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Abstract

The genetic diversity of humans, like many species, has been shaped by a complex pattern

of population separations followed by isolation and subsequent admixture. This pattern,

reaching at least as far back as the appearance of our species in the paleontological record,

has left its traces in our genomes. Reconstructing a population’s history from these traces is

a challenging problem. Here we present a novel approach based on the Multiple Sequen-

tially Markovian Coalescent (MSMC) to analyze the separation history between populations.

Our approach, called MSMC-IM, uses an improved implementation of the MSMC (MSMC2)

to estimate coalescence rates within and across pairs of populations, and then fits a continu-

ous Isolation-Migration model to these rates to obtain a time-dependent estimate of gene

flow. We show, using simulations, that our method can identify complex demographic sce-

narios involving post-split admixture or archaic introgression. We apply MSMC-IM to whole

genome sequences from 15 worldwide populations, tracking the process of human genetic

diversification. We detect traces of extremely deep ancestry between some African popula-

tions, with around 1% of ancestry dating to divergences older than a million years ago.

Author summary

Human demographic history is reflected in specific patterns of shared mutations between

the genomes from different populations. Here we aim to unravel this pattern to infer pop-

ulation structure through time with a new approach, called MSMC-IM. Based on esti-

mates of coalescence rates within and across populations, MSMC-IM fits a time-

dependent migration model to the pairwise rate of coalescences. We implemented this

approach as an extension to existing software (MSMC2), and tested it with simulations

exhibiting different histories of admixture and gene flow. We then applied it to the

genomes from 15 worldwide populations to reveal their pairwise separation history rang-

ing from a few thousand up to several million years ago. Among other results, we find evi-

dence for remarkably deep population structure in some African population pairs,

suggesting that deep ancestry dating to one million years ago and older is still present in

human populations in small amounts today.
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Introduction

Genomes harbor rich information about population history, encoded in patterns of mutations

and recombinations. Extracting that information is challenging, since in principle it requires

reconstructing thousands of gene genealogies separated by ancestral recombination events,

using only the observable pattern of shared and private mutations along multiple sequences.

One important innovation was the Sequentially Markovian Coalescent (SMC) model [1,2],

which is an approximate form of the ancestral recombination graph that can be fitted as a Hid-

den Markov model along the sequence. This approach has been used to infer demographic his-

tory in methods like PSMC [3], MSMC [4], diCal [5,6] and SMC++ [7].

These methods estimate one or both of two important aspects of population history: i) The

history of the effective population size, and ii) the history of population structure. The second

aspect, which entails reconstructing the timing and dynamics of population separation

requires a non-trivial choice of parameterization: While methods like diCal2 [5], as well as

many methods based on the joint site frequency spectrum [8–11] use an explicit population

model with split times, migration rates or admixture events, MSMC [4] introduced the con-

cept of the relative cross coalescence rate to capture population separations in a continuously

parameterized fashion. The main advantage of that approach is that it does not require the

specification of an explicit model, but can be applied hypothesis-free to estimate key aspects of

population separation, for example the time at which lineages are half as likely to coalesce

between rather than within populations, which is often used as a heuristic estimate for the

divergence time between the populations. A disadvantage is that other important aspects of

population separation, like post-split or archaic admixture, are non-trivially encoded in fea-

tures of the cross-coalescence rate other than this mid-point. As a consequence, it is difficult to

interpret the cross-coalescence rate in terms of actual historical events.

Here, we propose an approach to overcome the disadvantages of the relative cross coales-

cence rate, while maintaining the continuous character of population separation from MSMC

without explicitly specifying a complex population phylogeny. We present a new method

MSMC-IM, which fits a continuous Isolation-Migration (IM) model to the distribution of coa-

lescence times, estimated from MSMC’s piecewise constant model. In MSMC-IM, separation

and migration between a pair of populations is quantified by a piecewise constant migration

rate across populations, and piecewise constant population size changes within each popula-

tion. We apply our method on world-wide human genomic data from the Simons Genome

Diversity Project (SGDP) [12] to investigate the history of global human population structure.

Results

Estimating pairwise coalescence rates with MSMC2 and fitting an IM

model

To model the ancestral relationship between a pair of populations, we developed an isolation-

migration model with a time-dependent migration rate between a pair of populations, which

we call MSMC-IM. The approach requires time-dependent estimates of pairwise coalescence

rates within and across two populations. To estimate these rates, we use an extension of

MSMC [4], called MSMC2, which was first introduced in Malaspinas et al. 2016 [13] (Fig 1A,

Methods). MSMC2 offers two key advantages over MSMC [4]. First, the pairwise coalescence

model in MSMC2 is exact within the SMC’ framework [2], whereas MSMC’s model uses

approximations that cause biases in rate estimates for larger number of haplotypes (S1 Fig).

Second, since MSMC2 uses the pairwise tMRCA distribution instead of the first tMRCA distri-

bution, it estimates coalescence rates within the entire range of coalescence events between
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multiple haplotypes, which ultimately increases resolution not just in recent times but also in

the deep past. These two improvements are crucial for our new method MSMC-IM, which

relies on unbiased coalescence rate estimates within and across populations, in particular in

the deep past. Specifically, MSMC2 recovers simulated population size histories (with human-

like parameters) well up to 3 million years ago, while keeping the same high resolution in

recent times as MSMC (S1 Fig).

Given MSMC2’s estimates of time-dependent coalescence rates within populations, λ11(t)
and λ22(t), and across populations, λ12(t), we use MSMC-IM to fit an Isolation-Migration (IM)

model to those three coalescence rates (see Methods). MSMC-IM’s model assumes two popu-

lations, each with its own population size N1(t) and N2(t), and a piecewise-constant symmetric

migration rate m(t) between the two populations (Fig 1B, see Methods and S1 Text for details).

Expressing the separation history between two populations in terms of a variable migration

rate instead of the more heuristic relative cross coalescence rate facilitates interpretation, while

maintaining the freedom to analyze data without having to specify an explicit model of splits

and subsequent gene flow. Of the new parameters, the time-dependent migration rate m(t) is

arguably the most interesting one, and it can be visualized in two ways (Fig 1C). First, the rates

themselves through time visualize the timing and dynamics of separation processes, and

Fig 1. Schematic of MSMC2 and MSMC-IM. (A) MSMC2 analyses patterns of mutations between pairs of haplotypes

to estimate local coalescence times along the genome. (B) MSMC-IM fits an isolation-migration model to the pairwise

coalescence rate estimates, with time-dependent population sizes and migration rate. (C) As a result, we obtain the

migration rate over time, m(t), and the cumulative migration probability,M(t), which denotes the probability for

lineages to have merged by the time t and which we use to estimate fractions of ancestry contributed by lineages

diverged deeper than time t.

https://doi.org/10.1371/journal.pgen.1008552.g001
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second, the cumulative migration probability M(t) defined as

MðtÞ ¼ 1 � expð�
Z t

0

mðt0Þdt0Þ

which can be understood as the proportion of ancestry that has already merged at time t, and

which makes it possible to quantify proportions of gene flow or archaic ancestry through time,

as illustrated below. Being by definition monotonically increasing and bounded between 0 and

1, M(t) also turns out to be numerically close to the relative cross coalescence rate from MSMC

[4]. When M(t) becomes very close to 1, it means that lineages between the two extant popula-

tions have completely mixed into essentially one population. As a technical caveat, this means

that at that time point our three-parameter model is overspecified. To avoid overfitting, we

therefore employ regularization on m(t) and the difference of the two population sizes (see

Methods).

