig).

Network of loci and associated quantitative phenotypes in ROSMAP

We built a directed network of quantitative phenotypes and associated loci to better visualize

the communities of loci that were associated with our newly derived quantitative phenotypes

in the ROSMAP cohort (the subtype specificity metric and submodule eigengenes), including

both suggestive and significant loci. We included in this network results of single-variant asso-

ciation of diagnostic criteria for other relevant traits, including module eigengenes, Braak

stage, CERAD scores, cognitive diagnosis, and case-control diagnosis (using EMMAX [18] as

for the other traits). The network was built in Cytoscape version 3.7 (https://cytoscape.org/)

[54] and the nodes were organized using the “Circular Layout” option. The color of the edge

was used to distinguish the type of association (red for diagnostic criteria, blue for subtype, yel-

low for module, and green for submodule).

Supporting information

S1 Fig. The complete analysis carried out in this study is divided into three phases. Phase 1

involved the co-expression analysis of ROSMAP and other cohorts to generate submodules

representing biological processes involved in Alzheimer’s pathology. Eigengene expression

from the submodules were used to perform single-variant association and identify loci that act

as putative genetic drivers of these biological pathways. Phase 2 involved the clustering of

LOAD cases in ROSMAP and other cohorts based on an agnostic clustering method. Subtypes

were mapped using single-variant association to identify loci that may explain the heterogene-

ity observed in LOAD cases. Phase 3 involved the replication of genome-wide suggestive or

genome-wide significant SNPs from the ROSMAP cohort in other tissue regions and previous

studies. SNPs were replicated in three other tissue regions (PHG, FP, TCX) and in 27 studies

from the NHGRI-EBI catalog.

(TIF)

S2 Fig. Clusters of modules and submodules based on gene overlap reveal cell-type and

functional signatures. (A) A previous study by Logsdon et al. reported 5 consensus clusters

across 7 tissue regions based on the modules generated for each tissue region. A Jaccard matrix

heatmap is used to visualize the overlap of genes in each module between tissue regions and

cohorts. (B) Submodules were divided into 15 functional clusters based on hierarchical cluster-

ing that demonstrated specificity for certain biological pathways. These functional clusters

formed independently of module of origin and tissue of origin.

(TIF)

S3 Fig. Functional consensus clusters demonstrate cell-type specificity. Brain tissue cell-

type specific markers reported previously by McKenzie et al. were used to assess the cell-type

specificity of modules and submodules. Consensus clusters B broadly captured astrocytic,

endothelial, and microglial signals. This signal was resolved in the functional consensus clus-

ters generated using the submodules across functional consensus clusters J, K, and L.

(TIF)

S4 Fig. QQ Plots of observed p-values from single-variant association in the ROSMAP

cohort. QQ plots of select single-variant association analyses of the DLPFC region that were
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presented in Fig 3 and S6 Fig show that there is minimal genomic inflation, and consequently,

minimal population substructure effects on the analyses. The genomic inflation factor for each

QQ plot is also reported. Each QQ plot compares the expected and observed distribution of p-

values obtained from the association analysis for a given phenotype.

(TIF)

S5 Fig. Subtypes demonstrate no significant enrichment of cognitive or pathological mea-

sures. A chi-square test was used to compare distributions of categorical variables and a Stu-

dent’s t-test was used to compare distributions of quantitative variables between subtypes (α =

0.05 significance level). Braak stages are a measure of neurofibrillary tangles and CERAD

scores are a measure of neuritic plaques. Rates of decline in cognitive phenotypes were mea-

sured previously by Mukherjee et al. for a subset of the ROSMAP cohort.

(TIF)

S6 Fig. Manhattan plots of single-variant association of the subtype specificity metric in

ROSMAP. Single-variant association of the subtype specificity metric of the two subtypes in

the DLPFC region recapitulate multiple loci generally detected at a higher power with submo-

dule eigengenes. Certain loci, such asMTUS2, were not detected in previous submodule eigen-

gene associations.

(TIF)

S7 Fig. Pathway enrichment analysis for up- and downregulated KEGG pathways among

TMEM106B rs1990620 haplotype carriers. (A) KEGG pathway enrichment analyses of dif-

ferentially expressed genes among TMEM106B rs1990620 haplotype carriers reveals an upre-

gulation of multiple KEGG pathways associated with neuronal function in deceased patients

carrying the protective allele. (B) Pathways linked to neuroinflammation and immune func-

tion are upregulated in deceased patients carrying the risk haplotype.

