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Abstract

Neural stem cells (NSCs) are crucial for development, regeneration, and repair of the ner-

vous system. Most NSCs in mammalian adult brains are quiescent, but in response to

extrinsic stimuli, they can exit from quiescence and become reactivated to give rise to new

neurons. The delicate balance between NSC quiescence and activation is important for

adult neurogenesis and NSC maintenance. However, how NSCs transit between quies-

cence and activation remains largely elusive. Here, we discuss our current understanding of

the molecular mechanisms underlying the reactivation of quiescent NSCs. We review recent

advances on signaling pathways originated from the NSC niche and their crosstalk in regu-

lating NSC reactivation. We also highlight new intrinsic paradigms that control NSC reactiva-

tion in Drosophila and mammalian systems. We also discuss emerging evidence on

modeling human neurodevelopmental disorders using NSCs.

Introduction

The ability of stem cells to switch between quiescence and proliferation is crucial for tissue

homeostasis and regeneration. Most neural stem cells (NSCs) in the mammalian adult brain

exist in quiescence, a mitotic-dormant state, without undergoing proliferation or differentia-

tion [1]. In response to physiological stimuli such as the presence of nutrients and physical

exercise, quiescent NSCs can exit from quiescence and become reactivated to generate new

neurons [2]. Conversely, stress, anxiety, and old age reduce the proliferation capability of

NSCs [3]. Failure in NSC reactivation is thought to result in cognitive decline during old age

[4]. In the mammalian adult brain, radial glial cells (type B) are NSCs that reside within the

ventricular–subventricular zone (V–SVZ)/subependymal zone (SEZ) in the walls of the lateral

ventricles, while radial glial cells (type I) are NSCs located in the subgranular zone (SGZ) of

the hippocampal dentate gyrus (Fig 1) [5, 6].

NSCs in invertebrates such as Drosophila melanogaster also switch between a reversible

transition between quiescence and reactivation [7–10]. Drosophila NSCs, also known as neuro-

blasts, enter quiescence for about 24 hours between embryogenic and postembryonic
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neurogenesis [7–10] (Fig 2). Because embryonic NSCs shrink their cell size following each cell

division, by the end of the embryonic stage, the diameter of NSCs is decreased from approxi-

mately 10–14 μm to approximately 3–4 μm [7, 8]. Most NSCs in the abdominal regions of the

ventral nerve cord (VNC) undergo apoptosis [11], while NSCs in the brain hemispheres and

the thoracic VNC enter quiescence and subsequently exit quiescence during larval stages [8,

12, 13]. When larval NSCs exit quiescence, they undergo cell growth to reach the cell diameter

of about approximately 7 μm before their first cell division in larval stages [14, 15].

Drosophila larval NSCs exit quiescence (reactivate) in response to feeding upon larval

hatching [8, 12, 13]. The crucial dietary components for NSC reactivation are amino acids, but

not nucleotide precursors, lipids, or vitamins [14]. However, none of the 11 essential amino

acids alone in the food is sufficient for NSC reactivation, underscoring the importance of pro-

tein synthesis [14]. The signaling relay from the presence of dietary amino acids to the brain is

controlled by an endocrine organ named the fat body, a functional equivalent of the

Fig 1. Schematic representation showing neurogenic niches within the mammalian adult brain. Top: a sagittal

section of the mouse brain with neurogenic niches SGZ and V–SVZ highlighted. Bottom: schematics showing

quiescent NSCs (type B in SVZ; type I in SGZ) and their surrounding cellular and molecular components within the

V–SVZ (left) and SGZ (right). GCL, granule cell layer; ML, molecular layer; NSC, neural stem cell; SGZ, subgranular

zone; SVZ, subventricular zone; V, ventricular space; VZ, ventricular zone.

https://doi.org/10.1371/journal.pgen.1008653.g001
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mammalian liver and white fat [14, 16, 17]. The fat body senses circulating amino acids by the

cationic amino-acid transporter Slimfast (Slif), leading to the activation of the Target-of-Rapa-

mycin (TOR) pathway, which induces an unknown fat-body–derived signal (FDS) [16, 18].

The FDS is thought to reach the brain, stimulating NSC reactivation [14] (Fig 2). While extrin-

sic niche-derived cues allow NSCs to reactivate in respond to changes in the external environ-

ment such as the presence of nutrition, exercise, drug administration, or injury, intrinsic

mechanisms represent another facet of control that is dependent on nuclear factors and cell-

cycle regulators within NSCs during their reactivation.

Signaling integration in the CNS barriers regulates the activation of

NSCs

The blood–brain barrier (BBB) forms an insulation barrier to restrict free crossing of sub-

stances from the blood and protects the central nervous system (CNS) from toxins, inflamma-

tion, and pathogens while providing a microenvironment for neuroglia signaling [19] (Fig 3).

The integrity of the mammalian BBB is primarily attributed to CNS endothelial cells that vas-

cularize the brain [20]. These endothelial cells are connected by specialized intercellular tight

Fig 2. Schematic representation showing various factors within Drosophila fat body, BBB glia, and NSCs that

regulate Drosophila NSC quiescence entry and reactivation. Factors promoting NSC reactivation are in green, while

factors maintaining NSC quiescence or preventing reactivation are in red. Abd-A, Abdominal-A; ALH, after larval

hatching; Ana, Anachronism; Antp, Antennapedia; BBB, blood–brain barrier; Cas, Caster; Cdc37, Cell division cycle

37; Chro, Chromator; Cka, Connector of kinase to AP-1; CRL4, Cullin-RING ligase 4; Dapp21, Dacapo (ortholog of

p21CIP/p27KIP1/p57KIP2 family); dILPs, insulin/IGF-like peptides; D–V, dorsal to ventral; FDS, fat-body–derived

signal; FMRP, Fragile X mental retardation protein; Grh, Grainy head; Hsp83, Heat shock protein 83; InR, Insulin

receptor; Mob4, Monopolar spindle-one-binder family member 4; Msx/Msh, Muscle segment homeobox (ortholog of

MSX1/2/3); Mts, Microtubule star; Nab, NGFI-A-binding protein; NKX/Vnd, Ventral nervous system defective

(ortholog of NKX family); NSC, neural stem cell; Pdm, Pou-domain proteins Pdm1 and 2; PI3K, Phosphatidylinositol

3-kinase; Pros, Prospero; Slif, Slimfast; Sqz, Squeeze; TOR, Target-of-Rapamycin; Trol, Terribly reduced optic lobes.

https://doi.org/10.1371/journal.pgen.1008653.g002
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junctions that have an important barrier function: to restrict paracellular permeability [21].

