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2, Björn EkestenID
7,
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Abstract

Autosomal recessive retinal degenerative diseases cause visual impairment and blindness

in both humans and dogs. Currently, no standard treatment is available, but pioneering

gene therapy-based canine models have been instrumental for clinical trials in humans. To

study a novel form of retinal degeneration in Labrador retriever dogs with clinical signs indi-

cating cone and rod degeneration, we used whole-genome sequencing of an affected sib-

pair and their unaffected parents. A frameshift insertion in the ATP binding cassette subfam-

ily A member 4 (ABCA4) gene (c.4176insC), leading to a premature stop codon in exon 28

(p.F1393Lfs*1395), was identified. In contrast to unaffected dogs, no full-length ABCA4 pro-

tein was detected in the retina of an affected dog. The ABCA4 gene encodes a membrane

transporter protein localized in the outer segments of rod and cone photoreceptors. In

humans, the ABCA4 gene is associated with Stargardt disease (STGD), an autosomal

recessive retinal degeneration leading to central visual impairment. A hallmark of STGD is

the accumulation of lipofuscin deposits in the retinal pigment epithelium (RPE). The discov-

ery of a canine homozygous ABCA4 loss-of-function mutation may advance the develop-

ment of dog as a large animal model for human STGD.

Author summary

Stargardt disease (STGD) is the most common inherited retinal disease causing visual

impairment and blindness in children and young adults, affecting 1 in 8–10 thousand peo-

ple. For other inherited retinal diseases, the dog has become an established comparative

animal model, both for identifying the underlying genetic causes and for developing new
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treatment methods. To date, there is no standard treatment for STGD and the only avail-

able animal model to study the disease is the mouse. As a nocturnal animal, the morphol-

ogy of the mouse eye differs from humans and therefore the mouse model is not ideal for

developing methods for treatment. We have studied a novel form of retinal degeneration

in Labrador retriever dogs showing clinical signs similar to human STGD. To investigate

the genetic cause of the disease, we used whole-genome sequencing of a family quartet

including two affected offspring and their unaffected parents. This led to the identification

of a loss-of-function mutation in the ABCA4 gene. The findings of this study may enable

the development of a canine model for human STGD.

Introduction

Inherited retinal dystrophies are a genetically and clinically heterogeneous group of eye dis-

eases leading to severe visual impairment in both humans and dogs [1–6]. These diseases

include various forms of retinitis pigmentosa (RP), Leber congenital amaurosis (LCA), age-

related macular degeneration (AMD), cone-rod dystrophies (CRD), and Stargardt disease

(STGD) and are caused by many different mutations leading to deterioration of neuroretinal

and retinal pigment epithelial (RPE) function. Over 100 years ago, progressive retinal atrophy

(PRA) was described as a canine equivalent of human RP [7] and is today the most common

inherited retinal degenerative disease in dogs [8]. The shared phenotypic similarity of inher-

ited retinal dystrophies in dogs and humans has made canine models attractive for gene dis-

covery and for experimental treatments, including gene therapy [6, 9–13]. The development of

gene therapy for RPE65-mediated LCA is an example where a canine comparative model has

been instrumental for proof-of-principle trials [9, 11, 14–16]. The identification of the p.C2Y

mutation (OMIM: 610598.0001) in the PRCD gene is another illustrative example of the bene-

fits of using canine genetics to find homologous candidate genes for human retinal dystro-

phies; the PRCD gene was initially mapped and identified in PRA-affected dogs and

subsequently in a human family with RP [17]. This mutation segregates in multiple dog breeds,

including the Labrador retriever, where no other causative genetic variants for inherited retinal

degenerations have been identified. In this study, a Labrador retriever sib-pair, one male and

one female, negative for the p.C2Y mutation, was diagnosed with a form of retinal disease

which until now had not been characterized clinically. To identify genetic variants associated

with this novel canine retinal disease, we performed whole-genome sequencing (WGS) of the

two affected individuals and their unaffected parents.

Results and discussion

The affected sib-pair (LAB3 and LAB4, see S1 Fig) was visually impaired under both daylight

and dimlight conditions when examined at 10 years of age. Their pupils were dilated under

daylight conditions and pupillary light and dazzle reflexes were abnormal, whereas menace

responses were present. On indirect ophthalmoscopy, the tapetal reflectivity varied between

normal to grayish hyporeflection when the indirect ophthalmoscopy lens was tilted slightly

back and forth, both in the visual streak, as well as in the more peripheral parts of the tapetal

fundus in both eyes of the affected dogs. The visual streak is an area of high photoreceptor cell

density in the canine retina, located superior to the optic disc and extending horizontally from

the nasal to the temporal region [18]. Furthermore, a mild to moderate vascular attenuation

was observed, as seen in the fundus photograph, taken at the age of 10 years, of the affected

male (LAB4) and compared to a fundus photograph of an unaffected, age-matched Labrador
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retriever dog (LAB27) (Fig 1). These ophthalmoscopic findings were symmetrical between the

eyes of the affected dogs, diffusely spread over the tapetal fundus and not strictly confined to

the visual streak or area centralis.

