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Abstract

Understanding the genetic basis of phenotypic adaptation to changing environments is an

essential goal of population and quantitative genetics. While technological advances now

allow interrogation of genome-wide genotyping data in large panels, our understanding of

the process of polygenic adaptation is still limited. To address this limitation, we use exten-

sive forward-time simulation to explore the impacts of variation in demography, trait genet-

ics, and selection on the rate and mode of adaptation and the resulting genetic architecture.

We simulate a population adapting to an optimum shift, modeling sequence variation for 20

QTL for each of 12 different demographies for 100 different traits varying in the effect size

distribution of new mutations, the strength of stabilizing selection, and the contribution of the

genomic background. We then use random forest regression approaches to learn the rela-

tive importance of input parameters in determining a number of aspects of the process of

adaptation, including the speed of adaptation, the relative frequency of hard sweeps and

sweeps from standing variation, or the final genetic architecture of the trait. We find that

selective sweeps occur even for traits under relatively weak selection and where the genetic

background explains most of the variation. Though most sweeps occur from variation segre-

gating in the ancestral population, new mutations can be important for traits under strong

stabilizing selection that undergo a large optimum shift. We also show that population bottle-

necks and expansion impact overall genetic variation as well as the relative importance of

sweeps from standing variation and the speed with which adaptation can occur. We then

compare our results to two traits under selection during maize domestication, showing that

our simulations qualitatively recapitulate differences between them. Overall, our results

underscore the complex population genetics of individual loci in even relatively simple quan-

titative trait models, but provide a glimpse into the factors that drive this complexity and the

potential of these approaches for understanding polygenic adaptation.
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Author summary

Many traits are controlled by a large number of genes, and environmental changes can

lead to shifts in trait optima. How populations adapt to these shifts depends on a number

of parameters including the genetic basis of the trait as well as population demography.

We simulate a number of trait architectures and population histories to study the genetics

of adaptation to distant trait optima. We find that selective sweeps occur even in traits

under relatively weak selection and our machine learning analyses find that demography

and the effect sizes of mutations have the largest influence on genetic variation after adap-

tation. Maize domestication is a well suited model for trait adaptation accompanied by

demographic changes. We show how two example traits under a maize specific demogra-

phy adapt to a distant optimum and demonstrate that polygenic adaptation is a well suited

model for crop domestication even for traits with major effect loci.

Introduction

Understanding molecular adaptation is essential for the study of evolutionary processes,

genetic diseases, and plant and animal breeding. The process of adaptation is often divided

into three separate modes: hard selective sweeps, soft selective sweeps and polygenic adapta-

tion [1]. In recent decades many empirical population genetic analysis have focused on hard

selective sweeps because these leave a distinct molecular signature that can be readily detected

in genomic data. Hard sweeps result from the reduction of genetic diversity at neutral sites

linked to a new beneficial mutation that rapidly fixes [2]. In recent years, other forms of selec-

tion that play an important role in evolution and adaptation have begun to receive increased

attention, although these are more difficult to detect in empirical data. For instance, sweeps

from selection on standing genetic variation leave a less distinct pattern on diversity than hard

selective sweeps because the beneficial variant has had more time to recombine onto multiple

genetic backgrounds [3, 4]. In addition to processes involving sweeps at individual loci, poly-

genic adaptation—in which selection acts on a quantitative trait with complex genetic architec-

ture—is frequently regarded as a third mode of adaptation and can lead to rapid phenotypic

change via relatively minor shifts in allele frequencies [5].

Although well-studied traits such as human height [6], coat color in mice [7] and grain

yield in crops [8] follow patterns consistent with a polygenic pattern, the dynamics and genetic

architecture of polygenic adaptation are not well understood. Polygenic adaptation has only

gained importance in empirical population genetics relatively recently, but the field of quanti-

tative genetics is based on the idea that traits are controlled by large numbers of loci [9]. Popu-

lation genetics and quantitative genetics diverged with the appearance of the first molecular

data allowing empirical evaluation of single locus population genetic models, while the analysis

of effects of single loci in quantitative genetics has long been limited by the large number of

phenotyped individuals needed [10]. The increasing availability of high density SNP sets and

whole genome sequencing for tens of thousands of individuals, however, is now providing the

opportunity to test both population and quantitative evolutionary genetic hypotheses in

empirical data [e.g. 11].

Many polygenic traits are thought to evolve under stabilizing selection, in which selection

acts against extreme deviations from an optimum trait value [12, 13, 14]. Under such a model,

an individual’s fitness is given by its phenotypic distance from the trait optimum and the

strength of stabilizing selection. Within this framework, recent attention has focused on the

dynamics of polygenic adaptation to a new nearby phenotypic optimum [15, 16, 17, 18, 19, 9].
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In this scenario, genetic variance in the population decreases when most effect sizes are small,

because many sites fix. In contrast, when most mutations have large effect sizes, the genetic

variance increases because large effect loci increase in frequency but do not fix [15, 19]. In

addition to allele frequency changes, theoretical quantitative genetic analyses have revealed

that selective sweeps are prevalent during polygenic adaptation [20, 17]. These studies have

developed important theoretical background for the understanding of polygenic adaptation

and have documented the dynamics of a small number of loci during the course of adaptation.

Each of these studies shows in detail how a small number of parameters influences adaptation,

but the complex interplay of mutation, selection, and demography across a large parameter

space has not yet been explored. For example, population growth has been shown to influence

the contribution of low frequency alleles to trait variance [21], but the interaction of demogra-

phy with parameters such as the distribution of effect sizes of new mutations needs further

investigation.

Here, we take a simulation approach to study a population adapting to an optimum shift,

modeling sequence variation for 20 QTL for each of 12 different demographic models for 100

different traits with varying effect size distribution of new mutations, strength of stabilizing

selection, and the contribution of the genomic background beyond the simulated QTL. After

detailed analysis of a single scenario, we use machine learning to extract parameter importance

for the input parameters. Our results illustrate that selective sweeps are common under most

scenarios, even for mutations of relatively minor effect. We employ machine learning on

genetic architecture matrices and find that demography and the effect size of new mutations

have the largest influence on present day genetic architecture. After identifying general param-

eter importance, we use maize domestication as an example and investigate two diverging

traits in a population that underwent a population bottleneck and exponential growth [22],

showing how these traits adapt to the changing optimum and comparing our findings to

archaeological and genetic data [23, 24].

