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Abstract

Several bacteria in the gut microbiota have been shown to be associated with inflammatory

bowel disease (IBD), and dozens of IBD genetic variants have been identified in genome-

wide association studies. However, the role of the microbiota in the etiology of IBD in terms of

host genetic susceptibility remains unclear. Here, we studied the association between four

major genetic variants associated with an increased risk of IBD and bacterial taxa in up to 633

IBD cases. We performed systematic screening for associations, identifying and replicating

associations between NOD2 variants and two taxa: the Roseburia genus and the Faecalibac-

terium prausnitzii species. By exploring the overall association patterns between genes and

bacteria, we found that IBD risk alleles were significantly enriched for associations concordant

with bacteria-IBD associations. To understand the significance of this pattern in terms of the

study design and known effects from the literature, we used counterfactual principles to

assess the fitness of a few parsimonious gene-bacteria-IBD causal models. Our analyses

showed evidence that the disease risk of these genetic variants were likely to be partially

mediated by the microbiome. We confirmed these results in extensive simulation studies and

sensitivity analyses using the association between NOD2 and F. prausnitzii as a case study.
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Author summary

In this study, we used observational data to explore associations between host genetics

and the commensal microbiome in inflammatory bowel disease cases. Our analysis identi-

fied four associations involving two genes and four bacterial taxa and replicated two of

these associations in independent cohorts. Then, we developed a counterfactual frame-

work to assess the fitness of a few parsimonious gene-bacteria-IBD causal models. These

analyses confirmed the robustness of the identified associations and highlighted micro-

biota mediation as a potential mechanism underlying the association between IBD and

those genetic variants while ruling out reverse causation and arguing against a bacteria-

IBD association resulting from a shared genetic effect.

Introduction

Most genetic analyses and twin studies published to date support a genetic component of

inflammatory bowel disease (IBD) phenotypes [1]. Recent works showed an estimated herita-

bility on the liability scale of approximately 70–80% for Crohn’s disease (CD) and 60–70% for

ulcerative colitis (UC) [2]. Genome-wide association studies (GWASs) have identified more

than 200 loci associated with IBD, most of which are shared between UC and CD [3–5]. Identi-

fication of these loci has enhanced our understanding of the pathogenesis of IBD, provided

perspective on key pathways, and highlighted an essential role for host defense against infec-

tion. In parallel, recent work noted a potential role of the intestinal microbiota in initiating,

maintaining, and determining IBD-related phenotypes [6–8]. Although generally the com-

mensal microbiota is accepted to induce inappropriate activation of intestinal mucosal immu-

nity, the precise role of the microbiota in the etiology of IBD in terms of host genetic

susceptibility remains unclear.

Both functional and observational studies have been performed in an expanding effort to

address the question of interplay between human genetic variation and the gut microbiome. In

a recent work in mice, we showed that the IBD-associated gene CARD9 affected the composi-

tion and function of the gut microbiota by altering the production of microbial metabolites

and increasing the risk of intestinal inflammation [9]. Similarly, another study explored poten-

tial gene-microbiota interactions in the pathogenesis of IBD [10]. The study showed that the

IBD-associated genes ATG16L1 and NOD2most likely played an essential role in the beneficial

immunomodulatory properties of Bacteroides fragilis, which protects mice from experimental

colitis. A number of systematic screenings with observational data from healthy human sub-

jects have also been performed using various strategies. In particular, three groups performed

population-based GWASs of 1,561, 1,514 and 1,812 individuals [11–13]. Overall, these studies

confirmed an association between host genetics and the human gut microbiome composition.

Comparison of results between studies also highlighted a probable complex genetic architec-

ture underlying microbiome traits, with little overlap among the detected loci between studies

[14]. Alternatively, at least one GWAS performed with 474 IBD cases identified an association

between NOD2 variants and the relative abundance of Enterobacteriaceae [15].

Altogether, these studies have improved our understanding of the relationship between

host genetics and the human microbiome. However, functional studies and most in vitro
experiments may fail to replicate the precise conditions of the organism under study [16].

Moreover, many species are difficult to grow in vitro, although progress has been made

recently [17, 18]. On the other hand, existing observational studies have focused only on
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association testing and have neither leveraged the multidimensional aspect of the data nor

accounted for the study design to assess causal relationships. Here, we aimed to assess whether

single nucleotide polymorphisms (SNPs) from four major genes (NOD2, CARD9, LRRK2, and

ATG16L1) associated with IBD were also associated with bacterial populations from the gut

and to evaluate the relevance of the underlying causal models. We used a discovery dataset

including 182 IBD cases with both microbiome and host genetic data as well as replication

data from 451 additional IBD cases. First, we applied CMS, a novel association mapping

approach we recently developed to screen for gene-bacteria associations [19]. Then, we devel-

oped an inference framework based on the counterfactual principle [20] to assess the fitness of

a few parsimonious gene-bacteria-IBD models with the observed associations.

Results

SNP-bacteria association screening

Our discovery dataset included variants from four genes (NOD2, CARD9, LRRK2, and

ATG16L1, S1 Table) and bacterial levels from the gut obtained through 16S sequencing of 182

well-phenotyped IBD cases (Table 1). After stringent quality control (S1 Text, S1 Fig), 168

bacterial taxa remained for association testing. The relative proportion of these 168 taxa within

each level is summarized in Fig 1A. A total of 6, 12, 17, 36, 63, and 34 taxa were included in

each of the 6 hierarchical levels (phylum, class, order, family, genus and species, respectively).

The bacterial microbiota was dominated by bacteria from the Firmicutes, Bacteroidetes and

Proteobacteria phyla. When compared to a similar cohort of 38 healthy controls (who had

complete microbiome data but no SNP data) using standard logistic regression (S2 Fig), we

found that 73% of those bacteria displayed a negative association with IBD (Fig 1B).

We performed systematic screening for associations between the four IBD-susceptibility

genetic variants and bacterial quantification. Due to substantial correlation across hierarchical

levels (S3 Fig), we conducted analyses within each level and applied Bonferroni correction to

the p-value within each level to select the best candidate associations. An association test was

performed using standard linear regression after adjusting for established confounding factors

as well as covariates selected by the recently developed CMS approach [19] to increase the sta-

tistical power (S1 Text). We identified seven candidate associations (S2 Table), six of which

involved NOD2 (with c_Bacteroidia, f_Bacteroidaceae, g_Bacteroides, g_Roseburia, R. faecis,
and F. prausnitzii) and one that involved CARD9 (with p_Firmicutes). However, these associa-

tions corresponded to four independent signals (Table 1) with the same association being

Table 1. Sample characteristics.