The WGS of the family quartet (LAB1, LAB2, LAB3 and LAB4, see S1 Fig) resulted in an

average coverage of 18.2x (S1 Table) and the identification of 6.0 x 106 single nucleotide vari-

ants (SNVs) and 1.9 x 106 insertions/deletions (INDELs), of which 48,299 SNVs and 5,289

INDELs were exonic. We used conditional filtering to identify 322 SNVs (of which 117 were

nonsynonymous) and 21 INDELs that were consistent with an autosomal recessive pattern of

inheritance (S2 Table). To further reduce the number of candidate variants, we compared the

positions of the variants to 23 additional dog genome sequences to identify 18 nonsynon-

ymous SNVs in 13 different genes and four INDELs in four genes that were private to the Lab-

rador retriever family (S2 and S3 Tables). Fourteen of these genes were not strong candidates

based on reported function and predicted effect and were not considered further. The remain-

ing three genes, KIAA1549, Usherin (USH2A), and ATP binding cassette subfamily A member

4 (ABCA4) are listed in the Retinal Information Network (RetNet) database as associated with

human retinal diseases and thus considered as causative candidates for canine retinal degener-

ation [19]. However, the variant in the KIAA1549 gene was predicted to have a neutral effect

on the protein structure (PROVEAN score -2.333, Polyphen-2 score 0.065) and was therefore

discarded. The genetic variants in the USH2A (exon 43; c.7244C>T) and ABCA4 (exon 28;

c.4176insC) genes were validated by Sanger sequencing. Mutations in the human USH2A gene

are associated with Usher syndrome and RP, resulting in hearing loss and visual impairment

[20]. The identified nonsynonymous substitution in the USH2A gene was scored as “probably

damaging” using Polyphen-2 (score of 0.97) and as “deleterious” using PROVEAN (score of

-4.933) (S3 Table). The insertion in the ABCA4 gene was predicted to result in a premature

stop-codon at amino acid position 1395. Next, we evaluated if the genetic variants of USH2A
and ABCA4 were concordant with the disease by genotyping eight additional clinically affected

and fourteen unaffected Labrador retrievers. Out of these 22 dogs, 16 were related to the family

quartet used in the WGS (S1 Fig). The USH2A variant was discordant with the disease pheno-

type and was therefore excluded from further analysis (S4 Table). In contrast, all eight affected

individuals were homozygous for the ABCA4 insertion and the 14 unaffected individuals were

either heterozygous or homozygous for the wild-type allele (S4 Table).

The identified variant in the ABCA4 gene is a single base pair (bp) insertion of a cytosine (C)

in a cytosine mononucleotide-repeat region in exon 28, where the canine reference sequence

consists of seven cytosines (CanFam3.1 Chr6:55,146,550–55,146,556) (Fig 2A). The single bp

insertion in this region results in a non-synonymous substitution at the first codon downstream

of the repeat, and subsequently leads to a premature stop codon (p.F1393Lfs�1395) (Fig 2C). If

translated, this would result in a truncation of the last 874 amino acid residues of the wild-type

ABCA4 protein (Fig 2B and 2C). Both the human and the dog ABCA4 gene consists of 50

exons and encodes a ~250 kDa ABC transporter protein (Fig 2D) (human and dog ABCA4

consists of 2,273 and 2,268 amino acid residues, respectively) [21–23]. ABCA4 is a flippase,

localized to the disc membranes of photoreceptor outer segments and facilitates the clearance of

all-trans-retinal from the photoreceptor discs [24–26].

To compare retinal ABCA4 gene expression in the affected male (LAB4), his heterozygous

sibling (LAB6), and a wild-type Labrador retriever (LAB24), we performed quantitative

RT-PCR (qPCR). Primers were designed to amplify three different regions of the gene. The

amplicons spanned the 5´-end (exons 2–3), the identified insertion (exons 27–28) and the 3

´-end of the ABCA4 gene (exons 47–48) (S5 Table). Each of the three primer pairs amplified a

product of expected size in all three individuals. This suggests that despite the insertion leading

to a premature stop codon in exon 28, the transcripts are correctly spliced. Relative levels of
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ABCA4 mRNA were lower for the allele with the insertion in comparison to the wild-type

allele (Fig 3A). This is consistent with nonsense-mediated decay (NMD) degrading a fraction

of the transcripts with premature translation stop codon [27]. Transcripts not targeted by

NMD could potentially be translated into a truncated protein of only 1,394 amino acid resi-

dues including the first extracellular domain (ECD1) and the first nucleotide-binding domain

(NBD1) (Fig 2B) but lacking most of the second extracellular domain (ECD2) and the second

nucleotide-binding domain (NBD2) [28–30] (Fig 2B–2D). The NBDs are conserved across

species and the NBD2, which is also referred to as the ATP binding cassette of the ABCA4 pro-

tein, has been shown to be particularly critical for its function as a flippase [28, 30].

To investigate the presence of full-length protein, we performed western blot analysis using

an anti-ABCA4 antibody recognizing a C-terminal epitope and detecting a protein product

with an approximate size of ~250 kDa. We observed a single, correctly-sized band in samples

prepared from both wild-type (LAB24) and heterozygous (LAB6) dogs. The intensity of stain-

ing in retinal protein samples from the heterozygous individual was markedly lower in com-

parison to the samples from the wild-type retina (Fig 3B). In contrast, no band was detected in

the retinal sample from the affected dog (LAB4). To confirm the presence of photoreceptor

cells, we used an anti-RHO antibody and detected rhodopsin in all three samples (Fig 3B).

These results suggest that no full-length ABCA4 protein product is produced as a result of the

insertion leading to a frameshift and a premature stop codon.

Fig 1. Retinal morphology in vivo in canine Stargardt disease. The tapetal fundus of the right eye from an 11-year-

old unaffected Labrador retriever (upper left; LAB27) and a 10-year-old affected dog (lower right; LAB4). Black arrows

show areas with abnormal, grayish, hyporeflective appearance and white arrows indicate attenuation of the retinal

blood vessels.

https://doi.org/10.1371/journal.pgen.1007873.g001
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Fig 2. Loss-of-function mutation in the canine ABCA4 gene. (A) Sanger sequencing traces spanning positions

Chr6:55,146,545–55,146,564 (CanFam3.1) in exon 28 of the ABCA4 gene of a wild-type, unaffected (ABCA4+/+) dog, a

heterozygous (ABCA4+/-) dog, and a homozygous (ABCA4-/-) affected dog. (B) Predicted domain structure of canine

full-length ABCA4 protein, based on the proposed human structure [28], and the putative truncated product as a result

of the premature stop codon at amino acid residue 1,395. The inferred canine exon numbers are indicated. (C)

Schematic representation of the region where the insertion of cytosine (C) is found showing the nucleotide and amino

acid sequences of a full-length (top) and truncated (bottom) protein. (D) Predicted topological organization of ABCA4