Evaluating MSMC-IM with simulated data

We illustrate MSMC-IM by applying it to several series of simulated scenarios of population

separation (see Methods). First, the clean-split scenario consists of an ancestral population that

splits into two subpopulations at time T (Fig 2A). Second, the split-with-migration scenario

adds an additional phase of bidirectional gene flow between the populations after they have

split (Fig 2B). Third, the split-with-archaic-admixture scenario involves no post-split gene

flow, but contains additional admixture into one of the two extant populations from an

unsampled “ghost” population, which splits from the ancestral population (Fig 2C) at time

Ta>T. In addition, to understand how MSMC-IM behaves under asymmetric demographic

histories in the two populations, we consider the archaic-admixture-with-bottleneck-scenario

(see Fig 2D). For each scenario, we simulated 8 haplotypes (four from each population), used

human-like evolutionary parameters and varied one key parameter to create a series of related

scenarios (see Methods). As discussed further below, to test internal consistency, we confirmed

that MSMC-IM is able to infer back its own model, using simulations based on some of the

genomic inferences carried out below.

In the clean-split scenario, we find that MSMC-IM’s inferred migration rate m(t) displays a

single pulse of migration around the simulated split time T (Fig 2A). This is expected, since in

our parametrization, a population split corresponds to an instantaneous migration of lineages

into one population at time T, thereby resulting in a single pulse of migration. In the split-
with-migration series, we expect two instead of one pulse of migration: one at time T, as above,

and a second more recent one around the time of post-split migration. In cases where the split

time and migration phase are separated by more than around 20,000 years, this is indeed what

we see (Fig 2B), although with some noise around this basic pattern. For less time of separation

of the two migration pulses, MSMC-IM is not able to separate them in this scenario.

We also find two phases of migration for the split-with-archaic-admixture scenario, but this

time with one phase around time T, and another one around the time of divergence of the

archaic population Ta (Fig 2C). To understand this, consider how lineages in the two extant

populations merge into each other (Fig 3B). One fraction 1-α will merge into each other at the

population split time T, as in the clean-split scenario. The other fraction, α, will merge back

only at the deep divergence time of the archaic lineage. These two merge events correspond to

the two pulses we observe in Fig 2C—one at T and the other at the divergence time with the

archaic population, Ta. Note that unlike in the above split-with-migration case, here there is no

signal at the time of introgression, but only at the two split times. Inferring these two migration

pulses in the presence of archaic admixture is robust to demographic events, as we show with
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the archaic-admixture-with-bottleneck scenario (Fig 2D), in which we introduced a bottleneck

in one of the two extant population branches, similar in strength to the one observed in Non-

African populations around 60 thousand years ago (kya) [4]. We find, however, that in the

presence of a bottleneck the second pulse is a bit more recent than expected (here at 1 million

years ago).

We can analyze these multiple phases of migration in a more quantitative way, by using the

cumulative migration probability, M(t), as introduced above. M(t) monotonically increases

from 0 to 1 in all scenarios, exhibiting plateaus with gradient zero at times of no migration,

Fig 2. Simulation results. (A) Clean-split scenario: Two populations with constant size 20,000 each diverged at split time T in the past, varying from

15kya to 150kya. (B) Split-with-migration scenario. Similar to A), with T varying between 15-150kya, and a post-split time period of symmetric

migration (amounting to a total migration rate of 0.5 in both directions) between 10 and 15kya. (C) Split-with-archaic-admixture scenario: Similar to

A), with T = 75kya, and population 1 receiving an admixture pulse at 30kya from an unsampled population that separates from the ancestral population

at 1 million years ago. The admixture rate varies from 0% to 20%. (D) Split-with-archaic-admixture&bottleneck scenario: Similar to C), but with an

added population bottleneck with factor 30 in population 1 between 40-60kya. Solid red lines indicate split times in all panels. In all plots, the blue light

blue shading indicates the interval between 1–99% of the cumulative migration probability, the dark blue shading from 25–75%, and the black dashed

vertical line indicates the median.

https://doi.org/10.1371/journal.pgen.1008552.g002
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and positive gradients in periods of migration (Fig 3A and S2 Fig). The level of these plateaus

is indicative of how much ancestry has already merged at this point in time. Consider first the

split-with-migration series (Fig 3A top panel), for which M(t) exhibits a plateau between the

two migration pulses, at a level that corresponds to the amount of ancestry that has merged

through the migration event. For this scenario, based on the simulated post-split migration

rate between the two populations, we expect this plateau to be at around 0.64 (following the

calculation in formula (64) in S1 Text). We find it to be higher than that, around 0.75, which

we discuss further below. Consider now a scenario with archaic admixture (Figs 2C, 2D and

3A middle and bottom panels). At time T, at which both extant populations merge into each

other, the cumulative migration probability reaches a plateau at a level around 1-α, reflecting

the fact that a proportion α has not yet merged at point T, but is separated by a deeply diverged

population branch. Only at time Ta, this branch itself merges into the trunk of the extant popu-

lations, thereby increasing M(t) from 1-α all the way to 1. Based on this rationale, we can use

visible plateaus in M(t) to estimate fractions of archaic or otherwise deep ancestry. Indeed, this

rationale leads to estimates of archaic admixture proportions in our simulations which are

accurate and robust to bottlenecks for rates of α up to about 20%. For larger introgression

rates, we find our estimates to be slightly underestimated. We attribute this to MSMC’s ten-

dency to “overshoot” changes in coalescence rates, as can be seen in the relative cross-coales-

cence rates for larger values of alpha (S2C and S2D Fig), which causes the level of the plateau

in M(t) to be higher than 1-α, and hence α to be underestimated. This is also the reason for the

above-mentioned overestimation of the plateau in the split-with-migration scenario (Fig 3A

top panel). This effect is more severe in the presence of a bottleneck (Fig 3C, blue curve) than

without a bottleneck. Importantly, though, we find no evidence that M(t) exhibits plateaus

below 1 in the absence of true deep ancestry, so this method can be considered conservative

for detecting deep ancestry.