Female Male Total

CD UC CD UC

N 67 38 48 29 182

Flare (%) 40.3% 55.3% 50.0% 41.4% 46.2%

Mean age 40.3 38.4 39.9 45.5 40.6

Smoking (%) 25.4% 7.9% 31.3% 13.8% 21.4%

Treatment
Oral 5-ASA (%) 20.9% 55.3% 35.4% 62.1% 38.5%

Corticosteroids (%) 11.9% 23.7% 16.7% 31.0% 18.7%

Anti-TNF (%) 56.7% 44.7% 54.2% 31.0% 49.5%

Thiopurine-MTX (%) 43.3% 31.6% 29.2% 51.7% 38.5%

Abbreviation: MTX, methotrexate.

https://doi.org/10.1371/journal.pgen.1008018.t001

Fprau & Nod2

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008018 March 8, 2019 3 / 25

https://doi.org/10.1371/journal.pgen.1008018.t001
https://doi.org/10.1371/journal.pgen.1008018


projected along branches of the phylogenic tree (see S4–S7 Figs for hierarchical plots of the

associations). Indeed, g_Roseburia and R. faecis, which were found to be associated with

NOD2, had a correlation of 0.84 in our dataset. Similarly, f_Bacteroidaceae and g_Bacteroides,

Fig 1. Overview of the bacterial taxa distribution in IBD cases and NOD2 association. Panel a) shows the relative proportion of the 168 bacterial taxa

analyzed across the six hierarchical levels. Only taxa representing more than 0.5% of the total bacterial loading are labelled. Grey areas correspond to unknown,

unmeasured, or underrepresented taxa. Panel b) show the log of the odds ratio (OR) of the labelled bacteria on IBD case-control status and corresponding 95%

confidence interval, as derived using standard logistic regression while adjusting for confounding factors.

https://doi.org/10.1371/journal.pgen.1008018.g001
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which were also associated with NOD2, were almost identical and had a correlation of 0.93

with c_Bacteroidia. The two remaining associations were observed between NOD2 and F.

prausnitzii and between CARD9 and p_Firmicutes. All four signals showed that the IBD risk

alleles (of either NOD2 or CARD9) were negatively associated with the bacteria in question.

To validate these associations, we performed in silico replication using three independent

datasets of adult human subjects with IBD including a total of 451 individuals [15, 21]. Genetic

variant and bacteria data were only partly available in these datasets. CARD9 was available in

only one of the three replication cohorts, and we used the genus g_Faecalibacterium as a proxy

for F. prausnitzii in all three replication analyses. We preprocessed and analyzed the data simi-

larly to that of the discovery sample and combined the two stages using a standard inverse-var-

iance meta-analysis (Table 1). The replication analysis confirmed the associations between the

NOD2 risk allele and decreased abundance of g_Roseburia and F. prausnitzii (Fig 2A); and

both signals passed a stringent Bonferroni correction accounting for all tests performed at the

meta-analysis stage (P< 7x10-5). Firmicutes-CARD9 and Bacteroides-NOD2 replication

showed a signal concordant with those observed during discovery (i.e., a negative association)

but were not significant, indicating either a false positive in the discovery or a lack of statistical

power in the replication. To explore further potential heterogeneity of the SNP effects, we con-

ducted association analyses for the following disease subtypes: CD overall, Ileal CD, non-ileal

CD, and ulcerative colitis (Table 1). The effect estimates for CD and ileal CD were consistent

with the signal observed for IBD during both discovery and replication. Conversely, we

observed heterogeneity of effects for both non-ileal CD and UC. Finally, we confirm further

the NOD2 and F. prausnitzii association, which is a bacterium of particular interest for our

group[22], using real-time quantitative PCR [23] in the discovery samples (Fig 2B).

Model fit while accounting for selection bias

The associations between the IBD risk variants and two bacteria that are also associated with

the IBD risk raise questions about potential reverse causation or conversely potential

Fig 2. Summary of association signals between NOD2 variants and F. prausnitzii. Panel a) presents the boxplots of rank-based inverse normalized F.

prausnitzii from fecal microbiota in the discovery samples and the three replication datasets for non-carrier and carriers of NOD2 risk alleles. Panel b) presents

F. prausnitzii in the healthy controls and cases from the discovery sample quantified using 16S qPCR and normalized to the global bacterial population

(mean ± s.e.m.).

https://doi.org/10.1371/journal.pgen.1008018.g002
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mediation of the genetic risk through bacteria. In an attempt to address the question of causal-

ity, we performed a series of analyses to assess the fitness of models matching existing knowl-

edge, which can be summarized as follows. First, the effects of both NOD2 and CARD9 on IBD

are well established [3]. Second, SNPs can only be explanatory variables, which implies a

(direct or indirect) unidirectional relationship. Third, the four taxa from Table 1 (Roseburia
genus, Bacteroidia class, F. prausnitzii, and Firmicutes phylum) have been consistently found

to be negatively correlated with the IBD case status [8, 24]; however, the directionality of the

effect remains a topic of investigation [25]. In regards of these three constraints, four (poten-

tially overlapping) parsimonious underlying causal models can fit the data (Fig 3A–3D): (a)

the effect of the risk allele is mediated by bacterial level; (b) the genetic variant influences both

the disease and the bacteria, inducing a correlation between the two latter variables; (c) the risk

allele and bacteria are independent risk factors of IBD; and (d) IBD mediates the effect of the

risk allele on bacterial level (a so-called reverse causation). Note that these models remain rele-

vant when adding intermediate factors. For example, NOD2 variants have been shown to cor-

relate with lower concentrations of defensins [26], which in turn can be responsible for

Fig 3. Hypothetical causal models. Expected correlation between an IBD risk variant g and a bacteria B negatively correlated with IBD, across four potential underlying

models. For illustrative purposes, g and B are assumed to be continuous and normally distributed and all effects are larger than those observed in real data. Top panels

(a, b, c, and d) present the hypothetical causal diagrams and bottom panels (e, f, g, and h) present the corresponding scatterplots of B as a function of g in the population

(dark grey points, and trend in black), and in cases only (light grey points and trend in red). In model a) the effect of g on IBD is mediated by B; in cases the effect of g on

B is underestimated because of the oversampling of participants carrying risk alleles (e). In model b) the genetic variant influences both IBD and B, inducing a

correlation between IBD and B which is observed in both the whole sample and cases only (f). In model c), g and B act independently on IBD and are therefore not

associated in the population, however g and B are positively correlated in case-only samples because of biased selection (g). Finally, in model d) the effect of g on B is

mediated by IBD; the indirect association between g and B observed in the general population is canceled when looking at cases only as the sample is stratified by the

mediator (h).

https://doi.org/10.1371/journal.pgen.1008018.g003
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changes in the microbiota composition. Alternatively, IBD may be associated with increased

epithelial oxygenation [27], which itself can be responsible for changes in the microbiota com-

position. Such scenarios will be in full agreement with model a) and model d), respectively,

and therefore will not alter the conclusion of the analysis.

Importantly, secondary phenotype analysis in highly ascertained samples (such as in the

present study which includes IBD cases only) can introduce selection bias [28, 29], although

previous work has shown that this bias will be minimal for rare diseases (i.e., those with a

prevalence� 1%, such as IBD [30]) and for cases with low to moderate associations between

variables [29] (S3 Table). To assess the fitness of the data with the four causal models while

accounting for selection bias, we derived an estimator of Δ, the bias induced by the IBD case-

only sampling in the regression coefficient between the risk allele tested and the bacteria. As

shown in S1 Text, Δ can be approximated in some specific situations (common diseases and

modest effects of the predictors), but estimation in more general cases is extremely challeng-

ing. Nevertheless, this theoretical framework allowed us to determine the expected sign of the

risk allele-bacteria association across the scenarios considered without relying on assumption

on the data distributions. Following the counterfactual principle [20], we leveraged this prop-

erty to infer which model had the highest fit for the data based on the signs of the observed

associations. As illustrated in the toy example from Fig 3E–3H, our analytical derivation (see

Materials and Methods) showed that the ascertainment could induce a positive bias of the

SNP-bacteria association in model (c) and lead to the removal of the SNP-bacteria association

in model (d). The results from this analysis are twofold. First, it shows strong evidence that

among the four causal models considered, models (a) and (b), which included a true gene-bac-

teria effect, were the only models in which we expected a persistent negative SNP-bacteria

effect, which was in agreement with the results from Table 1. Second, it rules out selection bias

as a likely explanation for the observed association.