[29, 30] with the insertion leading to a premature stop codon marked with an arrow. ECD1 = first extracellular

domain; TMD1 = first membrane-spanning region; NBD1 = first nucleotide-binding domain; ECD2 = second

extracellular domain; TMD2 = second membrane-spanning region; NBD2 = second nucleotide-binding domain.

https://doi.org/10.1371/journal.pgen.1007873.g002

Fig 3. Characterization of ABCA4 mRNA expression and western blot analyses of ABCA4 protein levels in the

canine retina. (A) Relative ABCA4 mRNA expression levels by quantitative RT-PCR in three different regions in three

dogs with different genotypes (ABCA4+/+, ABCA4+/-, and ABCA4-/-), normalized to GAPDH expression. (B) Western

blot analyses of ABCA4 (above), GAPDH (middle), and RHO (below) protein levels in retinal tissue of dogs with the

three different genotypes.

https://doi.org/10.1371/journal.pgen.1007873.g003

An ABCA4 loss-of-function mutation causes a canine Stargardt disease

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007873 March 19, 2019 5 / 23

https://doi.org/10.1371/journal.pgen.1007873.g002
https://doi.org/10.1371/journal.pgen.1007873.g003
https://doi.org/10.1371/journal.pgen.1007873


Fluorescence histochemistry was used to analyze the ABCA4 and rhodopsin protein expres-

sion in retinas from three dogs with different ABCA4 genotypes. In addition, we used peanut

agglutinin (PNA) as it selectively binds to cone photoreceptors [31]. Consistent with the west-

ern blot results, rhodopsin immunoreactivity (IR) was detected in the outer segments of rod

photoreceptors in all three retinas (S2 Fig). In the wild-type (LAB26) and the heterozygous

dog (LAB6), the ABCA4 IR was seen in the outer segments of the neural retina and in the RPE

(Fig 4A and 4B). The ABCA4 IR was partially overlapping with the PNA staining, observed in

Fig 4. Fluorescence histochemistry of ABCA4, cone photoreceptors, and autofluorescence in the canine retina. (A-C) Fluorescence micrographs showing ABCA4

expression (red), FITC-conjugated peanut agglutinin (PNA, green), and DAPI nuclear staining (blue) in wild-type (ABCA4+/+), heterozygous (ABCA4+/-), and affected

(ABCA4-/-) retinas. PNA labels cone photoreceptors. Autofluorescence, indicative of lipofuscin accumulation, was seen in the ABCA4-/- RPE. (D) Bar graph with the

average number of DAPI-stained nuclei within a given region of the ONL and the INL. (E-G) Fluorescence micrographs of RPE without immunohistochemistry show

autofluorescence. (H) Bar graph with background-corrected mean autofluorescence-intensity in the RPE. Note the reduction of ABCA4-immunoreactivity and PNA

binding, higher autofluorescence, and fewer nuclei in the ONL in the ABCA4-/- compared to ABCA4+/+ or ABCA4+/- retinas. All scale bars = 50 μm; RPE = retinal pigment

epithelium; ONL = outer nuclear layer; INL = inner nuclear layer; Because there was only one individual per genotype, the statistics are valid for the technical replicates.

ANOVA with Tukey’s post hoc test, n = 6; ��P< 0.01; ���P< 0.001; mean ± S.D.

https://doi.org/10.1371/journal.pgen.1007873.g004
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both the inner and outer segments of the cone photoreceptor cells (Fig 4A and 4B). In sharp

contrast, ABCA4 expression was absent and only a limited PNA staining was observed in the

retina of the affected dog (LAB4; Fig 4C). The observed staining pattern in the fluorescence

histochemistry thus suggested loss of cone photoreceptors.

To quantify photoreceptor degeneration in the retina of the affected dog (LAB4), we

counted nuclei in the outer and inner nuclear layers and compared the results from the three

genotypes. The photoreceptor nuclei are positioned in the outer nuclear layer (ONL) and the

inner nuclear layer (INL) is composed of the horizontal, bipolar, amacrine and Müller glia cell

nuclei. Approximately, a 46% reduction of the number of nuclei in the ONL was observed in

the affected retina compared to the wild-type (LAB26) and heterozygous (LAB6) retinas (Fig

4D). Thus, the reduction of nuclei in the ONL supported a reduction of the number of photo-

receptors. The results from the IR and PNA stainings had already shown a profound reduction

of cone photoreceptors, but to assess whether rods were also degenerated in the affected retina,

we inferred the number of rod photoreceptors in the wild-type and heterozygous retinas by

substracting the number of cone nuclei from the total number of nuclei in the ONL. Approxi-

mately, a 41% reduction of rod nuclei was observed in the affected retina, consistent with a ret-

inal degeneration involving also rod photoreceptors (S2 Fig). The corresponding reduction of

nuclei was not seen in the INL, suggesting that photoreceptors were affected but not neurons

in the INL. Taken together, we observed loss of ABCA4 protein, profound reduction of cone

outer segment PNA staining, and a reduction of photoreceptor nuclei in the affected retina.

The observed reduction in both cone and rod nuclei imply that not only cone photoreceptors

but also rod photoreceptors degenerate in the ABCA4-/- retina of these dogs.

The RPE layer of the affected retina was autofluorescent (Fig 4C), indicating accumulation

of lipofuscin [32]. We estimated the intensity of autofluorescence in RPE from retinas repre-

senting the three ABCA4 genotypes (LAB4, LAB6 and LAB26). The autofluorescence in the

affected retina was approximately seven-fold higher compared to the retinas of the other geno-

types (Fig 4G and 4H).