Fig 3. Evaluating admixture proportions through M(t). (A) The cumulative migration probability M(t) is shown for selected simulation scenarios described in Fig 2B,

2C and 2D. Plateaus of M(t) indicate periods of isolation, with the level of the plateau indicating how much ancestry has merged before. (B) Schematic coalescence in the

Split-with-archaic-admixture scenario. In this scenario, a fraction 1-α of lineages sampled from the two extant populations merges at time T, and the rest, of proportion α
merges as time Ta. (C) For the split-with-archaic-admixture scenarios (with and without bottleneck), we can use the level of the plateau in M(t) to estimate 1-α, and thus

α. The level of the plateau is measured at time t = 300kya.

https://doi.org/10.1371/journal.pgen.1008552.g003
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MSMC-IM also fits population sizes, which can be compared to the raw estimates from

MSMC, i.e. to the inverse coalescence rates within population 1 and 2, respectively (see S1

Text for some non-trivial details on this comparison). We find that estimates for N1(t) and

N2(t) are in fact close to the inverse coalescence rates, with some deviations seen in deep times,

and in cases of archaic admixture. The latter is expected, given that estimated coalescence rates

from MSMC2 capture both population size changes and migration processes, while in

MSMC-IM these two effects are separated (S3 Fig).

Deep ancestry in Africa

We applied our model to 30 high coverage genomes from 15 world-wide populations from the

SGDP dataset [12] (S1 Table) to analyze global divergence processes in the human past (Figs 4–

6). When analyzing the resulting pairwise migration rate profiles, we find that several popula-

tion pairs involving African populations exhibit by far the oldest population structure observed

in all pairwise analyses. We find that in all population pairs involving either San or Mbuti, the

main separation process from other populations dates to between 60-400kya, depending on the

exact pair of populations (see below), but with small amounts reaching back to beyond a million

years ago, as seen by the non-zero migration rates around that time (Fig 4A, S4 Fig), and the

cumulative migration probability, M(t), (Fig 4B) which has not fully reached 1 until beyond a

million years ago. Following the interpretation of M(t) as discussed above with the archaic-

admixture simulation scenario, we can infer that in pairs involving San or Mbuti, at least around

1% of ancestry can be attributed to lineages of ancestry that have diverged from the main

human lineage beyond 1 million years ago (see also Fig 7, discussed further below). The genetic

separation profile in pairs involving Mbuti and San is, beyond the extraordinary time depth, not

compatible with clean population splits (as seen in simulations, Fig 2A) or simple scenarios of

archaic admixture, but instead shows evidence for multiple or ongoing periods of gene flow

between (unsampled) populations. Between Mbuti and other African populations except San,

we find three distinct phases of gene flow. The first peaks around 15kya, compatible with rela-

tively recent admixture between Mbuti and other African populations. The second phase spans

from 60 to 300kya, reflecting the main genetic separation process, which itself looks complex

and exhibits two peaks around 80-200kya thousand years ago. The third and final phase, includ-

ing a few percent of lineages from around 600kya to 2 million years ago, likely reflects admix-

ture between populations that diverged from each other at least 600kya. In pairs that include

San, the onset of gene flow with other populations is more ancient than with Mbuti, beginning

at around 40kya and spanning until around 400kya in the main phase, and then exhibiting a

similarly deep phase as seen in Mbuti between 600kya and 2 million years ago. We confirm that

this deep divergence is robust to phasing strategy (see below) and filtering (see Methods). We

also replicated this signal using an independent dataset [14] (S5 Fig). An exception to these sig-

nals seen with San and Mbuti are pairs involving Karitiana, which do not exhibit such deep

divergence. This is likely due to the strong genetic drift present in Karitiana, and the low hetero-

zygosity in that population [12], which may shadow deep signals.

Apart from the deep structure seen with Mbuti and San, we find the second-most deep

divergences between the West African Yoruba, Mandenka and Mende on the one hand, and

French on the other (Fig 5A, S4 Fig, Fig 7 discussed further below), based on the time when M

(t) reaches 99%. This might be consistent with recent findings of archaic ancestry in West-

Africans [15,16], although it is not clear why the signal is primarily seen with French, and less

consistently with Asian populations (Yoruba/Han have deep divergences, as well as Mende/

Dai and Mandenka/Dai, but not other West-African/Asian combinations). Finally, pairwise

analyses among Mende, Mandenka and Yoruba (Fig 4A, S4C, S4E and S4F Fig) exhibit a very
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recent migration profile, which appears to span up to about 20kya but not older, which is at

odds with a recent finding of basal African ancestry present to different degrees in Mende and

Fig 4. Migration rate profiles for selected pairs of African populations. (A) Migration rates. Dashed lines indicate the time point where 50% of

ancestry has merged, and shading indicates the 1%, 25%, 75% and 99% percentiles of the cumulative migration probability (see Fig 2). (B) Cumulative

migration probabilities M(t). Dashed lines indicate the relative cross coalescence rate obtained from MSMC2, for comparison. See S4 Fig for the full

set of figures.

https://doi.org/10.1371/journal.pgen.1008552.g004
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Yoruba [17]. However, that signal may be too weak to be detected in our method, which is

based on only two individuals per population.

Complex divergence between African and Non-African populations

Compared to the separation profiles between San or Mbuti and other populations, separations

between other Africans and non-Africans look relatively similar to each other, with a main

separation phase between 40 and 150kya, and a separate peak between 400 and 600kya (Fig 5

and S4 Fig). The first, more recent, phase plausibly reflects the main separation of Non-African

lineages from African lineages predating the “out-of-Africa” migration event, and coinciding

with the major population size bottleneck observed here (S6 Fig) and previously [3,4] around

that time period. Signals more recent than about 60kya likely reflect the typical noisy spread of

MSMC-estimated coalescence rate changes observed previously [4]. The second peak of

migration, between 400 and 600kya likely reflects Neandertal and/or Denisovan introgression

into non-Africans. The age of that peak appears slightly more recent than, although

Fig 5. Selected migration profiles between Yoruba and 7 non-African populations. (A) Migration rates. Dashed lines indicate the time point where

50% of ancestry has merged, and shading indicates the 1%, 25%, 75% and 99% percentiles of the cumulative migration probability (see Fig 2). (B)

Cumulative migration probabilities M(t). Dashed lines indicate the relative cross coalescence rate obtained from MSMC2. See S4 Fig for the full set of

figures.

https://doi.org/10.1371/journal.pgen.1008552.g005
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overlapping with, previous split time estimates of those two Archaic groups from the main

human lineage at 550-765kya [14]. However, our simulation with archaic admixture with bot-

tleneck (Fig 2D), shows that our model tends to underestimate the archaic split time in the

Fig 6. Selected migration profiles within non-African populations. (A) Migration rates. Dashed lines indicate the time point where 50% of ancestry

has merged, and shading indicates the 1%, 25%, 75% and 99% percentiles of the cumulative migration probability (see panel B). (B) Cumulative

migration probabilities M(t). Dashed lines indicate the relative cross coalescence rate obtained from MSMC2. See S4 Fig for the full set of figures.

https://doi.org/10.1371/journal.pgen.1008552.g006
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presence of population bottlenecks as is the case for non-African populations [18–20]. In favor

of the hypothesis that this second peak is caused by archaic lineages that have contributed to

non-Africans is the fact that in all pairs of Papuans/Australians vs. Yoruba/Mende/Mandenka

or Dinka, the second peak is particularly pronounced. This fits the archaic contribution

hypothesis, since Papuans and Australians are known to have among all extant human popula-

tions the highest total amount of ancestry related to Neanderthals and Denisovans.