(TIF)

S8 Fig. Pathway enrichment analysis of differentially expressed genes in subtypes from the

ROSMAP cohort. Pathway enrichment analyses of subtypes generated using the DLPFC

region data show upregulation of the TREM2/TYROBP pathway in Subtype A and downregu-

lation of the pathway in Subtype B. The KEGG Osteoclast Differentiation pathway and GO

Microglial Cell Activation term contain many of the genes associated with the TREM2/TYR-

OBP pathway.

(TIF)

S9 Fig. Comparison of differentially expressed genes from the ROSMAP cohort with and

without MCI cases. The Venn diagrams depict the results of a sensitivity analysis. The results

highlight only marginal differences when including or excluding cases with mild cognitive

impairment in the differential expression analysis for the number of: A) Downregulated genes

in subtype A. B) Downregulated genes in subtype B. C) Upregulated genes in subtype A. D)

Upregulated genes in subtype B.

(TIF)

S10 Fig. Pathway enrichment for subtypes from the Mayo and MSBB cohorts. The identi-

fied subtypes in the (A) Mayo cohort show a similar pattern in the scaled eigengene expression

profiles when compared to the (B) MSBB cohort. Subtypes differ both in the expression of

genes linked to inflammatory pathways, such as microglia activation and cellular response to

stress, as well as pathways implicated in neuronal function, including synaptic transmission.

(TIF)
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S1 Table. Summary of cohorts. RNA-Seq and whole genome sequencing data from the Mayo

Clinic, the Mount Sinai Brain Bank, and the Rush University’s Religious Orders Study and

Memory and Aging Project. Six brain regions from these studies were used. The number of

RNA-Seq samples and whole genome sequencing data for each tissue are reported.

(XLSX)

S2 Table. Summary of cohorts by diagnosis and sex. For each of the six brain regions, possi-

ble diagnoses include Late-Onset Alzheimer’s Disease (AD), unaffected elderly controls

(CONTROL), and other decedents (OTHER). In MSBB and ROSMAP, other decedents were

diagnosed with mild cognitive impairment while other decedents in Mayo were diagnosed

with either progressive supranuclear palsy (PSP) or pathological aging (PA).

(XLSX)

S3 Table. Summary of modules. Modules were generated independently for each tissue

region. The number of genes in each module are reported. Twenty-six modules were used in

this study.

(XLSX)

S4 Table. Summary of submodules. Submodules were generated from existing modules gen-

erated for each tissue region. The number of genes in each submodule is reported. Sixty-eight

submodules were generated for this study.

(XLSX)

S5 Table. GO, KEGG, and Reactome enrichment of submodules. GO and KEGG term

enrichment in genes for each submodule was assessed using the clusterProfiler R package for

GO and KEGG terms. Reactome term enrichment was similarly assessed using the Reacto-

mePA R package. Enriched terms for each submodule are reported (attached Excel work-

book).

(XLSX)

S6 Table. Significant SNP associations from TCX region analyses. Significant SNPs that

were associated at a genome-wide suggestive level with either a submodule eigengene or the

subtype specificity metric are reported. RefSNP IDs are provided if available for the positions,

which are aligned to the hg19 human genome build (attached Excel workbook).

(XLSX)

S7 Table. Significant SNP associations from PHG region analyses. Significant SNPs that

were associated at a genome-wide suggestive level with either a submodule eigengene or the

subtype specificity metric are reported. RefSNP IDs are provided if available for the positions,

which are aligned to the hg19 human genome build (attached Excel workbook).

(XLSX)

S8 Table. Significant SNP associations from FP region analyses. Significant SNPs that were

associated at a genome-wide suggestive level with either a submodule eigengene or the subtype

specificity metric are reported. RefSNP IDs are provided if available for the positions, which

are aligned to the hg19 human genome build (attached Excel workbook).

(XLSX)

S9 Table. Significant SNP associations from DLPFC region analyses. Significant SNPs that

were associated at a genome-wide suggestive level with either a submodule eigengene or the

subtype specificity metric are reported. RefSNP IDs are provided if available for the positions,

which are aligned to the hg19 human genome build (attached Excel workbook).

(XLSX)
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S10 Table. LOAD case subtypes for selected brain regions. Subtypes were generated for the

TCX, FP, PHG, and DLPFC regions. 3 clusters were generated for TCX and 2 clusters were

generated for the rest. The number of cases in each subtype are reported.

(XLSX)

S11 Table. Comparison of clustering algorithms in ROSMAP, MSBB, and Mayo. Assign-

ment of decedents based on different clustering algorithms was compared using a Pearson’s

Chi-squared test with Yates’ continuity correction in R. The assignment of decedents was com-

parable across the four algorithms tested in all three cohorts (attached Excel workbook).

(XLSX)

S12 Table. Genome-Wide suggestive SNPs in DLPFC Replicated in TCX, FP, and PHG.