Results

We first simulated adaptive and stabilizing selection on a single quantitative trait in a ran-

domly mating diploid population. After a burn-in to equilibrium, we simulated an instanta-

neous shift in the optimal trait value from 0 to 10, corresponding to 89.6 z-scores of VG0
. The

population underwent truncation selection until reaching the new optimum, at which time

stabilizing selection resumed. We assumed an additive model with no epistasis, and simulated

20 unlinked QTL as well as a genomic “background” over a range of parameters describing

population demography and the trait, including the effect size of new mutations, strength of

stabilizing selection, distance to the new optimum, effects of genomic background, and bottle-

neck severity and population expansion (Table 1).

Table 1. Parameters and variables.

Variable Description

Nanc Population size at equilibrium

Nfinal Population size after 0.1 × Nanc generations

Nbottleneck Population size during bottleneck

ψ Proportion of phenotype due to genetic background outside of QTL

σm Standard deviation of effect sizes of new mutations

VS Strength of stabilizing selection

VG0
Genetic variance at equilibrium

https://doi.org/10.1371/journal.pgen.1007794.t001

Polygenic adaptation to distant trait optima

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007794 November 19, 2018 3 / 24

https://doi.org/10.1371/journal.pgen.1007794.t001
https://doi.org/10.1371/journal.pgen.1007794


Single simulation results

The adaptation of a quantitative trait to a sudden environmental change involves allele fre-

quency shifts at many sites, some of which result in selective sweeps. To build intuition

around basic patterns seen in these simulations as a population adapts to a new optimum,

we first describe results of a single simulation with constant population size, intermediate

effect sizes of new mutations (σm = 0.05), strong stabilizing selection (VS = 1), and no pheno-

typic effect of the genomic background (ψ = 0). We present how such a population adapts to

the new optimum and how allele frequencies and effect sizes change during this process

(Fig 1).

The population mean trait value increased linearly (log10 scaled x- axis in Fig 1A) until

shortly before the new optimum was reached within 0.011 (sd = 0.0004) Nanc generations (Fig

1A and 1C). As the population mean approached the optimum the rate of change decelerated,

presumably because some individuals now had phenotype values above the optimum such that

alleles which contribute positively to the trait are no longer uniformly beneficial to fitness. The

trait variance increased after the optimum shift and during the adaptation process. Though it

declined once the new optimum was reached, it did not return to the equilibrium variance by

the end of the simulation (Fig 1C). This increase in variance is generated by the increase in

allele frequency of formerly rare, large positive effect alleles.

Following individual mutations shows that, at the onset of the optimum shift (generation 0)

alleles with negative effect sizes rapidly decline in frequency unless they were already near fixa-

tion (Fig 1B). Alleles with positive effects, on the other hand, increase quickly in frequency and

fix. Once the new optimum is reached, frequencies of both positive and negative alleles

changed slowly, but the number of small effect alleles increased. This shows how a population

can adapt to a sudden environmental change by an increase of beneficial alleles and decrease

of disadvantageous alleles in a relatively short time.

Looking at the change in allele frequencies of all mutations helps to understand what drove

the adaptation process in the population (Fig 1D). At equilibrium, variants with larger effects

Fig 1. Population dynamics of a single parameter set. A) Trait evolution after an optimum shift and B) allele frequency dynamics during adaptation from a single

replicate. The vertical line shows when the new trait optimum was reached and line colors denote effect sizes. Time is shown on a log scale. C) The phenotypic

distribution and D) site frequency spectra of segregating mutations (black) and neutral expectation (red) from 100 independent replicates. Panels show different

generations including equilibrium prior to adaptation (0), during adaptation (0.005), just before the new optimum is reached (0.01), after the new optimum has been

reached (0.02), and the final generation (0.1). All results are from a simulated population with constant population size, σm = 0.05, and VS = 1.

https://doi.org/10.1371/journal.pgen.1007794.g001
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are selected against, leading to an excess of rare variants compared to neutral expectations.

The site frequency spectrum (SFS) then changed quickly after the optimum shift as selection

fixed positive mutations. Directly before the new optimum was reached (0.01Nanc), 11% of

mutations were at very high frequencies (> 0.5) while after reaching the new optimum

(0.02Nanc) only 8% of mutations were at such high frequencies and the number of high fre-

quency segregating sites further declined in consecutive generations. Under stabilizing selec-

tion, extreme values are again selected against and alleles that have risen to intermediate

frequency during adaptation fix or get lost. By 0.1 × Nanc generations the SFS again reflected

an excess of rare alleles, but also an excess of high frequency derived alleles. The observed high

frequency derived alleles ((Fig 1D) bottom) represent in fact the other allele, which is at low

frequency. These mutations increased in frequency during adaptation, but both alleles have

the same fitness effect after the equilibrium has been reached and the mutation does conse-

quently not decrease in frequency.

When a selected mutation increases in frequency quickly, it often reduces diversity in

adjacent genomic regions, leading to a pattern commonly referred to as a selective sweep.

While we cannot assess diversity at linked neutral sites in our model, we can nonetheless

identify likely selective sweeps by comparing the sojourn time of individual alleles to that

of a neutral allele experiencing equivalent demographic processes (see Methods). Following

these criteria, 72% of all fixations in this simulation were selective sweeps. Of these, 73%

were sweeps from standing variation. While there was an overall negative correlation

between the time a site was segregating in the population and its effect size on the trait,

there were a number of mutations that fixed later than expected given their effect size

(Fig 2A).

Observing the frequency trajectories of sites that fixed after the new optimum had been

reached shows that the speed of frequency change slowed down substantially, but these alleles

eventually reached fixation. When the new optimum has been reached, any increase or

decrease in frequency of large effect mutations takes the population away from the trait opti-

mum and is selected against. The remaining change in frequency is mostly stochastic and

results from minor fluctuations in the trait mean due to frequency changes at other sites [19].

However, because stabilizing selection acts against stochastic variation in allele frequencies

that move the population away from the optimum, the time to fixation or loss for an allele is

still faster than neutrality in a manner that has sometimes been deemed similar to underdomi-

nance [25]. Some mutations with negative effects that decreased in frequency under truncation

selection after the optimum shift can then increase in frequency again once the new optimum

is reached and stabilizing selection takes over (Fig 2B). Such mutations provide a good exam-

ple of selection on a quantitative trait, which results in selection coefficients that can vary in

sign or magnitude depending on the total phenotypic value of the individual in which they

occur, its distance to the optimum, and the details of when and what kind of selection

occurred.