This permeability may be influenced by calcium oscillations of CNS endothelial cells [22]. In

addition to their function as a barrier, CNS endothelial cells also supply the brain with essential

nutrients by producing nutrient transporters such as glucose carrier, amino-acid carriers, and

major facilitator domain containing 2A (Mfsd2a), a lysolipid transporter for docosahexaenoic

acid (DHA) [23–25]. Mutations in human MFSD2A result in severe microcephaly syndrome, a

neurodevelopmental disorder [26, 27]. Endothelial cells in the V–SVZ secrete factors that have

an opposing effect in activating or maintaining quiescence of NSCs [28, 29]. To activate NSCs,

betacellulin acts on epidermal growth factor receptor (EGFR), activating the extracellular sig-

nal-regulated kinase (ERK)/AKT, also known as protein kinase B (PKB), pathway to enter a

proliferative stage [28]. On the other hand, neurotrophin 3 (NT-3) up-regulates endothelial

isoform of nitrous oxide synthase (eNOS) that promotes NSC quiescence in a nitrous oxide

(NO)-dependent manner [29]. In vitro study has, however, demonstrated a dose-dependent

effect of NO in the balance of NSC quiescence–activation, with low concentration resulting in

an increase in cell proliferation, while high concentration resulted in a decrease in cell

Fig 3. Schematic representation showing various factors within the neurogenic niche and from systemic

circulation, as well as physical contacts with the microenvironment that regulate the balance between quiescence

and reactivation of murine NSCs. Factors highlighted in green promote reactivation, while factors highlighted in red

promote quiescence. Ach, acetylcholine; Ang-1, angiopoietin-1; BL, basal lamina; BMP1/6, bone morphogenetic

protein 1/6; EC, endothelial cell; EPO, erythropoietin; GABA, gamma aminobutyric acid; GDF11, growth

differentiation factor 11; IGF-1/2, insulin-like growth factor-1/2; NO, nitrous oxide; NT-3, neurotrophin 3; PDGF,

platelet-derived growth factor; PEDF, pigment epithelium-derived growth factor; PLGF2, placenta-derived growth

factor 2; sFRP3, secreted frizzled-related protein 3; SGZ, subgranular zone; VEGF-C, vascular endothelial growth

factor-C; V–SVZ, ventricular–subventricular zone; WNT3, Wnt family member 3.

https://doi.org/10.1371/journal.pgen.1008653.g003
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proliferation [30]. Further investigations into the mode of NO regulation within the BBB

niche will shed light on the dynamic regulation of NSC activation under homeostatic condi-

tions and in response to external insult.

Systemic signals delivered via the vasculature to the BBB niche have been implicated in the

regulation of NSC activation. Using a mouse heterochronic parabiosis model by surgically

joining pairs of animals, systemic factors derived from young mice, specifically identified to

include growth differentiation factor 11 (GDF11), are shown to drive vascular remodeling and

activation of NSC proliferation in the V–SVZ of aged mice [31]. Conversely, systemic factors

derived from aged mice have an attenuating effect on NSC proliferation in the SGZ [32, 33]. In

the V–SVZ, hormones such as erythropoietin and prolactin have positive effects in activating

the proliferation program in quiescent NSCs [34, 35]. However, prolactin has a negligible

effect on NSCs residing in the SGZ, suggesting a differential effect of hormones and possibly

other soluble factors that depends on spatial cues and niche characteristics [34].

Besides endothelial cells, the brain microenvironment also contains brain pericytes, neu-

rons, and astrocytic glia that influence barrier properties [36]. Astrocytes that extend cellular

processes ensheathe the blood vessels by contacting and surrounding CNS endothelial cells

through the endfeet of their basal processes [19]. Astrocytes regulate the permeability of the

BBB and secrete factors such as transforming growth factor beta (TGF-β), glial-cell–derived

neurotrophic factor (GDNF), and basic fibroblast growth factor (FGF) that regulate BBB devel-

opment [25].

The Drosophila brain is separated from the blood-like hemolymph by the functional ana-

logue of BBB [37]. The Drosophila BBB in larval stages is composed of 2 types of surface glia

named perineural glia (PG) and subperineural glia (SPG) [38, 39]. The PG characterized with

a stellate appearance are located at the outer layer, while the SPG with sheet-like morphology

are located immediately beneath the PG [40–42]. The SPG are the major BBB layer because

they form septate junctions at the lateral borders between the SPG cells. The BBB glia provide

an important niche for the regulation of NSC quiescence and reactivation via various signaling

pathways.

The insulin pathway promotes NSC reactivation

In response to nutritional input, insulin/insulin-like growth factor (IGF) signaling (IIS) con-

trols growth, metabolism, and longevity [43]. The function of IIS in growth is evolutionarily

conserved in Drosophila, in which there are a single insulin/IGF receptor (dInR) and 8 insulin/

IGF-like peptides (dILPs 1–8) [44, 45]. There are at least 2 source of dILPs in the Drosophila
larval brain, the specialized neurosecretory cells named insulin-producing cells (IPCs) and a

set of surface glia overlying the NSCs [15, 44]. Functioning analogous to β cells of the verte-

brate endocrine pancreas, IPCs produce and secrete dILP1, 2, 3, and 5 into the hemolymph

and act systemically to regulate larval growth and lipid metabolism [46, 47]. By contrast, sur-

face glia in the larval brain are dispensable for systemic growth but essential for NSC reactiva-

tion [15, 18]. During NSC reactivation in the Drosophila VNC, the production of dILP2 and

dILP6 increases [15]. The dILP2 and dILP6 are found to be produced in a subset of PG glia

that have a stellate morphology and are located between the NSCs and basement membrane

[15, 18]. dILP3 expression was found in some glia and neurons in the CNS in the early second-

instar stage [18], suggesting that dILP3 may play a role at later developmental stages following

NSC reactivation. Overexpression of dILP2 or dILP6 in glia is sufficient for NSC reactivation

in the absence of dietary amino acids without apparently altering larval growth [15, 18]. On

the contrary, none of the dILPs 1–7, upon overexpression in IPCs, could reactivate NSCs

under nutrient restriction conditions [18]. Therefore, Drosophila NSCs respond to a local
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source of dILPs from glial cells, but not the systemic source from IPCs, to exit quiescence. Pre-

sumably, the mitogen from the fat body stimulates the glial cells to produce and secrete dILP2

and dILP6 [15, 18, 48]. The identity of this fat-body–derived mitogen—growth factors, hor-

mones, or signaling molecules—remains elusive. The dILPs secreted from the glial cells act

locally by directly activating the insulin receptor (InR)/phosphatidylinositol 3-kinase (PI3K)/

Akt pathway as well as the TOR pathway in underlying NSCs [15, 18] (Fig 2). As a result, pro-

tein biosynthesis begins, and NSCs re-enter the cell cycle through inhibition of the Forkhead

box O (FOXO) transcription factor [15, 18].