We then asked whether the proposed approximation of Δ could be also informative for the

remaining gene-bacteria association results. Indeed, besides the main signals from Table 1,

our data showed both enrichment for a negative bacterium-disease association (Fig 1B) and

significant enrichment for negative effects of IBD risk alleles on all bacteria levels, with 65%,

71%, 70%, and 60% of the associations negative for ATG16L1, CARD9, LRRK2, and NOD2,
respectively (Fig 4A–4D, p-values for enrichment equal 7.1x10-5, 3.3x10-8, 1.3x10-8, and

5.3x10-3, respectively). After aligning the bacterium-disease and bacterium-SNP associations,

we observed a strong and significant (P = 5.0x10-8) concordance of effects (i.e., most bacteria

showed an association with SNPs and IBD with the same sign) (Fig 4E and 4F). However, our

derivation and simulation study (S1 Text and S8–S12 Figs) demonstrated that, regardless of

the error distribution of the bacterial level, the correlation between the bacterium-disease and

the bacterium-SNP effect estimates in the case-only samples, is expected to be negative under

model c), and null under model d). Therefore, the observed positive correlation (Fig 4F) pro-

vides further evidence against model c) (the risk allele and bacteria act independently on IBD)

and d) (IBD mediates the effect of the risk allele on the bacteria) as generative models, and

again indicates that models a) and b) are the best fits for our data.

Fully deciphering models a) and b) would be extremely challenging because of the complex

interrelationships between the variables in question and the untestable assumptions that

would have to be assumed. However, we found some indications supporting model a) against

model b) in our data. In particular, as illustrated in Fig 3, the association effect estimates

between a genetic variant and bacteria are expected to be slightly deflated in the cases alone

compared to that of the estimates derived in a population including controls in model a) but

should remain unchanged in model b). To assess the fitness of the two models, we use the spe-

cial case of NOD2, which is associated almost exclusively with CD [3]; thus, the NOD2-bacteria

Fprau & Nod2

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008018 March 8, 2019 7 / 25

https://doi.org/10.1371/journal.pgen.1008018


associations are expected to be unchanged between all IBD samples (including UC cases) and

CD alone under model b) but should be different in model a). As shown in S13 Fig for all bac-

teria, we found that the effect estimates derived for the CD cases alone were significantly

(P = 5x10-3) smaller than those derived for the complete dataset, which matched the expected

deflation observed in the presence of mediation and therefore provided an argument in favor

of model a).

Sensitivity analyses

As most causal inference approaches, the proposed counterfactual strategy we used in this

study has some limitations. In order to assess the validity of our simulation framework, we per-

formed a series of sensitivity analyses that closely mimicked current knowledge on IBD associ-

ations. First, empirical bacterial levels follow a non-negative, overdispersed distribution and

often harbor a large number of zero values; therefore, use of the Poisson distribution, negative

Fig 4. Correlation between SNP-taxa and IBD-taxa effect estimates. The 168 bacterial taxa were tested for association with the variants from each of the four

genes considered: (a) ATG16L1 (rs12994997), (b) CARD9 (rs10781499), (c) LRRK2 (rs11564258), and (d) NOD2 (rs2066844, rs2066845, and rs2066847). The

histograms on the left panel show the distribution of IBD risk alleles-bacteria association (i.e. of β̂ g, the regression coefficients) and the enrichment for negative

effects (in blue, p-values equal 7.1x10-5, 3.3x10-8, 1.3x10-8, and 5.3x10-3, respectively). Panel (e) shows a similar histogram while merging the per-risk allele

change in bacteria level of the four genes (i.e. summing for each bacteria the β̂ g of the four genes). Panel (f) shows the distribution of bacteria-IBD association

derived in a IBD cases-controls dataset (β̂ B) for each bin from panel (e). Together, panels (e) and (f) show the strong concordance of the gene-bacteria and

bacteria-IBD effects, in agreement with a mediation effect of the risk allele on IBD through the microbiome. In particular, bacteria displaying lower level in

carrier of IBD risk alleles are more likely to be negatively associated with the risk of IBD.

https://doi.org/10.1371/journal.pgen.1008018.g004
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binomial distributions, or hurdle models has been suggested for analyses of microbiome data

[31]. Moreover, we applied a rank-based inverse-normal transformation in our real data analy-

sis, although sparsity remained (after QC, the bacteria had a minimum of 20% nonzero values).

To assess the impacts of these parameters, we performed a simulation study in which the bac-

terial levels were drawn from a negative binomial distribution with varying percentages of

zero-values [0%; 95%]. For each replicate, the SNP-bacteria effect was estimated similar to the

procedure used in the real data analysis. As shown in S14 Fig, no qualitative difference was

found between the untransformed and transformed analyses over the four scenarios consid-

ered (i.e., Fig 3A–3D). Overall, both the true effect (models (a) and (b)) and bias (model (c))

decreased toward the null with the increased data sparsity.

Another potential limitation of our inference was that we assumed that all effects were

homogeneous, and Crohn’s disease and ulcerative colitis cases were treated as a single outcome

variable (IBD). However, as aforementioned, NOD2 variants and F. prausnitzii are mostly

associated with CD, and ileal CD in particular, but show little evidence of an association with

UC [3]. Such effect heterogeneity can be treated as a misclassification problem (i.e., UC cases

are misclassified as CD cases). To assess the impact of genetic heterogeneity, we performed a

second simulation in which the SNP-disease and bacteria-disease associations were present

only for a subset of the cases (thus mimicking UC-CD heterogeneity). In this simulation, all

parameters were set to ensure that the magnitudes of the known effects were similar to those

reported in the literature for the NOD2-F. prausnitzii example and in our analysis. As

described above, we considered the four causal models from Fig 3 and estimated for each repli-

cate and each disease subtype strata the association between the genotype and the bacteria. As

shown in S15 Fig, in this scenario, some of the bias from models (c) and (d) illustrated in Fig

3G and 3H decreased toward the null. Moreover, our simulations showed that under models

(c) and (d), we expected no association signal from either the disease subtype strata or the

whole IBD-cases sample. Again, only models a) and b) fit the observed results from both

Table 1 and Fig 4.

Finally, the validity of some of our analyses relies on the assumption that no intermediate

variable buffers the associations with IBD. For example, genetic variants and bacteria may be

associated with IBD through the disease severity instead of the disease itself. In S16 Fig, we

repeat the simulation from Fig 3 after replacing IBD with the disease severity drawn from a

binomial distribution with n = 5. When assessing the relationships among IBD (here defined

as severity� 1), bacteria and genetic variants, we observed the same qualitative results for

models a), b), and c) as those from our primary example. However, in model d), substantial

correlation between genetics and bacteria persisted in the case sample. Nevertheless, if the

severity is measured, a naïve but efficient solution consists of adjusting for that variable. To the

best of our knowledge, no standard severity score is available for IBD. However, severity is

commonly quantified by ineffective treatment, remission, or the number and location of

inflamed sites. However, only the flare/remission status was available in our study. To assess

potential confounding, we also reran the SNP-bacteria and bacteria-IBD associations. As

shown in S17 Fig, we did not observe any qualitative change in the association pattern.