In our simulations, fixations from standing variation fixed either fast, because they were

present at high frequency at the onset of directional selection, or due to their large effect on the

trait. However, there was no correlation between the initial allele frequency and the generation

in which the mutation fixed (Fig 2C and 2D). Large effect mutations segregated at low fre-

quency in the equilibrium population, while small effect sites were already at higher frequen-

cies, explaining why large effect and small effect mutations fixed at similar generations, despite

the difference in speed of allele frequency shift. Negative and effectively neutral mutations may

also fix together with large effect positive mutations presumably due to the effects of genetic

hitchhiking (Fig 2).
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Complex genetic architectures with demographic changes

The detailed analysis of a single population adapting to a sudden environmental change helps

to build intuition on the dynamics of a specific set parameters, but is far from the complexities

of quantitative trait evolution in natural populations. For example, most populations have

experienced some form of fluctuation in population size, and traits differ both in the strength

of stabilizing selection as well as in their genetic architecture—the frequency and effect size of

mutations that cause variation in the phenotype. To understand the effect of these and other

variables, we simulated 1,200 different combinations of parameter sets to examine the contri-

bution of the strength of stabilizing selection, the effect size of new mutations, population

demography, and differences in genetic background on variation and adaptation of the focal

trait.

Fig 2. Selective sweeps. A) Speed of fixation of selective sweep mutations. B) Dynamics of fixations that occur after the new optimum was reached. C) Speed of

fixation of sweeps from standing variation compared to their initial frequency. D) The generation at which sweeps from standing variation fix. All results are from a

simulated population with constant population size, σm = 0.05, and VS = 1, and time is shown on a log scale.

https://doi.org/10.1371/journal.pgen.1007794.g002
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The combination of VS and σm led to different genetic variances at equilibrium ranging

from 0.004 to 0.751, leading to a distance of the new trait optimum between 11.5 and 158.2

z-scores (S3 Fig). We calculate VG in every generation during the burn-in and compared it to

the expected genetic variance under the House of Cards (HoC) or stochastic HoC [26, 27]

approximations [12]. The majority of simulations are within the regime of HoC, though the

approximation underestimated VG for σm = 0.9 and VS = 1 and overestimated VG for large VS

and small σm; all simulations closely matched expectations under the stochastic HoC approxi-

mation. All burn-ins had a mean fitness close to one at equilibrium after 10N generations and

the mean VG was constant (S4 and S3 Figs).

To understand the factors driving variation in particular aspects of the data, we employed a

random forest machine learning model (see Methods) to retrieve parameter importance.

Speed of polygenic adaptation

An important factor for the survival of a population exposed to changing environments is how

fast it can adapt to new conditions. Our simulated populations varied widely in the time

required to reach the new optimum, from 0.001 to 0.099 Nanc generations. A total of 732 of

the 120,000 simulations did not reach the new trait optimum within the simulated time of

0.1 × Nanc generations, but all parameter combinations had at least 8 (of 100) replicates reach-

ing the new optimum. In general, simulations that did not reach the new optimum were those

with a strong bottleneck (reduction to 1% or 5% of Nanc). In particular, more than 70% of all

simulations with the smallest σm (0.01), no genetic background, 1% bottleneck, and a final size

of Nanc did not reach the new optimum, regardless of their strength of stabilizing selection

(VS).

All three adaptation-related summary statistics (time to new optimum, adaptation rate, and

VG in the final generation) were well predicted, with cross-validation accuracy over 90% (Fig 3

top). Overall, the parameter contributing most to this variation is σm, with a relative impor-

tance of> 50% (Fig 4). This was followed closely by the proportion of the trait explained by

genetic background (ψ) at 31%, while demography and VS were of relatively minor importance

(Fig 3 and S5 Fig). We find that the rate of phenotypic adaptation was highest for populations

with small σm and large ψ, and these two factors explained the majority of the observed varia-

tion (Fig 4). The initial genetic variance, a combination of VS and σm, was the best predictor

for the genetic variance in the final generation, but the strength of the bottleneck and ψ had a

relative importance of 11% and 17%, respectively (S5 Fig). The genetic variance in the final

generation increased with increasing σm, though it plateaued at the largest σm simulated (Fig

4). Of the 1,200 parameter combinations, 45 had a mean VG as high as the initial VG (± 5%),

410 had higher VG and 745 had lower VG than the initial equilibrium population.

Segregating sites after polygenic adaptation

We further investigated segregating sites in the final generation, which correspond to a mod-

ern population that has experienced an optimum shift in the past. Cross validation prediction

accuracies were for most summary statistics very high (<0.9). The mean effect size of segregat-

ing sites was predicted with less accuracy, however, as all values are concentrated around zero

leading to low R2 values in the CV. The NRMSD, shows that the accuracy for mean effect size

of segregating sites was high and that the validation data could be predicted, which allowed to

infer parameter importance even with lower CV accuracy.

While absolute numbers mostly depended on the final population size, other statistics

showed more distinct patterns. Allele frequencies of both negative and positive sites were

strongly influenced by the demography of the population. The proportion of negative sites
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segregating in the population was also most strongly influenced by the strength of the bottle-

neck (Fig 3), but when VG0
(S3 Fig) was used to train the model instead, VG0

explained most of

the variation (S5 Fig). As VG0
is the result of the combination of VS and σm during the burn-in,

there is a strong interaction effect between VS and σm, which is partitioned when using VS as

feature in the random forest.

Fixations and selective sweeps

Mutations in a population can rise in frequency and fix due to demographic events and sto-

chastic sampling or as a result of selection. The sudden change in trait optimum in our model

imposed strong selection on sites with a positive effect, while mutations with negative effect

values were deleterious until the new optimum was reached. Different parameter combina-

tions led to strongly varying numbers and patterns of fixations in our simulations. The effect

size of new mutations (σm) and ψ had the strongest influence on the absolute number of fixa-

tions and the effect size of mutations that fixed (Figs 4, 3 and S5 Fig). Variation in the mean

effect size of fixations depended mostly on σm, though VS also contributed substantially for

negative fixations. Consistent with fixations being driven primarily by selection, the effect size

of positive mutations that fixed was an order of magnitude larger than that of negative fixa-

tions (S6 Fig). Comparing results within each set of simulations with identical σm shows that

stochastic sampling due to Nbneck played an important role in determining the number of fixa-

tions even if the relative importance of Nbneck among all parameters was only 3% (S6A Fig and

Fig 3).