Light microscopic histopathology (Fig 5) was performed on retina from the affected dog

(LAB4), a heterozygote (LAB6) and an unaffected dog (German spaniel). We examined plastic

embedded thick sections taken from tapetal and non-tapetal regions superior and nasal to the

optic nerve. An accumulation of round lipophilic bodies was found in the RPE overlying the

tapetal region of the affected retina (Fig 5B). In contrast to the pigmented RPE in humans,

dogs have a reflective area, the tapetum lucidum, in the choroid, where the overlying RPE is

not pigmented [33]. The observed round lipophilic bodies predominantly seen in the affected

dog are therefore not likely to be melanosomes, but rather an accumulation of lipofuscin. This

is consistent with the increased intensity of autofluorescence observed in affected retina as

described above (Fig 4G and 4H). In the nasal, non-tapetal part of the retina of the affected

male, we observed multifocal RPE hyperplasia and hypertrophy, accompanied by overlying

retinal atrophy in some, but not all of these foci (S3 Fig). Consistent with the reduction of

cone photoreceptors observed in the frozen sections (Fig 4D; S2 Fig), cone nuclei were

markedly reduced in the affected dog (Fig 5A) compared to heterozygote and control retinas.

Reduced ONL thickness could not be unambiguously confirmed, however it should be noted

that very short segments of retina were used for plastic embedding, and that regional ONL

atrophy could therefore not be ruled out. In conclusion, histopathologic comparison identified

increased lipofuscin accumulation in the RPE, cone loss in central superior retina and focal

RPE hypertrophy and hyperplasia in nasal retina of the affected dog.

We used flash-electroretinography (FERG) to study the photoreceptor function in four

dogs at the age of 10 years. The inclination of the first part of the a-waves of the dark-adapted

FERG in response to a bright stimulus was less steep and the amplitudes of the a-waves were
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lower in both affected dogs (LAB3 and LAB4) and their heterozygous sibling (LAB6), as com-

pared to the age-matched, unaffected dog (LAB22) (Fig 6A), suggesting abnormal photorecep-

tor function in the affected dogs. The light-adapted FERG responses were subnormal for the

affected dogs, showing profoundly impaired cone function (Fig 6B and 6C). The light-adapted

responses of the heterozygous dog were closer to the wild-type dog, although amplitudes were

slightly lower and b-wave and flicker implicit times slightly longer (Fig 6B and 6C). Further-

more, dark-adaptation reflecting rod photoreceptor function, was clearly delayed in the

Fig 5. Histopathology. Light microscopic histology of a 12-year-old affected (LAB4) dog (A, B), 12-year old

heterozygote (LAB6) dog (C, D) and 10-year old unaffected (German spaniel) dog (E, F) taken at comparable locations

in the superior central retina (0.5–1.5 cm dorsal to the optic nerve on the sagittal plane). Cone photoreceptors in the

retina of the affected dog (A) were scarce (cone nuclei indicated with black arrow) compared with the retinas of the

heterozygote (C) and wild-type (E) dogs. In the affected dog (B), accumulation of lipofuscin was abundant in retinal

epithelial cells (thick white arrow), compared to heterozygote (D) and wild-type (F) dogs. Photoreceptor outer

segment disruption is artifactual. All scale bars = 20 microns; ONL = outer nuclear layer.

https://doi.org/10.1371/journal.pgen.1007873.g005
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affected dog (Fig 6D). After 20 minutes, the time commonly used for dark-adaptation [34],

the rod responses of the affected dogs had very low amplitudes. After one hour of dark-adapta-

tion, the affected male (LAB4) reached near normal amplitudes, whereas the amplitudes of his

female sibling (LAB3) remained clearly subnormal (Fig 6D), showing that the rod photorecep-

tors were also affected, but their function was better preserved than the function of the cone

photoreceptors.

Optical coherence tomography (OCT) was performed along the visual streak in three Lab-

rador retriever dogs (S4 Fig). The affected dog (LAB4) had a thinner retina with marked

reduction in ONL thickness. Furthermore, we observed some areas of full-thickness retinal

atrophy, where the retinal layers could not be distinguished. We were unable to link the areas

of alternating normal to grayish hyporeflectivity observed ophthalmoscopically (Fig 1) to

localized retinal lesions on OCT. The abnormal and variable tapetal reflectivity seen on oph-

thalmoscopy was therefore considered to be a sign of a diffusely spread degeneration altering

the translucency of the retina overlying the tapetum lucidum. Additional examinations using

Fig 6. Flash-electroretinography (FERG) were used to assess retinal function in vivo. The green, blue, grey and black tracings indicate wild-type (LAB22; ABCA4+/+)

unaffected dog, a heterozygous (LAB6; ABCA4+/-) dog, and two homozygous (LAB4 and LAB3; ABCA4-/-) affected dogs, respectively. Black arrows in A, B and C indicate

3 cd/m2/s-flash stimuli and the red line in D indicate 0.02 cd/m2/s-flash stimuli and scales show amplitude on the y-axis (μV) and time in ms on the x-axis for each type of

response. (A) A dark-adapted, mixed rod-cone response. (B) Light-adapted cone transient responses (C) and cone flicker response at 30 Hz. Note that the affected dog

had a delayed response to the stimuli. (D) The dark-adapted rod responses monitored during one hour in an affected (LAB3) and a wild-type female (LAB22).

https://doi.org/10.1371/journal.pgen.1007873.g006
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confocal scanning laser ophthalmoscopy (cSLO) and OCT imaging of two affected dogs at the

age of 10- and 12-years (LAB10 and LAB16, respectively) confirmed a thinning of the outer

retina along the visual streak as compared to two age-matched wild-type dogs (LAB22 and

LAB23) (Figs 7 and 8). Compared to the wild-type dog (LAB22) (Fig 7A), a more irregular

tapetal reflection with a hyporeflective visual streak and vascular attenuation was observed on

the cSLO of the affected dog (LAB10) (Fig 7B). The thickness of the INL was similar in both

the wild-type and the affected dogs (Fig 7C and 7D). The external limiting membrane was

thickened and hyperreflective (Fig 7D), whereas the ellipsoid zone (EZ), which corresponds to

the junction between the outer and inner segments of the photoreceptors, was fragmented

(Fig 7D). The total retinal thickness (Fig 8A) was markedly reduced in both affected Labrador

retriever dogs (LAB10 and LAB16) compared to the wild-type dogs (LAB22 and LAB23).