Discussion

In this study, we explored the effect of four major genes associated with an increased risk of

IBD on bacterial populations from the gut. First, we identified and replicated in independent

cohorts the associations between NOD2 risk alleles and a decrease of both F. prausnitzii and

g_Roseburia. Using a counterfactual framework, we provide further evidence of the robustness

of these associations and highlight potential mediation of the increased risk of IBD due to

Fprau & Nod2

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008018 March 8, 2019 9 / 25

https://doi.org/10.1371/journal.pgen.1008018


those genes by the gut microbiome. Importantly, our framework only compares a set of parsi-

monious models and thus provides only probable causes for the observed effects. Moreover,

potential mediation effects do not rule out the presence of other mechanisms through other

pathways acting in parallel. Nevertheless, the extensive sensitivity analyses, which simulated

data in which the bacterial data distributions were overdispersed and sparse, and genetic effect

was heterogeneous, confirmed our results. Our inference is also in agreement with previous

functional studies showing that numerous IBD susceptibility genes are involved in the

response to microorganisms [3], suggesting that the functional consequences of their alter-

ations may be directed toward the gut microbiota. Indeed, studies in mice showed that defects

in innate immunity genes, such as NOD2 or CARD9, impacted the microbiota composition [9,

32, 33]. Moreover, the gut microbiota of NOD2-/- and CARD9-/-mice has pro-inflammatory

effects by itself, because it worsens the colitis severity when transferred to germ-free wild type

mice [9, 34]. Previous work also noted an essential role forNOD2 in the temporal development

and composition of the host microbiota in mice [35]. In human patients with IBD, a significant

association between the NOD2 risk allele and the fecal abundance of Enterobacteriaceae has

been shown[15]. Finally, in another study, homozygocy for the ATG16L1 risk allele was associ-

ated with increased numbers of Fusobacteriaceae in the inflamed ileal mucosa of CD patients

[36]. Building on these previous reports, our study addresses an important missing piece by

describing the role of likely interactions between human genetic variants and the gut micro-

biota in IBD pathogenesis.

Although our study provides evidence against some generative models, including reverse

causation by which the IBD status itself influences the microbiome composition, we fully

acknowledge that strong statements about causality are impossible. Instead, we argue that our

analysis may at least provide support for mediation of genetic effects on IBD through the

microbiome for these variants. Whether other IBD variants display similar patterns remains to

be assessed. Moreover, despite extensive sensitivity analyses, other complex mechanisms may

impact the validity of our results. For example, we cannot fully rule out potential confounding

by disease severity. A strong interaction effect between the genetic variants considered and

other IBD risk factors (i.e., where the magnitude or even the direction of the genetic effect

depends on other factors) may also impact our results. The Mendelian randomization (MR)

principle, which is now commonly applied to genome-wide summary statistics data [37–39],

may provide additional support for potential causal models. Importantly, the proposed parsi-

monious models most likely match the first two assumptions of MR [i.e., i) the genetic variant

is independent of typical confounding factors and ii) the genetic variant is associated with the

mediator in question (here the bacterial level)]. However, the third assumption (i.e., absence of

an effect of the genetic variant on the disease conditional on the mediator) potentially is vio-

lated for IBD, which will make MR analyses more challenging. Therefore, the fundamental

question about correlation or causation [40] will require a range of additional analyses to be

fully addressed.

Using IBD-case samples to explore gene-bacteria associations has some advantages over

other study designs. Studies of healthy subjects can only be used to test for associations

between genetic variants and bacteria but cannot be used to decipher potential causal models

of diseases. On the other hand, although prospective cohorts in the general population have

the potential to circumvent a number of the statistical artifacts we addressed in our study, they

require an unrealistic sample size when studying relatively rare diseases, such as IBD. Impor-

tantly, case-control data will not solve the selection bias issue. Instead, we suggest that future

studies may optimize other components of the study design, especially reducing heterogeneity

of treatment and heterogeneity of disease status across individuals, and measuring additional

potential risk factors of IBD. Association studies of IBD-associated variants with the
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microbiome of healthy participants may also be of interest. At least one previous study

explored this question but did not report any specific enrichment for association of IBD vari-

ants [12]. Nevertheless, by merging summary statistics from the available NOD2 variants

(rs2066845 and rs2066845) from this study, we observed signals going in the same direction

(g_Roseburia z = -1.11; F. prausnitzii z = -0.79), although neither signal was nominally signifi-

cant (P = 0.27 and P = 0.43, respectively). Finally, we merged all three NOD2 variants into a

binary variable defined as the presence/absence of at least one variant. Although the effect of

each of these variants is established, their combined effect is not well defined [41–43]. Under-

standing the relative contribution of each NOD2 variant to the overall signal we observed is of

primary interest but will again require a larger sample size.

Here, we showed that part of the effect of IBD-risk variants was most likely mediated by an

effect on the bacterial microbiota. The identification of this potential causal pathway from

genetic variants to IBD in observational human data is important for understanding the patho-

genesis of IBD and other microbiota-driven diseases. Moreover, the findings suggest that tar-

geting the microbiota may be an effective therapeutic strategy to overcome gene-induced

disease susceptibility.

Materials and methods

Patients and samples collection

All subjects were recruited in the Gastroenterology Department of the Saint Antoine Hospital

(Paris, France) and provided informed consent, and approval was obtained from the local eth-

ics committee (Comite de Protection des Personnes Ile-de-France IV, IRB 00003835, Suivithe-

que study). Their microbiota composition analysis has been published[44]. A diagnosis of IBD

was defined by clinical, radiological, endoscopic and histological criteria. None of the study

participants had taken antibiotics or used colon-cleansing products for at least 2 months prior

to enrolment. Fecal samples were collected from 182 patients with IBD. Whole stools were col-

lected in sterile boxes and immediately homogenized, and 0.2 g aliquots were frozen at −80˚C

for further analysis. Details of the genomic DNA extraction, 16S rRNA gene sequencing, and

additional real-time quantitative PCR are presented in the S1 Text.

16S rRNA gene sequencing

Genomic DNA was extracted from 200 mg of feces as described previously[45]. Following

microbial lysis involving both mechanical and chemical step, nucleic acids were precipitated

by isopropanol for 10 minutes at room temperature, followed by incubation for 15 minutes on

ice, and centrifugation for 30 minutes at 15,000g and 4˚C. Pellets were suspended in 112 μL of

phosphate buffer and 12 μL of potassium acetate. After the RNase treatment and DNA precipi-

tation, nucleic acids were be recovered by centrifugation at 15,000g and 4˚C for 30 minutes.

The DNA pellet were suspended in 100 μL of TE buffer. After extraction, the total DNA con-

centration was measured using PicoGreen (Invitrogen), and global 16S gene DNA copy num-

bers were measured using a qPCR method adapted from Maeda et al[46] allowing for

inhibition effect estimation and DNA concentration adjustment.

The sequence region of the 16S rRNA gene spanning the variable region V3-V5 was ampli-

fied using the broad-range forward primer For16S_519 (CAGCMGCCGCGGTAATAC) and

reverse primer Rev16S_926 (CCGTCAATTCMTTTGAGTTT). Amplification reaction (initial

activation step at 94˚C for 1 min followed by 30 cycles of 94˚C for 15 s, 43˚C for 15 s and 68˚C

for 45 s plus final incubation at 68˚C for 1 min) was performed in a total volume of 100 μL

containing 1X PCR buffer, 2 mM MgSO4, 1 U of DNA High Fidelity Taq Polymerase (Invitro-

gen, Carlsbad, CA), 625 nM of each barcoded primer (IDT), 250 μM of each dNTP
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(Invitrogen) and the concentration-adjusted DNA sample. A bidirectional library was pre-

pared using the One Touch2 Template Kit and sequenced on PGM Ion Torrent using the Ion

PGM Sequencing 400 Kit (Life Technologies, Carlsbad, CA).