NSC reactivation occurs relatively synchronously, in about 24 hours, in all neurogenic

regions of the Drosophila CNS [15]. This is achieved by the function of gap junctions in the

BBB glia that couple metabolic signal with synchronized calcium pulses and insulin secretion

[49]. The gap junction is a transmembrane channel formed by docking of connexin hexamers

from adjacent cells [50]. Gap junction proteins are required in the BBB glia for the secretion of

dILP6 and subsequent coordinated calcium oscillations of SPG [49]. The inositol-triphosphate

(IP3) binds to its receptor Ins3PR, a calcium channel in the endoplasmic reticulum (ER), and

releases calcium from intracellular stores in glial cells to trigger NSC reactivation [49]. It is

important to note that depletion of gap junction proteins does not cause the leakage of BBB

because the septate junctions of the BBB glia appear to be intact [49].

Analogous to Drosophila BBB glia, in the mammalian adult hippocampus, astrocytic glia

function as a niche to induce neurogenesis by promoting proliferation of NSCs and neuronal

fate commitment [51]. This was first demonstrated by coculturing of adult NSCs with primary

hippocampal astrocytes, which is sufficient to promote neurogenesis [51]. Astrocytes produce

IGF-1, which promotes NSC proliferation in mammalian adult brains [52]. IGFs, namely InR,

IGF-1 receptor (IGF-1R), and IGF-2R, are also abundantly expressed in the mammalian brain

[53, 54]. IGF-1 is expressed in astrocytes, neurons, and NSCs in the hippocampus and the V–

SVZ, and its expression in the brain is much higher than in systemic circulation during neuro-

genesis [55–58]. Locally overexpressed or directly infused IGF-1 can trigger NSC proliferation

without leading to an increase of IGF-1 level in the circulation [59, 60], suggesting that locally

expressed (paracrine or autocrine) IGF-1 is crucial for regulating NSC proliferation. This

mitogenic role of IGF-1 leads to the activation of mammalian target of rapamycin complex 1

(mTORC1) and inhibition of FOXO via the PI3K/Akt pathway [61–64]. Both IGF-1 and the

PI3K/Akt pathway promote cell-cycle progression [65, 66]. IGF-2 also promotes the prolifera-

tion of NSCs via Akt signaling, and it is highly expressed in NSCs in the hippocampal dentate

gyrus [67]. Thus, the InR/PI3K/Akt pathway appears to be a common theme in promoting

NSC reactivation in both flies and mammalian NSCs.

Dysregulation of critical components in the PI3K/Akt pathway has been implicated in neu-

rodevelopmental disorders [68]. Three common mutations of IGF-1R and deletion of the

chromosome region containing AKT3 have been identified in patients with primary micro-

cephaly [69, 70], suggesting that IGF-1R mutations and AKT3 deletion may contribute to this

neurodevelopmental disorder. Removing downstream effectors of the PI3K/Akt pathway in

vivo, e.g., phosphoinositide-dependent kinase 1 (Pdk1), mTOR, and raptor, has also been

found to cause microcephaly [71–75]. Conversely, mutations activating PI3KCA and AKT3,

the predominant AKT isoform in mouse brain cortex and hippocampus, have been linked to

clinical manifestations of a spectrum of enlarged brain malformations, e.g., macrocephaly, dys-

plastic megalencephaly, and hemimegalencephaly [72, 76, 77]. Similarly, the loss of phospha-

tase and tensin homolog (PTEN), a PI3K antagonist, results in increased cell proliferation and

reduced cell death, which contributes to macrocephaly [78]. Subsequent study demonstrates

that conditional deletion of PTEN up-regulates the reactivation of NSCs in the SGZ [79].
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Other signaling pathways and proteins from glia control NSC proliferation

One of the earliest evidence on the involvement of glia in NSC reactivation was from a study

on Drosophila DE-Cadherin, a cell adhesion molecule, which acts in glia cells to promote the

proliferation of NSCs [80]. Besides the InR/PI3K/Akt pathway, several major evolutionarily

conserved signaling cascades also regulate NSC reactivation. The TGF-β/BMP (bone morpho-

genetic protein) pathway plays crucial roles during various cellular processes such as cell

growth and differentiation. The BMP signaling pathway promotes NSC proliferation in Dro-
sophila because Glass bottom boat (Gbb), a BMP homolog that is expressed in NSCs, acts as an

autocrine proliferation factor in NSCs [81]. Dally-like (Dlp), a heparan sulfate proteoglycan

protein on the cell surface and in the extracellular matrix, functions as a coreceptor for Gbb in

PG to promote NSC proliferation [81]. Interestingly, NSC-expressing Gbb also provides a

paracrine signal for the survival of PG, suggesting that a bidirectional communication between

NSCs and the BBB glia influences the development of both cell types [81]. In the mammalian

adult brain, the BMP pathway blocks neurogenesis and directs glial differentiation of NSCs

[82]. The BMP target inhibitor of differentiation 2 (ID2), its ligand BMP1, BMP6, and BMP

receptor BMPR1B are all expressed in quiescent NSCs, suggesting that BMP regulates NSC

proliferation in an autocrine manner [83]. BMP maintains NSC quiescence, as the loss of BMP

signaling via selective ablation of upstream BMPR-IA receptor leads to a transient increase in

NSC proliferation, followed by depletion of stem cell pool in the long term [84]. The inhibition

effect on neurogenesis by the BMP pathway can be antagonized by Noggin through paracrine

secretion by ependymal cells adjacent to the V–SVZ [82]. Similarly, Noggin expression is

found in the adult dentate gyrus, antagonizing the BMP pathway to promote the proliferation

of NSCs [85]. Interestingly, BMP signaling has a surprising divergent effect in promoting pro-

liferation and quiescence in NSCs of Drosophila and adult mice, respectively. Nevertheless,

because studies in Drosophila were carried out in third-instar larval brains, it remains to be

determined whether BMP signaling is required for NSC reactivation in early stages and/or

maintenance of NSC proliferation at later stages.