However, measurements of the inner retina (Fig 8B) showed similar thickness in this part of

the retina in all four dogs analyzed. Total photoreceptor length (REC+; Fig 8C) and the thick-

ness of the ONL (Fig 8D) were markedly reduced both nasally and temporally in the affected

dogs, showing that the degeneration of the outer retina is not confined only to the area centra-

lis. The average distance from the EZ to the RPE/Bruch’s membrane (the innermost layer of

the choroid) was similar in both genotypes (Fig 8E).

Taken together, vision of the affected dogs at the age of 10 to 12 years was impaired in both

daylight and dimlight conditions, but they still retained some vision throughout their lifetime.

The clinical features included ophthalmoscopic signs of bilateral diffuse retinal degeneration

and in vivo morphology indicaded a reduction of the number of photoreceptors. The cone

function was profoundly abnormal, whereas rod function was better preserved. A hallmark of

human ABCA4-mediated diseases such as STGD, is the accumulation of autofluorescent lipo-

fuscin in the RPE throughout the fundus [32, 35]. This is also seen in mouse models [36, 37] as

well as in the canine retinal degenerative disease described here. In addition, cone photorecep-

tors are typically affected prior to rods [38]. Furthermore, human RPE cells have been shown

to be hypertrophic, and at more advanced stages of the disease, RPE is lost in the perifovea [39,

40]. Similar to the human histopathology, we observed accumulation of autofluorescent lipo-

fuscin, regions of RPE hypertrophy and hyperplasia, as well as thinning of ONL in the affected

dog.

Mutations in the human ABCA4 (ABCR) gene cause several clinically different diseases

ranging from autosomal recessive STGD and autosomal recessive forms of CRD to RP [41–

43]. The severity of the disease phenotype is suggested to be dependent on the severity of the

mutations [41]. The gene was first cloned and characterized in 1997 [21], and to date, 873 mis-

sense and 58 loss-of-function variants have been reported in the ExAC database [44, 45], many

of which are associated with visual impairment [46–48].

The ABCA4 protein functions as an ATP-dependent flippase in the visual cycle, transport-

ing N-retinylidene-phosphatidylethanolamine (N-Ret-PE) from the photoreceptor disc lumen

to the cytoplasmic side of the disc membrane [49, 50]. N-Ret-PE is a reversible adduct sponta-

neously formed between all-trans-retinal and phosphatidylethanolamine (PE), and is unable to

diffuse across the membrane by itself. Once transported by ABCA4, N-Ret-PE is dissociated

and all-trans-retinal will re-enter the visual cycle [51]. Defective ABCA4 leads to accumulation

of N-Ret-PE, which together with all-trans-retinal, will form di-retinoid-pyridinium-phospha-

tidylethanolamine (A2PE) that is further hydrolyzed to phosphatidic acid (PA) and a toxic bis-

retinoid, di-retinal-pyridinium-ethanolamine (A2E) [52]. This will lead to an accumulation of

A2E in RPE cells when photoreceptor discs are circadially shed and phagocytosed by the RPE

[36, 53, 54]. A2E is a major component of RPE lipofuscin, accounts for a substantial portion of

its autofluorescence, and has a potentially toxic effect on the RPE leading to photoreceptor

degeneration [36, 55–57].
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Currently, there is no standard treatment for STGD in humans and mouse is the only avail-

able animal model [58, 59]. Both the Abca4 knockout mouse [36] and the recently generated

Fig 7. In vivo retinal morphology assessed with cSLO and OCT. cSLO-images (left) and OCTs (right) (A) from the

left eye of a 12-year-old unaffected dog (LAB22) along the visual streak and (B) from the left eye of a 10-year-old

affected dog (LAB10), where the horizontal extension of the visual streak is indicated by the black arrows. (C) A

magnification of the temporal retina (corresponding to the area below the white bar in the OCTs) of the unaffected

dog (LAB22) and accordingly (D) of the affected dog (LAB10), with thickened and hyperreflective ELM (white arrow)

and fragmented EZ (black arrows). cSLO = confocal scanning laser ophthalmoscopy; OCT = optical coherence

tomography; ELM = external limiting membrane; EZ = ellipsoid zone (inner-to-outer segment junction).

https://doi.org/10.1371/journal.pgen.1007873.g007
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Fig 8. Analysis of retinal layer thickness using OCT. Graphs showing the mean thickness of retinal layers from OCTs

of two wild-type dogs at the age of 10- and 12-years (green dots; LAB23 and LAB22, respectively) and two affected dogs
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Abca4 p.Asn965Ser (N965S) knockin mouse [37] models have been significant for the func-

tional characterization of ABCA4 and the lipofuscin fluorophore A2E. Mice, however, lack the

macula, the area primarily affected in STGD patients and no significant retinal degeneration

has been observed in any of the mouse models [37, 60, 61]. Unlike the mouse retina, the dog

has a cone rich, fovea-like area functionally more similar to human fovea centralis [2, 10, 11].

The canine eye is also comparable in size to the human eye, and dog models have successfully

been used for experimental gene therapy for retinal degenerative diseases, such as LCA, RP,

and rod-cone dysplasia type 1 (rcd1) [12, 14, 16, 62]. For over a decade there has been interest

in finding a canine model for ABCA4-mediated diseases [23, 63, 64]. The loss-of-function

mutation identified here can be used to develop a large animal model for human STGD.