We investigated previous observations of potential ancestry from an earlier dispersal out of

Africa, present in Papuan and Australian genomes [12,13,21]. Previously, one line of evidence

for such a signal was based on shifts of relative cross coalescence rate curves between some

Africans and Papuans or Australians on the one hand compared to curves with Europeans or

East Asians on the other. With MSMC-IM we can compare these curves more quantitatively.

While we were able to replicate this slight shift of relative cross coalescence rate or M(t) mid-

point-based split times from African/Eurasian pairs to African/Australasian pairs reported in

Ref. [21] using MSMC and Ref. [13] using MSMC2, we find that the estimated migration pro-

files of these pairs are very similar (S7 Fig), with a main separation midpoint around 70kya

and a second older signal beyond 200kya, consistent with both Australasians and other Non-

Africans being derived from a single genetic ancestral population without a more basal contri-

bution to Australasians [12,13]. We conclude that the shift in the relative cross coalescence

Fig 7. Summary profiles for divergence processes for 81 pairs of populations from 15 populations. (A) Boxes show the 25% to 75% quantiles of the cumulative

migration probability M(t), with bi-directional elongated error bars representing 1% and 99% percentiles. Colorcode: Red for African/African, blue for African/Non-

African and orange for Non-African/Non-African pairs. (B) Barchart showing the amount of ancestry due to lineages older than 300, 600, 800kya and 1 million years

ago, based on the cumulative migration probability M(t).

https://doi.org/10.1371/journal.pgen.1008552.g007
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rate curve appears to be consistent with being caused by the higher amount of archaic ancestry

present in Papuans and Australians. We note, however, that different separation events are not

distinguishable in MSMC-IM when they are temporally close to each other, as we saw in the

split-with-migration-scenario (Fig 2B).

Separations outside of Africa

All separations outside of Africa are younger than separations between Africans and Non-Afri-

cans, as expected (Fig 6, S4 Fig). The deepest splits outside of Africa are seen in pairs of Papu-

ans or Australians with other Eurasians, in which the first peak of migration is seen at 34kya,

corresponding to the early separation of these populations’ ancestors from other non-African

populations after the out of Africa dispersal. In these pairs we see a second peak around

300kya, likely corresponding to the known Denisovan admixture in Papuans and Australians

[13,22]. This is too recent for divergence time estimates between Denisovans and modern

humans [14], which again is consistent with the underestimate seen in simulations with bottle-

necks. Surprisingly, we see a similar second peak between French and Han, which is consistent

with cross-coalescence rate features in previous observations [4,12] but of unclear cause. Con-

sistent with the hypothesis that the second peak seen in Australasian/Eurasian pairs corre-

sponds to Denisovan admixture, we do not see a second peak in the migration profile between

Papuans and Australians, confirming that the gene flow likely occurred into the common

ancestor of Australians and Papuans [13]. The migration profile between Papuans and Austra-

lians shows a main separation between 15-35kya.

The second deepest splits in Non-African populations are seen between East Asian and

European populations, which occur mostly between 20 and 60kya (cumulative migration proba-

bility midpoint at 34kya), followed by separations between Asian and Native American popula-

tions, between 20 and 40kya (midpoint at 28kya). The latter likely also reflects Ancestral North

Eurasian ancestry in Native Americans [23], which is more closely related to Europeans than to

East Asians, thereby pushing back the separation seen between East Asians and Native Ameri-

cans. Finally, the most recent splits are seen between populations from the same continent: Dai/

Han split around 9-15kya (midpoint 11kya), French/Sardinian around 7-13kya (midpoint

9kya) and within Native Americans around 7-13kya (midpoint 10kya) (Fig 6, S4 Fig).

To visualize the depth of ancestry in each population pair, we summarized all pairwise anal-

yses by percentiles of the cumulative migration probability M(t) (Fig 7). Largely, Non-African

pairs (orange) have their main separation phase, with the cumulative migration probability

between 25% and 75%, between 20 and 60kya, with some more recently diverged pairs within

continents. In contrast, African pairs (red) have their main phase largely between 60 and

200kya, with some notable exceptions of more recently diverged populations, and with the

notable tail (99% percentile) up to 1 million years and older. Between Africans and Non-Afri-

cans, divergence main phases are largely within a similar window of 60-200kya as in African

pairs, with three notable groups: divergence of Non-Africans from San falls between 80-

250kya, from Mbuti between 70-200kya, and from other Africans between 50-150kya. To high-

light the amount of ancestry contributed asymmetrically to one of the two populations from

unsampled populations that diverged from the human lineage in the deep past (so-called

archaic lineages), we show the distance of the cumulative migration probability from 1, 1-M(t),
at different deep time points (Fig 7B). As described above, the deepest signals are seen in pairs

involving San or Mbuti, reaching 3% of ancestry contributed from lineages that diverged at

least 800kya, and around 1% of ancestry from lineages that diverged at least 1 million years

ago. Similarly deep levels are seen in specific pairs involving French, in combination with the
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West African Mende, Mandenka and Yoruba and the East African Dinka, and for pairs

Mende/Dai and Mandenka/Han, as discussed above.

Robustness to phasing and processing artifacts

MSMC2 (like MSMC) requires phased genomes for cross coalescence rate estimation, and we

therefore rely on statistical phasing within the SGDP dataset, for which different strategies are

possible. To compare the effect of selecting such phasing strategy, we generated phased data-

sets using eight different phasing strategies with three phasing algorithms (SHAPEIT [24],

BEAGLE [25], EAGLE [26]). We included genotype calls from 12 individuals with previously

published physically phased genomes [12] and then used those genomes to estimate the haplo-

type switch error rate. Among eight phasing strategies, SHAPEIT2 [24], without the use of a

reference panel, but including information from phase-informative reads [27], resulted in the

lowest switch error rate per kb (and per heterozygous site; S8 Fig). Overall, switch error rates

are higher in African populations, likely due to lower linkage disequilibrium, higher heterozy-

gosity and relatively limited representation in the SGDP. To test how sensitive MSMC-IM is to

different phasing strategies, we tested four phasing strategies on four different pairs of popula-

tions with evidence for extremely deep ancestry (Methods). We find that the migration profile

from MSMC-IM is very similar for different phasing strategies. In particular, we find that the

very deep signal seen in population pairs involving San and Mbuti is reproduced with different

phasing strategies with and without a reference panel (S9A Fig). In a similar way, we con-

firmed the robustness of that signal with respect to choosing different filter levels (S9B Fig)

and with respect to removing CpG sites, which are known to have elevated mutation rates

(S9C Fig). We also explored to what extent switch errors affect our estimates using simulated

data (S10 Fig), and confirmed robustness with respect to variation in recombination rates,

which are assumed to be constant along the genome within MSMC2 but vary in reality (S11

Fig). Finally, to test internal consistency, we tested how well MSMC-IM was able to infer back

its own model. We used the estimated migration rates and population sizes from eight popula-

tion pairs (see Methods), and simulated genomic data under their inferred models. As shown

in S12 Fig, the estimated migration patterns from the simulated and the real data are indeed

very similar, including the deep signals seen in pairs with San and Mbuti.