Another heparan sulfate proteoglycan protein named Terribly reduced optic lobes (Trol),

the Drosophila perlecan homolog, is also required for G1/S transition during NSC reactivation

[86, 87]. Trol is expressed in a subset of dorsal midline glial cells of the CNS [86], suggesting

that it functions non-cell–autonomously for NSC proliferation. It is believed that Trol pro-

motes NSC reactivation through antagonizing the NSC reactivation inhibitor Anachronism

(Ana) [86] (Fig 2). In addition, Trol interacts with both FGF-2 and Hedgehog (HH) in larval

protein extracts [88]. The low affinity binding between heparan sulfate proteoglycan proteins

and FGFs is required for the binding of FGFs to their high affinity receptors [89]. Subsequent

study in mice recapitulated the conserved role of perlecan in mediating FGF-2 signaling that

promotes V–SVZ NSC proliferation [90]. In adult mammalian brains, the mitogens epidermal

growth factor (EGF) and FGF-2 promote NSC proliferation [91, 92]. The activity of FGF-2 can

be modulated by its low affinity receptor heparin, which either activates or inhibits the mito-

genic activity of FGF-2 on NSCs, likely depending on the structure, composition, or expression

level of heparin on the cell surface [93, 94].

The basal lamina, a layer of extracellular matrix (ECM) secreted by the CNS endothelial

cells, provides an important molecular signature for adult mammalian NSCs to modulate its

activation of proliferation program [95]. During development and postnatal stages, a failure in

deposition of ECM proteins, including Laminin-α4, surrounding the vasculature leads to

detachment of the critical linkage between endothelial cells and V–SVZ NSCs [96]. Compared

to those at quiescent stage, activated NSCs in the V–SVZ have increased expression of certain

ECM receptors such as laminin receptor α6β1-integrin and syndecan-1 [97–99]. The
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activation of NSCs in the V–SVZ are further enhanced by their ability to bind to laminin in

the vascular niche via an up-regulation of EGFR and α6 integrin by stromal-derived factor 1

(SDF1) [100]. Further elucidations on the role of ECM and other BBB niche cells such as peri-

cytes in modulating NSC activation may provide insights into generating improved regenera-

tive therapeutics for brain trauma and cerebral ischemia.

Drosophila Hh signaling activates NSC division in a Trol-dependent manner [88]. Mamma-

lian Sonic hedgehog (Shh) regulates adult NSC proliferation in rat hippocampus and the V–

SVZ [101, 102]. Quiescent NSCs in the V–SVZ and SGZ respond to Shh and are able to self-

renew and expand the NSC population for about 1 year in vivo [103]. In the mammalian adult

hippocampal SGZ, Wnt3 is expressed in astrocytes, and its overexpression is sufficient to

increase neurogenesis by controlling the neuronal fate commitment and proliferation of neural

precursor cells and neuroblasts, while inhibition of Wnt signaling reduces adult neurogenesis

[104]. Disrupted In Schizophrenia 1 (DISC1), which is deficient in patients with schizophrenia,

depression, and bipolar disorder, is expressed in adult mouse NSCs and regulates their prolifer-

ation [105]. DISC1 directly associates and inhibits glycogen synthase kinase 3 beta (GSK3β)

activity, leading to a reduction of β-catenin phosphorylation and its stabilization [105]. In sup-

port of these findings in mouse NSCs, altered WNT signaling has been identified in human

NSCs derived from human induced pluripotent stem cells from schizophrenia patients [106].

In summary, in both Drosophila and mammalian NSC niches, ECM plays an important

role in regulating the balance of quiescence and proliferation. Not only does it serve as a physi-

cal support for NSC anchorage, it also acts as a depositing scaffold for various secreted factors

by niche cells and from systemic circulation. Nevertheless, the components of ECM in both

Drosophila and mammalian systems remain poorly defined, making in-depth characterization

of NSC–ECM interaction difficult. Because mesenchymal stem cell quiescence–proliferation

decision was shown to be dependent on substrate stiffness [107], further investigation on the

mechanobiology of ECM in regulating NSC quiescence, i.e., elasticity, stiffness, microtopogra-

phy, etc., is warranted.

The inhibitory role of the CNS barrier in NSC reactivation

On the flip side, the Drosophila glia niche also provides inhibitory factors that maintain NSC

quiescence. Glial cells secrete the glycoprotein Ana to prevent NSCs from entering S-phase,

therefore maintaining NSC quiescence [108]. Glia are also required for the activation of the

evolutionarily conserved Hippo pathway that keeps NSCs in quiescence [109]. First identified

in Drosophila, the Hippo pathway plays a conserved role in tumorigenesis, organ development,

and stem cell maintenance [110]. In the absence of dietary amino acids, 2 intercellular trans-

membrane proteins Crumbs and Echinoid are expressed in both NSCs and their glial cell

niche [109]. This intercellular interaction of Crumbs and Echinoid activates the Hippo path-

way composed of Tao-1, Hippo, Salvador, and large tumor suppressor (Lats)/Warts in Dro-
sophila NSCs [109, 111–113]. This growth-repressive kinase cascade ultimately phosphorylates

the transcriptional coactivator Yorkie, resulting in its cytoplasmic retention [109, 114]. In the

presence of dietary amino acids, Echinoid was down-regulated mainly in glia over time, and

Crumbs is lost in both glia and NSCs, leading to the inactivation of the Hippo pathway and, in

turn, translocation of Yorkie into the nucleus to activate downstream targets such as bantam
microRNA, ultimately triggering NSC reactivation [109]. Although loss of the Hippo pathway

causes premature NSC reactivation on the fed condition, it is unable to overcome the require-

ment of dietary amino acids [109]. It is unknown how the nutritional status alters the expres-

sion of Crumbs and Echinoid in the brain. Possibly the protein turnover or the intracellular

trafficking of Crumbs and Echinoid is controlled in response to nutrition.
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Notch signaling has been implicated in the maintenance of mammalian NSC quiescence

because Notch downstream effector Hes family bHLH transcription factor 1 (HES1) and

HES5 inhibit neuronal differentiation [115]. The physical contact maintained between NSCs

in the V–SVZ and endothelial cells allows ligands ephrinB2 and Jagged1, which are expressed

by endothelial cells, to trigger ephrine (Eph) and Notch signaling in the NSCs to maintain qui-

escence [116]. This was achieved synergistically by inhibiting proliferation through Eph signal-

ing and blocking differentiation via Notch signaling. Inhibition of Notch signaling results in a

transient increase in NSC proliferation, followed by stem-cell–pool depletion in the long term

[117–119]. Notch ligand delta-like protein 1 (Dll1), which is expressed in activated NSCs and

subsequently segregated into the daughter cell undergoing differentiation after asymmetric

division, maintains quiescence of adjacent NSCs, suggesting a feedback loop for NSC mainte-

nance between sister cells [120]. Patients with deleterious mutations in the DLL1 gene are

found to have developmental delay, intellectual disability, and brain malformations [121].