Materials and methods

Animals and samples

A family quartet of Labrador retriever dogs (sire, dam, and two affected offspring numbered

LAB1, LAB2, LAB3, and LAB4, respectively) were used in the whole-genome sequencing

(WGS). In addition, 16 related individuals (LAB5 to LAB20, see S1 Fig) as well as six unrelated

Labrador retrievers (LAB 21 to LAB26) were used to validate the WGS findings. Whole blood

samples from these dogs were collected in EDTA tubes and genomic DNA was extracted using

1 ml blood on a QIAsymphony SP instrument and the QIAsymphony DSP DNA Kit (Qiagen,

Hilden, Germany). We obtained eyes from the affected male (LAB4) and his unaffected sibling

(LAB6) at the age of 12, as well as from two unrelated, unaffected female Labrador retrievers

(LAB24 and LAB26, 11- and 10-year-old, respectively) and one 10-year-old male German

spaniel (GS) after euthanasia with sodium pentobarbithal (Pentobarbithal 100 mg/ml, Apote-

ket Produktion & Laboratorier AB, Stockholm, Sweden) for reasons unrelated to this study.

All samples were obtained with informed dog owner consent. Ethical approval was granted by

the regional animal ethics committee (Uppsala djursförsöksetiska nämnd; Dnr C12/15 and

C148/13).

Ophthalmic examination

Ophthalmic examination of all the dogs included in the study included reflex testing, testing of

vision with falling cotton balls under dim and daylight conditions, as well as indirect ophthal-

moscopy (Heine 500, Heine Optotechnik GmbH, Herrsching, Germany) and slit-lamp biomi-

croscopy (Kowa SL-15, Kowa Company Ltd., Tokyo, Japan) after dilation of pupils with

tropicamide (Mydriacyl 0.5%, Novartis Sverige AB, Täby, Sweden).

Whole-genome sequencing

Genomic DNA from four Labrador retriever dogs (LAB1, LAB2, LAB3 and LAB4) was frag-

mented using the Covaris M220 instrument (Covaris Inc., Woburn, MA), according to the

manufacturer’s instructions. To obtain sufficient sequence depth, we constructed two biologi-

cal replicates of libraries with insert sizes of 350 bp and 550 bp following TruSeq DNA

at the age of 10- and 12-years (blue squares; LAB10 and LAB16, respectively). The thickness is measured every 0.5 mm

from the rim of the optic nerve head (0) along the visual streak. The solid lines indicate 95% confidence intervals.

Measurement of the (A) total retinal thickness, (B) inner retina (C) Rec+, (D) ONL and (E) EZ+RPE. (F) The distances

presented in the five graphs are shown on the magnified OCT image from a wild-type Labrador retriever dog.

OCT = optical coherence tomography; EZ = ellipsoid zone (inner-to-outer segment junction); Rec+ = total

photoreceptor length; RPE = retinal pigment epithelium; ONL = outer nuclear layer.

https://doi.org/10.1371/journal.pgen.1007873.g008
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PCR-Free Library Prep protocol. The libraries were multiplexed and sequenced on a Next-

Seq500 instrument (Illumina, San Diego, CA) for 100 x 2 and 150 x 2 cycles using the High

Output Kit and High Output Kit v2, respectively. The raw base calls were de-multiplexed and

converted to fastq files using bcl2fastq v.2.15.0 (Illumina). The two sequencing runs from each

individual were merged, trimmed for adapters and low-quality bases using Trimmomatic

v.0.32 [65], and aligned to the canine reference genome CanFam3.1 using Burrows-Wheeler

Aligner (BWA) v.0.7.8 [66]. Aligned reads were sorted and indexed using Samtools v.1.3 [67]

and duplicates were marked using Picard v.2.0.1. The BAM files were realigned and recali-

brated with GATK v.3.7 [68]. Multi-sample variant calling was done following GATK Best

Practices [69] using publicly available genetic variation Ensembl Variation Release 88 in dogs

(Canis lupus familiaris). We filtered the variants found by GATK using the default values

defining two groups of analyses: trio 1 and 2, both consisting of the same sire and dam, and

one of their affected offspring. Variants annotated in the exonic region with ANNOVAR

v.2017.07.16 [70], presenting an autosomal recessive inheritance pattern and shared between

the two trios were selected for further evaluation. To predict the effects of amino acid changes

on protein function, we evaluated SNVs using PolyPhen-2 v2.2.2r398 [71] and PROVEAN

v.1.1.3 [72] and non-frameshift INDELS using PROVEAN v.1.1.3. Frameshift INDELs were

manually inspected using The Integrative Genomics Viewer (IGV) [73, 74]. The sequence data

were submitted to the European Nucleotide Archive with the accession number PRJEB26319.

Validation of the variants

To validate the WGS results, we designed primers amplifying the variants c.7244C>T in

USH2A gene and c.4176insC in ABCA4 gene with Primer3 [75, 76] (S5 Table) and sequenced

the family quartet using Applied Biosystems 3500 Series Genetic Analyzer (Applied Biosys-

tems, Thermo Fisher Scientific, Waltham, MA). To test if the variants were concordant with

the disease, 22 additional ophthalmologically evaluated Labrador retrievers were genotyped by

Sanger sequencing (S1 Fig). Eight of these dogs were clinically affected and fourteen were

unaffected, showing no signs of retinal degeneration by seven years of age.

Quantitative RT-PCR (qPCR)

Neuroretinal samples were collected from the affected dog (LAB4), the heterozygous sibling

(LAB6), and the unaffected female (LAB24). The samples were immediately preserved in

RNAlater (SigmaAldrich, Saint Louis, MO), homogenized with Precellys homogenizer (Bertin

Instruments, Montigny-le-Bretonneux, France) and total RNA was extracted with RNAeasy

mini kit (Qiagen) according to the manufacturer’s instructions. RNA integrity and quality

were inspected with Agilent 6000 RNA Nano kit with the Agilent 2100 Bioanalyzer system

(Agilent Technologies, Santa Clara, CA). cDNA was synthesized using RT2 First Strand kit

(Qiagen) with random hexamers provided in the kit. cDNA concentration was inspected with

Qubit ssDNA Assay kit (Life Technologies, Thermo Fisher Scientific). RT2 qPCR Primer

Assay (Qiagen) was used to amplify the reference gene GAPDH. To amplify the target gene