Given the superiority of the read-aware phasing strategy with SHAPEIT without a reference

panel [27,28] (S8 Fig), we used this method in all of our main analyses. However, even with

this phasing strategy, the switch error rate is high in populations that are not well represented

in the dataset. In case of indigenous Australians, the phasing quality is among the worst in the

dataset (S8 Fig), arguably because the SGDP dataset contains only two Australian individuals

(compared for example to 15 Papuans). To improve phasing in Australians specifically, we

generated new high coverage genomic data for one of the two Australians in the SGDP dataset

using a new library with longer read-pair insert sizes (see Methods). Using these additional

reads reduced the switch error rate from 0.038/kb to 0.032/kb. (S8 Fig, blue isolated dot for

Australian3). We ran MSMC2 on the long-insert Australian data, as well as the standard

phased data, combined with one diploid genome from each of the other world-wide popula-

tions analyzed in this study. The inferred migration profiles from MSMC-IM (S13 Fig) for

Non-African population pairs involving the long-insert phased Australian genome do not

seem to be affected by the phasing method (S13 Fig). The migration profile from pairs of Afri-

cans versus the long-insert phased Australian tend to be slightly younger, but also show deeper

structure in Dinka/Australian, compared to the same pair using the shapeit_pir phasing

method, which uses phase-informative sequencing reads to improve phasing accuracy (Meth-

ods). Note that these migration rate densities exhibit more noise than the ones used in our
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main analysis (S4L Fig), since they are based on only one individual per population, while the

main analyses are based on two individuals per population. The main separation between Pap-

uan and Australian remains at 15-35kya, as shown in the migration profile from both phasing

strategies, very close to the estimates from 8 haplotypes in the main analysis (S4L Fig), and ear-

lier than the previous estimates of 25-40kya [13].

Similar to the procedure introduced for PSMC [3], we use a block-bootstrap approach to

assess statistical uncertainty of our method. We find that there is very little uncertainty around

MSMC-IM’s migration rate estimates (S14 Fig) based on these bootstrap-estimates. This

should be taken with caution, though, since the bootstrap is only able to address the uncer-

tainty caused by randomness in the data, not by systematic biases. We know that MSMC typi-

cally “smears out” sudden changes in coalescence rates, which is due to the wide variance in

local estimates of coalescence times, and this type of error is not revealed by the bootstrap. It

does, however, give high confidence to specific results, such as estimates of archaic ancestry

between 1 and 20% as seen in Fig 3C. According to our bootstrap test (S14 Fig), the cumulative

migration probability M(t) does hardly vary at all in bootstrap replicates, so estimates of deep

ancestry fractions such as the ones shown in Fig 3C and Fig 6B for real data, are very accurate.

Discussion

We have presented both a novel method MSMC-IM for investigating complex separation his-

tories between populations, and an application of that method to human genomes, revealing

new insights into the complex separations and deep ancestry in African populations.

MSMC-IM extends MSMC2 by fitting an IM model to the estimated coalescence rates, which

allows us to characterize the process of population separation via a continuous migration rate

through time. In contrast to the established approach of using the relative cross coalescence

rate directly from MSMC2, our new approach interprets coalescence rates more quantitatively.

In a recent study a similar approach has been used to fit an IM model to PSMC estimates to

estimate population split times and post-split migration rates in a more strictly parameterized

model [29]. We found here that a continuous IM model without an explicit split time better

fits the estimated coalescence rates from MSMC2, which are continuous themselves and thus

lead to a more gradual concept of population separation. This absence of an explicit population

split time distinguishes our approach from many previous models [5,8,9] and allows us to

detect new signals of temporal population structure without specifying population phylogenies

or admixture graphs from prior knowledge or via inference.

A showcase example for such new insights are the traces of extremely deep population

structure seen in our analysis of African population pairs. The fact that San and Mbuti exhibit

the deepest branches in the human population tree is itself not surprising given previous analy-

ses [30–34], but the extraordinary time depth displayed in this analysis has to our knowledge

not been reported before. This deep structure—albeit only making up 1% of ancestry—is far

older than the oldest attested fossil records of anatomically modern humans, considering the

East-African fossils of Omo Kibish and Herto 160-180kya [34–36] and the skull from Jebel

Irhoud recently re-dated to around 300kya [37]. Any admixture from an archaic population

that diverged from the main human lineage more than 600kya would produce such a signal.

This is the case, for example, for the so-called “super-archaic” population that was inferred to

have admixed into Denisovans [14] and was estimated to have diverged from the lineage lead-

ing to modern Humans, Neanderthals and Denisovans between 1.1 and 4 million years ago.

Given this finding outside of Africa, it is perhaps not surprising that such deep archaic popula-

tion structure existed also in Africa.
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However, our signal of archaic population structure in Africa reveals more complexity than

expected under the standard model of archaic introgression, in which two divergent popula-

tions admix with each other, creating a distinct pattern of deep ancestry in the genomes of the

target population. Detecting such patterns in the genome would require a sufficient sequence

divergence between non-introgressed and introgressed genomic segments and sufficiently

long introgressed segments (as detected by the S� statistic or extensions of it [15,16]). This is

the case if the majority of ancestry between the two intermixing species has been isolated for

hundreds of thousands of years, with a relatively recent introgression time (comparable to the

time of the Neanderthal introgression). Such a scenario would then be seen as a bimodal pat-

tern in the migration profile, as shown in our simulations (Fig 2C). What we see, however, in

the migration profiles between San and Mbuti with other African populations, is not a bimodal

pattern, but a more continuous distribution. This would emerge under a model of repeated

isolation and partial admixture of two or more archaic species or populations that exist in par-

allel for a long time. Under such a scenario, genomes are not a two-way mixture between

introgressed and non-introgressed regions, but a mosaic of ancestry lines merging at a range

of different split times. Since much of the introgression would then be attributed to very

ancient events, these segments would be too short for methods such as S� to be detected as

archaic ancestry, which may be the reason why the deep signals reported here have not been

reported before for San and Mbuti, in contrast to Non-Africans and West Africans [15,16].

While the continuous model in MSMC-IM adds significantly to previous approaches to

estimating population separations, one drawback is that it is currently limited to only two pop-

ulations at a time. While this limit is partially technical—MSMC2 cannot be scaled to arbitrary

numbers of genomes—the more severe problem is a conceptual one. It is not obvious how to

use the concept of continuous-time migration rates and non-sharp population separations to

more than two populations. One possibility are graph models, as they are used in admixture

graphs [38], but it is unclear how to make such models fully continuous, as is our current

migration rate and cumulative migration probability for two populations. An important direc-

tion for future work is to achieve a generalization of the continuous concept of population sep-

aration to multiple populations, which might help to better understand and quantify the

processes that shaped human population diversity in the deep history of our species.