The sequences were demultiplexed and quality filtered using the Quantitative Insights Into

Microbial Ecology (QIIME, version 1.8.0) software package. The sequences were trimmed for

barcodes and PCR primers and were binned for a minimal sequence length of 200 pb. The

sequences were then assigned to Operational Taxonomic Units (OTUs) using the UCLUST

algorithm[47] with a 97% threshold pairwise identity and taxonomically classified using the

Greengenes reference database[48]. Rarefaction was performed (10,000 and 2,000 sequences

per sample respectively for discovery and replication cohorts). Rarefied reads counts were then

transpose into per-individual proportion and used to compare OTUs abundances across sam-

ples. We identified a total of 897 bacterial taxa across 6 hierarchical levels (Phylum, Class,

Order, Family, Genus and Species). However 577 taxa were detected in less than 20% of the

participants (S1 Fig), and were therefore removed to limit sparsity issue in further analyses.

Bacterial level pre-processing

Large-scale genomics data (e.g. microarray, proteomic, metabolomic) are commonly pre-pro-

cess, applying various transformation and normalization procedures to remove confounding

effects[49] but also to increase power[50]. Pre-processing can strongly impact both power and

robustness[51] and should therefore be conducted carefully. To our knowledge, there is no

established consensus on how to perform optimal pre-processing of microbiome data. The

hierarchical relationship between taxa (Fig 1), along with strong pairwise correlation within

each level (S3 Fig), makes pre-processing particularly challenging. Moreover, as we recently

showed[52], standard approaches such as adjusting outcomes for the top principal compo-

nents (PCs) of the taxa level (as commonly done in gene expression analysis[53]) can poten-

tially introduce bias in our analysis–a phenomenon that would be amplified in our data

because PCs can capture the shared variability of specific bacterial families. Therefore, we

focused the pre-processing on transformation and filtering that will ensure the validity of the

statistical tests. In particular, linear regression is sensitive to the presence of outliers, assumes a

normal distribution of the outcome residual, and requires sufficient sample size for reliable

effect estimation when multiple predictors are considered. The raw distributions of bacterial

levels show widespread and strong outliers and skewed distribution.

In practice, we first filtered out all elements quantified in <20% of individuals or poorly

annotated. We did not to use a more stringent threshold to allow for a screening as broad as

possible, while we validated the most significant results through replication analysis in inde-

pendent datasets. However, as showed in our sensitivity analyses (S13 Fig) we expect very low

power to identify association with taxa quantified in less than 70% of the individuals in our

dataset. Indeed, all top results from our assocaition analysis (Table 2) involve taxa were pres-

ent in more than 85% of the individuals (e.g. Fprau was quantified in more than 95% of the

individuals). Second, we applied rank-based inverse normal transformation to address both

non-normal distribution of the bacteria levels and avoid false signal due to outliers. We

acknowledge that such non-linear transformation can affect the inference [54]. However,

rank-based inverse normal transformation is very commonly used in marginal genetic effect

analyses of ‘omics data (e.g. microarray, RNA-seq, metabolites, which have properties similar

to our microbiome data) and the current consensus is that, despite drawbacks, it remains a

simple and efficient solution in many settings as compared to more complex approaches [55,

56]. Moreover, we also noted that rank-based inverse normal transformation is also now used

in some microbiome data analysis[11, 57].
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Statistical analysis

We performed a systematic screening for association between the selected genetic variants and

bacterial level. Association test were performed using standard univariate linear regression

including seven potential confounding factors: gender, age, smoking, and treatment for 5-ami-

nosalicylic acid, corticosteroids, anti-TNF agent, thiopurine or methotrexate. Importantly,

we did not adjust the model for disease type (UC versus CD) as we demonstrated in a recent

study that adjusting for variables that have a genetic basis might invalid association test [58].

To increase statistical power we also employed CMS (Covariates for Multiphenotype Studies),

an approach recently developed by our group [19] to select additional covariates from the

available bacterial data. Hence the final test we applied consisted in evaluating b̂G, the esti-

mated effect of the genetic variant G on the quantification of a bacteria Y, in the following

model:

Y � b0 þ bGGþ βZZþ βCC

where βZ and βC are vectors of effect of Z, the counfounding factors, and C, a set of bacteria

selected by CMS. To account for the hierarchical structure of the data, CMS search for covari-

ates C of an outcome Y was conducted only within taxa of the same hierarchical levels as Y.

Table 2. Bacteria-genetic variant associations.

Outcome Gene Disease Discovery Replication Meta-analysis

β� (Pval) β� (Pval) β� (Pval)
Firmicutes CARD9 IBD -0.38 (2.3x10-4) -0.08 (0.50) -0.25 (1.1x10-3)

CD -0.43 (7.4x10-4) -0.05 (0.76) -0.30 (2.8x10-3)
CDil -0.44 (2.7x10-3) -0.08 (0.67) -0.31 (6.4x10-3)
CDni -0.46 (0.23) 0.85 (0.041) 0.12 (0.66)
UC -0.25 (0.19) 0.07 (0.74) -0.10 (0.46)

Bacteroides NOD2 IBD -0.62 (1.9x10-4) -0.05 (0.58) -0.20 (0.014)
CD -0.57 (4.1x10-3) -0.17 (0.20) -0.30 (6.3x10-3)
CDil -0.65 (3.3x10-3) -0.16 (0.26) -0.31 (8.7x10-3)
CDni - -0.42 (0.41) -0.42 (0.41)
UC -0.50 (0.18) 0.24 (0.15) 0.11 (0.47)

Roseburia NOD2 IBD -0.58 (6.4x10-5) -0.22 (0.059) -0.36 (4.9x10-5)
CD -0.46 (6.7x10-3) -0.26 (0.076) -0.35 (1.5x10-3)
CDil -0.30 (0.082) -0.34 (0.030) -0.32 (5.2x10-3)
CDni - -0.27 (0.61) -0.27 (0.61)
UC -0.76 (0.0052) 0.14 (0.54) -0.25 (0.14)

F. prausnitzii NOD2 IBD -0.56 (4.0x10-4) -0.30 (0.014) -0.40 (3.2x10-5)
CD -0.48 (6.4x10-3) -0.20 (0.19) -0.32 (4.7x10-3)
CDil -0.51 (0.014) -0.31 (0.050) -0.39 (2.0x10-3)
CDni - -0.08 (0.86) -0.08 (0.86)
UC -0.32 (0.33) -0.14 (0.61) -0.22 (0.31)

Abbreviation: CD, Crohn’s disease; UC, ulcerative colitis; CDil, CD ileal; CDni, CD non-ileal
�

Beta coefficients were derived when using the allele associated with an increased risk of IBD as the coded allele. Outcomes were normalized. All outcomes had a

variance of 1, whereas the genetic variants were not transformed; thus, the beta coefficients corresponded to the estimated change in the outcome mean per additional

risk allele.

https://doi.org/10.1371/journal.pgen.1008018.t002
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Replication study