Fig 3. Relative parameter importance. Relative parameter importance inferred for four parameter categories. 1) Adaptation: parameters describing adaptation

speed and potential for future adaptation, 2) Fixations: summary statistics for mutations that were fixed during trait adaptation, and 3) Segregating sites: descriptors

of alleles polymorphic in the final generation of the simulations. Top rows indicate prediction accuracy as calculated by 10-fold cross validation and NRMSE. Each

bar is the result of an independent random forest learning and each color represents the relative importance of the simulation input parameters (see Methods and S1

Table. for summary statistics).

https://doi.org/10.1371/journal.pgen.1007794.g003
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Not all fixations are due to positive selection, however, and even those that are due to selec-

tion would not necessarily reduce linked diversity sufficiently to be detected as a selective

sweep. To differentiate between neutral and strongly selected fixations, we compared the fixa-

tion time of sites that fixed after the shift in trait optimum to single-locus neutral simulations

with identical demography (see Methods). Consistent with the higher total number of fixations

exhibited, populations with smaller σm also showed a higher number of sweeps. While the

maximum number of sweeps was almost 300 (for σm = 0.01, ψ = 0, VS = 1, and a bottleneck),

13 parameter sets did not lead to any sweeps within the simulated time, all with σm� 0.3, ψ =

0.95 and VS� 5. The proportion of sweeps to fixations ranged from 0 to 99% but was highly

variable and revealed strong interactions between σm, ψ and VS (Fig 4). Larger ψ led to a low

proportion of sweeps to fixations when VS and σm were small, but for large values of VS and σm
almost all fixations were sweeps, scaling with decreasing ψ (https://mgstetter.shinyapps.io/

quantgensimAPP/). The proportion of sweeps from standing variation was also highly vari-

able, but differentiated more strongly by demography within each group of σm than the total

proportion of sweeps (Fig 4E). Population bottlenecks were the second most important

Fig 4. Summary of trait adaptation and selective sweeps. A) Time to reach new trait optimum B) Rate of change in phenotype C) Genetic variance after 0.1 × Nanc

generations. D) Total number of selective sweeps, separated by type of sweeps. E) Proportion of sweeps compared to all fixations F) Proportion of sweeps from

standing variation. Boxes are split by major parameter importance as identified by our random forest model. Points in A-C and E-F show the values of each of 1,200

parameter sets and are colored according to bottleneck size (Darker color indicate stronger bottleneck, see legend in A). Interactive plots are available at https://

mgstetter.shinyapps.io/quantgensimAPP/.

https://doi.org/10.1371/journal.pgen.1007794.g004
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parameter for the type of selective sweep observed, while either σm or VG0
were the most

important parameters (Fig 3 and S5 Fig).

Genetic architecture after adaptation

The genetic architecture of phenotypic traits that we observe in populations today was shaped

by demographic history and past selection. We evaluated the genetic architecture in the final

generation of all 1,200 populations with their diverse range of histories by comparing the com-

bined allele frequency—effect size matrices (see Methods). These matrices were used as input

for our random forest model to understand the contributions of input parameters to variation

in genetic architecture.

The extracted parameter importance showed that the variation in the genetic architecture

depended most strongly on Nfinal and σm, but each of the other three parameters contributed

at least 9% of the variation (Fig 5). The strong interaction between parameters becomes appar-

ent in Fig 5, where the fine structure beyond the major 2 parameters (σm and Nfinal) can be

seen on all levels of combinations. Among simulations with large σm and large Nfinal, however,

all correlations are close to 1 and it is therefore not possible to easily distinguish parameter sets

based on their genetic architecture (individual genetic architecture plots for each parameter

combination are available at https://mgstetter.shinyapps.io/quantgensimAPP).

Fig 5. Genetic architecture in final population. A) Genetic architecture matrices for two parameter combinations (maize models, see Methods) differing in effect size

of new mutations and strength of stabilizing selection. Effect size bins are centered around zero with negative effect size quantiles on the left and positive quantiles on

the right of the central bin. Shown is the correlation coefficient between the genetic architectures. B) Pairwise correlation of genetic architecture of all comparisons of

1,200 parameter combinations. Subplots display the combination of final population size (log; 1, 3, 10) and effect size distribution (σm, 0.01, 0.05, 0.1, 0.3, 0.9) of

incoming mutations. Each pixel displays a pairwise comparison between two of the 1,200 scenarios. C) Relative parameter importance for genetic architecture

prediction.

https://doi.org/10.1371/journal.pgen.1007794.g005
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Maize domestication traits

After evaluating a wide parameter space using our machine learning models, we then

investigated in more detail two parameter sets that resemble diverging traits during maize

domestication. Using simulations with demographic models similar to that inferred for maize

[a bottleneck of 0.05 × Nanc followed by exponential growth to 10 × Nanc, 22], we selected one

trait with strong stabilizing selection and small effect mutations (Trait 1; σm = 0.01 and Vs = 1)

and one trait with weak stabilizing selection and large effect mutations (Trait 2; σm = 0.9 and

Vs = 50).

The two traits showed notably different patterns of adaptation (Fig 6, x-axis on log10 scale).

Trait 1 increased almost linearly for 0.0733 × Nanc generations before asymptotically arriving

at the new optimum. The genetic variance for this trait declined for the first 0.0169 × Nanc

generations before it slowly increased, but did not reach the equilibrium value within the

0.1 × Nanc generations simulated. Trait 2, on the other hand, adapted rapidly, reaching the

optimum in only 0.002 × Nanc generations. The genetic variance for Trait 2 increased during

adaptation to a value higher than VG0
, then decreased after the optimum was reached but

remained higher than VG0
(Fig 6A and 6B). The number of fixations was 100 times higher for

Trait 1 than for Trait 2; the ratio of sweeps per fixation was also higher, and most sweeps in

Trait 1 were hard (Fig 6C). Though on average Trait 2 exhibited fewer than 2 sweeps per simu-

lation, 94% of these were from standing variation. Neither trait showed a strong correlation

between mutation effect size and when fixation occurred, suggesting that the domestication

bottleneck was not the primary driver of fixation (S7 Fig). The sojourn time for sweeps from

standing variation was correlated with the initial allele frequency, but also with its effect size.

Large effect positive mutations had a low initial frequency but fixed quickly, while negative

alleles fixed slowly despite their high initial frequency, similar to the initial trait described

above (Fig 2). This observation held particularly true for Trait 2, where only few small or nega-

tive effects fixed quickly (Fig 6D and 6E). The overall contribution of all sweeps to phenotypic

change was also different between the two traits: the summed effect size of all sweeps repre-

sents 45% of the adaptation in Trait 1, but only 18% for Trait 2.

Fig 5A shows the difference in genetic architecture between the two traits. While the adap-

tation of Trait 1 led to an equal distribution of effect sizes at low frequencies, Trait 2 had a

larger proportion of both very low frequency mutations from the extreme tail of the distribu-

tion and small effect mutations at higher frequencies. Despite these differences the correlation

between the genetic architecture matrices was very high (0.96; Fig 5).