In a pioneer study conducted by Palmer and colleagues, they demonstrated that proliferat-

ing NSCs within the SGZ can be found close to angiogenic capillary tips, suggesting a possible

role for angiogenic regulators in NSC activation [122]. A subsequent study on platelet-derived

growth factor (PDGF) in the V–SVZ, a well-known angiogenic factor, in which its in vivo

introduction led to formation of hyperplastic nodules containing highly proliferating NSCs,

strongly suggests its role in activating NSC proliferation [123]. This was followed by the eluci-

dation of pigment epithelium-derived factor (PEDF), angiopoietin-1 (Ang-1), and vascular

endothelial growth factor 165 (VEGF165), all of which were found to be involved in activating

NSC proliferation in the V–SVZ [124–126]. In addition, placenta-derived growth factor 2

(PLGF2), an important player in endothelial stimulation and pathological angiogenesis, acti-

vates NSCs in the V–SVZ niche by interacting with vascular endothelial growth factor 1

(VEGFR1) [127]. Similarly in the SGZ, VEGF-C interacts with VEGFR3, which activates qui-

escent NSCs through the ERK/AKT pathway [128]. It is interesting to note that while PDGF,

Ang-1, VEGF, and PLGF2 are proangiogenic, PEDF is instead antiangiogenic. Such opposing

regulations of angiogenesis that converge in activating NSCs suggest that dynamic neurogen-

esis occurs in both physiological and pathological situations. Future studies on the synergistic

effect of these angiogenic regulators on NSC activation in conjunction with angiogenic sprout-

ing or remodeling in the BBB niche are warranted.

Remodeling of cortex glia during NSC reactivation

In the Drosophila larval CNS, each NSC and its progeny are individually surrounded by cortex

glial membrane to form the NSC lineage within the chamber [129]. How can the BBB glial sig-

nals reach NSCs if NSC lineages are enclosed by the cortex glia? Speder and Brand showed

that in early larval stages, NSCs are not covered by the cortex glial membrane, allowing direct

contact between the BBB glia and NSCs [130]. Once NSCs reactivation is completed by 48

hours after larval hatching, the cortex glia chambers are closed at around the same time [130].

The development of cortex glial chambers is also dependent on nutrition—essential amino

acids [130]. NSC reactivation drives the formation of cortex glial chambers in both fed and

nutritional restriction conditions [130]. The intact cortex glial chambers are crucial for main-

taining the survival of newborn neurons, but not NSC survival or proliferation [130].

The role of neurons in NSC reactivation

Innervation of stem cell niches in the V–SVZ and SGZ by projections from proximal and distal

neurons have distinct effect in regulating NSC reactivation. In the adult dentate gyrus, the cel-

lular processes of NSCs wrap around the cell bodies of granule neurons and touch and/or
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ensheathe putative glutamatergic synapses likely formed between mossy cells (MCs), a major

type of excitatory neurons, and mature granule cells [131]. Indeed, granule neurons release

secreted frizzled-related protein 3 (sFRP3) to maintain NSC quiescence in the SGZ [132]. The

differential activation of MCs regulates the balance of quiescence and reactivation of NSCs

within the SGZ, in which the direct MC–NSC glutamatergic pathway favors reactivation and

indirect MC–interneuron–NSC gamma aminobutyric acid (GABA)ergic pathway favors qui-

escence [133–135]. In the V–SVZ, a new population of choline acetyltransferase (ChAT)+ neu-

rons release acetylcholine to stimulate NSC proliferation [136]. In addition, serotonergic

axons originated from neurons in the raphe nuclei exert a positive effect on the proliferation of

NSCs in the V–SVZ [137]. Nitrergic neurons located in close proximity to the adult V–SVZ

regulate NSC proliferation in a negative manner [138]. In Drosophila, quiescent NSCs extend

their primary cellular extension into the neuropil [8, 15], raising the intriguing possibility that

neurons may also function as a niche to regulate Drosophila NSC reactivation.

Intrinsic mechanisms controlling NSC reactivation

Intrinsic mechanisms in certain stem cell subpopulations could play a dominating role in regu-

lating their behavior. Indeed, NSCs from different spatial niches within the V–SVZ reactivate

to give rise to neurons that are phenotypically reminiscent of their site of origin even when

transplanted heterotopically [139]. Such an intrinsic response is governed by regulators that

are often transcription factors, epigenetic modifications, and cell-cycle regulators.

Controlling NSC reactivation by regulators of the InR/PI3K/Akt, BMP, and

Hippo pathways

With the discoveries on the roles of various signaling pathways in NSCs and their niche, recent

studies have identified regulators of these signaling pathways that are critical for NSC quies-

cence and reactivation. Heat shock protein 83 (Hsp83), a Hsp90 family molecular chaperone,

is an intrinsic regulator of the dInR pathway during NSC reactivation [140]. Hsp83, together

with its cochaperone Cell division cycle 37 (Cdc37), facilitates the activation of dInR and pro-

motes NSC reactivation intrinsically [140]. Hsp83 likely binds to dInR in NSCs in a near-

native state poised for activation by binding of dILPs [140]. In the presence of dietary amino

acids, the expression of hsp83 is dramatically up-regulated, which serves as an additional

mechanism for activation of the dInR pathway in NSCs in response to nutritional stimuli

[140]. The interaction between Hsp90 and InR is conserved in mammalian systems. In human

fibroblasts, Hsp90 promotes insulin signaling in mitogenesis through interaction with intracel-

lular InR β subunit [141]. In mammals, the expression level of Hsp90 in the brain is the highest

among all tissues [142]. Hsp90’s clients include α-synuclein in Parkinson’s disease and tau in

Alzheimer’s disease, and therefore, it is heavily implicated in neurodegenerative diseases [143].