ABCA4, we designed custom primers with Primer3 [75, 76] targeting three different regions

spanning exons 2 to 3, 27 to 28, and 47 to 48 (S5 Table). We amplified the cDNA fragments

encoding regions of interest using RT2 SYBR Green ROX qPCR Mastermix (Qiagen) with Ste-

pOnePlus Real-Time PCR system (Applied Biosystems, Thermo Fisher Scientific), according

to the manufacturer’s instructions. Target gene expression was normalized to expression of

GAPDH, and shown relative to the unaffected female (LAB24) using the44CT method. The

results were confirmed in two independent experiments.
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SDS-Gel Electrophoresis and Western Blotting

We extracted protein from the neuroretinal samples of the individuals used in qPCR (see

above) by homogenization in Pierce RIPA lysis buffer (Thermo Scientific) supplemented with

phosphatase inhibitor cocktail (Sigma, P8340) using the Precellys homogenizer (Bertin Instru-

ments). Protein concentration was determined using the Pierce BSA Protein Assay kit

(Thermo Fisher Scientific). 50 μg of protein samples were resolved by SDS-PAGE, transferred

to nitrocellulose membrane, and immunoblotted with the following primary antibodies:

ABCA4 (Novus Biologicals, NBP1-30032, 1:1000), GAPDH (Thermo Scientific, MA5-15738,

1:1000), Rhodopsin (Novus Biologicals, Littleton, CO, NBP2-25160H, 1:5000), followed by

Anti-Mouse IgG horseradish peroxidase-conjugated secondary antibody (R&D Systems,

HAF007, 1:5000). Binding was detected using the Clarity western ECL substrate (Bio-Rad,

Hercules, CA).

Fluorescence histochemistry

Tapetal fundus from the affected male (LAB4), his unaffected heterozygous sibling (LAB6),

and an unaffected 10-year-old female Labrador retriever (LAB26) were fixed in 4% PFA in 1x

PBS on ice for 15 minutes, washed in 1x PBS for 10 minutes on ice, and cryoprotected in 30%

sucrose overnight at 4˚C. The central part of the fundus was embedded in Neg-50™ frozen sec-

tion medium (Thermo Scientific), and 10 μm sections from the tapetal part of the eye were col-

lected on Superfrost Plus slides (J1800AMNZ, Menzel-Gläser, Thermo Fisher Scientific). The

sections were re-hydrated in 1x PBS for 10 minutes, incubated in blocking solution (1% don-

key serum, 0.02% thimerosal, and 0.1% Triton X-100 in 1x PBS) for 30 minutes at room tem-

perature, and incubated in primary antibody ABCA4 (1:500, NBP1-30032, Novus Biologicals)

or rhodopsin (1:5000, NBP2-25160, Novus Biologicals), and FITC-conjugated lectin PNA

(1:400, L21409, Molecular Probes) solution at 4˚C overnight. Following overnight incubation,

the slides were washed 3 x 5 minutes in 1x PBS and incubated in Alexa 568 secondary antibody

(1:2000, A10037, Invitrogen, Thermo Fisher Scientific) solution for at least 2 hours at room

temperature and washed 3 x 5 minutes in 1x PBS. The slides were mounted using ProLong

Gold Antifade Mountant with DAPI (P36931, Molecular Probes, Thermo Fisher Scientific).

Fluorescence images were captured using a Zeiss Axioplan 2 microscope equipped with an

AxioCam HRc camera.

Counting nuclei

Ten micrometer retinal sections were stained and mounted as described under Fluorescence

histochemistry, and the number of nuclei within a region with a width of 67 μm that was per-

pendicular to and covered both the outer and inner nuclear layers were counted. Nuclei in the

outer nuclear and inner nuclear layers were counted separately. We inferred the number of

rod photoreceptors by subtracting the number of cones, as identified by PNA staining, from

the number of nuclei in the ONL. We analyzed six images from each of the three dogs (LAB4,

LAB6, and LAB26). Note that cones were so rare in the affected retina, that all the nuclei in the

ONL represent rod photoreceptors. Bar graphs were generated and statistical analysis of the

technical replicates (one-way ANOVA with Tukey’s post hoc multiple comparison analysis)

was performed in GraphPad Prism 7.

Autofluorescence

Retinal sections were washed, incubated in blocking solution, and mounted as described

under Fluorescence histochemistry. The exposure times for the excitation at 488 nm and 568
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nm were fixed for all images taken (150 ms and 80 ms, respectively). Outlines of the retinal pig-

ment epithelium (RPE), as well as adjacent background regions, were drawn using the polygon

selection tool in ImageJ (v1.51, NIH), and the area and mean fluorescence intensity were mea-

sured. The mean intensity of the autofluorescence in the RPE was calculated by subtracting the

background intensity from the adjacent regions. We analyzed six images from each of the

three individuals used in the fluorescence histochemistry. Bar graph generation and statistical

analysis were performed as described under Counting nuclei.

Histopathology

Light microscopic examination was performed on plastic embedded thick sections from 4%

PFA fixed posterior sections from eyes of the affected male (LAB4) and his heterozygous sibling

(LAB6), as well as from an unaffected 10-year-old German spaniel dog. The samples were post-

fixed in 2.5% glutaraldehyde-2% formaldehyde (2 hours), 2% glutaraldehyde-1% osmium

tetroxide (1.5 hours), and 2% osmium tetroxide (1.5 hours). The posterior segments were then

trimmed into segments 2–5 mm in length, taken from the superior retina (three sections located

0.5 cm to 1.5 cm dorsal to the optic nerve), and the nasal retina (two sections from non-tapetal

retina). These were dehydrated, and embedded in epoxy resin (PolyBed 812; Polysciences,

Warrington, PA). Tissues were sectioned at 1μm and stained with azure II-methylene blue/

paraphenylenediamine counterstain. Sections were examined with a 40× objective on a light

microscope (Axioplan; Carl Zeiss Meditec GmbH Oberkochen, Germany) and images collected

with an AxioCam MrC digital camera (Carl Zeiss Meditec GmbH Oberkochen, Germany).