Discussion

Model choice

We use a combination of two different fitness functions to study the quantitative genetics of

adaptation to a sudden change to a new trait optimum far beyond observed trait values for any

individual in the equilibrium population. During the stationary phase before the shift and after

reaching the new optimum we followed a Gaussian fitness function appropriate for a trait

under stabilizing selection [14]. During the optimum shift, however, such a model would be

problematic, as only a few individuals in the upper tail of the fitness distribution would have

extremely high relative fitness, inducing a strong population bottleneck. Instead, we applied a

model of truncation selection, first calculating fitness under the Gaussian fitness function but

then assigning a fitness of 1 to the top half of the population and 0 to the bottom half. Such a

model is reasonable for sudden shifts in trait optima that do not lead to the extinction of a pop-

ulation, but where higher trait values are unambiguously advantageous and the maximum

Polygenic adaptation to distant trait optima

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007794 November 19, 2018 11 / 24

https://doi.org/10.1371/journal.pgen.1007794


Fig 6. Maize specific adaptation. A) The evolution of trait value and B) genetic variance during adaptation to a new trait optimum for two traits under maize

demography with no genetic background. Time in both figures is shown on a log scale, light shadows show standard deviations from the mean of 100 simulation

replicates. Trait 1 (blue) has small effect mutations (σm = 0.01) and strong stabilizing selection (VS = 1). Trait 2 (red) has large effect new mutations (σm = 0.9) and weak

stabilizing selection (VS = 50). Vertical lines denote the generation when 99% of the new trait optimum is reached. C) Proportion of selective sweeps. D) Sojourn time

of sweeps from standing variation in Trait 1. E) Sojourn time of sweeps from standing variation in Trait 2. Scales in D and E are different due to strong divergence of

effect size values.

https://doi.org/10.1371/journal.pgen.1007794.g006
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population size is limited. In natural populations these factors can be observed when sudden

changes in the environment favor a specific phenotype for invasive species [28] or in semi-arti-

ficial populations in agroecosystems and during domestication [24]. Truncation selection is

also common in evolve and re-sequence experiments [29], crop populations [30] and during

strong directional selection in natural populations [31].

In our model simulations we fixed the equilibrium optimum to 0 and the new optimum to

10, but change VS and σm. As VS and σm change, the relative distance to the new optimum

changed with respect to the initial VG (VG0
). The wide range of distances simulated resembles

observations in nature and experimental populations. For example, in the Illinois long term

selection experiment in maize, 105 generations of selection for high oil resulted in a shift of

over 40 standard deviations [30], and large trait shifts have also been identified in other experi-

mental and natural populations [32, 33]. Our results should therefore be relevant for a variety

of traits that adapt to changing environments.

While our modeling investigated a wide parameter space for a number of key variables, one

key aspect we have ignored is interaction among alleles (dominance) or loci (epistasis). Both

forms of interaction are widely recognized to be important at the molecular level [34, 35], but

the majority of variance for a wide array of quantitative traits seems reasonably well explained

under a simple additive model [36, 37], but see [38, 8, 34, 39]. Although we do not include any

explicit simulation of interlocus interactions, our quantitative trait model is such that the effect

of an allele in any given generation will depend on the genetic background. We predict that

epistasis and dominance would absorb some of the effect of σm for most statistics and have rel-

atively little influence on demographic parameters. Further efforts should incorporate the

effects of dominance and epistasis, especially for understanding phenomena such as heterosis

and inbreeding depression, where non-additive effects are likely to play a significant role

[40, 41].

How do organisms adapt to change

Rapidly changing environments, such as those faced by changing climate, impose a threat to

populations with narrow genetic variance for important traits [42]. However, the speed and

manner in which traits adapt depend on the initial variation and beneficial mutations entering

the population once the environment changes. In rapidly changing environments or during

new colonization of habitats the time it takes to reach the new optimum is critical, as this

might determine whether the population is first to occupy a niche. We looked at two summary

statistics—time to optimum and adaptation rate—to compare the adaptive behavior of differ-

ent traits. The speed to the optimum shows the absolute speed of a population to reach the

new optimum, while the adaptation rate is corrected for the genetic variance present. The

absolute speed depends most on σm, but the adaptation rate is more uniform across σm with

even higher adaptation rates for small σm (Fig 4A and 4B). This shows that with small effect

mutations and strong stabilizing selection adaptation is mutation limited, but this is not the

case when VS is large. These two types of adaptation regimes have previously been described as

mutation and environmentally limited adaptation regime [16]. Large adaptation rates are

reached with the largest ψ (0.95) values, because genetic diversity is maintained during the

adaptation process. Populations with small σm and small ψ run out of genetic variance, because

most positive standing variation fixes and negative mutations get lost. The loss of genetic vari-

ance is also apparent when comparing the initial genetic variance to the final genetic variance,

which is smaller after adaptation for most populations with σm = 0.01 (Figs 4C and 6B and S3

Fig). The decrease in VG for small effect mutations and the increase from large σm is consistent

with previous results [15]. The genetic variance after historical adaptation is important in the
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face of climate change where recently adapted populations will be forced to further adapt. Pop-

ulations with a large initial genetic variance and large effects also have larger genetic variance

in the final population and are thus better prepared for future adaptation. The severity of pop-

ulation bottlenecks is an additional factor influencing VG in the final generation as diversity is

removed by genetic drift (Fig 3 and S5 Fig).

Overall, populations with the largest VG0
and largest σm adapt fastest to a new optimum as

expected, but we also show the impact of population bottlenecks and the overlap between trait

architectures (combinations of VS and σm). Different trait architectures can result in similar

adaptation speed and genetic variance depending on the population history. This implies that

for traits that are highly polygenic, it is of particular importance to prevent population declines

in order to maintain the adaptability of populations.

Selective sweeps during polygenic adaptation

Much of standard population genetic theory assumes mutations have a constant fitness effect

s. This assumption has led to a number of findings about selective sweeps, from the probability

of fixation being� 2s [43] to the rule of thumb that mutations with fitness effects |2Ns| > 1

will be fixed or removed by natural selection, while those with smaller effects will drift stochas-

tically as effectively neutral alleles [44]. For quantitative traits, however, the fitness effect of a

mutation is conditional on the phenotypic distance of an individual to the trait optimum and

the correlation between the trait and fitness [14]. At equilibrium this follows a Gaussian distri-

bution (Eq 1), but during directional selection it will depend on the distance of the population

from the trait optimum. The relationship between the phenotypic effect size of a mutation and

its fitness effect is strongly positive at the onset of selection, while the slope declines as the pop-

ulation trait mean approaches the new optimum and is even slightly negative once the new

optimum has been reached [17, S8 Fig]. This shows that segregating large effect positive muta-

tions are beneficial when the population trait mean is distant from the new optimum, but

become disadvantageous once the population mean is close to the new optimum, as on average

they will cause individuals to overshoot the optimum.