Fragile X mental retardation protein (FMRP) is an RNA-binding protein, and its deficiency

causes Fragile X syndrome, the most common genetic form of intellectual disability (ID) and

autism spectrum disorders (ASDs). Drosophila FMRP is expressed in both NSCs and glial

cells, and it prevents NSC reactivation by inhibiting the InR/PI3K/Akt pathway in NSCs and

an unknown mechanism in the glia [144, 145]. Like its Drosophila homolog, mammalian frag-

ile X-related protein 2 (FXR2P) inhibits NSC proliferation in the adult hippocampus by up-

regulation of BMP signaling [146]. Mammalian FMRP and FXR1P and FXR2P, 2 other pro-

teins from the same family, play distinct regulatory roles in adult neurogenesis, including NSC

proliferation, transition from NSCs to intermediate progenitor cells, and neuronal maturation

[146–148].
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The protein turnover of Lats/Warts, a core protein kinase in the Hippo pathway, is regu-

lated by a Cullin-really interesting new gene (RING) ligase named CRL4Mahjong, an evolution-

arily conserved E3 ubiquitin ligase composed of Cullin4 (Cul4), DNA damage-binding protein

1 (DDB1), regulator of cullins-1 (Roc1), and a substrate receptor named Mahjong [149]. Both

DDB1 and Mahjong are up-regulated in reactivated NSCs compared with quiescent NSCs and

are required for NSC reactivation [149]. Depletion of ddb1 or mahjong in NSCs leads to

delayed NSC reactivation and a microcephaly-like phenotype [149]. CRL4Mahjong targets

Warts for ubiquitination and degradation, therefore releasing Yorkie into the nucleus to trig-

ger NSC reactivation [149]. The interaction between CRL4 and Warts/Lats is conserved

because in human cancer cells, CRL4 E3 ligase activity is increased, leading to the ubiquitina-

tion and down-regulation of Lats1/2 [150].

The role of mammalian Hippo pathway and CRL4 complex in NSC reactivation is largely

unknown. Upon BMP4-induced mouse adult NSC quiescence, WW and C2 containing

domain 2 (WWC2) (Kibra homolog), Lats2 (Warts homolog), and Crumbs2 (Crumbs homo-

log) are up-regulated [151]. Whether Crumbs activates the hippo pathway to maintain NSC

quiescence in mammalian adult brains remains to be determined. Rat Cul4B is highly

expressed in mitotic NSCs and its knockdown arrests primary NSCs at G2/M transition [152].

Analogous to the microcephaly-like brains observed in Drosophila ddb1 mutants, in the mouse

developing brain, a CNS-specific depletion of DDB1 leads to decreased NSC proliferation and

the formation of smaller brains [153]. In zebrafish, the CRL4 complex with a substrate receptor

named cereblon (CRBN) controls NSC proliferation and brain size [154, 155]. Zebrafish ddb1-

or CRBN-depleted embryos develop smaller brains with a reduction of the number of prolifer-

ating cells [154, 155]. Variants of human Cul4B are associated with neurodevelopmental disor-

ders, including X-linked ID, mental retardation, and cortical malformations [156–159].

The opposing roles of the InR/PI3K/Akt and Hippo pathways are coordinated by members

of the conserved striatin-interacting phosphatase and kinase (STRIPAK) complex [160]. STRI-

PAK members are found to have differential expression in quiescent and reactivating NSCs

through a transcriptional profiling [160]. microtubule star (mts), the catalytic subunit of pro-

tein phosphatase 2A (PP2A), maintains NSC quiescence primarily by inactivating Akt [160].

Two other components of STRIPAK, named monopolar spindle-one-binder family member 4

(mob4) and connector of kinase to AP-1 (cka), promote NSC reactivation by facilitating the

association between Mts and Hippo, presumably resulting in the dephosphorylation and inac-

tivation of Hippo [160]. Therefore, the STRIPAK members first turn off the InR/PI3K/Akt

pathway to maintain NSC quiescence and subsequently turn off the Hippo pathway to pro-

mote NSC reactivation. Interestingly, Cerebral cavernous malformation 3 (Ccm3), a STRIPAK

component, is expressed in the CNS BBB and modulates the organization and function of the

BBB [161, 162].

Adenomatous polyposis coli (APC) family proteins APC1 and APC2, negative regulators of

the Wingless/Wnt pathway, play a redundant role in Drosophila larval NSC reactivation, but

loss of both APC1 and APC2 did not seem to result in any accumulation of β-catenin (Arma-

dillo) in NSCs [163]. Whether the Wingless pathway is involved during NSC quiescence and

reactivation awaits further investigation.

Transcriptional and epigenetic regulations of NSC reactivation

At the end of embryogenesis, exit of proliferation of Drosophila NSCs is controlled by com-

bined functions between temporal transcriptional factors and spatial regulators such as Hox

proteins [12] (Fig 2). Temporal transcriptional factors Pou-domain proteins Pdm1 and Pdm2

(Pdm) prevent NSC quiescence through down-regulation of Nab, as Nab normally induces
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NSC quiescence with its co-factor Squeeze [12]. Another temporal transcriptional factor, Cas-

tor, promotes quiescence by inhibiting Pdm [12] (Fig 2). Differential expression of Hox genes

Antennapedia (Antp) and Abdominal-A (Abd-A) is responsible for the different timing of

entry into quiescence in different segments [12].

Homeodomain transcription factor Prospero (Pros) is well-known for its role in neural dif-

ferentiation by directly repressing progenitor and cell-cycle genes [164, 165]. Pros is also capa-

ble of driving proliferating NSCs into quiescence when transiently expressed in NSCs [166].

The levels of Pros in the nucleus distinguish Drosophila NSC fates: absence for self-renewal/

proliferation, low for quiescence, and high for differentiation [166]. Pros is repressed by spin-

dle matrix proteins composed of Chromator (Chro)/chromo domain protein interacting with

Z4 (Chriz), Megator, and enhanced adult sensory threshold (East) that function intrinsically in

NSCs to promote NSC reactivation [167] (Fig 2). Chro also promotes the expression of grainy
head, which indirectly represses pros expression in NSCs [167]. Chro appears to function

downstream of the InR/PI3K pathway during NSC reactivation, although it remains unknown

whether Chro is a direct target of the InR/PI3K pathway [167].

Several transcription factors play counterbalancing roles in the regulation of mammalian NSC

quiescence and reactivation [168–171]. Achaete-scute homolog 1/mammalian achaete scute homo-

log 1 (ASCL1/MASH1), a proneural basic helix–loop–helix transcription factor, promotes the acti-

vation of quiescent NSCs in both the adult V–SVZ and hippocampus [172]. The expression of

Ascl1 in NSCs can be induced by neurogenic stimuli or inactivation of the Notch signaling pathway

[172]. Oscillatory or sustained expression of Ascl1 regulated by its repressor HES1, a downstream

effector of Notch signaling, determines whether NSCs commit to a renewal or differentiation pro-

gram, respectively [173, 174]. The ASCL1 protein level is negatively regulated by an E3-ubiquitin

ligase, HECT, UBA, and WWE domain-containing 1 (HUWE1), and inhibitor of DNA binding 4

(ID4), which reverses proliferating NSCs back into the quiescent stage [175, 176]. Mutations in the

human HUWE1 gene have been linked to X-linked ID [177, 178]. Genetic-screened homeobox 2

(GSX2), a homeodomain transcription factor, and tailless homolog (TLX), an orphan nuclear

receptor, also play a critical role in promoting activation of subpopulation of V–SVZ NSCs [170,

179]. On the other hand, repressor element 1-silencing transcription factor (REST) and FoxO tran-

scription factors are required for the maintenance of quiescent NSCs [171, 180–182].