Materials and methods

MSMC2

MSMC-IM is based on MSMC2 (first described and used in Ref. [13]) as a method to estimate

pairwise coalescence rates from multiple genome sequences. The MSMC2 method is summa-

rized in a self-contained way in S1 Text. MSMC2 is similar to MSMC [4], but instead of ana-

lyzing multiple genomes simultaneously modelling the first coalescence event, it uses the

pairwise model in sequence on all pairs of haplotypes to obtain a composite likelihood of the

data given a demographic model. The demographic model itself (consisting of a piecewise con-

stant coalescence rate) is then optimized via an Expectation-Maximization algorithm similarly

to MSMC and PSMC [3]. For cross-population analyses, we use MSMC2 to obtain three inde-

pendent coalescence rate estimates: two coalescence rates through time within each popula-

tion, named λ11(t) and λ22(t), respectively, and one coalescence rate function for lineage pairs

across the population boundary, named λ12(t) (S1 Text).

MSMC-IM model

MSMC-IM then fits a two-island model with time-dependent population sizes N1(t) and N2(t),
and a time-dependent continuous symmetric migration rate m(t) to the estimated coalescence
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rates, which essentially is a re-parameterization from the triple of functions {λ11(t), λ12(t),
λ22(t)} to a new triple of functions {N1(t), N2(t), m(t)} (S1 Text). To fit the island-model to the

coalescence rates, we first use the coalescence rates to compute a probability density for times

to the most recent common ancestor (tMRCA), as illustrated here for rate λ11(t):

PMSMCðtjs0 ¼ S11Þ ¼ l11ðtÞe
�

R t

0
l11ðt0Þdt0

Here, S11 denotes the starting state where both lineages are present in population 1. We then

use an approach by Hobolth et al 2011 [39] to compute this density for the three starting states

s0 = {S11,S12,S22} under an IM model, denoted PIM(t|s0), using exponentiation of the rate matrix

of the underlying IM-Markov process that governs the state of uncoalesced and coalesced line-

ages in two populations connected by a time-dependent migration rate (see S1 Text). The fit-

ting process of the IM model to the probability density computed from MSMC2 is done by

minimizing the Chi-square statistics:

w2 ¼
XnT

i¼1

X

s02fS11;S12;S22g

ðPIMðtijs0Þ � PMSMCðtijs0ÞÞ
2

PMSMCðtijs0Þ
þ b1

Z 1

0

mðtiÞdt þ b2

N1ðtiÞ � N2ðtiÞ
N1ðtiÞ þ N2ðtiÞ

� �2
" #

where nT denotes the number of time segments, and the ti denote the boundaries of the dis-

crete time segments. The second and third term in the formula are regularization terms to

avoid overfitting, with β1 restricting migration rates and β2 pushing the two population sizes

N1(t) and N2(t) close to each other. The strength of this regularization can be controlled via a

user-defined parameter in our program. We sum over Chi-square statistics over nT time inter-

vals with i representing the time index in the formula. For the three simulation scenarios and

all pairs of real data, we used a regularization value of β1 = 10−8, β2 = 10−6. Regularization is

necessary because the reparameterization introduced by MSMC-IM overspecifies the model at

times when the two populations are fully merged. For that same reason, we plot estimated

migration rates in all figures only up to a value of M(t) = 0.999, since migration rate estimates

beyond that point are essentially arbitrary, as lineages have already been fully randomized

between the two populations. We also restrict the estimated population sizes to 10,000,000 in

practice.

We implemented the MSMC-IM model as a python command line utility that takes the

MSMC or MSMC2 output files as input. The program is available at: https://github.com/

wangke16/MSMC-IM.

Simulations

We used msprime [40] for all simulations in this paper. In the three series of simulation scenar-

ios mentioned above, we simulated four diploid genomes composed of 22 chromosomes each

of length 100Mbp from two populations, assuming a constant population size 20,000 for every

population. The recombination rate we used here is 10−8 per generation per bp, and the muta-

tion rate is 1.25×10−8.

In the zig-zag simulation (S1 Fig), we simulated a series of exponential population growths

and declines for two, four and eight haplotypes, each changing between 3,000 and 30,000 in

exponentially increasing time intervals, with the same simulation parameters as specified in

Ref. [4] and Ref. [3] to ensure comparability with these previous publications. In particular,

this simulation involved a lower recombination rate (0.3×10−8) than the main simulations, jus-

tified in Ref. [4] as the inferred recombination rate from real data using PSMC’. The reason for

it being lower than the true recombination rate (close to 10−8, as used in the main simulations
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above), is that MSMC (and MSMC2) infers an “effective recombination rate”, which is a non-

trivial average over the variable recombination landscape across the human genome.

We also conducted a number of simulations based on MSMC-IM inference from real data

(S12 Fig). We took the estimates on migration rates and population sizes from MSMC-IM (S2

Table) for eight pairs of worldwide populations (San/Mbuti, San/Dinka, San/French, Mbuti/

French, Yoruba/French, Yoruba/Papuan, French/Han, Papuan/Australian), as the input parame-

ters in our simulation, and simulated 2.2Gb genomes on 8 haplotypes for each case. The recom-

bination rate we used here is 10−8 per generation per bp, and the mutation rate is 1.25×10−8.

Processing genomic Data

For the results shown in Figs 4–7, we used 30 high coverage genomes from 15 cross-continen-

tal modern populations in the SGDP dataset [12], with two diploid genomes from each popu-

lation for running MSMC2 and MSMC-IM (S1 Table). Only the autosomal genome was used

for this analysis. We ran pairwise analyses for 13 populations (excluding Quechua and Mixe)

and pairwise comparisons within three native American populations (81 population pairs in

total). We downloaded the cteam-lite dataset of from the website: http://reichdata.hms.

harvard.edu/pub/datasets/sgdp/, in the hetfa-format where all sites are represented by an

IUPAC encoding representing diploid genotypes, along with individual masks recording the

quality of the genotype calls. We converted the hetfa mask files (.ccompmask.fa.rz) to zipped

bed format though two steps: first we uncompressed the hetfa mask files using “htsbox razip -d
-c” (https://github.com/lh3/htsbox), and then converted the uncompressed mask files (.ccomp-

mask.fa) to zipped bed format by an in-house python script adapted from the makeMappabil-
ityMask.py script in msmc-tools (www.github.com/stschiff/msmc-tools). The cteam-lite masks

encode quality using an integer-range from 0 to 9 (reflecting increasing stringency) and “N” to

represent missing data. For our analysis, we included all sites that were non-missing, i.e. have a

minimum quality level of 0.

Following the processing introduced in PSMC [3] and MSMC/MSMC2 [4], beyond the

individual masks we also use a universal mask to reflect overall mappability and SNP calling

properties along the human genome. We used the universal masks defined in Supplementary

Info 4 from Ref. [12] (and available for download at https://github.com/wangke16/

MSMC-IM/tree/master/masks) as additional negative masks denoting genomic regions to be

filtered out.