Flash-electroretinography (FERG)

We recorded full-field FERG from the four dogs (LAB3, LAB4, LAB6 and LAB22) examined

with OCT under general anaesthesia. Sedation with intramuscular acepromazine 0.03 mg/kg

(Plegicil vet., Pharmaxim Sweden AB) was followed by induction with propofol 10 mg/kg

intravenously (Propovet, Orion Pharma Animal Health AB, Danderyd, Sweden). After intuba-

tion, inhalation anaesthesia was maintained with isoflurane (Isoflo vet., Orion Pharma Animal

Health AB). Corneal electrodes (ERG-JET, Cephalon A/S, Aalborg, Denmark) were used with

isotonic eye drops (Comfort Shield, i.com medical GmbH, Munich, Germany) as coupling

agent. Gold-plated, cutaneous electrodes served as ground and reference electrodes (Grass,

Natus Neurology Inc. Pleasanton, CA) at the vertex and approximately 3 cm caudal to the lat-

eral canthi, respectively. Light stimulation, calibration of lights, and processing of signals were

performed as described by Karlstam et al., 2011 [77]. We used a slightly modified ECVO pro-

tocol [34], where the process of dark-adaptation was monitored for 1 hour before a dark-

adapted response intensity series was performed.

Optical coherence tomography (OCT)

The affected male (LAB4), his unaffected sibling (LAB6) and an unaffected, age-matched,

female Labrador retriever (LAB22) were examined with spectral-domain OCT (Topcon 3D

OCT-2000, Topcon Corp., Tokyo, Japan). The examination was done after pupillary dilation,

but without sedation, using repeated horizontal single line scans (6 mm, 1024 A-scans) along

the visual streak area. Additional cSLO- and OCT-imaging was performed in two affected

(LAB10 and LAB16) and two unaffected, wild-type dogs (LAB22 and LAB23) using a Spectralis

HRT + OCT Heidelberg Engineering GmbH, Germany). The dogs were lightly sedated with

0.01 mg medetomidine per kg intramuscularly (Sedator vet., Dechra Veterinary Products AB,

Upplands-Väsby, Sweden), and corneas were kept moist using artificial tears (Aptus SentrX,

Orion Pharma Animal Health, Danderyd, Sweden).
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Supporting information

S1 Fig. Pedigree of the Labrador retriever dogs used in the study. Filled symbols indicate

affected individuals, half-filled symbols represent obligate or genotyped carriers of the ABCA4
insertion. Individuals LAB1 to LAB4 were used in the WGS analysis. Numbered individuals

were genotyped for the insertion in the ABCA4 gene (c.4176insC) and for the non-synony-

mous substitution in the USH2A gene (c.7244C>T). Crosses intersecting the dashed lines indi-

cate the number of generations between the individuals.

(PPTX)

S2 Fig. Rhodopsin expression and the prevalence of rod photoreceptors in the canine ret-

ina. (A) Fluorescence micrographs showing rhodopsin expression (red) in the ABCA4+/+

(left), ABCA4+/- (middle), and ABCA4-/- (right) rod outer segments. Scale bar = 10 μm. (B)

Inferred number of rod photoreceptors based on the number of nuclei in the outer nuclear

layer and the number of cone photoreceptors within a given region of the retina. Cone photo-

receptors were identified via PNA, which binds selectively to cone photoreceptors. Because

there was only one individual per genotype, the statistics are valid for the technical replicates.

ANOVA with Tukey’s post hoc test, n = 6; ���P< 0.001; ����P< 0.0001; mean ± S.D.

(TIF)

S3 Fig. Histologic changes in RPE in the affected individual. (A-B) Several focal regions of

RPE hypertrophy (white arrows, A) as well as hyperplasia (black arrows, A, B), noted in two

regions in the affected retina. Atrophy of overlying ONL and INL was noted over some (A;

asterisk) of these regions. Lesions were focal (approximately 50–100 microns in diameter),

intermittent and seen only in a section from nasal, nontapetal retina of the ABCA4-/- dog. All

scale bars = 100 microns.

(PDF)

S4 Fig. OCT images along the visual streak. OCT scans from a 10-year old unaffected, wild-

type dog (LAB22; top), a 12-year old heterozygous dog (LAB6; middle), and his affected litter-

mate (LAB4; bottom). White arrows indicate where two images have been concatenated. A

general thinning of ONL along the visual streak is visible in the affected retina compared to the

wild-type and heterozygous retinas and included foci of severe retinal atrophy (red arrow).

OCT = optical coherence tomography; ONL = outer nuclear layer; ELM = external limiting

membrane; EZ = ellipsoid zone (inner-to-outer segment junction); IZ = outer segment-RPE

interdigitation zone.

(TIF)

S1 Table. Summary of the whole-genome sequencing runs 1 and 2.

(XLSX)

S2 Table. Exonic variants identified in WGS. Number of exonic variants following autosomal

recessive inheritance pattern (AR) in Trio1 and Trio2, each consisting of the parents and one

of the two offspring. The total number of exonic variants in the family quartet including all

inheritance patterns and the number of AR variants shared between the two trios. The

"unique" column represents the number of AR variants, which were shared between the two

trios and not found to be homozygous in 23 additional investigated canine genome sequences.

(XLSX)

S3 Table. List of candidate variants from WGS. Coding sequence variants identified as pri-

vate for the Labrador retriever family and the predicted effect of the variants based on
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Polyphen-2 and PROVEAN scores.

(XLSX)

S4 Table. Validation of variants c.4176insC in ABCA4 gene and c.C7244T in USH2A gene

by Sanger sequencing.

(XLSX)

S5 Table. Canine primer sequences used in the analysis.

(XLSX)
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73. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative geno-

mics viewer. Nature Biotechnology. 2011; 29:24. https://doi.org/10.1038/nbt.1754 https://www.nature.

com/articles/nbt.1754#supplementary-information. PMID: 21221095
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