Epigenetic regulations such as chromatin remodeling and histone modifications also play criti-

cal roles in regulating NSC behaviors by modulating gene expression in a long-lasting manner

without altering genomic sequence [183]. B lymphoma Mo-MLV insertion region 1 homolog

(BMI1), a core component of chromatin remodeling complex named polycomb repressive com-

plex 1 (PRC1), controls mammalian NSC proliferation by repressing a cyclin-dependent kinase

(CDK) inhibitor p16INK4a [184]. In contrast, chromatin remodeling factor chromodomain-heli-

case-DNA–binding protein 7 (CHD7) maintains NSC quiescence through repressing the tran-

scription of cyclins and CDKs and promoting the expression of Notch downstream effector Hes5
[185]. Histone H2AX phosphorylation, following GABAA receptor activation, limits V–SVZ NSC

proliferation and self-renewal [186]. Histone deacetylase 3 (HDAC3) is important for NSC prolif-

eration by regulating G2/M progression through stabilization of CDK1 [187]. Enhancer of zeste

homolog 2 (EZH2), a subunit of PRC2, represses gene expression through H3K27 methylation

and promotes NSC proliferation through regulating the PTEN/Akt/mTOR pathway [188].

Molecular signatures, heterogeneity, and cell-cycle regulation of quiescent

NSCs

Quiescence of stem cells has long been thought as a dormant state, passively waiting for acti-

vating signals [189]. Increasing evidence has changed this long-held paradigm and indicates
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that quiescence is actively maintained [83, 190]. This active maintenance of quiescence state in

NSCs serves as a reserved pool of stem cells that can replace damaged stem cells for long-term

somatic cell generation, insulating against risks of stem cell depletion and accumulation of

tumorigenic mutations after multiple rounds of cell division [191]. Quiescent NSCs have

unique molecular signatures that are distinct from those of proliferative NSCs. Transcrip-

tomics with temporal analysis of molecular interplay during the transitioning of quiescence to

activated stage in the SGZ and V–SVZ are revealed by using bulk and single-cell RNA

sequencing (RNA-seq) [83, 99, 192, 193]. Quiescent NSCs in both niches have enriched

expression of genes involved in cell–cell adhesion and cell–microenvironment interaction,

suggesting that intrinsic and extrinsic signals are actively involved in maintaining stem cell

quiescence [99, 193].

Using single-cell RNA-seq, quiescent NSCs in the V–SVZ are found to be heterogeneous

and can be further subclassified into dormant state (qNSC1) and primed-quiescent state

(qNSC2), with the latter being a transitory state in which genes involving protein synthesis and

the cell cycle are up-regulated in preparation for subsequent reactivation [83]. A similar preac-

tivation stage can be found in quiescent NSCs in the SGZ, in which protein translation capac-

ity is up-regulated [193]. On the other hand, activated NSCs can be further subclassified into

nondividing aNSC1 and dividing aNSC2, demonstrating that there exists a quiescent-activated

continuum rather than a binary state [83]. From a metabolic perspective, the activation of qui-

escent NSCs involves transitioning from lipid metabolism, specifically glycolytic metabolism

and fatty acid oxidation, to oxidative metabolism in the mitochondria [83, 193, 194]. While

reactive oxygen species (ROS) are closely related to mitochondrial respiration, a study by Le

Belle and colleagues showed that NADPH oxidase (NOX)-derived ROS enhance the shift of

quiescent to proliferating NSCs as well as neurogenesis [195]. Whether mitochondrial-derived

ROS play a role, if any, in enhancing this shift remains to be elucidated.

NSC heterogeneity has been the subject of immense study to categorize them into different

matrices, e.g., morphology, site of origin, molecular signatures, etc., with important implica-

tions for understanding differential neurogenic capabilities among NSCs [196–198]. Within

the SGZ, 2 variants of quiescent NSCs with distinct morphologies respond selectively to extrin-

sic stimulations, as physical exercise activates only radial NSCs, while seizure activates both

radial and horizontal NSCs [199]. A recent study by Morizur and colleagues found that quies-

cent NSCs located in the V–SVZ display membrane receptors that are distinct from the acti-

vated NSCs and that niche signaling could be important in maintaining such a heterogenous

population [99]. On the other hand, positional heterogeneity among NSCs within the V–SVZ

is maintained even when they are grafted heterotopically or grown in vitro, implying that an

inherent “memory” could be imprinted that may persist even when the external environment

is changed [139].

It was widely believed that quiescent stem cells, including mammalian quiescent NSCs,

arrest in the G0 stage. However, a recent study from Andrea Brand’s laboratory challenged this

dogma by reporting that in the Drosophila VNC, the majority of quiescent NSCs (approxi-

mately 75%) arrest in the G2 stage, while the remaining approximately 25% of quiescent NSCs

are in G0 [200]. An evolutionarily conserved pseudokinase, Tribbles, induces G2 NSCs to enter

quiescence during late embryogenesis by targeting Cdc25String for degradation [200]. During

larval stages, Tribbles maintains G2 NSC quiescence by blocking Akt activation [200]. Activat-

ing the insulin pathway by overexpressing the activated form of Akt in NSCs represses the trib-
bles transcription, triggering NSC reactivation [200]. Compared with G0-arrested cells, G2

quiescent cells can reactivate more quickly in response to nutritional stimulus [200]. They also

have the advantage of maintaining genomic integrity via high-fidelity homologous-recombina-

tion–mediated repair in response to DNA damage [200].
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Whether quiescent NSCs arrest at the G2 or G0 stage is determined by a CDK inhibitor

Dacapo (Dap)/p57KIP2 at the end of embryogenesis [201]. Dap directs NSCs to enter G0 quies-

cence, and loss of dap resulted in NSCs switching from G0 to G2 quiescence [201]. The G2/G0

quiescent NSCs have distinct spatial distribution, with G0 NSCs primarily occupying dorsal

regions of the CNS and G2 NSCs primarily occupying ventral regions [201]. However, there is

no bias for G2/G0 quiescent NSCs along the anterior–posterior axis [201]. These observations

pose an interesting possibility that dorsal–ventral patterning factors may influence the choice

between G2 and G0 quiescence. Indeed, the dorsal patterning transcription factor Muscle seg-

ment homeobox (Msh) directly binds to the enhancer sequence of dap, which is known to be

sufficient for dap expression in the embryonic CNS, to promote G0 quiescence in a subset of

dorsal NSCs [201, 202]. On the contrary, the ventral patterning factor ventral nervous system

defective (Vnd), which is expressed in G2 quiescent NSCs that are located ventrally, does not

have a role in promoting G0 quiescence [201].