Beside the genome-wide mask files for each individual, we obtained variant data as made

available on the SGDP project website (https://sharehost.hms.harvard.edu/genetics/reich_lab/

sgdp/phased_data/). Due to the specifics of how that dataset was generated, only segregating

sites at positions where the Chimpanzee reference genome has non-missing data are included.

To balance this missingness based on the Chimpanzee reference genome for MSMC, we

included an additional mask in our preprocessing, which reflected non-missing regions in the

Chimpanzee reference sequence. For others to reproduce our analysis, we provide this chimp

mask on the MSMC-IM github repository (https://github.com/wangke16/MSMC-IM).

We phased the data using SHAPEIT2 (v837) [24], Beagle4.0 (r1399) [25] and EAGLE2 (ver-

sion 2.3) [26]. We first phased the data using each algorithm both with and without a reference

panel (here we used the 1000 Genomes Phase 3 reference panel as recommended in the Sha-

peit2 documentation). When using a reference panel, all three methods are only able to phase

sites that are represented in the reference panel. Therefore, we removed sites not in the refer-

ence panel, phased, adding the removed sites back as unphased, and then ran a second round

of phasing using Beagle4.0 and the “usephase = true” option, which allows us to phase the

unphased sites in data that is already partially phased. Finally, we also phased using SHAPEIT2
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without a reference panel, but using the read-aware phasing strategy [27]. This uses the fact

that two SNPs found on the same (paired) read must be in phase. The switch error of each of

these phasing strategies, evaluated by comparison with the experimentally phased data gener-

ated for the same samples [12] is shown in S8 Fig.

Finally, we generated a long-insert library from one of the two Australian DNA samples

analyzed in SGDP [12], with a median insert size of 3.3kbp. These data are available at the

European Nucleotide Archive under accession number ERX1790596 (https://www.ebi.ac.uk/

ena/data/view/ERX1790596). We used this data to improve the phasing quality for this Austra-

lian individual. As shown in S8 Fig, this strategy indeed reduced the switch error rate for this

Australian individual from 0.036/kb to 0.032/kb.

Running MSMC-IM

Unlike MSMC, which reports these three rates in a single analysis step, in MSMC2 we run the

three estimations for λ11(t), λ12(t) and λ22(t) independently from each other, using a different

selection of haplotype pairs in each case. We base most of our analyses on 4 diploid individuals

(unless indicated otherwise), for which we prepared joint input files for each chromosome,

consisting of 8 haplotypes each. We then chose the pairs to be analyzed using the “-I” option in

MSMC2. For coalescence rate λ11(t), we used “-I 0,1,2,3”, which instructs MSMC2 to iterate

through all six possible haplotype pairs among the four haplotypes from the first population.

Likewise, to estimate λ22(t), we used “-I 4,5,6,7”. Finally, to obtain estimates of the coalescence

rates across populations, λ12(t), we used “-I 0–4,0–5,0–6,0–7,1–4,1–5,1–6,1–7,2–4,2–5,2–6,2–

7,3–4,3–5,3–6,3–7”, iterating through all sixteen possible haplotype pairings between the four

haplotypes in each population. MSMC-IM requires a single input file containing all three coa-

lescence rate estimates, similar to the output generated by the original MSMC program. A

script combineCrossCoal.py is provided on the msmc-tools github repository (http://www.

github.com/stschiff/msmc-tools), to generate the combined output file from the three output

files of the three MSMC2 runs for a pair of populations.

With the combined MSMC2 output as input, we run MSMC-IM model by “MSMC_IM.py
pair.combined.msmc2.txt”. Also, the time pattern needs to be specified, which is by default

1�2+25�1+1�2+1�3 as the default in MSMC2. In the output, MSMC-IM will rescale the scaled

time in MSMC2 output by mutation rate 1.25e-8 into real time in generations, and report sym-

metric migration rates and M(t) in each time segment.

Robustness tests

Phasing Strategy: We tested the robustness of our findings by applying four different phasing

strategies—beagle, shapeit, shapeit_ref_all to shapeit_pir to four pairs of populations in the

SGDP dataset (San/Mbuti, San/Yoruba, San/French, Mbuti/French). Here, beagle and shapeit
denote phasing with no reference panel, shapeit_ref_all denotes phasing with a reference panel

(1000 Genomes phase 3, with sites not in the reference panel phased with Beagle) and shapeit_-
pir denotes no reference panel but including phase-informative reads (S9 Fig).

Filtering: We explored the impact of mask filtering levels using San/French and Mbuti/

French in the SGDP dataset, by varying the stringency of the filtering between levels 0, 1, 3, 5

(S9 Fig).

CpG islands: We conducted San/French and Mbuti/French runs with removed CpG sites.

For this, we generated a mask including all positions of Cytosines and Guanines in CpG dinu-

cleotides, Thymines in TpG dinucleotides, and Adenosines in CpA dinucleotides in the

human reference genome hg19, and used those positions as negative mask when preparing the
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MSMC input files. This mask can be found in the github repository (https://github.com/

wangke16/MSMC-IM).

Simulated switch errors: To explore the impact of switch errors, we added artificial switch

errors at rates ranging from 5e-6 to 5e-4 per base pair in four different simulation scenarios—

the clean-split scenario at 75kya, the split-with-migration scenario at 75kya, the split-with-
archaic-admixture scenario at proportion 5%, the split-with-archaic-admixture-bottleneck at

proportion 5%. As shown in S10 Fig, we found that the impact of switch errors on

MSMC-IM’s estimates is negligible up until switch errors of rate 5e-5.

Simulations with variable Recombination rates: In the four simulation scenarios selected

above we simulated variable recombination rates using a human genetic map with variable

recombination rates along the genome downloaded from (ftp://ftp.ncbi.nlm.nih.gov/hapmap/

recombination/2011-01_phaseII_B37/genetic_map_HapMapII_GRCh37.tar.gz). As shown in

S11 Fig, MSMC-IM’s estimates from using a real genetic map are consistent with estimates

from using constant recombination rates.

Bootstrapping: We applied a block-bootstrap, similar to the approach described in ref. [3]

to six pairs in the SGDP dataset (San/Mbuti, San/Dinka, Yoruba/French, French/Han, Yor-

uba/Papuan, Papuan/Australian) with 20 replicates for each (S12 Fig).

Independent Dataset: We tested our approach on 12 populations (24 genomes) from

another dataset [14], which consists of different genomes available from http://cdna.eva.mpg.

de/neandertal/altai/ModernHumans/. This dataset was processed independently using the

pipeline in the msmc-tools github repository (http://www.github.com/stschiff/msmc-tools) i.e.

SNPs and masks generated using samtools and bamCaller.py, with statistical phasing by SHA-
PEIT2 with the 1000 Genomes reference panel, leaving sites not present in the reference panel

as unphased. Results between the two datasets are very similar, with some differences observed

in relation to highly drifted populations like Karitiana.