SNPs that were found to be genome-wide suggestive in the DLPFC analyses were assessed for

replication in the analyses run for the TCX, FP, and PHG regions. A p-value cutoff of 0.05 was

used for the TCX, FP, and PHG regions. The analysis that generated the highest p-value for the

SNP in each region are reported, along with the p-values from each. (attached Excel work-

book).

(XLSX)

S13 Table. Genome-Wide suggestive SNPs in DLPFC Replicated in the NHGRI-EBI Cata-

log. Genome-wide suggestive SNPs from the DLPFC region were assessed for replication in

the summary SNPs provided by the NHGRI-EBI catalog (attached Excel workbook).

(XLSX)

S14 Table. KEGG and reactome pathway annotations of differentially expressed genes in

ROSMAP subtypes. Enrichment of KEGG pathway annotations was assessed for differentially

expressed genes between controls and each subtype using the clusterProfiler R package.

Enrichment of Reactome pathway annotations was similarly assessed using the ReactomePA R

package. Pathways and associated scores are reported (attached Excel workbook).

(XLSX)

Acknowledgments

We thank A. Saykin and K. Nho for helpful conversations, and A. L. Tyler and G. Cary for crit-

ically reading the manuscript.

The results published here are in whole or in part based on data obtained from the AMP-

AD Knowledge Portal (doi:10.7303/syn2580853). Study data were provided by the Rush Alz-

heimer’s Disease Center, Rush University Medical Center, Chicago. Data collection was sup-

ported through funding by NIA grants P30AG10161, R01AG15819, R01AG17917,

R01AG30146, R01AG36836, U01AG32984, U01AG46152, the Illinois Department of Public

Health, and the Translational Genomics Research Institute. Study data were provided by the

following sources: The Mayo Clinic Alzheimer’s Disease Genetic Studies, led by Dr. Nilufer

Taner and Dr. Steven G. Younkin, Mayo Clinic, Jacksonville, FL using samples from the Mayo

Clinic Study of Aging, the Mayo Clinic Alzheimer’s Disease Research Center, and the Mayo

Clinic Brain Bank. Data collection was supported through funding by NIA grants P50

AG016574, R01 AG032990, U01 AG046139, R01 AG018023, U01 AG006576, U01 AG006786,

R01 AG025711, R01 AG017216, R01 AG003949, NINDS grant R01 NS080820, CurePSP Foun-

dation, and support from Mayo Foundation. Study data includes samples collected through

the Sun Health Research Institute Brain and Body Donation Program of Sun City, Arizona.

The Brain and Body Donation Program is supported by the National Institute of Neurological

PLOS GENETICS Transcriptomic stratification and mapping in Alzheimer’s disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008775 June 3, 2020 18 / 22

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008775.s020
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008775.s021
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008775.s022
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008775.s023
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008775.s024
https://doi.org/doi:10.7303/syn2580853
https://doi.org/10.1371/journal.pgen.1008775


Disorders and Stroke (U24 NS072026 National Brain and Tissue Resource for Parkinson’s Dis-

ease and Related Disorders), the National Institute on Aging (P30 AG19610 Arizona Alzhei-

mer’s Disease Core Center), the Arizona Department of Health Services (contract 211002,

Arizona Alzheimer’s Research Center), the Arizona Biomedical Research Commission (con-

tracts 4001, 0011, 05–901 and 1001 to the Arizona Parkinson’s Disease Consortium) and the

Michael J. Fox Foundation for Parkinson’s Research. Additional data were generated from

postmortem brain tissue collected through the Mount Sinai VA Medical Center Brain Bank

and were provided by Dr. Eric Schadt from Mount Sinai School of Medicine.

Data used in this publication are available via the AD Knowledge Portal (https://

adknowledgeportal.synapse.org). The AD Knowledge Portal is a platform for accessing data,

analyses, and tools generated by the Accelerating Medicines Partnership (AMP-AD) Target

Discovery Program and other National Institute on Aging (NIA)-supported programs to

enable open-science practices and accelerate translational learning. The data, analyses and

tools are shared early in the research cycle without a publication embargo on secondary use.

Data is available for general research use according to the following requirements for data

access and data attribution (https://adknowledgeportal.synapse.org/DataAccess/Instructions).

Author Contributions

Conceptualization: Nikhil Milind, Christoph Preuss, Gregory W. Carter.

Data curation: Shubhabrata Mukherjee, Benjamin A. Logsdon, Paul K. Crane.

Formal analysis: Nikhil Milind, Christoph Preuss, Annat Haber, Guruprasad Ananda, Cai

John, Sarah Shapley.

Funding acquisition: Gregory W. Carter.