Most selective sweeps occur during the adaptation process before the new optimum has

been reached, but the number of fixations and sweeps is strongly dependent on the demogra-

phy of the population. A strong population bottleneck leads to more fixations, but most of

these are fixed by drift rather then selection, and Nbottleneck is therefore more important for the

number of fixations than the number of selective sweeps (Fig 3 and S5 Fig). Population bottle-

necks also decrease the proportion of sweeps from standing variation and favor hard selective

sweeps, because the bottleneck removes segregating beneficial alleles (Fig 4).

The overall importance of selective sweeps for different traits depends on the initial genetic

architecture: our two example traits show that differences in the number of sweeps do not nec-

essarily reflect their combined effect. Trait 1 exhibited 279 sweeps, these contributed to 42% of

the change in trait value, while for Trait 2, only 2 sweeps contributed 18% (Fig 6C). This is con-

sistent with previous results showing that allele frequency shifts of large effect alleles are suffi-

cient to reach the new optimum, but selective sweeps are more important when the new

optimum is distant [20, 15]. Our results show even more extreme cases, for example Trait 1

and simulations with σm� 0.05, in which the population exhausts standing variation and relies

almost entirely on new mutations. In this case hard selective sweeps are most common, as new

positive mutations provide a strong relative fitness advantage (Figs 4 and 6).

Without linked neutral sites, our ability to identify likely sweep regions requires a few

important caveats. First, we use a conservative definition of selective sweeps, including only

those alleles fixing faster than 99% of neutral simulations. Less conservative cutoffs should not
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strongly influence the general result, as most mutations that sweep fix substantially faster than

neutral fixations and only a few more fixations would be defined as selective sweeps. Second,

while we identify only sweeps from mutations that arose after the optimum shift as hard

sweeps, some sweeps from standing variation would be difficult to distinguish from hard

sweeps in genomic data if their frequency at the onset of directional selection was very low

[45]. Likewise, not all alleles that fixed faster than 99% of neutral simulations would be detect-

able as selective sweeps in empirical data, as selection on standing variation has a less pro-

nounced impact on diversity at linked sites [4].

The effect of genetic background on focal QTL

Allele frequency shifts and selective sweeps in a focal QTL are dependent on the genetic back-

ground. Chevin and Hospital [17] showed analytical results for the behavior of a single locus

with a polygenic background during the adaptation to a new optimum. In our study, we simu-

late a more complex case: in addition to a genetic background (see Eq 4), we model 20 QTL

each involving numerous loci. Moreover, in our model the QTL and the genetic background

are not independent, because the QTL in the parents contribute to their trait value but can

themselves be inherited as well. Nonetheless, our results broadly agree with [17], showing that

when the effect of the background and effects of mutations within the QTL are large, adapta-

tion proceeds without selective sweeps (Fig 4). We additionally show that the background

explains considerable variation in many summary statistics, in particular those related to fixa-

tions and selective sweeps (Fig 3). Together with empirical observations of varying fitness

effects for QTL in different backgrounds [46, 47, 48], our results highlight that evolutionary

models of QTL cannot ignore the effects of genetic background.

Genetic architecture of quantitative traits after adaptation

The genetic architecture of a trait is an important feature in the study of adaptation, influenc-

ing both the response to selection as well as the power to detect causal loci for a trait. Our two

example traits show that different adaptation processes lead to different patterns of the genetic

architecture matrix. Because Trait 1 only reached the new optimum shortly before we assess

the the genetic architecture, the values are distributed asymmetrically around the zero effect

size bin. Trait 2 reached the new optimum very early and therefore is more similar to an equi-

librium genetic architecture with effect sizes close to zero at higher frequency and larger effect

sizes at very low frequencies. These differences even between two highly correlated genetic

architectures show that in addition to the input parameters, the time that passed since the new

optimum was reached has an influence on the genetic architecture we observe in a population.

Using a machine-learning approach that trained on a subset of our simulations, we were

able to identify the parameters that explained the largest proportion of variation among the

genetic architectures studied (Fig 5). We found that demographic change plays a key role in

determining the present genetic architecture, explaining as much as 55% (growth and bottle-

neck combined) of the variation we observed. For example, recent population growth leads to

an increased number of low frequency mutations; this effect drives many of the observed dif-

ferences between genetic architecture matrices of different demographies. We observed a high

correlation (0.83–0.99) between genetic architectures with similar population demographies,

suggesting that making inference about the process of adaptation from present day genetic

architecture will have greater power in situations where the demography can be independently

inferred. The result confirms the theoretical prediction that the combination of different allele

frequency shifts at a large number of loci lead to similar trait architecture [49]. However when

other statistics, such as information about fixations, effect size distributions observed in
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present populations, number and type of selective sweeps and the demography are added as

parameters to the modern genetic architecture, we can predict the evolutionary rate, σm, and

VS with 70% accuracy.

In addition to the effect of population growth, other input parameters do contribute sub-

stantially to variation in the genetic architecture, including the strength of stabilizing selection.

Simons et al. [50] and [51] suggest that rare alleles are unlikely to contribute substantially to

trait variance, but our models show that rare alleles can explain a large proportion of the varia-

tion when effect sizes are large. This is more consistent with the findings of [21], who showed

that population growth leads to an increase proportion of genetic variance explained by rare

alleles. The lack of consensus might result from differences in the models: while [50] models

selection on fitness directly and [51] a quantitative trait under stabilizing selection with pleiot-

ropy, our models and that of [21] consider selection on traits that are directly correlated to

fitness.

Maize domestication

Quantitative traits have been extensively studied in maize and breeders have made steady

progress selecting traits for ever increasing trait values. But despite decades of observation that

many important traits in maize are polygenic and work identifying QTL underlying domesti-

cation-related phenotypes [52], there has been little attention to the process of quantitative

trait adaptation during maize domestication [but see 53, 23]. Nevertheless, many domestica-

tion traits, are polygenic and controlled by a number of loci with varying effect sizes [23].

Archaeological records of maize domestication traits show that adaptation took several thou-

sand years [24]. Our example Trait 1 matches this pattern, representing an adaptation time of

almost 0.1N generations, equivalent to 10,000 years for a population similar to that of the wild

ancestor of maize [22, Fig 6]. Trait 1 also leads to a reduction in genetic variance compared to

the equilibrium population (wild ancestor), again matching observed data [23].

Trait 2, on the other hand, differs dramatically in a number of ways. It reached the new

optimum extremely quickly, and diversity in the present is actually slightly higher than at the

time of the optimum shift (Fig 6). The behavior of Trait 2 most closely resembles that of resis-

tance traits with few large effect QTL [54]. We only look at the genetic variance of mutations

that affect a single trait, but the overall diversity of a population is based on a combination of

traits with different trait architectures and neutral parts of the genome. The observed reduc-

tion in genetic diversity of domesticates could partly be due to the distant optimum shift and

partly, because of the population bottleneck experienced during domestication.