Supporting information

S1 Fig. MSMC and MSMC2 population size estimates from simulated data. To test popula-

tion size inference capabilities of MSMC (A) and MSMC2 (B) applied to two, four and eight

haplotypes, we simulated a series of exponential population growths and declines, each chang-

ing the population size by a factor ten. The true population size is shown as dark solid line.

Compared to MSMC, MSMC2 recovers the population size well, and the resolution in recent

times increases with the number of haplotypes. With two haplotypes, MSMC2 infers the popu-

lation history from 10kya to 3 million years, whereas, with four haplotypes and eight haplo-

types the resolution in recent times is extended to 3kya and 1kya years ago respectively.

(PDF)

S2 Fig. Cumulative migration probabilities from four simulation scenarios. This figure

shows the same results as Fig 2, but showing M(t) instead of m(t). The scenarios are (A) the

Clean-split scenario. (B) the Split-with-migration scenario, and (C) the Split-with-archaic-
admixture scenario. (D) the Split-with-archaic-admixture-and-bottleneck scenario. For panel

(C) and (D), we show results with alpha ranging from 0 to 1, instead of between 0 to 20%

shown in Fig 2. The relative CCR is shown in step-wise dashed lines to be compared with M

(t).

(PDF)

S3 Fig. Population size estimates from MSMC2 compared to MSMC-IM: We simulated

N1(t) and N2(t) as constant 20,000 in top three different simulation scenarios, and simu-

lated a severe bottleneck in N2(t) with a factor 30 between 40-60kya in the bottom
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simulation scenario. The split time T is 75kya in all four cases, and all other parameters are

the same as in Fig 2 and as indicated. As shown, the MSMC-IM estimates for N1(t) and N2(t)
are close to the inverse coalescence rates, with relatively small effects caused by the migration

rate in MSMC-IM which is absent from MSMC2.

(PDF)

S4 Fig. Pairwise migration profiles for 13 worldwide populations, involving San (A), Mbuti

(B), Mandenka (C), Dinka (D), Yoruba (E), Mende (F), French (G), Sardinian (H), Han (I),

Dai (J), Papuan (K), Australian (L), Karitiana (M). The relative CCR is shown in step-wise

dashed lines to be compared with M(t). See separate joint PDF file.
(PDF)

S5 Fig. Migration profile of an independent dataset. Here we have analyzed 12 worldwide

populations from Prüfer et al (2014) with independent data processing as described in Meth-

ods: San (A), Mbuti (B), Mandenka (C), Dinka (D), Yoruba (E), French (F), Sardinian (G),

Han (H), Dai (I), Papuan (J), Australian (K), Karitiana (L). The relative CCR is shown in step-

wise dashed lines to be compared with M(t). See separate joint PDF file.
(PDF)

S6 Fig. Estimated population sizes from MSMC2 for 15 worldwide populations. We show

the estimates from MSMC using 8 haplotypes/4 individuals per population from the SGDP

dataset.

(PDF)

S7 Fig. Testing for potential multiple out-of-Africa separations. Here we show analyses on

the divergence of Papuans and Australians from Africans vs. other Non-African populations

from Africans. We show the cumulative migration probability M(t) in (A), and the migration

rate m(t) (B) for pairs of populations of Yoruba, Dinka and San with one non-African popula-

tion as indicated.

(PDF)

S8 Fig. Switch error rates from eight phasing strategies. beagle and beagle_ref_all denote

BEAGLE phasing without and with reference panel (here and below denoting the 1000

Genomes Phase 3 reference panel). eagle and eagle_ref_all represent EAGLE phasing without

and with reference panel. shapeit and shapeit_ref_all represent SHAPEIT phasing without and

with reference panel. shapeit_pir represents SHAPEIT phasing with phase-informative reads.

shapeit_pir_extra represents SHAPEIT phasing with long-insert-size reads as additional phase

informative reads, which was applied to B-Australian-3 only. See Methods for details.

(PDF)

S9 Fig. Impact of phasing and processing artifacts. We show (A) the impact of the phasing

strategy using San/Mbuti, San/Yoruba, Mbuti/French and San/French as examples, (B) the

impact of the filtering level for generating individual masks using San/French and Mbuti/

French as example, and (C) the impact of removing CpG sites using San/French and Mbuti/

French as example. See caption to S8 Fig for a description of the four phasing methods shown

in (A).

(PDF)

S10 Fig. Impact of switch errors on simulated data. Here we selected the same four simula-

tion scenarios used in S3 Fig, and added phasing switch errors ranging from 5e-6 to 5e-4 per

base pair. The overall migration profiles remain relatively consistent for error rates between

5e-6 and 5e-5, with strong effects seen with rates higher than 5e-5, shifting the migration
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profiles towards older times. (A) Clean split at 75kya. (B) Split at 75kya with symmetric migra-

tion between 10-15kya. (C) Split at 75kya with archaic admixture at 5%. (D) Split at 75kya with

archaic admixture at 5% and bottleneck in one population.

(PDF)

S11 Fig. Impact of recombination rate on simulated data. Applying the same four simula-

tion scenarios used in S3 Fig, we here used the genetic map estimated for the human genome

(i.e. variable recombination rate across genome) instead of a constant recombination rate. Red

lines represent our estimates from using a constant recombination rate 10−8 per generation

per bp. (A) Clean split at 75kya. (B) Split at 75kya with symmetric migration between 10-

15kya. (C) Split at 75kya with archaic admixture at 5%. (D) Split at 75kya with archaic admix-

ture at 5% and bottleneck in one population.

(PDF)

S12 Fig. Migration profile on simulated pseudo-SGDP genomes. Green lines show the esti-

mates we got from SGDP data for pairs shown on the left (as shown in S4 Fig), which are used

as input parameters for the simulation. Red lines show the estimates from applying MSMC-IM

on the simulated data. (A) Migration rates m(t). (B) Cumulative migration probabilities M(t)
and relative cross-coalescence rates.

(PDF)

S13 Fig. Impact of long-insert phasing on Australian population separation inferences. M
(t) in quantiles is summarized here between a single Australian and a single individual from

worldwide populations. Boxes show the 25% to 75% quantiles of M(t), with bi-directional elon-

gated error bars representing 1% and 99% percentiles. Red color represents the data phased

using long-insert reads. Green color represents the standard phased dataset.

(PDF)

S14 Fig. Bootstrap tests. As shown in (A) migration rate m(t) and (B) Cumulative migration

probability M(t), the overall inferred profile for each pair is rather consistent across 20 repli-

cates.

(PDF)

S1 Table. Analyzed samples and population labels from the SGDP dataset.

(XLSX)

S2 Table. MSMC2 results and MSMC-IM estimates for all pairs of SGDP populations ana-

lyzed in this paper, see separate Excel file. The columns reported are described within a leg-

end included in the Excel file.

(XLSX)

S1 Text. Derivation of MSMC2 and MSMC-IM theory, see separate PDF file.
(PDF)
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