Supervision: Gregory W. Carter.

Writing – original draft: Nikhil Milind, Christoph Preuss, Gregory W. Carter.

Writing – review & editing: Nikhil Milind, Christoph Preuss, Gregory W. Carter.

References
1. Cummings JL. Alzheimer’s Disease. Wood AJJ, editor. N Engl J Med. 2004; 351: 56–67. https://doi.org/

10.1056/NEJMra040223 PMID: 15229308

2. Bertram L, Tanzi RE. Thirty years of Alzheimer’s disease genetics: The implications of systematic

meta-analyses. Nat Rev Neurosci. 2008; 9: 768–778. https://doi.org/10.1038/nrn2494 PMID: 18802446

3. Kilpinen H, Barrett JC. How next-generation sequencing is transforming complex disease genetics.

Trends in Genetics. 2013. https://doi.org/10.1016/j.tig.2012.10.001 PMID: 23103023

4. Risch N, Merikangas K. The future of genetic studies of complex human diseases. Science. 1996.

https://doi.org/10.1126/science.273.5281.1516 PMID: 8801636

5. Jansen IE, Savage JE, Watanabe K, Bryois J, Williams DM, Steinberg S, et al. Genome-wide meta-

analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat Genet.

2019; 51: 404–413. https://doi.org/10.1038/s41588-018-0311-9 PMID: 30617256

6. Verheijen J, Sleegers K. Understanding Alzheimer Disease at the Interface between Genetics and

Transcriptomics. Trends Genet. 2018; 34: 434–447. https://doi.org/10.1016/j.tig.2018.02.007 PMID:

29573818

7. Mostafavi S, Gaiteri C, Sullivan SE, White CC, Tasaki S, Xu J, et al. A molecular network of the aging

human brain provides insights into the pathology and cognitive decline of Alzheimer’s disease. Nat Neu-

rosci. 2018;21. https://doi.org/10.1038/s41593-018-0154-9 PMID: 29802388

8. Mukherjee S, Mez J, Trittschuh E, Saykin AJ, Gibbons LE, Fardo DW, et al. Genetic data and cogni-

tively-defined late-onset Alzheimer’s disease subgroups. Mol Psychiatry. 2018; 1–10. https://doi.org/10.

1101/367615

PLOS GENETICS Transcriptomic stratification and mapping in Alzheimer’s disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008775 June 3, 2020 19 / 22

https://adknowledgeportal.synapse.org/
https://adknowledgeportal.synapse.org/
https://adknowledgeportal.synapse.org/DataAccess/Instructions
https://doi.org/10.1056/NEJMra040223
https://doi.org/10.1056/NEJMra040223
http://www.ncbi.nlm.nih.gov/pubmed/15229308
https://doi.org/10.1038/nrn2494
http://www.ncbi.nlm.nih.gov/pubmed/18802446
https://doi.org/10.1016/j.tig.2012.10.001
http://www.ncbi.nlm.nih.gov/pubmed/23103023
https://doi.org/10.1126/science.273.5281.1516
http://www.ncbi.nlm.nih.gov/pubmed/8801636
https://doi.org/10.1038/s41588-018-0311-9
http://www.ncbi.nlm.nih.gov/pubmed/30617256
https://doi.org/10.1016/j.tig.2018.02.007
http://www.ncbi.nlm.nih.gov/pubmed/29573818
https://doi.org/10.1038/s41593-018-0154-9
http://www.ncbi.nlm.nih.gov/pubmed/29802388
https://doi.org/10.1101/367615
https://doi.org/10.1101/367615
https://doi.org/10.1371/journal.pgen.1008775


9. Ferreira D, Verhagen C, Hernández-Cabrera JA, Cavallin L, Guo CJ, Ekman U, et al. Distinct subtypes

of Alzheimer’s disease based on patterns of brain atrophy: longitudinal trajectories and clinical applica-

tions. Sci Rep. 2017; 7: 1–13. https://doi.org/10.1038/s41598-016-0028-x PMID: 28127051

10. Langfelder P, Horvath S. Eigengene networks for studying the relationships between co-expression

modules. BMC Syst Biol. 2007; https://doi.org/10.1186/1752-0509-1-54 PMID: 18031580

11. Zhang B, Gaiteri C, Bodea LG, Wang Z, McElwee J, Podtelezhnikov AA, et al. Integrated systems

approach identifies genetic nodes and networks in late-onset Alzheimer’s disease. Cell. 2013; https://

doi.org/10.1016/j.cell.2013.03.030 PMID: 23622250

12. De Jager PL, Ma Y, McCabe C, Xu J, Vardarajan BN, Felsky D, et al. A multi-omic atlas of the human

frontal cortex for aging and Alzheimer’s disease research. Sci Data. 2018; 5: 180142. Available: https://

doi.org/10.1038/sdata.2018.142 PMID: 30084846

13. Allen M, Carrasquillo MM, Funk C, Heavner BD, Zou F, Younkin CS, et al. Human whole genome geno-

type and transcriptome data for Alzheimer’s and other neurodegenerative diseases. Sci Data. 2016; 3:

1–10. https://doi.org/10.1038/sdata.2016.89 PMID: 27727239

14. Wang M, Beckmann ND, Roussos P, Wang E, Zhou X, Wang Q, et al. The Mount Sinai cohort of large-

scale genomic, transcriptomic and proteomic data in Alzheimer’s disease. Sci Data. 2018; 5: 1–16.

https://doi.org/10.1038/s41597-018-0002-5 PMID: 30482902

15. Logsdon BA, Perumal TM, Swarup V, Wang M, Funk C, Gaiteri C, et al. Meta-analysis of the human

brain transcriptome identifies heterogeneity across human AD coexpression modules robust to sample

collection and methodological approach. bioRxiv. 2019; https://doi.org/10.7303/syn17114455

16. Greenfest-Allen E, Cartailler J-P, Magnuson MA, Stoeckert CJ. iterativeWGCNA: iterative refinement to

improve module detection from WGCNA co-expression networks. bioRxiv. 2017; 234062. https://doi.

org/10.1101/234062

17. McKenzie AT, Wang M, Hauberg ME, Fullard JF, Kozlenkov A, Keenan A, et al. Brain Cell Type Specific

Gene Expression and Co-expression Network Architectures. Sci Rep. 2018; 8: 1–19. https://doi.org/10.

1038/s41598-017-17765-5 PMID: 29311619

18. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB, et al. Variance component model to

account for sample structure in genome-wide association studies. Nat Genet. 2010; 42: 348–354.

https://doi.org/10.1038/ng.548 PMID: 20208533

19. DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer disease. Mol Neurodegener.

2019; 14: 1–18. https://doi.org/10.1186/s13024-018-0301-5 PMID: 30630532

20. Charrad M, Ghazzali N, Boiteau V, Niknafs A. NbClust: An R Package for Determining the Relevant

Number of Clusters in a Data Set. J Stat Softw. 2014; 61: 1–36. https://doi.org/10.18637/jss.v061.i06

21. White CC, Yang HS, Yu L, Chibnik LB, Dawe RJ, Yang J, et al. Identification of genes associated with

dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epi-

genetic, and transcriptional data. PLoS Med. 2017; 14: 1–23. https://doi.org/10.1371/journal.pmed.

1002287 PMID: 28441426

22. Klein ZA, Takahashi H, Ma M, Stagi M, Zhou M, Lam TKT, et al. Loss of TMEM106B Ameliorates Lyso-

somal and Frontotemporal Dementia-Related Phenotypes in Progranulin-Deficient Mice. Neuron. 2017;

95: 281–296.e6. https://doi.org/10.1016/j.neuron.2017.06.026 PMID: 28728022

23. Gallagher MD, Posavi M, Huang P, Unger TL, Berlyand Y, Gruenewald AL, et al. A Dementia-Associ-

ated Risk Variant near TMEM106B Alters Chromatin Architecture and Gene Expression. Am J Hum

Genet. 2017; 101: 643–663. https://doi.org/10.1016/j.ajhg.2017.09.004 PMID: 29056226

24. Furney SJ, Simmons A, Breen G, Pedroso I, Lunnon K, Proitsi P, et al. Genome-wide association with

MRI atrophy measures as a quantitative trait locus for Alzheimer’s disease. Mol Psychiatry. 2011; 16:

1130–1138. https://doi.org/10.1038/mp.2010.123 PMID: 21116278

25. Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide associ-

ation analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat

Genet. 2018; https://doi.org/10.1038/s41588-018-0090-3 PMID: 29700475

26. Nagel M, Jansen PR, Stringer S, Watanabe K, De Leeuw CA, Bryois J, et al. Meta-analysis of genome-

wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and path-

ways. Nat Genet. 2018; https://doi.org/10.1038/s41588-018-0151-7 PMID: 29942085

27. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis

of depression identifies 102 independent variants and highlights the importance of the prefrontal brain

regions. Nat Neurosci. 2019; https://doi.org/10.1038/s41593-018-0326-7 PMID: 30718901

28. Nagel M, Watanabe K, Stringer S, Posthuma D, Van Der Sluis S. Item-level analyses reveal genetic het-

erogeneity in neuroticism. Nat Commun. 2018; 9. https://doi.org/10.1038/s41467-018-03242-8 PMID:

29500382

PLOS GENETICS Transcriptomic stratification and mapping in Alzheimer’s disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008775 June 3, 2020 20 / 22

https://doi.org/10.1038/s41598-016-0028-x
http://www.ncbi.nlm.nih.gov/pubmed/28127051
https://doi.org/10.1186/1752-0509-1-54
http://www.ncbi.nlm.nih.gov/pubmed/18031580
https://doi.org/10.1016/j.cell.2013.03.030
https://doi.org/10.1016/j.cell.2013.03.030
http://www.ncbi.nlm.nih.gov/pubmed/23622250
https://doi.org/10.1038/sdata.2018.142
https://doi.org/10.1038/sdata.2018.142
http://www.ncbi.nlm.nih.gov/pubmed/30084846
https://doi.org/10.1038/sdata.2016.89
http://www.ncbi.nlm.nih.gov/pubmed/27727239
https://doi.org/10.1038/s41597-018-0002-5
http://www.ncbi.nlm.nih.gov/pubmed/30482902
https://doi.org/10.7303/syn17114455
https://doi.org/10.1101/234062
https://doi.org/10.1101/234062
https://doi.org/10.1038/s41598-017-17765-5
https://doi.org/10.1038/s41598-017-17765-5
http://www.ncbi.nlm.nih.gov/pubmed/29311619
https://doi.org/10.1038/ng.548
http://www.ncbi.nlm.nih.gov/pubmed/20208533
https://doi.org/10.1186/s13024-018-0301-5
http://www.ncbi.nlm.nih.gov/pubmed/30630532
https://doi.org/10.18637/jss.v061.i06
https://doi.org/10.1371/journal.pmed.1002287
https://doi.org/10.1371/journal.pmed.1002287
http://www.ncbi.nlm.nih.gov/pubmed/28441426
https://doi.org/10.1016/j.neuron.2017.06.026
http://www.ncbi.nlm.nih.gov/pubmed/28728022
https://doi.org/10.1016/j.ajhg.2017.09.004
http://www.ncbi.nlm.nih.gov/pubmed/29056226
https://doi.org/10.1038/mp.2010.123
http://www.ncbi.nlm.nih.gov/pubmed/21116278
https://doi.org/10.1038/s41588-018-0090-3
http://www.ncbi.nlm.nih.gov/pubmed/29700475
https://doi.org/10.1038/s41588-018-0151-7
http://www.ncbi.nlm.nih.gov/pubmed/29942085
https://doi.org/10.1038/s41593-018-0326-7
http://www.ncbi.nlm.nih.gov/pubmed/30718901
https://doi.org/10.1038/s41467-018-03242-8
http://www.ncbi.nlm.nih.gov/pubmed/29500382
https://doi.org/10.1371/journal.pgen.1008775


29. Luciano M, Hagenaars SP, Davies G, Hill WD, Clarke TK, Shirali M, et al. Association analysis in over

329,000 individuals identifies 116 independent variants influencing neuroticism. Nat Genet. 2018;

https://doi.org/10.1038/s41588-017-0013-8 PMID: 29255261

30. Baselmans BML, Jansen R, Ip HF, van Dongen J, Abdellaoui A, van de Weijer MP, et al. Multivariate

genome-wide analyses of the well-being spectrum. Nat Genet. 2019; https://doi.org/10.1038/s41588-

018-0320-8 PMID: 30643256

31. Hill WD, Weiss A, Liewald DC, Davies G, Porteous DJ, Hayward C, et al. Genetic contributions to two

special factors of neuroticism are associated with affluence, higher intelligence, better health, and lon-

ger life. Mol Psychiatry. 2019; https://doi.org/10.1038/s41380-019-0387-3 PMID: 30867560

32. Van Der Harst P, Verweij N. Identification of 64 novel genetic loci provides an expanded view on the

genetic architecture of coronary artery disease. Circ Res. 2018; https://doi.org/10.1161/CIRCRESAHA.

117.312086 PMID: 29212778

33. Pottier C, Zhou X, Perkerson RB, Baker M, Jenkins GD, Serie DJ, et al. Potential genetic modifiers of

disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a

genome-wide association study. Lancet Neurol. 2018; https://doi.org/10.1016/S1474-4422(18)30126–1