We performed a replication of our main results using two independent studies. Both studies

are themselves combination of multiple cohorts. The first study included 474 adult IBD cases

from three cohorts. We only considered two of them, MGH (Mass General Hospital, N = 170)

and MSH (Mont Sinai Hospital, N = 65), both from the United States. We discarded the last

one because of missing data on the main confounding factors. In these two cohorts mucosa

associated microbiota was analyzed from intestinal biopsies. Because of major differences in

the composition and treatment between MGH and MSH (S4 Table), we analyzed the two

cohorts separately and refer to them as replication 1 and replication 2. Moreover, all partici-

pants that undergone proctocolectomy with ileoanal anastomosis were excluded a priori, as

the microbiota composition might be dramatically impacted by this operation and therefore

not reflect the overall population. The second study included 216 IBD cases from a Netherland

cohort with almost complete covariates data [21]. We refer to this dataset as replication 3. All

replication analyses (1, 2, and 3) were adjusted for gender, age, smoking, mesalamine, antibiot-

ics, and immunosuppressant treatments. To ensure our discovery signal was not biased

because of the used of covariates identified by the CMS approach, we did not use CMS at the

replication stage. Finally, we performed an inverse-variance meta-analysis of all three replica-

tions dataset using the R metafor package. Study-specific results are presented in S5 Table.

Evaluation of ascertainment bias

The established association between IBD and both the genetic variants and the bacterial levels

implies that the joint distribution of these variables in IBD cases only might not representative

of the overall population. This is a known issue that has been widely discussed in the context

of secondary trait analysis [28, 29, 59–62]. Indeed, with the surge of case-control genome-wide

association study, a number of investigators are facing the problem of analyzing secondary

phenotypes, measured on behalf of the disease status, while accounting for the sample ascer-

tainment. These works show that when mishandled, secondary trait analysis can be biased. In

particular, if a predictor X (here, a genetic variant) and a secondary phenotype Y (here, a bacte-

rial level) are associated with the outcome (here, IBD), the two variables might display a false

association. While studies showed that for rare diseases (i.e. prevalence� 1%, as for IBD), and

small effect, the Y~X association test in disease cases only, as done in this study, is expected to

be small [28]. Estimating the changes in expected effect estimates depending on sampling

design is a non-trivial problem. As discussed in the literature for logistic models [29, 63],it has

a direct relationship with the parametrization of the underlying generating models.

Consider a biallelic genetic variant g, generated from a binomial distribution with minor

allele frequency p, a bacterial level b following a distributionO and a disease status d with prob-

ability π. For mathematical convenience we further consider D, B and G for standardized d, b
and g, respectively. We are interested in estimating Δ = βd = 1−β, the difference between the

regression coefficient between G and B in the general population (β). Without assuming any

particular distribution of the variables, Δ has the general form:

D ¼ bd¼1 � b

¼
covðB;Gjd ¼ 1Þ

s2
Gjd¼1

�
covðB;GÞ

s2
G

¼
E½BGjd ¼ 1� � E½Bjd ¼ 1�E½Gjd ¼ 1�

s2
Gjd¼1

� E BG½ �

where s2
Gjd¼1
¼ varðGjd ¼ 1Þ is the variance of G conditional on d = 1. As E½B� ¼ E½G� ¼
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E½D� ¼ 0, the expectation conditional on d can we be rewritten as:

E BGjd ¼ 1½ � ¼ E BGjD ¼
ð1 � mdÞ

sd

� �

¼ E BGD½ �
ð1 � mdÞ

sd
þ E BG½ �

¼ E BGD½ �
sd
md
þ E BG½ �

E Bjd ¼ 1½ � ¼ E BjD ¼
ð1 � mdÞ

sd

� �

¼ E BD½ �
sd
md

E Gjd ¼ 1½ � ¼ E GjD ¼
ð1 � mdÞ

sd

� �

¼ E GD½ �
sd
md

E G2jd ¼ 1½ � ¼ E G2jD ¼
ð1 � mdÞ

sd

� �

¼ E G2D½ �
sd
md
þ E G2½ �

¼ E G2D½ �
sd
md
þ 1

s2
Gjd¼1

¼ E½ðG � E½Gjd ¼ 1�Þ
2
jd ¼ 1�

¼ E½G2 � 2GE½Gjd ¼ 1� þ E½Gjd ¼ 1�
2
jd ¼ 1�

¼ E½G2jd ¼ 1� � E½Gjd ¼ 1�
2

¼ 1þ E G2D½ �
sd
md
� E½GD�

sd
md

� �2

So without loss of generality, the bias Δ, equals:

D ¼

E½BGD�
sd
md
þ E½BG� � E½GD�E½BD�

sd
md

� �2

s2
Gjd¼1

� E½BG�

¼

E½BGD�
sd
md
� E½GD�E½BD�

sd
md

� �2

s2
Gjd¼1

þ E½BG�
1 � s2

Gjd¼1

s2
Gjd¼1

Note that the above formulation of Δ is valid for any generating model and data distribution.

Model fit using estimates of selection bias

We are interested in assessing the impact of the bias Δ on the SNP-bacteria association for the

four hypothetical causal models (Fig 3A–3D) in order to determine their fitness to our data.

Here we assumed IBD status follows a binomial distribution with n = 1 and is linked to other

variable through a logistic model, and we constrained the model to fit known associations: the

positive association between the genetic variants and IBD [3, 4], and the negative association

between the four taxa (Roseburia genus, Bacteroidia class, F. prausnitzii, and Firmicutes
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phylum) and IBD [8, 24, 64]. In model a) the effect of g on D is mediated by B. In model b) the

effect of g on B is mediated by D. In model c), g and B act independently on IBD and are not

associated in the population. Finally in model d), B and D are both influenced by U, the

unmeasured risk factors.

The data can be expressed through the following generative models:

Model aÞ :

(B ¼ bGþ εB

E½djB� ¼ 1=½1þ e� ðo0þoBBÞ�

Model bÞ :

(B ¼ bGþ εB

E½djG� ¼ 1=½1þ e� ðo0þoGGÞ�

Model cÞ : fE½djB;G� ¼ 1=½1þ e� ðo0þoBBþoGGÞ�

Model dÞ :

(B ¼ gDþ εB

E½djG� ¼ 1=½1þ e� ðo0þoGGÞ�

Building on our estimator of Δ and leveraging previous work relating logistic and linear model

[63, 65] we further demonstrate that when the disease is common, under the assumption of

normality of B and G and small effects of the independent variables, Δ for the four hypothetical

causal models can be approximated as (S1 Text and S8 Fig):

Da � � b
o2
Bð1 � mdÞ

2
ð1 � b

2
Þ

s2
Gjd¼1

Db � 0

Dc � � oGoB
ð1 � mdÞ

2

s2
Gjd¼1

Dd ¼ E½BG� � � goGsd

However, the normality assumption will not hold in general for both G (being drawn from a

binomial) and B (e.g. drawn from a negative binomial), and the two other hypothesis (common

disease and small effect size) are also violated in our data. Nevertheless, as previously showed

[65], and as confirmed by our simulations (S1 Text and S9–S12 Figs), parameters from the lin-

ear approximation have the proper sign, so that the above Δ approximations is still informative

about the direction of the bias, whatever the residual distribution of B and G. It follows that:

signðDaÞ ¼ � signðbÞ

signðDcÞ ¼ � signðoGoBÞ

signðDdÞ ¼ � signðgoGÞ

Thus, inmodel a) the effect estimate will be biased toward the null, i.e the magnitude of the

genetic effect on bacteria will be underestimated. Inmodel b), we expect the effect to be the

same in case only sample as in the whole population. Inmodel c), the ascertainment will induce

a bias which direction has opposite sign to the product of the genetic effect on IBD and the

bacterium effect on IBD. Finally Inmodel d), we expect the indirect effect of the genetic variant

on the bacterium to be null in a case only sample.
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S3 Table. Type I error rate under four hypothetical models.
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S5 Table. Replication analysis per cohort.
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S1 Fig. Non-zero abundance of taxa. Density (a) and cumulative distribution (b) of the per-

centage of non-zero abundance for each of 897 bacterial taxa across the 182 IBD cases ana-

lyzed. The red and blue dashed lines in (b) correspond to a non-zero abundance of 95% and

80%, respectively. There was 494 (~55%) and 320 taxa (~36%) with lower values, respectively,

i.e. taxa that are present in more than 5% and 20% of the participants, respectively.