The difference in trait adaptation and genetic variance trajectory can be partially explained

by the fixations and selective sweeps of beneficial alleles. The number of fixations revealed that

as expected far more mutations fixed for Trait 1 than for Trait 2, as in Trait 1 many more sites

are segregating in the equilibrium population, but the number of sweeps was also much higher.

This is corrected for sites that fix due to genetic drift and shows that the larger relative distance

to the new optimum changes the adaptation pattern. In maize it has been shown that domesti-

cation led to an accumulation of deleterious alleles, which so far was mainly attributed to the

domestication bottleneck because no increase in deleterious alleles near major domestication

genes was found [55]. For quantitative traits, small effect deleterious fixations could be distrib-

uted more uniformly across the genome and fix even without population bottlenecks. In gen-

eral there are only few hard selective sweeps observed in maize and 84% of fitness related SNPs

were already segregating in teosinte [56]. Our traits show that depending on the relative dis-

tance to the new optimum the type of selective sweeps changes. While sweeps come primarily

from standing variation for traits that are close to the new optimum, for distant optima hard
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sweeps are observed more frequently because standing variation is exhausted. The overall pat-

tern of selective sweeps in the maize genome is a result of selection on a combination of traits

and probably involves pleiotropic effects that can prevent fixation of new mutations even if

they have large effects on a single trait [48].

Signature of polygenic adaptation in genomic data

The recently suggested omnigenic model predicts that regulatory networks are sufficiently

interconnected that many loci even outside the most biologically relevant genetic pathways

can nonetheless affect a trait [57]. If indeed many traits are omnigenic, a quantitative evolu-

tionary model as employed in our simulations is well suited for making inferences about

observations in genomic data. Large sets of genomic and phenotypic data are becoming

increasingly available, facilitating the study of the role of polygenic adaptation. Our results

help to understand the implications of different parameters for the interpretation of such stud-

ies and provide targets for new selection tests that explicitly test for polygenic adaptation and

the underlying genetic architecture. We show, for example, that selective sweeps can play a

crucial role during polygenic adaptation and should be integrated into detection methods, as

some approaches to investigate polygenic adaptation from shifts in allele frequencies may lose

power if large effect alleles are fixed in the population in which effects are estimated [6, 39, 58].

Inferring polygenic adaptation and the underlying parameters in empirical data can pro-

vide important insight into the evolution of complex phenotypes. For experimental evolution

scenarios in which the ancestral populations are known, the distance between the initial and

the final optimum can be inferred from phenotype data, but for natural populations this may

be more challenging. Our results indicate that the relative distance could be inferred from

genomic data via estimates of the genetic architecture if the demographic history is known.

One current challenge of transferring simulation results to empirical data is the computational

limitation of simulating whole genome sequences in large populations. Faster implementations

will allow simulation of larger regions and include neutral sites [59], and could be used to train

machine learning models in order to predict the evolutionary history of a population from

existing data coming from association studies. The implementation of machine learning

trained on simulated data has been successfully applied to identify a number of population

genetic patterns [60], and is a promising avenue for future work.

Materials and methods

Model

We simulated a quantitative trait under stabilizing selection with an optimum of 0 that adapted

to a discrete optimum change to a value of 10. The population was diploid and mated ran-

domly. Phenotypes followed a purely additive model in which the genotypic values at a given

locus with an allele of effect size a were 0, 0.5a and a for homozygous ancestral, heterozygous

and homozygous derived genotypes. We modeled 20 QTL resembling 50kb regions, each with

a 4 kb “genic” region centered in a 46 kb “intergenic” region. In the intergenic region muta-

tions that affect the phenotype appeared with 1% probability of the genic region, leading to

approximately 10% of mutations in intergenic regions and 90% in the 4kb genic regions. Start-

ing with a neutral substitution rate of 3 × 10−8 per site per generation [61], we then assumed

that only 10% of all mutations affect the trait of interest, resulting in a mutation rate of

3 × 10−9 per site per generation and a total per gamete mutation rate of 3 × 10−3 per generation.

Regions were unlinked (50 cM distance), and within regions the recombination rate was

5 × 10−8 per site per generation (0.05 per gamete).
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Fitness. We used a Gaussian fitness function in which an individual’s fitness w was mod-

eled as:

w ¼ exp½�
ðz � zoptÞ

2

2VS
� ð1Þ

where z is the trait value of an individual, zopt is the population optimum trait value, and Vs

modulates the possible deviation from the optimum. This standard model for traits under sta-

bilizing selection is well suited for populations at equilibrium [26, chapter 7]. Under strong

directional selection, however, this model greatly amplifies fitness differences among individu-

als in the tails of the phenotypic distribution. During the adaptive phase of the simulation, we

calculated individual fitness following Eq 1, but then apply truncation selection by assigning a

fitness of 1 to the top 50% of the distribution of w and 0 for the remaining 50%. This model

allowed for truncation selection on z, while the population was distant from the new optimum,

but allows for selection against phenotypes that surpass the new optimum during the final

stages of adaptation. We stopped truncation selection once the population mean reached the

new optimum, returning the population to stabilizing selection using fitness values calculated

in Eq 1.

Initial genetic variance. The genetic variance at equilibrium can be approximated by the

house of cards (HoC) model [12, 26]:

E½VG� ¼ 4mVS ð2Þ

and the stochastic HoC approximation [chapter 7, 26, 27]:

E½VG�SHC ¼
4mVS

1þ VS=ðNs2
mÞ

ð3Þ

We simulated five different values of VS (1, 5, 10, 20, 50) to modulate the genetic variance of

the equilibrium population.

Effect size of new mutations. We used a Gaussian distribution around zero for the effect

size of new mutations and five different standard deviations (σm = 0.01, 0.05, 0.1, 0.3, 0.9) to

create traits with different effect sizes. Given a fixed optimum of 10, this distribution of effect

sizes in combination with VS effectively parameterize the distance to the new optimum, from a

minimum distance of 11.5 z-scores (phenotypic standard deviations) to a maximum of 158.2

z-scores.

Background. Computational limitations do not allow simulation of an entire eukaryotic

genome, so we added a heritable background (GB) to our simulations to account for the adap-

tive potential of the rest of the genome.

GB � N ðGmp; s
2Þ ð4Þ

where GB is the value of the genomic background of an individual, Gmp is the mid-parent geno-

typic value and σ2 is the variance of the parental trait values [62, chapter 9]. Hence, GB is

drawn from a normal distribution around the mid-parent value.