34. Chang D, Nalls MA, Hallgrı́msdóttir IB, Hunkapiller J, Brug M van der, Cai F, et al. A meta-analysis of

genome-wide association studies identifies 17 new Parkinson’s disease risk loci. Nat Genet. 2017;

https://doi.org/10.1038/ng.3955 PMID: 28892059

35. MacGregor S, Ong JS, An J, Han X, Zhou T, Siggs OM, et al. Genome-wide association study of intra-

ocular pressure uncovers new pathways to glaucoma. Nature Genetics. 2018. https://doi.org/10.1038/

s41588-018-0176-y PMID: 30054594

36. Gharahkhani P, Burdon KP, Cooke Bailey JN, Hewitt AW, Law MH, Pasquale LR, et al. Analysis com-

bining correlated glaucoma traits identifies five new risk loci for open-angle glaucoma. Sci Rep. 2018;

https://doi.org/10.1038/s41598-018-20435-9 PMID: 29449654

37. Choquet H, Paylakhi S, Kneeland SC, Thai KK, Hoffmann TJ, Yin J, et al. A multiethnic genome-wide

association study of primary open-angle glaucoma identifies novel risk loci. Nat Commun. 2018; https://

doi.org/10.1038/s41467-018-04555-4 PMID: 29891935

38. Futch HS, Croft CL, Truong VQ, Krause EG, Golde TE. Targeting psychologic stress signaling path-

ways in Alzheimer’s disease. Mol Neurodegener. 2017; 12: 49. https://doi.org/10.1186/s13024-017-

0190-z PMID: 28633663

39. Vogl T, Gharibyan AL, Morozova-Roche LA. Pro-Inflammatory S100A8 and S100A9 Proteins: Self-

Assembly into Multifunctional Native and Amyloid Complexes. Int J Mol Sci. 2012; 13: 2893. https://doi.

org/10.3390/ijms13032893 PMID: 22489132

40. De Strooper B, Karran E. The Cellular Phase of Alzheimer’s Disease. Cell. 2016; 164: 603–615. https://

doi.org/10.1016/j.cell.2015.12.056 PMID: 26871627

41. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of

74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet. 2013; 45:

1452–1458. https://doi.org/10.1038/ng.2802 PMID: 24162737

42. Li Z, Farias FG, Dube U, Del-Aguila JL, Mihindukulasuriya KA, Fernandez MV, et al. The TMEM106B

rs1990621 protective variant is also associated with increased neuronal proportion. bioRxiv. 2019;

https://doi.org/10.1101/583286

43. Schott JM, Crutch SJ, Carrasquillo MM, Uphill J, Shakespeare TJ, Ryan NS, et al. Genetic risk factors

for the posterior cortical atrophy variant of Alzheimer’s disease. Alzheimer’s Dement. 2016; 12: 862–

871. https://doi.org/10.1016/j.jalz.2016.01.010 PMID: 26993346

44. Kichaev G, Bhatia G, Loh P-R, Gazal S, Burch K, Freund MK, et al. Leveraging Polygenic Functional

Enrichment to Improve GWAS Power. Am J Hum Genet. 2019; 104: 65–75. https://doi.org/10.1016/j.

ajhg.2018.11.008 PMID: 30595370

45. Chibnik LB, White CC, Mukherjee S, Raj T, Yu L, Larson EB, et al. Susceptibility to neurofibrillary tan-

gles: role of the PTPRD locus and limited pleiotropy with other neuropathologies. Mol Psychiatry. 2018;

23: 1521–1529. https://doi.org/10.1038/mp.2017.20 PMID: 28322283

46. Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J

Comput Appl Math. 1986; 20: 53–65. https://doi.org/10.1177/003754977702900403

47. Clifford H, Wessely F, Pendurthi S, Emes RD. Comparison of clustering methods for investigation of

genome-wide methylation array data. Front Genet. 2011; 2: 1–11. https://doi.org/10.3389/fgene.2011.

00001 PMID: 22303300

48. Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the Pathologic Process in Alzheimer Dis-

ease. J Neuropathol Exp Neurol. 2011; 70: 960–969. https://doi.org/10.1097/NEN.0b013e318232a379

PMID: 22002422

PLOS GENETICS Transcriptomic stratification and mapping in Alzheimer’s disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008775 June 3, 2020 21 / 22