The precise modulation of proliferation program in the activation of NSCs is important in

maintaining the stem cell pool and generating differentiated neurons. One of the key differen-

tiating hallmarks of quiescent and activated NSCs is the cell-cycle activity. In the mammalian

brain, CDK-inhibitory proteins (CDKIs)/kinase inhibitory proteins (KIPs), i.e. p21cip1/waf1,

p27kip1, and p57kip2, play the role of a molecular brake on the cell cycle during the G1 to S tran-

sition because their reduction leads to the activation of the proliferation program [203–205].

However, persistent abrogation of p21cip1/waf1 and p57kip2 ultimately leads to NSC exhaustion

and impaired neurogenesis [203, 205]. As alluded earlier, the role of Dap, the Drosophila
ortholog of p57kip2, in the spatial regulation of NSC quiescence demonstrates the conserved

role of CDKIs in the negative regulation of NSC activation [206]. p16INK4a, another CDKI of

the CDK-inhibitory protein/inhibitory protein of CDK4 (INK4) family—the expression of

which increases in age—acts as a negative regulator of NSC activation in the V–SVZ only

under the presence of neurogenic stimuli such as running [207]. Further studies on the

remaining yet-to-be characterized CDKIs, i.e., p15INK4b, p18INK4c, and p19INK4d, in both Dro-
sophila and mammalian systems will shed light on the possible interplay of these CDKIs in reg-

ulating NSC quiescence. Besides CDKIs, the tumor suppressor gene p53 also acts as an

additional layer of regulation on NSC proliferation because the loss of p53 leads to radical acti-

vation of quiescent NSC in the V–SVZ [208]. Given that p53 is a key regulator of a variety of

cellular processes, e.g., metabolism, senescence, etc., that are intimately linked to NSC activa-

tion, a holistic approach in studying how p53 might affect downstream activation genes is war-

ranted [209].

Conclusions and future perspectives

Drosophila represents an invaluable model system for in-depth dissection of molecular mecha-

nisms underlying NSC quiescence and reactivation because of the conserved regulatory path-

ways shared with the mammalian brain and the availability of an arsenal of powerful genetic

tools [13]. Future studies in mammalian systems on the conserved nature of the intrinsic regu-

lators of NSC reactivation discovered in Drosophila will shed light on how these regulators

might modulate stem cell behavior in a more complex system, with important implications in

understanding neurological disorders and potential targets for therapeutic purposes. An

emerging theme from the host of studies on molecular players governing NSC reactivation in

Drosophila and mammalian system presented in this review is the complex, precise, and intri-

cate balancing of quiescence and reactivation of NSCs within the neurogenic niche that allows

them to respond to changes in the external environment and also the intrinsic development/

aging clock in producing appropriate number of neurons while maintaining a stem cell pool
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for long-term neurogenesis. Thus, the dysregulation of these molecular players may result in

neurodevelopmental diseases. A systems biology approach in understanding how NSCs recon-

cile and integrate the barrage of seemingly conflicting regulatory signals into a binary decision

of quiescence or reactivation might prove useful in understanding the biology of NSC reactiva-

tion and the heterogeneity that exists within the NSC population.
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130. Spéder P, Brand AH. Systemic and local cues drive neural stem cell niche remodelling during neuro-

genesis in Drosophila. eLife. 2018; 7:e30413. https://doi.org/10.7554/eLife.30413 PMID: 29299997

131. Moss J, Gebara E, Bushong EA, Sánchez-Pascual I, O’Laoi R, El M’Ghari I, et al. Fine processes of

Nestin-GFP–positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses

and vasculature. Proceedings of the National Academy of Sciences. 2016; 113:E2536–E45. https://

doi.org/10.1073/pnas.1514652113 PMID: 27091993

132. Jang M-H, Bonaguidi MA, Kitabatake Y, Sun J, Song J, Kang E, et al. Secreted Frizzled-Related Pro-

tein 3 Regulates Activity-Dependent Adult Hippocampal Neurogenesis. Cell Stem Cell. 2013; 12

(2):215–23. https://doi.org/10.1016/j.stem.2012.11.021 PMID: 23395446; PubMed Central PMCID:

PMC3569732.

133. Yeh C-Y, Asrican B, Moss J, Quintanilla LJ, He T, Mao X, et al. Mossy Cells Control Adult Neural Stem

Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways.

Neuron. 2018; 99(3):493–510. https://doi.org/10.1016/j.neuron.2018.07.010 PMID: 30057205

134. Bao H, Asrican B, Li W, Gu B, Wen Z, Lim S-A, et al. Long-Range GABAergic Inputs Regulate Neural

Stem Cell Quiescence and Control Adult Hippocampal Neurogenesis. Cell Stem Cell. 2017; 21

(5):604–17. https://doi.org/10.1016/j.stem.2017.10.003 PMID: 29100013

135. Song J, Zhong C, Bonaguidi MA, Sun GJ, Hsu D, Gu Y, et al. Neuronal circuitry mechanism regulating

adult quiescent neural stem-cell fate decision. Nature. 2012; 489(7414):150–4. https://doi.org/10.

1038/nature11306 PMID: 22842902; PubMed Central PMCID: PMC3438284.

136. Paez-Gonzalez P, Asrican B, Rodriguez E, Kuo CT. Identification of distinct ChAT+ neurons and activ-

ity-dependent control of postnatal SVZ neurogenesis. Nature Neuroscience. 2014; 17(7):934–42.

https://doi.org/10.1038/nn.3734 PMID: 24880216

137. Tong Cheuk K, Chen J, Cebrián-Silla A, Mirzadeh Z, Obernier K, Guinto Cristina D, et al. Axonal Con-

trol of the Adult Neural Stem Cell Niche. Cell Stem Cell. 2014; 14(4):500–11. https://doi.org/10.1016/j.

stem.2014.01.014 PMID: 24561083
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