(TIF)

S2 Fig. Overview of the bacterial taxa distribution in IBD controls. Relative proportion of

each of the 168 bacterial taxa analyzed across each of the six hierarchical levels. Only taxa rep-

resenting more than 0.5% of the total bacterial loading are labelled. Grey areas correspond to

unknown, unmeasured, or underrepresented taxa.

(TIF)

S3 Fig. Pairwise correlation between bacterial level. Pairwise Pearson correlation between

bacterial taxa derived across the 182 IBD cases. Taxa were grouped by hierarchical strata (Phy-

lum, Class, Order, Family, Genus and Species), so that the panels from the diagonal represent

the correlation within each stratum, while off-diagonal panels present cross-strata correlation.

Strength of correlation is presented as a gradient from dark blue (-1) to dark red (1).

(TIF)

S4 Fig. Summary of association signals for ATG16L1. Bacterial levels were tested for associa-

tion with SNP rs12994997 from gene ATG16L1. Positive and negative associations are repre-

sented as gradient of orange and blue, respectively. The horizontal axis indicates the

corresponding–log10(p-value). Results are presented across the taxa hierarchy. Empty cells

indicate that the subsequent element is unknown or unmeasured in our samples.

(TIF)

S5 Fig. Summary of association signals for CARD9. Bacterial levels were tested for associa-

tion with SNP rs10781499 from gene CARD9. Positive and negative correlations are repre-

sented as gradient of orange and blue, respectively. The horizontal axis indicates the

corresponding–log10(p-value). Results are presented across the taxa hierarchy. Empty cells

indicate that the subsequent element is unknown or unmeasured in our samples.

(TIF)
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S6 Fig. Summary of association signals for LRRK2. Bacterial levels were tested for associa-

tion with SNP rs11564258 from gene LRRK2. Positive and negative correlations are repre-

sented as gradient of orange and blue, respectively. The horizontal axis indicates the

corresponding–log10(p-value). Results are presented across the taxa hierarchy. Empty cells

indicate that the subsequent element is unknown or unmeasured in our samples.

(TIF)

S7 Fig. Summary of association signals for NOD2. Bacterial levels were tested for association

with the genetic risk score of gene NOD2 (rs2066844 + rs2066845 + rs2066847). Positive and

negative correlations are represented as gradient of orange and blue, respectively. The horizon-

tal axis indicates the corresponding–log10(p-value). Results are presented across the taxa hier-

archy. Empty cells indicate that the subsequent element is unknown or unmeasured in our

samples.

(TIF)

S8 Fig. Linear approximation of logistic model. We simulated four datasets including each

20,000 individuals. For each dataset we draw a genetic variant G from a binomial assuming a

minor allele frequency of 0.1, a bacterial level B while using arbitrarily various distributions,

and a disease status d generated from a logistic model, E½djB;G� ¼ 1=ð1þ e� ½o0þoBBþoGG�Þ.

We then performed linear regression of the disease probability while including an increasing

number of polynomial terms of the predictors B and G and their interactions (model0 to

model3). At the two extremes, model0 includes only the marginal effects of the predictor

(E½djB;G� � l0 þ lGGþ lBB), whilemodel3 include polynomial up to a power of 4 and any

relevant interactions. For each model we plotted the simulated disease probability against the

fitted values formodel0 tomodel3. We use four sets of parameters to illustrate the requirement

for additional terms in the linear model as the prevalence moves away from 0.5 and effect are

getting larger. In (a) we considered a disease prevalence of 0.5, a normally distributed B, and

modest B and G effects. In (b) we slightly increase effects and considered a rare disease case. In

(c) we used generated B from an exponential, consider low disease prevalence and large effects.

Finally, in (d) we considered a rare disease, very large effects and generated B from a uniform

distribution.

(TIF)

S9 Fig. Bias for common disease and large effect. We simulated series of 1,000 replicates

each including 100,000 individuals. For each replicate we draw a genetic variant G, a

bacterial level B, and a disease status d using the two equations B = βG + γD + εB and

E½djB;G� ¼ 1=ð1þ e� ½o0þoBBþoGG�Þ. We use three sets of parameters to match model a (left col-

umn), model b (middle column) and models c and d (right column), while changing the direc-

tion of the effect. In this simulation, all effects (panel a) were assumed to be large and disease

prevalence high (~30%). For each simulation we estimated through standard linear regression

the association coefficient between B and G in the whole population and in the cases only.

Median of the coefficient in the whole population is indicated by a bold red line, while coeffi-

cients observed in cases only are provided in boxplots. The difference between the two coeffi-

cients (case only—whole population), Δ, is indicated in blue if negative and in pink if positive.

For each set of parameters (panel a), we derived the proposed approximation of Δ (panel b),

and the aforementioned estimates while drawing εB from a normal distribution (panel c), an

exponential distribution (panel d), and a uniform distribution (panel e).

(TIF)

S10 Fig. Bias for common disease and moderate effect. We simulated series of 1,000 repli-

cates each including 100,000 individuals. For each replicate we draw a genetic variant G, a

Fprau & Nod2

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008018 March 8, 2019 18 / 25

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008018.s012
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008018.s013
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008018.s014
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008018.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1008018.s016
https://doi.org/10.1371/journal.pgen.1008018


bacterial level B, and a disease status d using the two equations B = βG + γD + εB and

E½djB;G� ¼ 1=ð1þ e� ½o0þoBBþoGG�Þ. We use three sets of parameters to match model a (left col-

umn), model b (middle column) and models c and d (right column), while changing the direc-

tion of the effect. In this simulation, all effects (panel a) were assumed to be large and disease

prevalence high (~30%). For each simulation we estimated through standard linear regression

the association coefficient between B and G in the whole population and in the cases only.

Median of the coefficient in the whole population is indicated by a bold red line, while coeffi-

cients observed in cases only are provided in boxplots. The difference between the two coeffi-

cients (case only—whole population), Δ, is indicated in blue if negative and in pink if positive.

For each set of parameters (panel a), we derived the proposed approximation of Δ (panel b),

and the aforementioned estimates while drawing εB from a normal distribution (panel c), an

exponential distribution (panel d), and a uniform distribution (panel e).