https://doi.org/10.1038/s41588-017-0013-8
http://www.ncbi.nlm.nih.gov/pubmed/29255261
https://doi.org/10.1038/s41588-018-0320-8
https://doi.org/10.1038/s41588-018-0320-8
http://www.ncbi.nlm.nih.gov/pubmed/30643256
https://doi.org/10.1038/s41380-019-0387-3
http://www.ncbi.nlm.nih.gov/pubmed/30867560
https://doi.org/10.1161/CIRCRESAHA.117.312086
https://doi.org/10.1161/CIRCRESAHA.117.312086
http://www.ncbi.nlm.nih.gov/pubmed/29212778
https://doi.org/10.1016/S1474-4422
https://doi.org/10.1038/ng.3955
http://www.ncbi.nlm.nih.gov/pubmed/28892059
https://doi.org/10.1038/s41588-018-0176-y
https://doi.org/10.1038/s41588-018-0176-y
http://www.ncbi.nlm.nih.gov/pubmed/30054594
https://doi.org/10.1038/s41598-018-20435-9
http://www.ncbi.nlm.nih.gov/pubmed/29449654
https://doi.org/10.1038/s41467-018-04555-4
https://doi.org/10.1038/s41467-018-04555-4
http://www.ncbi.nlm.nih.gov/pubmed/29891935
https://doi.org/10.1186/s13024-017-0190-z
https://doi.org/10.1186/s13024-017-0190-z
http://www.ncbi.nlm.nih.gov/pubmed/28633663
https://doi.org/10.3390/ijms13032893
https://doi.org/10.3390/ijms13032893
http://www.ncbi.nlm.nih.gov/pubmed/22489132
https://doi.org/10.1016/j.cell.2015.12.056
https://doi.org/10.1016/j.cell.2015.12.056
http://www.ncbi.nlm.nih.gov/pubmed/26871627
https://doi.org/10.1038/ng.2802
http://www.ncbi.nlm.nih.gov/pubmed/24162737
https://doi.org/10.1101/583286
https://doi.org/10.1016/j.jalz.2016.01.010
http://www.ncbi.nlm.nih.gov/pubmed/26993346
https://doi.org/10.1016/j.ajhg.2018.11.008
https://doi.org/10.1016/j.ajhg.2018.11.008
http://www.ncbi.nlm.nih.gov/pubmed/30595370
https://doi.org/10.1038/mp.2017.20
http://www.ncbi.nlm.nih.gov/pubmed/28322283
https://doi.org/10.1177/003754977702900403
https://doi.org/10.3389/fgene.2011.00001
https://doi.org/10.3389/fgene.2011.00001
http://www.ncbi.nlm.nih.gov/pubmed/22303300
https://doi.org/10.1097/NEN.0b013e318232a379
http://www.ncbi.nlm.nih.gov/pubmed/22002422
https://doi.org/10.1371/journal.pgen.1008775


49. Wilson RS, Arnold SE, Schneider JA, Li Y, Bennett DA. Chronic Distress, Age-Related Neuropathology,

and Late-Life Dementia. Psychosom Med. 2007; 69. Available: https://journals.lww.com/

psychosomaticmedicine/Fulltext/2007/01000/Chronic_Distress,_Age_Related_Neuropathology,_and.

9.aspx

50. Mukherjee S, Mez J, Trittschuh EH, Saykin AJ, Gibbons LE, Fardo DW, et al. Genetic data and cogni-

tively defined late-onset Alzheimer’s disease subgroups. Mol Psychiatry. 2018; https://doi.org/10.1038/

s41380-018-0298-8 PMID: 30514930

51. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analy-

ses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015; 43: e47–e47. https://doi.org/

10.1093/nar/gkv007 PMID: 25605792

52. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R Package for Comparing Biological Themes

Among Gene Clusters. Omi A J Integr Biol. 2012; 16: 284–287. https://doi.org/10.1089/omi.2011.0118

PMID: 22455463

53. Buniello A, Macarthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI

GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics

2019. Nucleic Acids Res. 2019; 47: D1005–D1012. https://doi.org/10.1093/nar/gky1120 PMID:

30445434

54. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: A Software Environ-

ment for Integrated Models. Genome Res. 2003; 13: 2498–2504. https://doi.org/10.1101/gr.1239303

PMID: 14597658

PLOS GENETICS Transcriptomic stratification and mapping in Alzheimer’s disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008775 June 3, 2020 22 / 22

https://journals.lww.com/psychosomaticmedicine/Fulltext/2007/01000/Chronic_Distress,_Age_Related_Neuropathology,_and.9.aspx
https://journals.lww.com/psychosomaticmedicine/Fulltext/2007/01000/Chronic_Distress,_Age_Related_Neuropathology,_and.9.aspx
https://journals.lww.com/psychosomaticmedicine/Fulltext/2007/01000/Chronic_Distress,_Age_Related_Neuropathology,_and.9.aspx
https://doi.org/10.1038/s41380-018-0298-8
https://doi.org/10.1038/s41380-018-0298-8
http://www.ncbi.nlm.nih.gov/pubmed/30514930
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
https://doi.org/10.1089/omi.2011.0118
http://www.ncbi.nlm.nih.gov/pubmed/22455463
https://doi.org/10.1093/nar/gky1120
http://www.ncbi.nlm.nih.gov/pubmed/30445434
https://doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
https://doi.org/10.1371/journal.pgen.1008775