P ¼ c� GB þ ð1 � cÞ � G ð5Þ

The trait value of an individual P is then given by the sum of its genetic value G and the

genomic background GB, weighted by ψ, the proportion of trait variation represented by the

background. We modeled four different background levels (ψ = 0, 0.1, 0.5, 0.95).

Demography. To study the effect of population bottlenecks and expansion, we simulated

a total of 12 different demographic scenarios with varying strength of a single bottleneck and
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subsequent growth (S1 Fig). In scenarios with a bottleneck, an instantaneous reduction in pop-

ulation size occurs immediately after the burn-in and is followed by exponential growth over

the length of the simulation (0.1 × Nanc generations).

Simulations

Using the above described parameters we simulated 100 replicates each of 25 different equilib-

rium traits using fwdpy11 v1.2a (https://github.com/molpopgen/fwdpy11), a Python package

using the fwdpp library [63]. These 25 traits differed in their combination of VS and σm and

were run for a burn-in of 10 Nanc generations (S3 Fig). Subsequently, each of the 1,200 parame-

ter combinations was run for 0.1 Nanc starting from these equilibrium traits.

We simulate a population of 10,000 individuals for 1,000 (0.1Nanc) generations after a

burn-in of 100,000 generations to reach equilibrium.

The population mean trait values and variances were recorded every generation and entire

populations, including individual trait values, mutations and effect sizes, were recorded every

10 generations for the first 100 generations after burn-in and then every 100 generations

thereafter.

Analysis

Sweeps. To identify selective sweeps, we used binomial sampling to simulate the sojourn

time of neutral alleles arising in populations undergoing each of the demographic models

described above. Mutations that were lost or that fixed before the end of the burn-in were

ignored. We ran 10,000 replicates for each of the 12 demographic models and recorded the

time it took a mutation that fixed within the last 0.1N generations (similar to our selection

model) to fix in this random model. These simulations provided a null distribution to which

we compared selected mutations in our quantitative trait simulation (S2 Fig). We defined as a

sweep any mutation that fixed faster than 99% of neutral alleles and categorized them as hard

or from standing variation depending on whether the mutation arose before or after the opti-

mum shift.

Machine learning. For each of the 120,000 simulations we calculated various summary

statistics using the pandas version 0.21.0 and numpy version 1.12.1 Python libraries [64, 65].

These include statistics related to adaptation, selective sweeps, segregating sites, and fixed

mutations; S1 Table. contains a full list of parameters used for prediction and importance

estimation.

To identify the importance of input variables we trained a random forest and extracted the

relative importance of the input parameters. We employed the RandomForestRegressior of

sklearn 0.19.0 [66] with 100 trees to extract parameter importance by training the model using

input parameters as features of the whole dataset and predicting a summary statistic. The pre-

diction accuracy for all parameters was then estimated by 10-fold nested cross validation

(training using 80% of the data) as well as root-mean-square deviation normalized by the

range of values observed (NRMSD) implemented in sklearn [66], and the process repeated for

each summary statistic of interest (S1 Table).

To compare the genetic basis of traits between scenarios we define the genetic architecture

as the matrix of allele frequencies and effect sizes for each simulation. Allele frequencies were

split into 7 discrete bins (0–10−4, 10−4–10−3, 10−3–10−2, 10−2–0.1, 0.1–0.5, 0.5–0.9, 0.9–1) and

effect sizes were split into 9 quantiles, as absolute effect sizes were strongly dependent on the

input effect size. Relative occurrence frequencies (summing to 1 over the whole matrix) of seg-

regating sites in each frequency-effect size combination were calculated for each simulation.

These values were used to train a random forest model and extract parameter importance.
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Parameter importance was estimated by predicting frequencies of each effect size bin from the

input parameters. Prediction accuracy was again assessed by 10-fold cross validation imple-

mented in sklearn [66]. Additionally, we calculated pairwise correlations of genetic architec-

ture matrices in the final generation between all possible pairs of scenarios using the mean of

all simulation replicates.

Maize domestication

We took a closer look at two sets of simulations that represent diverging traits under a demo-

graphic model similar to that of maize domestication (Nbottleneck = 0.05 × Nanc;Nfinal =

10 × Nanc). For these simulations we assumed no genetic background (ψ = 0). Trait 1 repre-

sents a trait with new mutations of small effect (σm = 0.01) and strong stabilizing selection

(VS = 1), while Trait 2 has new mutations of large effect (σm = 0.9) and weaker stabilizing selec-

tion (VS = 50).

Supporting information

S1 Fig. Demographies. Bottlenecks and growth models.

(TIF)

S2 Fig. Detection of selective sweeps. Distribution of fixation times from neutral single locus

simulations (red) and forward simulations with selection (green). The grey area denotes the

99% confidence interval of neutral fixation time. Fixations outside the confidence interval are

considered selective sweeps.

(TIF)

S3 Fig. Genetic variance during burn-in. The genetic variance in each generation over 10

Nanc generations for each parameter set. Solid horizontal lines denote the House of Cards

approximation of VG [12]. Scenarios with small σm and large VS do not reach the expected VG

because mutations are too small to “fill up” the variance volume. However, their equilibrium

variance is well approximated by the stochastic House of Cards approximation [27, dashed

line].

(TIF)

S4 Fig. Equilibrium fitness. Fitness for each burn-in parameter combination after 10N gener-

ations.

(TIF)

S5 Fig. Relative parameter importance. Relative parameter importance inferred by Random

Forest machine learning for three parameter categories. 1) Adaptation, trait related parameters

describing adaptation speed and potential for future adaptation. 2) Fixations, summary statis-

tics for mutations that were fixed during trait adaptation and 3) segregating sites in the final

generation of the simulations. Top panel indicating prediction accuracy as calculated by

10-fold nested cross validation and normalized relative mean squared error.

(TIF)

S6 Fig. Fixations. A) Total number of fixations B) Mean effect size of fixations C) Mean effect

size of positive fixations D) Mean effect size of negative fixations.

(TIF)

S7 Fig. Timing of selective sweeps for maize domestication simulations. Shown is the

relationship between effect size and the generation of fixation for mutations for Trait 1 (left,
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σm = 0.01 and VS = 1) and Trait 2 (right, σm = 0.9 and VS = 50).

(TIF)

S8 Fig. Fitness effects of mutations. Fitness effects of mutations at the onset of directional

selection (0.001–0.012N), before the new optimum is reached (0.001–0.012N) and after the

new optimum has been reached (0.012–0.022N).

(TIF)

S1 Table. Predicted summary statistics for feature importance estimation.

(PDF)
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