(TIF)

S11 Fig. Bias for rare disease and large effect. We simulated series of 1,000 replicates each

including 100,000 individuals. For each replicate we draw a genetic variant G, a bacterial level

B, and a disease status d using the two equations B = βG + γD + εB and E½djB;G� ¼
1=ð1þ e� ½o0þoBBþoGG�Þ. We use three sets of parameters to match model a (left column), model

b (middle column) and models c and d (right column), while changing the direction of the

effect. In this simulation, all effects (panel a) were assumed to be large and disease prevalence

high (~30%). For each simulation we estimated through standard linear regression the associa-

tion coefficient between B and G in the whole population and in the cases only. Median of the

coefficient in the whole population is indicated by a bold red line, while coefficients observed

in cases only are provided in boxplots. The difference between the two coefficients (case only

—whole population), Δ, is indicated in blue if negative and in pink if positive. For each set of

parameters (panel a), we derived the proposed approximation of Δ (panel b), and the afore-

mentioned estimates while drawing εB from a normal distribution (panel c), an exponential

distribution (panel d), and a uniform distribution (panel e).

(TIF)

S12 Fig. Bias for rare disease and moderate effect. We simulated series of 1,000 replicates

each including 100,000 individuals. For each replicate we draw a genetic variant G, a bacterial

level B, and a disease status d using the two equations B = βG + γD + εB and E½djB;G� ¼
1=ð1þ e� ½o0þoBBþoGG�Þ. We use three sets of parameters to match model a (left column), model

b (middle column) and models c and d (right column), while changing the direction of the

effect. In this simulation, all effects (panel a) were assumed to be large and disease prevalence

high (~30%). For each simulation we estimated through standard linear regression the associa-

tion coefficient between B and G in the whole population and in the cases only. Median of the

coefficient in the whole population is indicated by a bold red line, while coefficients observed

in cases only are provided in boxplots. The difference between the two coefficients (case only

—whole population), Δ, is indicated in blue if negative and in pink if positive. For each set of

parameters (panel a), we derived the proposed approximation of Δ (panel b), and the afore-

mentioned estimates while drawing εB from a normal distribution (panel c), an exponential

distribution (panel d), and a uniform distribution (panel e).

(TIF)

S13 Fig. NOD2-bacteria association in all IBD cases and CD cases only. We compared effect

estimates for NOD2-bacteria association derived using standard linear regression, after adjust-

ing for confounding factors, in all IBD cases (βIBD) and CD cases only (βCD). The gradient of

colors (pink to red) and size of each point (small to large) indicate increasing significance of
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NOD2-bacteria association in the complete IBD cases dataset. Under the confounding model

(b), where CD-bacteria association is partly confounded by a shared genetic effect of NOD2

on both outcomes, the two estimates have the same expectation and therefore the regression

slope between the two estimates should be equal to 1 (black line). The observed slope (red

line), which equals 0.88, is significantly different from 1 (P = 5e-3, tested using a student t-test

assuming an expected slope equals to 1).

(TIF)

S14 Fig. Impact of data sparsity. We simulated series of 20,000 replicates each including

10,000 individuals. For each individual, we generated a genetic variant, a bacteria and a case-

control status following the four models (a, b, c and d) from Fig 3. The genotype was simulated

using a binomial distribution with frequency of the coded allele randomly drawn in [0.05,

0.95]. The bacterial level was simulated using a negative binomial distribution were the disper-

sion parameters of each replicate were chosen so that the proportion of zero value vary from

0% to 95% across replicates. The case-control status was drawn from a binomial distribution

with probability derived using a logit function with parameters matching the each of the four

models. For each replicate, a subset of 200 cases was randomly chosen and used to test for asso-

ciation between the genotype and the bacteria using standard linear regression. The left (a)

and middle (b) panels show the signed explained variance obtain from this experiment before

and after applying an inverse-rank based normal transformation of the bacterial level, respec-

tively. The red line shows the trend derived using local fitting as implemented in R loess func-

tion with default parameters. The right panels (c) present median p-values from the latter

experiment derived over bins of replicates with a range of percentage of zero-values.

(TIF)

S15 Fig. Impact of effect heterogeneity on bias. We simulated series of 10,000 replicates each

including 30,000 individuals. For each individual, we generated a genetic variant G, a bacteria

B and two case-control status, CD, which was defined based on the four causal models (a, b, c

and d) from Fig 3, and UC, which was drawn independently of other variables. The two dis-

eases were merged to form the IBD status. The genotype was simulated using a binomial distri-

bution with frequency of the risk allele randomly drawn in [0.05, 0.2]. The bacterial level was

simulated using a negative binomial distribution while randomly drawing the dispersion

parameter so that the proportion of zero-value ranges in [0%, 80%]. The case-control status

was drawn from a binomial distribution with probability derived using a logit function. All

parameters from the simulation were set so that it match estimates from the literature and our

primary results. The three lower panels show empirical distribution of those parameters esti-

mated in the whole population. Disease prevalence, genetic effect and bacteria-disease associa-

tion matched both in direction and magnitude for all causal models. We then randomly

sampled from each replicate, a subset of 200 cases tested for association between G and B using

standard linear regression, and after applying an inverse rank-based normal transformation of

B. The test was applied in the sub-sample of IBD cases, but also in the sub-group of CD cases

only and the sub-group of UC cases only.

(TIF)

S16 Fig. Assuming an intermediate variable confounds the effect on IBD. We performed a

simulation similar to Fig 3, expect that we replaced IBD status by a severity score. We plotted

regression slopes between bacteria and the genetic variant in the whole population, and in

cases only, using either the raw bacterial data or after adjusting for severity. Top panels (a, b, c,

and d) present the hypothetical causal diagrams and bottom panels (e, f, g, and h) present the

corresponding scatterplots of B as a function of g in the population (dark grey points, and
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trend in black), in cases only (light grey points and trend in red), and again, in cases only but

after adjusting the bacteria for severity (blue crosses, and trend in dark blue). In model a) the

effect of g on severity is mediated by B; in cases the effect of g on B is underestimated because

of the oversampling of participants carrying risk alleles (e). In model b) the genetic variant

influences both severity and B, inducing a correlation between severity and B which is

observed in both the whole sample and cases only (f). In model c), g and B act independently

on severity and are therefore not associated in the population, however g and B are positively

correlated in case-only samples because of biased selection (g). Finally, in model d) the effect

of g on B is mediated by severity; the indirect association between g and B observed in the gen-

eral population is still present in cases only, but is canceled when adjusting bacteria for severity

(h).

(TIF)

S17 Fig. Sensitivity analysis adjusting for flare-remission. We performed the same analysis

as for Fig 4, expect that we adjusted all analyses for flare-remission. The 168 bacterial taxa were

tested for association with the variants from each of the four genes considered: (a) ATG16L1

(rs12994997), (b) CARD9 (rs10781499), (c) LRRK2 (rs11564258), and (d) NOD2 (rs2066844,

rs2066845, and rs2066847). The histograms on the left panel show the distribution of IBD risk

alleles-bacteria association (i.e. of b̂g , the regression coefficients) and the enrichment for nega-

tive effects (in blue, p-values equal 0.018, 1.3x10-8, 9.3x10-6, 0.018, respectively). Panel (e)

shows a similar histogram while merging the per-risk allele change in bacteria level of the four

genes (i.e. summing for each bacteria the b̂g of the four genes). Panel (f) shows the distribution

of bacteria-IBD association derived in an IBD cases-controls dataset (b̂B) for each bin from

panel (e). Together, panels (e) and (f) show the strong concordance of the gene-bacteria and

bacteria-IBD effects, in agreement with a mediation effect of the risk allele on IBD through the

microbiome. In particular, bacteria displaying lower level in carrier of IBD risk alleles are

more likely to be negatively associated with the risk of IBD.

(TIF)
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